
Norwegian University of Science and Technology

System Structure Modeling Language (S2ML)

Models of Structures, Structures of Models

Michel Batteux (IRT SystemX, France)

Tatiana Prosvirnova (IRT Saint-Exupery, France)

Antoine Rauy (IPK NTNU, Norway & Chaire Blériot-France, France)

Norwegian University of Science and Technology 2

Agenda

• Rational

• Description

• Full Example

• Grammar

• Flattening

• XML Encoding

• Issues

Norwegian University of Science and Technology 3

Today’s Major Challenge: Integration

Today, a major challenge of industry is to integrate the different system

engineering disciplines (such as system architecture, control, multi-physics

simulation, automatic code generation, safety and performances analyses…).

In all system engineering disciplines, there is a growing interest for the so-called

Model-Based approach (as opposed to Document-centric approach).

The integration of system engineering

disciplines goes through the integration of

the artefacts, i.e. the models, they

produce.

Norwegian University of Science and Technology 4

Modeling Languages

System engineering modeling formalisms and languages are made of two parts:

– An underlying mathematical model, that is capturing some aspect of the

behavior of the system, e.g. differential equations for Modelica and

Matlab-Simulink, Data-Flow equations for Lustre, Guarded Transition

Systems for AltaRica…

– A structuring paradigm that makes it possible to build models by

assembling parts (usually copied from libraries of reusable components)

into hierarchical descriptions. E.g. Modelica is an object-oriented

formalism. This structural part is usually flattened/compiled before the

actual treatments take place.

Modeling Language = Mathematical Model + Structuring Paradigm

Norwegian University of Science and Technology 5

Model Synchronization

It would be of a great interest that the various modeling formalisms share their

structuring paradigm. It would make much easier:

– Learning/training,

– Model transformation,

– Storage in collaborative data bases (PLM),

– Co-simulation (to some extent),

and even more importantly:

– Model synchronization, i.e. eventually the (preferably automated)

means by which one can warranty that heterogeneous models, possibly

designed by different teams with different concerns,

• are describing the same system, and

• are coherent.

Norwegian University of Science and Technology

Abstraction and Comparison

abstractor

abstractor

model A

model B

comparatorabstraction A’

abstraction B’

Evaluation &

Simulation

Architecture &

Integration

The synchronization of possibly heterogeneous models requires to abstract

these models into a common framework and then to compare their abstractions.

Although the choice of abstractors and comparators depends on the

system and the level of maturity of the project, what should be

synchronized is essentially the structural part of models.

Synchronisation = abstraction + comparaison

6

Norwegian University of Science and Technology

S2ML Promise: 1) Models of Structures

S2ML aims at providing a necessary and sufficient language to describe the

functional and/or physical structures of systems.

Describing the structure of a system is a modeling process that aims at

architecting the system, i.e. eventually at improving the comprehension /

specification of that system.

system

(representation of the) S2ML model

7

Norwegian University of Science and Technology

S2ML Promise: 2) Structure of Models

S2ML aims at providing a structuring paradigm of system engineering modeling

languages.

Language A Language B Language C

S2ML: structuring paradigm

Mathematical

framework A

Mathematical

framework B

Mathematical

framework C

Structuring helps to design, to debug, to share, to maintain and to synchronize

models.

8

Norwegian University of Science and Technology 9

Why not SysML?

SysML is a graphical notation, derived from UML, to address system modeling.

It provides two types of diagrams to represent structures: Definition Block

Diagrams and Internal Block Diagrams(1). It could thus be a candidate

formalism for our purpose. However,

• A model, which is a mathematical object, should not be confused with its

graphical representations.

• Even though graphical representations are excellent supports for the

communication amongst stakeholders, they are able to represent only

partially the models, except for formalisms with very low (or very

ambiguous) expressiveness.

• Moreover, there may be several graphical representations of the same

concept, each more or less convenient in a given context.

9

(1) Parametric Diagrams and Package Diagrams cannot be used directly to represent

structures, although they are considered also as structural.

Norwegian University of Science and Technology 10

Why not SysML?

In a word:

• Graphical representations are a very good communication mean. Therefore,

we shall use SysML graphics and vocabulary as much as possible.

• However:

Concepts should come first

S2ML aims at proposing a minimal yet sufficient set of concepts to represent

structures of systems and to structure models.

Norwegian University of Science and Technology 11

Agenda

• Rational

• Description

• Full Example

• Grammar

• Flattening

• XML Encoding

• Issues

Norwegian University of Science and Technology

Basic Components

S2ML is made of the following basic components.

Component Representation Role

Attributes (name = value) Attributes are used to associate

information to ports, connections and

blocks.

Ports Ports are basic objects of models, e.g.

variables, events, equations, transitions…

Connections Connections are used to describe

relations existing between ports.

Blocks Blocks are containers. They can contain

ports, connections and other blocks.

12

Norwegian University of Science and Technology

Example

vessel

reactorlevel

sensor 1

level

sensor 2

tank

valve 1 valve 2

controller

system

13

Norwegian University of Science and Technology

Blocks as Prototypes & Composition

A block is a container for ports, connections and other blocks. Each block is a

prototype: it has a unique occurrence in the model.

The block “system” composes the blocks “tank”, “valve 1”… The block

“reactor” is part of the block “vessel”.

system

tank valve 2valve 1 controller vessel

sensor 1 sensor 2 reactor

composition

Hierarchy of nested blocks

14

Norwegian University of Science and Technology

Cloning

15

A system may contain similar components, e.g. the sensors or the valves of our

example. The corresponding copy then contains several copies of the same

block.

A first way to avoid duplicating the description of a block consists in cloning an

already existing block.

block vessel

block sensor1

port input, output;

end

block sensor2 clones sensor1;

end

block reactor

port output1, output2;

end

connection [sensor1.input, reactor.output1];

connection [sensor2.input, reactor.output2];

…

end

vessel

sensor1 sensor2 reactor

cloning

(of a block)

Norwegian University of Science and Technology

Classes and Instances

16

A second way to avoid duplicating the description of a block consists in

declaring a model of the duplicated block in a separate modeling entity, so-

called a class, and then in instantiating this class.

class Sensor

port input, output;

end

block vessel

Sensor sensor1, sensor2;

block reactor

port output1, output2;

end

connection [sensor1.input, reactor.output1];

connection [sensor2.input, reactor.output2];

…

end

vessel

sensor1

sensor2

reactor

Sensor

instantiation

(of a class)

Norwegian University of Science and Technology

Reuse

Add new

components

Reuse

Add new

components

Prototypes versus Classes

Knowledge space (K)

Stabilized knowledge

Libraries of

«on-the-shelf» components

classes

Concept space (C)

«Sandbox»

Model creation

Final model

refinement

refinement

prototypes

Norwegian University of Science and Technology

Inheritance

18

Aside the composition, that defines a “is-part-of” relation, S2ML provides also a

inheritance mechanism, i.e. a “is-a” relation. A class or a block can inherit the

content of another class (or another block in the same modeling entity).

class Valve

port input, output;

end

class MotorOperatedValve extends Valve;

port inputTorque;

end

block system

...

block MyValve extends Valve;

...

end

...

end

Valve

MotorOperatedValve

inheritance

Norwegian University of Science and Technology

Aggregation & Functional Chains

19

S2ML provides a mechanism for blocks to use blocks defined elsewhere in the

same modeling entity. The using block aggregates the used block. This

mechanism is especially useful to describe the so-called functional chains.

block system

...

block OverpressureProtectionSystem1

embeds owner.vessel.sensor1 as sensor;

embeds owner.controller as controller;

embeds owner.valve1 as actuator;

...

end

...

end

OverpressureProtectionSystem1

sensor1

vessel

controller valve1

aggregation

To access to the parent block

Norwegian University of Science and Technology

block system

...

connection [valve2.output, vessel.reactor.input];

...

end

Crossing the Walls

20

Ports are used to describe all atomic components (on which rely the description

of the behavior of the system). So there may be ports linked with no other ports

or only with ports within the same block.

Also, ports can be connected with any other block of the same modeling entity

(connections can cross the wall).

Norwegian University of Science and Technology

Multiple Connections and Attributes

21

Connections can involve more than two ports. The type of ports and

connections can be described by means of attributes.

NAND

output

input1

&

input2

class CMOSNANDGate

port input1 (type=voltage);

port input2 (type=voltage);

port output (type=voltage);

connection (type=voltage, operator=NAND) [input1, input2, output];

end

Norwegian University of Science and Technology 22

Agenda

• Rational

• Description

• Full Example

• Grammar

• Flattening

• XML Encoding

• Issues

Norwegian University of Science and Technology

Example

vessel

reactorlevel

sensor 1

level

sensor 2

tank

valve 1 valve 2

controller

system

23

Norwegian University of Science and Technology

Classes for Valves & Sensors

24

Valve

class Valve

port input, output (type=fluid);

port command (type=signal);

end

class Sensor

port input, output (type=signal);

end Sensor

input output

command

output input

Attribute to characterize ports

Norwegian University of Science and Technology

Blocks for other Components

25

tank controller

block tank

port output;

end

block controller

port input1, input2;

port command1, command2;

connection [input1, command1];

connection [input2, command2];

end

block vessel

Sensor sensor1, sensor2;

block reactor

port input;

port level1, level2;

end

connection [sensor1.input, reactor.level1];

connection [sensor2.input, reactor.level2];

end

vessel

reactorlevel

sensor 1

level

sensor 2

Norwegian University of Science and Technology

Blocks for Functional Chains

26

block OverpressureProtectionSystem1

embeds owner.vessel.sensor1 as sensor;

embeds owner.controller as controller;

embeds owner.valve1 as actuator;

connection (type=signal)[sensor.output, controller.input1];

connection (type=signal)[controller.command1, actuator.command];

end

block OverpressureProtectionSystem2

embeds owner.vessel.sensor2 as sensor;

embeds owner.controller as controller;

embeds owner.valve2 as actuator;

connection (type=signal) [sensor.output, controller.input2];

connection (type=signal) [controller.command1, actuator.command];

end

Attribute to characterize connections

Norwegian University of Science and Technology

Block for the system

27

block system

block tank ... end

block controller ... end

Valve valve1, valve2;

block vessel ... end

block OverpressureProtectionSystem1 ... end

block OverpressureProtectionSystem2 ... end

connection (type=fluid) [tank.output, valve1.input];

connection (type=fluid) [valve1.output, valve2.input];

connection (type=fluid) [valve2.output, vessel.reactor.input];

end

…with attributes to

characterize connections

Norwegian University of Science and Technology 28

Agenda

• Rational

• Description

• Full Example

• Grammar

• Flattening

• XML Encoding

• Issues

Norwegian University of Science and Technology 29

Models, Classes & Blocks

Model ::=

ClassDeclaration* BlockDeclaration?

ClassDeclaration ::=

class Identifier AttributeList?

MemberDeclaration*

ConnectionDeclaration*

end

BlockDeclaration ::=

block Identifier AttributeList?

MemberDeclaration*

ConnectionDeclaration*

end

MemberDeclaration ::=

InheritanceClause

| PortDeclaration | BlockDeclaration | InstanceDeclaration

| EmbedsClause

Norwegian University of Science and Technology 30

Members & Connections

InheritanceClause ::=

extends Path (, Path)* AttributeList? ;

| clones Path (, Path)* AttributeList? ;

PortDeclaration ::=

port Identifier (, Identifier)* AttributeList? ;

InstanceDeclaration ::=

Path Identifier (, Identifier)* AttributeList? ;

EmbedsClause ::=

embeds Path as Identifier ;

ConnectionDeclaration ::=

connection Identifier? AttributeList? ArgumentList (, ArgumentList)* ;

Norwegian University of Science and Technology 31

Attributes, Arguments & Identifiers

AttributeList ::=

(Attribute (, Attribute)*)

Attribute ::=

Path = (Path | Text)

ArgumentList ::=

[Path (, Path)*]

Path ::=

owner . Path

| Identifier (. Path)?

Identifier ::=

[a-zA-Z][a-zA-Z0-9_]*

Text ::=

"([^\"] | \\ | \").*"

Norwegian University of Science and Technology 32

Agenda

• Rational

• Description

• Full Example

• Grammar

• Flattening

• XML Encoding

• Issues

Norwegian University of Science and Technology

Flattening: Composition

33

Although the structure of the model plays a very important role into its clarity,

it normally plays no role in the behavioral description of the system. Any

hierarchical model can be flattened into an equivalent non-hierarchical one.

The flattening process depends on the modeling language. It can usually be

defined by means of the so-called flattening rules that are applied bottom-up.

For S2ML, flattening rules are indeed purely structural.

Composition Flattening:

block A

block B

port p, q;

connection [x, y];

end

end

block A

port B.p, B.q;

connection [B.x, B.y];

end

This rule applies the same way to class declarations (class A…).

Other flattening rules are derived from that one.

Norwegian University of Science and Technology

Flattening: Instantiation

34

Instantiation Flattening:

class C

port p, q;

connection [x, y];

end

block A

C B;

end

block A

port B.p, B.q;

connection [B.x, B.y];

end

This rule applies the same way to class declarations (class A…).

Norwegian University of Science and Technology

Flattening: Inheritance & Cloning

35

Inheritance Flattening:

class C

port p, q;

connection [x, y];

end

block A

extends C;

end

block A

port p, q;

connection [x, y];

end

This rule applies the same way to class declarations (class A…) and to cloning

of blocks.

Norwegian University of Science and Technology

Flattening: Aggregation

36

Aggregation Flattening:

block R

port x;

end

block A

embeds owner.R as B;

port y;

connection [B.x, y];

end

block A

port y;

connection [R.x, y];

end

Norwegian University of Science and Technology 37

Agenda

• Rational

• Description

• Full Example

• Grammar

• Flattening

• XML Encoding

• Issues

Norwegian University of Science and Technology 38

XML Representation

It is sometimes better to use a XML based representation rather than the

textual/abstract grammar presented before (to simplify parsing issues).

The XML representation follows Open-PSA principles:

• The declaration of a named element of type “xxx” is introduced by means of

a XML tag “declare-xxx”.

• References to a named element of type “xxx” are introduced by means of a

XML tag “xxx”.

It would be possible to write a full XSD Schema for S2ML. Here just follows

some indications about how to encode S2ML constructs in XML. We give a

grammar in Bacckus Naur form (as previously).

Norwegian University of Science and Technology 39

Models, Blocks & Classes

Model ::=

<declare-model name="Identifier" >

Attribute* ClassDeclaration* BlockDeclaration?

</declare-model>

ClassDeclaration ::=

<declare-class name="Identifier" >

Attribute* MemberDeclaration* ConnectionDeclaration*

</declare-class>

BlockDeclaration ::=

<declare-block name="Identifier" >

Attribute* MemberDeclaration* ConnectionDeclaration*

</declare-block>

Norwegian University of Science and Technology 40

Members

MemberDeclaration ::=

InheritanceClause

| PortDeclaration | BlockDeclaration | InstanceDeclaration

| EmbedsClause

InheritancClause ::=

<extends class="Path" />

| <clones block="Path" />

PortDeclaration ::=

<declare-port name="Identifier" >

Attribute*

</declare-port>

Norwegian University of Science and Technology 41

Members

InstanceDeclaration ::=

<instance class="Path" name="Identifier" >

Attribute*

</instance>

EmbedsClause ::=

<embeds block="Path" name="Identifier" />

<embeds instance="Path" name="Identifier" />

ConnectionDeclaration ::=

<connection name="Identifier" >

Attribute* PortReference+

</connection>

PortReference ::=

<port name="Path" />

Norwegian University of Science and Technology 42

Attributes & Identifiers

Attribute ::=

<attribute name="Path" value="Text" />

Path ::=

owner Path

| Identifier (. Path)?

Identifier ::=

[a-zA-Z][a-zA-Z0-9_]*

Text ::=

([^\"] | \\ | \").*

Norwegian University of Science and Technology 43

Agenda

• Rational

• Description

• Full Example

• Grammar

• Flattening

• XML Encoding

• Issues

Norwegian University of Science and Technology 44

Issues

There remains a number of issues not solved/discussed yet.

• Do we need to introduce parameters in addition to ports?

Parameters are constants that get a default value but that can be modified

at instantiation (or cloning) time.

• Do we need to introduce universal objects?

Universal objects would be typically blocks defined aside the main block to

store universal constants (such as the gravity).

• Do we need to introduce a substitution mechanism and/or parametric

classes?

A substitution mechanism would typically replace a sub-block (or class

instance) by another one when instantiating a class (or cloning a block).

Parametric classes would typically contain “holders” i.e. predefined place

to be filled with blocks or class instances at instantiation (or cloning).

Norwegian University of Science and Technology

APPENDIX

