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Abstract

AltaRica is an object-oriented modeling language dedicated to probabilistic risk and safety anal-
yses. It is a representative of the so-called model-based approach in reliability engineering. Since
its version 3.0, it is developed by the non-profit AltaRica Association1, which develops jointy the
associated AltaRicaWizard modeling environment.

This note aims at providing a short introduction to the concepts, methods and tools, as well as
the history and the applications of the AltaRica technology.

Characteristics

Although AltaRica involves concepts borrowed from object-oriented programming languages such as
C++ or Python, and prototype-oriented programming languages such as JavaScript, it differs from
these languages in a fundamental respect: AltaRica is a modeling language rather than a programming
language. AltaRica models belongs to the general class of stochastic discrete event systems1. Technically,
the underlying mathematical framework of AltaRica is the notion of guarded transition systems2. Once
designed and validated, an AltaRica model is compiled into a guarded transition system. This guarded
transition system which can then be assessed by different tools: stepwise simulator, compiler to fault
trees, compiler to Markov chains, sequence generator, stochastic simulator, model-checker. . . All these
tools contribute eventually, each with its own features, to assess the reliability of the system under study
by calculating various probabilistic risk indicators and by extracting critical accident scenarios.

AltaRica 3.0, the last version of the language, can be described by the following equation.

AltaRica = GTS + S2ML2

GTS stands for “Guarded Transition Systems”, and S2ML stands for “System Structure Modeling
Language”, a versatile set of model structuring constructs stemmed from object-oriented and prototype-
oriented programming languages.

AltaRica implements the “S2ML+X” paradigm4 that relies on the idea that any behavioral modeling
language consists of two parts: a mathematical framework in which the behavior is actually described
(the X), and a set of constructs (functions, records, classes, prototypes. . . ) to architect models (S2ML).
The choice of the mathematical framework depends on which properties of the system the analyst is
interested in. Examples of such frameworks are ordinary differential equations for Matlab/Simulink5 and
Modelica6, Mealy machines for Lustre and Scade7, and indeed guarded transition systems for AltaRica.
Structuring constructs are independent to a large extent of the mathematical framework. S2ML is generic
in this sense that it can be applied to all types of behavioral modeling used in systems engineering.

History

The design of AltaRica started at the end of the nineties at the computer science department of Bordeaux
University (LaBRI). The rational for the creation of a new modeling language was to overcome difficulties
encountered by safety analysts (in avionic, nuclear, automotive and oil and gas indutries) with “classical”
modeling formalisms such as fault trees, Markov chains or stochastic Petri nets. These formalisms lack
actually either of expressive power, or of structuring constructs, or both. The first scientific articles about
the language were published from 1998 to 20008;9;10;11. The original version of the language relied of three

1www.altarica-association.org
2This equation echoes the title of the famous book “Data structures + algorithms = programs”3.
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technologies: finite state automata that were extensively studied by the LaBRI’s team working of the
formal methods for software verification12, structured programming taking inspiration of the modeling
language Lustre7, and constraint programming13. This last technology, although elegant and powerful,
proved to be hard to be made efficient in practice. Constraint resolution was too computationally ex-
pensive to scale on industrial size systems. The LaBRI team went on working however on this original
version, mainly for educational purposes, improving tools over the years14;15;16;17.

A first turn has been therefore taken with the design of a data-flow version of the language18;19. In
AltaRica data-flow, variables are updated by propagating values in a fixed order. This order is determined
at compile time, from the annotations given in the model. AltaRica data-flow raised a significant academic
and industrial interest. Integrated modeling environments have been developed for the language: Cecilia
OCAS by Dassault Aviation, Simfia v2 by EADS-Apsys and Safety Designer by Dassault Systèmes (this
latter tool was initially a clone of Cecilia OCAS, but evolved separately afterward). Successful industrial
applications have been realized20;21;22;23. For example, AltaRica data-flow was used to certify the flight
control system of the aircraft Falcon 7X (Dassault Aviation). A number of PhD theses were also dedicated
to the language and its use in various contexts24;25;26;27;28;29;30;31. In a word, AltaRica Data-Flow reached
scientific and industrial maturity. It is still daily used for a wide variety of applications.

Experience showed however that AltaRica data-flow could be improved in several ways, hence jus-
tifying to seriously rework the language. This rework gave eventually raise to AltaRica 3.032;33 which
improves AltaRica data-flow into several directions. The syntax of AltaRica 3.0 is closer to Modelica
than to AltaRica data-flow, so to facilitate bridges between multiphysics modeling and simulation and
probabilistic risk and safety analyses. Object-oriented and prototype-oriented structuring constructs have
been assembled so to give the language a versatile and coherent set of structuring constructs (S2ML),
which probably the most complete of all existing behavioral modeling languages. Moreover, AltaRica
3.0 semantics has been reinforced (via GTS), which opens new opportunities in terms of assessment of
models.

Guarded Transition Systems

Guarded transition systems belong to the family mathematical models of computation gathered under
the generic term of (stochastic) finite-state machines or (stochastic) finite-state automata. They have
been introduced in 20082 and later refined34.

To illustrate ideas behind guarded transition systems, consider a motor pump that is normally in
stand-by, that can be started on demand and stopped when there is no more demand. Assume morever
that this pump may fail when in operation, with a certain failure rate λ, and that it can also fail on-
demand with a certain probability γ, Assume finally that the pump can be repaired, with a certain mean
time to repair τ .

We can then represent the behavior of this pump by means of a (stochastic) finite state automaton
pictured in Fig. 1.

From outside, the motor pump can be seen as a black box with an input flow of liquid in, an input
flow of information demand and an output flow of liquid out, i.e. as a transfer function that given the
values in and demand calculates the value out. In the framework on reliability studies, the behavior of
systems must be abstracted out to avoid the combinatorial explosion of situations to look at. Flows are
thus typically abstracted as Boolean values, true interpreted as the presence of the flow and false as its
absence.

The equation linking in and demand to out cannot be written directly since the motor pump has
an internal state. Namely, we can consider that the pump can be in three states: STANDBY, WORKING or
FAILED. On the figure, states are represented as rounded rectangle. The output flow out takes the value
true if and only if the pump is working and the input flow in is true (hence the equation on the right
hand side of the figure above).

A fundamental abstraction made by finite state automata consists in considering that the system
under study can change of state only under the occurrence of an event. In between two occurrences of
events, nothing changes. Occurrences of events are described by means of transitions, represented as
arrows on the figure. In guarded transition systems, a transition is labeled with an event, has a certain
pre-condition called the guard of the transition and a certain effect called the action of the transition.
For instance, the event failure can only occur in the state WORKING. Its effect is to make the pump pass
from this state to the state FAILED. The event start can occur if the pump is the state STANDBY and if
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Figure 1: Model of a motor operated pump

the input flow demand is true. Its effect is to make the pump pass from the state STANDBY to the state
WORKING. And so on.

Now, some changes of states may take time, while some other happen as soon as they are possible.
For instance, a failure takes a certain time before occurring, while the pump is started as soon as needed
(at least at the level of abstraction of reliability models). Guarded transition systems associate delays
with events, and thus transitions. These delays can be either deterministic as for the event start, or
stochastic as for the event failure. On the figure, deterministic delays are represented by dashed arrows
while stochastic ones are represented by plain arrows.

To finish, transitions can be in competition in a state. For instance, the transition stop is in competi-
tion with the transition failure in the state WORKING. This competition is however not a real one as the
transition stop is immediately fired (performed) when the input flow demand ceases to be true. A real
competition occurs between the transitions start and failureOnDemand in the state STANDBY. Both are
fired immediately when the input flow demand becomes true. In guarded transition systems, it is possible
to associate a probability of occurrence to each transition in competition, namely γ to failureOnDemand

and 1 − γ to start in our example.
Eventually, the AltaRica code for the guarded transition system we sketched is given in Fig. 2. The

motor pump is represented as a block, i.e. as a container for basic elements. The block declares
four variables: a state variable state that takes its value in the domain (set of symbolic constants)
MotorPumpState, and three Boolean flow variables demand, in, and out. Initially, state takes the value
STANDBY. The transfer function is represented by means of the assertion. Assertions tell how to calculate
the values of output flow variables from the values input flow variables and the values of state variables.

The block MotorPump declares also five events and as many transitions. Guards of transitions are
Boolean conditions on state and flow variables. Actions of transitions modify the values of state variables.
Events are associated with delays and possibly expectations (which are used to calculate probabilities of
occurrence of transitions in competition). The description of both delays and expectations may involve
parameters.

System Structure Modeling Language

In general, systems under study are not made of a single, simple components as the above motor operated
pump. Rather, they consists of a network of such components, interacting and organized in a hierarchical
way. In other words, systems are architected.

To reflect the architecture of the system in the model, one needs dedicated constructs. This is where
S2ML (system structure modeling language) comes into the play. S2ML emerged first as the set of
structuring constructs for AltaRica 3.0. Then, it has been studied on its own35;4. As of today, S2ML
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1 domain MotorPumpState {STANDBY , WORKING , FAILED}

2

3 block MotorPump

4 MotorPumpState _state (init = STANDBY );

5 Boolean demand , in , out (reset = false);

6 event start (delay = Dirac(0), expectation=gamma);

7 event failureOnDemand (delay = Dirac(0), expectation=1-gamma );

8 event stop (delay = Dirac(0));

9 event failure (delay = exponential(lambda ));

10 event repair (delay = exponential(1/ tau ));

11 parameter Real lambda = 1.0e-4;

12 parameter Real tau = 8;

13 parameter Real gamma = 0.02;

14 transition

15 start: demand and _state == STANDBY -> _state := WORKING;

16 failureOnDemand: demand and _state == STANDBY -> _state := FAILED;

17 stop: not demand and _state == WORKING -> _state := STANDBY;

18 failure: _state == WORKING -> _state := FAILED;

19 repair: _state == FAILED -> _state := STANDBY;

20 assertion

21 out := in and _state == WORKING;

22 end

Figure 2: AltaRica model implementing the guarded transition system pictured in Fig. 1

gathers in a coherent way a versatile set of structuring constructs stemmed from object-oriented and
prototype-oriented programming36;37.

S2ML consists of height key concepts: the concepts of port, connection, container, prototype, class,
cloning, instantiation, inheritance and aggregation.

Ports: Ports are basic modeling elements such as domains, state and flow variables, events and param-
eters.

Connections: Connections are relations amongst ports such as definitions of domains, probability dis-
tributions associated with state variables, definitions of parameters, transitions and assertions.

Containers: Containers gather declarations of ports and connections as well as of other containers
forming nested hierarchies. The block describing the motor pump is such a container.

Prototype and cloning: Prototypes are individual containers. In AltaRica, blocks are prototypes.
When the system under study contains two or more similar parts, it would be both tedious and error
prone to duplicate the code. Cloning provides a solution to this problem: the first part is described, then
the others are just obtained by cloning the first one, see Fig. 3 (upper part) for an illustration.

The dot notation makes it possible to access to ports declared in nested blocks, as illustrated by the
assertion in the above code.

Classes and Instances: It is often the case that some modeling components are reused from model
to model. It is then possible to create libraries of on-the-shelf modeling components and to instantiate
them into model.

Classes are used for this purpose. They are just containers (or prototypes) defined outside the model.
Instances of classes, also called objects, are clones of these containers defined outside the model, see Fig. 3
(lower part) for an illustration.

Inheritance: Inheritance is the mechanism by which one specializes modeling component. If a derived
component D inherits from a base component B, all modeling elements of B are reproduced in D. D
may declare additional ports, connections and containers.

Aggregation: Cloning and instantiation create components inside components. The inner component
is part of the outer one. There are cases however where a component is used by another one, without
being part of this component. This mechanism is reflected into model by a mechanism called aggregation.
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1 block System

2 // ...

3 block Line1

4 // description of line 1

5 end

6 clones Line1 as Line2;

7 // ...

8 assertion

9 out := Line1.out or Line2.out;

10 end

1 class MotorPump

2 // description of the motor pump.

3 end

4

5 block System

6 // ...

7 MotorPump P1; // 1st instance

8 MotorPump P2; // 2nd instance

9 // ...

10 end

Figure 3: Illustrations of the use S2ML constructs

Aggregation is extremely useful to project a functional architecture onto a physical one, and to represent
so-called functional chains38.

AltaRica 3.0 involves a few other constructs, such as a powerful mechanism to synchronize events.
The essential has however been presented above.

Adding S2ML on top of a mathematical framework (GTS in the case of AltaRica), makes it possible
to pass automatically and at no cost from the model as designed, which reflects the architecture of the
system under study, to the model as assessed from which calculations of indicators and simulations can
be performed efficiently. The transformation preserves the semantics of the models and is reversible for
the most part: results of calculations and simulations are directly interpretable in the model as designed.

A recent trend in the AltaRica community is the design of modeling patterns33. Patterns are pervasive
in engineering. They have been developed for instance in the field of technical system architecture39, as
well as in software engineering40. They prove to be extremely useful in reliability engineering as well, as
they ease considerably the design and the maintenance of models. They are also a tool for risk analysts
to communicate about the models they develop and share.

Tooling and Applications

In industrial practice, AltaRica models are used for four main purposes (the list below is however non
limitative):

– To develop a common understanding, amongst stakeholders, about how the system under study
works and may fail;

– To formally ensure that system under study is safe enough to be operated;
– To optimize maintenance policies;
– To assess the average production (or loss of production) of units subject to failures, malfunctions,

human errors. . .

As these applications require different types of simulations and calculations, several tools have been
developed, including:

– Stepwise simulators that make it possible to play interactively scenarios of evolution.
– Compilers to lower level modeling formalisms, primarily fault trees but also Markov chains, so to

benefit of existing efficient assessment algorithms.
– Stochastic simulators that make it possible to calculate a wide range of risk indicators.
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– Sequence generators and model-checkers that make it possible to validate models and to extract
critical scenarios of failure verifying various properties.
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[10] André Arnold, Alain Griffault, Gérald Point, and Antoine Rauzy. The altarica formalism for describing
concurrent systems. Fundamenta Informaticae, 34:109–124, 2000.
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[31] Timothy Kombe. Modélisation de la propagation des fautes dans les systèmes de production. Thèse de
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