
Finite Degradation Structures

Antoine Rauzy & Liu Yang
Norwegian University of Science and Technology, Trondheim, Norway

{antoine.rauzy, liu.yang}@ntnu.no

Abstract

Probabilistic risk and safety analyses are used in virtually all industries to assess
whether the risk of operating complex technical systems is low enough to be socially
acceptable. As of today, these analyses rely mainly on stochastic Boolean models such
as fault trees or reliability block diagrams. These models are coarse approximations of
the behavior of the systems under study.

In this article, we introduce the notion of finite degradation structure. Finite degra-
dation structures encode the degradation order among the states of multistate systems,
i.e. models in which variables can take a finite number of values rather than just two.
This extension of Boolean formalisms makes it possible to increase significantly the
capacity of expression without increasing significantly the complexity of the calcula-
tion of risk indicators.

Technically, finite degradation structures are finite semi-lattices associated with
a random process. They form a monoidal category and provide a unified algebraic
framework for Boolean reliability models and multistate systems. They shed a new
light on central notions of system reliability theory such as those of coherent models
and minimal cutsets.
Keywords: Multivalued logics, category theory, system reliability theory, combinato-
rial models, finite degradation structures

Notations and Acronyms

Throughout this article, we use the following notational conventions and acronyms.

S × T : Cartesian product of the set S and T .

X � Y: X is isomorphic to Y .

D : 〈D,≤D,⊥D〉: Finite degradation structure D, i.e. the semi-lattice, built over the finite
set of constants D, the partial order ≤D over D and the least element ⊥D of D for this
partial order.

Vol. 7 No. 2 2020
IFCoLog Journal of Logic and its Applications

Rauzy and Yang

A⊗ B: Monoidal product of the finite degradation structuresA and B.⊗
X∈{X∞,...,X\}

X: X∞ ⊗ · · · ⊗ X\

FDS: Category of finite degradation structures.

dom(V): Domain of the variable V . dom(V) is a finite degradation structure.

dom(V):
⊗

V∈V dom(V).

var(f): Set of variables occurring in the finite degradation formula f .

~ f �: (Canonical) interpretation of the finite degradation formula f .

~M�: (Canonical) interpretation of the finite degradation modelM.

σM: Unique admissible extension of the assignment of the state variables of the finite
degradation modelM into an assignment of variables ofM.

PI (O): Set of prime implicants of an observer O.

VOW: Coherent hull of the observer O.

bπc : Least minterm compatible with the product π.

MCS (O): Set of minimal cutsets of an observer O.

CriticalStates (U): Set of critical states of a subset U of the states of a finite degradation
structureD : 〈D, <,⊥〉.

1 Introduction

Probabilistic risk and safety analyses are used in virtually all industries to assess whether
the risk of operating complex technical systems (aircrafts, nuclear power plants, offshore
platforms. . .) is low enough to be socially acceptable. The WASH1400 report [1], which
followed the Three Mile Island nuclear accident, is usually considered as the historical
starting point of their worldwide, cross-industry adoption. As of today, these analyses rely
mainly on stochastic Boolean models such as fault trees, reliability block diagrams, event
trees or a combination of those. These modeling formalisms are well mastered by practition-
ers. Reference textbooks are available, e.g. [2, 3]. Safety standards such as IEC 61508 [4]
(safety systems), ISO 26262 [5] (automotive industry), or ARP4761 [6] (avionic industry)
recommend their use.

Finite Degradation Structures

Models written in these formalisms encode however coarse approximations of the be-
havior of the systems under study. They do not make it possible to faithfully represent im-
portant features such as cold redundancies, resource sharing or reconfigurations. Of course,
more powerful formalisms exists, e.g. Markov chains or stochastic Petri nets [7]. But
the complexity of the calculation of risk indicators increases dramatically when leaving
the realm of combinatorial models. This complexity frames actually the whole domain: a
probabilistic risk/safety model always results of a tradeoff between the accuracy of the de-
scription and the ability one has to perform calculations on the model, within one’s always
limited computational resources [8]. The calculation of the main risk indicators is already
#P-hard for combinatorial models [9]. For these models, it is however possible to over-
come this theoretical intractability because polynomial approximation schemes exist that
give very good practical results [10]. Such approximation schemes are much more delicate
to design in the case of more powerful formalisms.

A good compromise would be to stay in the realm of combinatorial models, but to allow
the representation of components that can be in more than two states (working or failed).
In the reliability engineering literature, the term “multistate systems” designates extensions
of Boolean models to the case where variables can take a finite (and in general small) num-
ber of values. This term is not very appropriate, but we shall use it here as it is widely
accepted. Multistate systems have attracted over the years the attention of researchers and
practitioners [11–14]. They are however seldom used in practice, probably due to the too
small improvement they provide compared to Boolean formalisms. Most, if not all, pub-
lished works on multistate systems assume actually that the states of a component are totally
ordered, from the working state up to the failed state, going possibly through a number of
degraded states.

In this article, we introduce the notion of finite degradation structure which releases this
total order constraint. It does not release it fully however: the notion of degradation is kept
and generalized. Namely, finite degradation structures are finite semi-lattices associated
with a random process. The bottom element of the semi-lattice represents the working
state. The partial order relation between elements is a degradation order. The random
process describes the probability to be in a given state at a given time.

Each finite degradation structures forms a category, see e.g. [15] for a reference book.
The category FDS of finite degradation structures is thus a category of categories. Further-
more, FDS is a monoidal category: it has a product that makes possible to describe systems
as hierarchical assemblies of components. Epimorphisms (surjective mappings) of FDS en-
code abstractions and prove to be extremely useful in the context of reliability engineering.

Eventually, finite degradation structures provide a unified algebraic framework encom-
passing and extending all combinatorial models used in reliability engineering. Combined
with the definition of suitable abstraction, it sheds a new light on the fundamental notions
of system reliability theory such as those of coherent models, minimal cutsets and top event

Rauzy and Yang

probability from which all practical risk indicators are calculated. Finite degradation struc-
tures characterize eventually the algebraic properties a multi-valued logic should have to be
used in the reliability engineering context. They can thus be seen as a new way of defining
multi-valued logics by means of algebraic properties rather than by means of axioms, as it
is in usually the case.

Finite degradation structures pave the way to a significant improvement of the process
of probabilistic risk and safety analyses. The idea is to proceed in two steps: first, states
of components or groups of dependent components are determined and their probabilities
assessed by means, for instance, of Markov chains or discrete event simulations; second,
the resulting finite degradation model is assessed by means of algorithms derived from
those used to assess fault trees, see e.g. [16, 17]. Under the condition that systems under
study can be split into small, independent groups of dependent components, which is often
verified by industrial systems, it is thus possible to marry the expressive power of discrete
event systems with the computational efficiency of combinatorial formalisms. This idea
generalizes assessment methods for dynamic fault trees [18] without requiring that one
merges dependent components into a macro-components, which is of interest for qualitative
analyses. Note that static analysis techniques exist to automatically split discrete event
models into independent parts, see e.g. [19].

Starting from a seemingly minor point, the relation order between states of multistate
systems, the notion of finite degradation structures led us to revisit a sizable part of system
reliability theory. The contribution of this article is to present and to organize this journey
through the logical foundations of reliability engineering.

The remainder of this article is organized as follows. Section 2 explains the rational
for finite degradation structures by means of an example stemmed from industrial practice.
Section 3 introduces them formally both from an abstract and concrete point of views. Sec-
tion 4 revisits the notion of prime implicant and minimal cutset in this framework. Section 5
presents some experimental results. Finally Section 6 concludes the article.

2 Illustrative Example

But before diving into formal developments of finite degradation structures, we shall pro-
vide the reader with some intuitive ideas by means of an example.

Fig. 1 shows a high integrity pressure protection system (HIPPS) as commonly found in
oil and gas industry. This HIPPS is called TA4 in the ISO TR/12489 safety standard [20].

This safety instrumented system is in charge of preventing an overpressure in the pipe
that could damage equipment, e.g. separators, located downstream. It works on demand,
i.e. when an overpressure occurs in the pipe (the flow of oil, gas and water extracted from
wells is actually irregular). It is made of three types of elements: sensors S1−3 in charge of

Finite Degradation Structures

S1

LS2

Pressure

Isolation
valves

Pressure
sensors

Protected section

V1

Logic solvers

S2 S3

V2

LS1

Figure 1: The high integrity pressure protection system TA4

detecting overpressure, logic solvers LS1 − 2 in charge of making the decision and the two
isolation valves V1 and V2. The logic solver LS2 works according to a 1-out-of-2 logic, i.e.
that it sends the order to close the valves if at least one out of two sensors S2 and S3 detects
an overpressure.

According to the standard IEC61508 [4], failure modes of the components of a safety
instrumented system can be classified along two directions: safe versus dangerous and de-
tected versus undetected. In our example, safe failure modes are those which contribute to
close the isolation valves, even though there is no overpressure (spurious triggers). Danger-
ous failure modes are those which contribute to keep the isolation valves open, even though
there is an overpressure.

Logic solvers embed autotest facilities so that their failures are immediately detected.
On the contrary, failure of valves remain undetected between two maintenance interven-
tions. Failures of sensors may be detected or not.

ISO/TR 12489 makes the additional following assumptions.

– All components may fail (independently).

– Safe failures are always detected.

– Probabilities of safe and dangerous failure follow negative exponential distributions.
The parameters of these distributions are given Table 1.

– Depending on the type of the component, a given ration of dangerous failures are
detected.

Rauzy and Yang

Parameter Sensor Logic solver Isolation valve

Safe failure rate 3.00 × 10−5 h−1 3.00 × 10−5 h−1 2.90 × 10−4 h−1

Dangerous failure rate 5.90 × 10−7 h−1 5.70 × 10−7 h−1 2.76 × 10−6 h−1

Detection ratio 0.9 1.0 0.0

Table 1: Reliability parameters for the HIPPS TA4

– The system is maintained once a month (once in 730 hours). The production is
stopped during the maintenance. Components are as good as new after the main-
tenance.

Safe failures and dangerous failures are very different both in terms of frequency of
occurrence and severity of consequences. Spurious triggers of the safety instrumented sys-
tem have a strong economic consequences, but no impact on safety. In contrast, dangerous
failures may lead to a catastrophic accident if they remain undetected. Probabilistic risk
analyses aim at extracting the most probable scenarios of failure as well as at assessing the
probability to be in a safe or dangerous failed state over the mission time of the system.

Our example is small enough (for pedagogical purposes) to make it possible to enumer-
ate by hand all of the possible (global) states of the system and to calculate their probabili-
ties. In real-life applications, such a brute-force approach is basically impossible because of
the exponential blow-up of the number of states. Models have to be designed. As of today,
Boolean models (fault trees and the like) are by far the most popular. They are however not
well suited to represent systems like the above high integrity pressure protection system,
because an accurate representation requires to consider more than two states (working or
failed) for components and groups of components.

Finite degradation structures, which we shall define formally now, provide a formal
algebraic setting to design and to perform risk assessment on such multivalued description.

3 Finite Degradation Stuctures

Finite degradation structures formalize an intuitive idea that is at the core of reliability en-
gineering: components and systems can be in more or less degraded states or, to put it
differently, there is a fundamental asymmetry in the possible states of a component or a
system: the component or the system is “normally” working, but may degrade and eventu-
ally fail. The probability for a component or a system to be in a working state is in general
much higher than the probability to be in a degraded or failed state. In other words, states
of component or a system are “naturally” ordered with respect to the level of degradation.

Finite Degradation Structures

This order is in general only a partial order, especially when considering systems made of
multiple components.

3.1 Formal Definition

Recall that a meet-semi-lattice is a partially ordered set 〈D,≤〉 such that any two elements
x, y ∈ D have a greatest lower bound xu y in D. xu y is called the meet of x and y. xu y = x
if and only if x ≤ y.

If D is finite, then it has a unique least element, i.e. an element ⊥ such that for any other
element x, ⊥ ≤ x. Assume for a contradiction that D has two such elements ⊥1 and ⊥2,
then we have both ⊥1 ≤ ⊥2 and ⊥2 ≤ ⊥1, which by antisymmetry means that ⊥1 = ⊥2.

A finite degradation structure is thus a meet-semi-lattice 〈D,≤,⊥〉 where:

– D is a finite set of constants representing the states of a component or a system.

– The partial order relation ≤ represents the degradation order among states.

– ⊥, the least element of D, represents the state in which the component is as good as
new.

The intuition behind this definition is that the state of a component cannot be less degraded
than when it is new. Aside this state, the component may be in more or less degraded states.
Some of these states may be comparable in terms of degradation level, i.e. that a state
can be more degraded than another, while some other may be incomparable because they
correspond to different types of degradation. States are thus organized according to a partial
degradation order. As a component may have different failure modes, which are exclusive
one another, there may be several distinct most degraded states. Given two states s and t,
there is always at least one state that is less degraded than both s and t: the “as-good-as-new”
state ⊥.

Example 1. Fig. 2 shows the Hasse diagrams representing some finite degradation struc-
tures that play an important role in system reliability theory, either for their theoretical
interest, or to describe the state space of components (they can be seen as on-the-shelf types
for these components), or to characterize the state of systems. w stands for working, d for
degraded and f for failed. The suffixes s, d and u stand respectively for safe, dangerous
detected and dangerous undetected. On the figure, the degradation order is represented
bottom-up.

The finite degradation structure WF is thus the “classical” Boolean domain working/-
failed. In the finite degradation structure WDF, an intermediate degraded state is intro-
duced. The finite degradation structure SWF is used to represent components in cold re-
dundancy: the component is first in standby mode, then it is working, then it fails. We shall
come back on the finite degradation structures WFsd and W3F represented on the figure.

Rauzy and Yang

S1

LS2

Pressure

Isolation
valves

Pressure
sensors

Protected section

V1

Logic solvers

S2 S3

V2

LS1

Figure 2: Some useful finite degradation structures

3.2 The Categorical Point of View

A finite degradation structure 〈D,≤,⊥〉 is a category:

– The objects of this category are the states of D.

– For any two states s, t ∈ D, there is an arrow from s to t if and only if s ≤ t. If it exists
this arrow is unique (and called ≤).

Let A : 〈A,≤A,⊥A〉 and B : 〈B,≤B,⊥B〉 be two finite degradation structures and let φ
be a mapping fromA to B. Then, we say that φ is structure preserving, if:

– For any two states s and t of A, s ≤A t implies that φ(s) ≤B φ(t).

– φ(⊥A) = ⊥B.

Structure preserving mappings are monotone functions sending the least element of their
domain onto the least element of their codomain. This definition ensures that the image
by a structure preserving mapping of a finite degradation structure is a finite degradation
structure.

We can define the category FDS of finite degradation structures:

– Objects of FDS are finite degradation structures.

Finite Degradation Structures

– Arrows/morphisms of FDS are structure preserving mappings between finite degra-
dation structures.

It is easy to verify that FDS is actually a category as structure preserving mappings can be
composed and it is possible to define an identity (which is indeed a structure preserving
mapping) of any finite degradation structure.

Monomorphisms (injective mappings) between finite degradation structures encode ex-
tensions, i.e. operations by which states are added to a domain, in view of a finer grain
analysis. For instance, we can extend WF into WDF by mapping w and f on themselves
and adding the intermediate state d.

Epimorphisms (surjective mappings) between finite degradation structures encode ab-
stractions: there exists an epimorphism between the finite degradation structure A and the
finite degradation structure B if B is an abstraction of A. We shall give in the sequel nu-
merous examples of such abstractions.

Discussion: As we shall see, probabilistic risk assessment models involve not only mor-
phisms between finite degradation structures but also mappings that do not preserve the
structure, i.e. that are not monotone functions. Using general mappings to define FDS
would have make this category very close to the “classical” category FinSet whose objects
are finite sets and whose arrows are functions between finite sets. The advantage would
have been to handle all operations we needed within the category. The drawback would
have been to lose the centrality of the notion of degradation order, which is the important
one from a reliability engineering point of view.

In any case, the most important constructions we shall use, such as the one of product
defined in the next subsection and the notions related to minimal cutsets that we shall de-
velop Section 4 work the same way if we consider structure preserving mappings or general
functions.

3.3 Monoidal Product

One of the most interesting properties of FDS is that it has a product, i.e. the combination
of two (or more) finite degradation structures is also a finite degradation structure. We shall
now formalize this idea.

LetA : 〈A,≤A,⊥A〉 and B : 〈B,≤B,⊥B〉 be two finite degradation structures. We define
A⊗ B = 〈A × B,≤A⊗B,⊥A⊗B〉 as follows.

– A × B is the Cartesian product of A and B.

– For all 〈sA, sB〉, 〈tA, tB〉 ∈ A × B, 〈sA, sB〉 ≤A⊗B 〈tA, tB〉 if and only if sA ≤A tA and
sB ≤B tB.

Rauzy and Yang

– ⊥A⊗B = 〈⊥A,⊥B〉.

It is easy to verify thatA⊗ B is a finite degradation structure.
The construction A ⊗ B comes with the two canonical projections π1 : A ⊗ B → A

such that π1(〈s, t〉) = s, and π2 : A⊗ B → A such that π2(〈s, t〉) = t.
The following property holds.

Proposition 1 (Product). ⊗ together with the two canonical projections π1 and π2 is a
product for the category FDS, i.e. that for any three finite degradation structuresA, B and
C and pair of morphisms ϕA : C → A and ϕB : C → B, there exists a unique morphism
ϕ : C → A ⊗ B such that:

ϕA = π1 ◦ ϕ

ϕB = π2 ◦ ϕ

ϕ is simply defined as ϕ(s) = 〈ϕA(s), ϕB(s)〉.
A⊗ B is called the monoidal product ofA and B.
Note that ⊗ is still a product if we consider non-structure preserving mappings as the

Cartesian product is a product in FinSet.
Recall that two mathematical objects X and Y are isomorphic if there is a morphism

from X to Y and a morphism from Y to X. In this case, we note X � Y , the two objects can
be considered as identical.

Proposition 2 (Properties of the monoidal product). Let A, B and C be three finite degra-
dation structures, then the following equalities hold.

– A⊗ B � B ⊗A (Commutativity).

– A⊗ (B ⊗ C) � (A⊗ B) ⊗ C (Associativity).

– A⊗ 1 � 1 ⊗A � A (Neutral Element).

where 1 = 〈{⊥},⊥ ≤ ⊥,⊥〉 denotes the finite degradation structure with a unique state.

FDS is thus a symmetric monoidal category. It enjoys other nice algebraic properties,
but a full exposition would go beyond the scope of this article. The important point here
is that it is possible to build the finite degradation structure of a system by composing the
finite degradation structures of its components. It is also possible to group finite degradation
structures of a subset of components of a system, so to consider them as a single component.
As explained in the introduction, this mechanism is implicitly used to compile discrete
event modeling formalisms such as AltaRica into fault trees [19,21]: first, the model is split
into independent groups of components by means of static analysis techniques; then, these
groups are compiled separately. Finite degradation structures provide a unified algebraic
framework to generalize this idea.

Finite Degradation Structures

Example 2. Consider our illustrative example described Section 2. According to our spec-
ifications, this system is made of seven components: the three sensors, the two logic solvers
and finally the two valves. We assumed that each of these components can be either work-
ing (w), failed safe (fs), failed detected (fd), or failed undetected (fu), i.e. can be described
with the finite degradation structure W3F pictured Fig. 2. The global state of the HIPPS
can thus be described by the finite degradation structure W3F7. Thanks to the product ⊗,
the partial order over states of individual components is lifted-up into a partial order over
the states of the system.

We can now isolate, for instance, the subsystem made of the two sensors S2 and S3 and
consider it as a macro-component that can be studied separately. In the fault tree framework,
such groups of components are called modules [22].

We can now define formulas and models built on top of finite degradation structures,
i.e. eventually give a syntax to the finite degradation calculus.

3.4 Formulas

We assume given a finite set S of finite degradation structures and a finite set O of symbols
called operators.

Each operator o of O is associated with a mapping ~o� from
⊗

1≤i≤n si, n ≥ 0, into s,
where both the si’s and s are finite degradation structures.

⊗
1≤i≤n si is called the domain

of o and is denoted dom(o). s is called the codomain of o and is denoted codom(o).
Together, S and O form what is called an operad1 [23].

Example 3. To deal with the case study presented Section 2, it is useful to introduce parallel
‖ and series = compositions. These operators are mappings from W3F ⊗W3F into W3F.
They are defined as shown Table 2.

It is worth noticing that ‖ is both associative and commutative and that it is an epimor-
phism from W3F ⊗W3F to W3F. In contrast, = is only associative. It is not commutative
and does not preserve the partial order. If the first component is failed dangerous undetected
and the second one is working then the series of these two components is failed dangerous
undetected. Now, if the first component is still failed dangerous undetected, but the second
one is failed safe, then the series is failed safe.

We can now define formulas of the finite degradation calculus.
Let S be a finite set of finite degradation structures and let O be a finite set of operators

on S defined as above. LetV be a finite set of symbols called variables. Each variable V of
V is assumed to take its value in the support set of one of the finite degradation structures
of S. This finite degradation structure is called the domain of V and is denoted dom(V).

1We would like to thank here the reviewer who pointed out this notion.

Rauzy and Yang

‖ w fs fd fu

w w w w w

fs w fs fs fs

fd w fs fd fu

fu w fs fu fu

= w fs fd fu

w w fs fd fu

fs fs fs fd fu

fd fd fs fd fu

fu fu fs fd fu

Table 2: The operators ‖: W3F ⊗W3F→W3F and = : W3F ⊗W3F→W3F.

Then the set of well formed (typed) formulas over S, V and O is the smallest set such
that:

– Constants, i.e. members of finite degradation structures of S, are well formed formu-
las. The type of a constant is the finite degradation structure it comes from.

– Variables of V are well formed formulas. The type of a variable V is simply its
domain.

– If o is an operator of O such that ~o� :
⊗

1≤i≤n si → s, and f1, . . . fn are well formed
formulas of types s1, . . . sn, then o(f1, . . . , fn) is a well formed formula of type s.

In the sequel, we shall say simply formula instead of well formed typed formula.
The set of variables occurring in the formula f is denoted var(f).

3.5 Finite Degradation Models

Finite degradation models are obtained by lifting up fault tree constructions to the finite
degradation calculus. Namely, a finite degradation model M is a pair 〈V = S] F ,E〉

where:

– S = {V1, . . . ,Vm}, m ≥ 1, is a finite set of state variables.

– F = {W1, . . . ,Wn}, n ≥ 1, is a finite set of flow variables.

– E = {e1, . . . , en} is a finite set of equations.

Each equation e j, 1 ≤ j ≤ n is a pair 〈W j, f j〉 where:

– W j is the jth variable of F .

– f j is a formula built over the given sets of constants, variables and operators.

Finite Degradation Structures

For the sake of clarity, the equation 〈W j, f j〉 is simply denoted as W j B f j. As there is a
unique equation W B f for each flow variable W, the formula f can be seen the definition
of the variable W.

A finite degradation modelM : 〈V,E〉 is well typed if codom(f j) = dom(W j) for each
equation W j B f j of E.

We say that the flow variable W j depends on the (state or flow) variable U if either
W ∈ var(f j) or there exists a variable U′ of var(f j) that depends on W.

A finite degradation model is looped if one of its flow variable depends on itself. It is
loop-free or data-flow otherwise.

From now, we shall consider only well typed and data-flow models.
A root variable is a flow variable that occurs in none of the right members of equations.

A finite degradation model is uniquely rooted if it has only one root variable. The unique
root of such model represents in general the state of the system.

It is easy to see that finite degradation models generalize fault trees: state and flow
variables play respectively the roles of basic and internal events, while equations play the
role of gates. Moreover, the root variable plays the role of the top event. The terms “state”
and “flow” comes from guarded transition systems [24].

Example 4. The high integrity pressure protection system presented Section 2 can be de-
scribed by the following model.

HIPPS B SB1 ‖ SB2

SB1 B CL1= V1 SB2 B CL2= V2

CL1 B LSL1 ‖ LSL2 CL2 B LSL2

LSL1 B SL1= LS1 LSL2 B SL2= LS2

SL1 B S1 SL2 B S2 ‖ S3

The state variables of this model are:

– The Si’s that represent the states of the sensors.

– The LSi’s that represent the states of the logic solvers.

– The Vi’s that represent the states of the valves.

The flow variables of this model are:

– HIPPS that describes the state of the system.

– SB1 and SB2 that describe respectively the states of the first and second safety barriers.

Rauzy and Yang

– CL1 and CL2 that describe respectively the states of the first and second command
lines.

– LSL1 and LSL2 that describe respectively the states of the first and second logic solver
lines.

– SL1 and SL2 that describe respectively the states of the first and second sensor lines.

It is easy to verify that the above model is data-flow and that HIPPS is its unique root
variable.

Formulas and models are syntactic objects. To give them a meaning, we need to define
how they are interpreted in terms of mappings from finite degradation structures.

3.6 Interpretation

Let f be a formula of the finite degradation calculus.
A variable assignment of f is a mapping from var(f) to

∏
V∈var(f) dom(V), i.e. a func-

tion that associates with each variable a value of its domain.
f is interpreted as a mapping ~ f � :

⊗
V∈var(f) dom(V) → s where s is the codomain

of the outmost operator of f , by lifting up as usual variable valuations. Let σ be a variable
assignment of var(f), then:

– If f is reduced to a constant c, then ~ f �(σ) = c.

– If f is reduced to a variable V , then ~ f �(σ) = σ(V).

– If f is in the form o(f1, . . . , fn), then ~ f �(σ) = ~o�(~ f1�(σ), . . . , ~ fn�(σ)).

A variable assignment σ is admissible in the model M : 〈V,E〉 if σ(v j) = σ(f j) for
each equation v j B f j of E.

The following property holds, thanks to the fact that the models we consider are data-
flow.

Proposition 3 (Unicity of admissible variable assignments). LetM be a finite degradation
model and σ be a partial variable assignment that assigns values only to state variables
of M. Then there is a unique way to extend σ into an admissible total assignment σ′ of
variables of M.

σ′ is simply calculated bottom-up by propagating values in the set of equations.
In the sequel we shall denote by σM the unique extension of the assignment the assign-

ment σ of the state variables of the modelM into an admissible assignment of the variables

Finite Degradation Structures

ofM. We shall omit the subscript when the modelM is clear from the context and call σ
the admissible extension of σ.

It follows from the above property, that we can interpret a modelM : 〈V = S] F ,E〉

as a mapping:

~M� =
⊗
V∈S

dom(V)→
⊗
W∈F

dom(W) (1)

Note that flow variables include in particular the root variables of the model. It is pos-
sible, by substituting bottom-up flow variables by their definitions, to transform any finite
degradation model into an equivalent formula defining each root variable. This formula may
however be exponentially larger than the original model, which the reason why models (in
the sense we defined them) are preferred in practice to mere formulas. It remains that, if we
are not interested in flow variables but the root variable R, which is often the case, then the
model can be interpreted as the mapping:

~M� =
⊗
V∈S

dom(V)→ dom(R) (2)

Example 5. The seven state variables of the model described Example 4 take their values
in the finite degradation structure W3F. The root variable HIPPS of the model takes its value
in the finite degradation structure W3F. The model is thus be interpreted as a mapping from
W3F7 into W3F.

In the sequel, we shall denote
⊗

V∈V dom(V) simply by dom(V).

3.7 Probabilities

The states of a finite degradation structure D can be seen as the outcomes of a random
experiment. More technically, we can see (the power set of) D as a probability space and
define a random process, i.e. a time indexed family Xt, t ∈ R+, of random variables over this
probability space, see e.g. [25] an introduction to random processes. This random process
describes the probability pD(s, t) = Xt(s) to be in state s ∈ D at time t.

The above definition makes no assumption about how the probabilities pF(s, t) are ac-
tually obtained in practice. This can be done via analytical formulas, numerical simulations
or any other convenient means. Note that random processes can be also used to associate
rewards with states. By integrating such a reward over a time period, it is possible, for
instance, to assess the expected production of a plant over a time period.

The following properties hold that are at the core of the calculation of probabilistic risk
indicators.

Rauzy and Yang

Proposition 4 (Composition of probabilities). Let A : 〈A,≤A,⊥A〉 and B : 〈B,≤B,⊥B〉 be
two finite degradation structures, each associated with a random process. Let pA and pB be
the probability functions associated respectively with A and B by their associated random
processes. Then,

pA⊗B(〈sA, sB〉, t)
de f
= pA(sA, t) × pB(sB, t) (3)

defines a probability measure over the monoidal product A ⊗ B. The construction of this
probability measure assumes that events represented by states of A and B are statistically
independent.

Now let f : A → B be a morphism. Then,

pB(sB, t)
de f
=

∑
sA∈ f −1(sB)

pA(sA, t) (4)

defines a probability measure over B.

In other words, probabilized finite degradation structures compose naturally. The way
we associate random processes with finite degradation structures defines actually a lax
monoidal functor from FDS to the category of random processes, which is also a monoidal
category2.

We could have defined FDS by associating systematically a random process with each
finite degradation structure and composing them as above. It is however convenient to be
able to associate the monoidal product A ⊗ B with other probability structures than the
natural one, so to take into account statistical dependencies. Note also that it is sometimes
of interest to consider more complex measurable spaces, e.g. to work in the framework of
Dempster-Shafer theory [26].

In the sequel, we shall omit the time when speaking about probability measures as
keeping it just complexifies the notations, without bringing much to the point. Nevertheless,
the above definition should be constantly borne in mind.

4 Prime Implicants and Minimal Cutsets

The notion of minimal cutset plays a central role in system reliability theory, as well as in
practical probabilistic risk analyses. Intuitively, a minimal cutset is a minimal set of compo-
nent failures that induces a failure of the system as a whole. In other words, minimal cutsets
represent the most significant scenarios of failure. As the probability that a component is
failed is in general much smaller than the probability that it is working correctly, minimal

2Thanks again to the reviewer would pointed out the notion of lax monoidal functor.

Finite Degradation Structures

cutsets represent also the most probable scenarios of failure. The intuitive definition of min-
imal cutsets works fine for coherent (monotone) models for which the notion of minimal
cutset coincide with the classical notion of prime implicant. However, it needs to be refined
to handle non-coherent ones [10].

In this section, we shall generalize the notions of prime implicant and minimal cutset to
multistate systems and give the latter a characterization in terms of states of finite degrada-
tion structures.

4.1 Observers

The main objective of probabilistic risk and safety analyses is to extract failure scenarios
and to assess the cumulated probability of these scenarios. In fault trees, failure scenarios
are represented by sets of basic events that induce the top event, i.e. combinations of values
of state variables that induce a certain value of the root variable.

We can generalize this idea by considering (Boolean) observers.
Let M : 〈V = S] F ,E〉 be a finite degradation model. An observer is a Boolean

formula O over the values of the variables ofV.

Example 6. In the model defined Example 4, a number of observers are of interest, e.g.

– HIPPS = fs that characterizes the states in which the system is in a safe failure mode.

– HIPPS ∈ {fd, fu} that characterizes the states in which the system is in a dangerous
failure mode.

– HIPPS = fu that characterizes the states in which the system is in a dangerous unde-
tected failure mode.

We could also consider more complex observers, e.g.

– HIPPS ∈ {fd, fu} ∧ S1 = w that characterizes the states in which the system is in a
dangerous failure mode and the sensor S1 is working properly.

Note that observers do not need to be structure preserving mappings (assuming 0 < 1).
For instance, the observer above HIPPS = fs is not.

Such an observer O is interpreted as a mapping from dom(S) into {0, 1}, or equivalently,
interpreting O as a characteristic function, as the subset of assignments σ of variables of S
whose extension into admissible assignments of all variables satisfies O:

~O� = {σ ∈ dom(S) : σ(O) = 1} (5)

Observers are thus predicates in the logical sense.

Rauzy and Yang

4.2 Prime Implicants

Let us consider first the extension of the classical notion of prime implicant.
LetM : 〈V = S] F ,E〉 be a finite degradation model.
A product (over S) is a conjunct of atoms of the form V = s, where V is a variable of

S and s is a state of dom(V), such that each variable occurs at most once in the product.
A minterm is a product in which all variables of S occur. Products and minterms one-to-
one correspond respectively with partial and total assignments of variables of S (and by
extensionV).

Let O be an observer ofM and π be a product built over S. Then, π entails O, which
is denoted as usual by π |= O, if all minterms σ = π ◦ ρ, where ρ is an assignment of the
variables of S \ var(O), are such that σ(O) = 1.

In order to lift up the definitions of prime implicant, we need first to generalize the
notion of subsumption, i.e. to introduce an order relation v over products, so to be able to
implement the idea of primality and minimality.

Let π and ρ be two products over S. Then, π v ρ if the following conditions hold.

1. var(π) ⊆ var(ρ).

2. For any atom V = s of π, the atom V = t of ρ verifies s ≤ t.

Now,

– π is an implicant of O, if π |= O.

– π is a prime implicant of O, if it is an implicant of O and no product ρ such that ρ @ π
is.

The set of prime implicants of an observer O is denoted by PI (O). It can be interpreted as
the disjunction of its elements.

Example 7. As an illustration, consider again the model of Example 4 and the observer
Ofs : HIPPS = fs.

The product π = LS2 = fs ∧ V1 = fs ∧ V2 = w is a prime implicant of Ofs:

– First, it is easy to verify that, whichever way we complete π into an assignment σ of
state variables, we have σ (Ofs) = 1.

– Second, if either we change the assignment of LS2 to w, or the assignment of V1 to
w, or we remove any of the three atoms of π, then the resulting product is no longer
an implicant of Ofs. For instance, LS2 = fs ∧ V1 = fs is not an implicant of Ofs
because if the valve V2 is failed dangerous undetected, then the whole system is failed
dangerous undetected.

Finite Degradation Structures

Example 7 illustrates the reason why prime implicants are not used in reliability engi-
neering: The prime implicants of observers are "polluted" by information on the states of
components that do not participate to the described failure, e.g. the atom V2 = w.

The situation can be even more awkward from a safety analysis point of view. As an
illustration, consider the observer Ofu : HIPPS = fu and the product π = S1 = fu ∧ S2 =

fu ∧ S3 = fu that describes the catastrophic situation in which all pressure sensors are
lost undetected. Then, if all other components are working properly, the system is failed
undetected. But if, by chance, both logic solvers are failed safe, then the system is failed
safe. Although correct from a purely logical and probabilistic point of view, it is not very
reasonable to count on the safe failures of logic solvers to avoid an accident.

The problem comes from the fact that the series operator does not preserve the partial
order, and consequently the definition of HIPPS is non monotone, which is spelled non-
coherent in the reliability engineering literature.

To get rid of this problem, we have to lift up to finite degradation calculus the idea
introduced in reference [10] to deal with non-coherent Boolean formulas, a notion we shall
now formalize.

4.3 Coherence

The notion of coherence plays an important role in system reliability theory. It captures the
intuitive idea that the more components of system are degraded, the more likely the system
as whole is failed. We generalize it here to the case of finite degradation structures.

LetM : 〈V = S] F ,E〉 be a finite degradation model and let O be an observer ofM.
O is said coherent if, for any two assignments σ and τ of variables of S, σ < τ and

σ (O) = 1 implies that τ (O) = 1. In other words, ~O� is a monotone function.
Boolean models of technical systems are in general coherent. However, non-coherent

models, or more exactly “almost” coherent models, are sometimes designed.
Non-coherence is used as a modeling trick to make descriptions shorter, but when the

model is assessed it is interpreted as a coherent one, via the calculation of minimal cutsets
(see next section and reference [27] for an in-depth discussion). With finite degradation
models, the situation is slightly different, as exclusive cases can be considered (like failed
safe/failed dangerous), as illustrated by Example 7. This makes the (generalization of the)
notion of coherent hull, originally introduced for the Boolean case [10], even more interest-
ing.

LetM : 〈V = S] F ,E〉 be a finite degradation model and let O be an observer ofM.
The coherent hull of O, denoted by VOW, is the smallest coherent set of elements of dom(S)
that contains ~O�. Formally,

VOW
de f
= {τ ∈ dom(S);∃σ ∈ dom(S);σ ≤ τ ∧ σ (O) = 1}

Rauzy and Yang

The following property is a direct consequence of the definition.

Proposition 5 (Coherent hulls). LetM : 〈V = S]F ,E〉 be a finite degradation model and
let O be an observer ofM. Then, the following inclusion holds.

~O� ⊆ VOW

Moreover, ~O� = VOW if and only if O is coherent.

Example 8. Consider again the observer Ofu : HIPPS = fu of our example. Consider the
minterm π defined as follows.

π = S1 = fu ∧ S2 = S3 = fd ∧ LS1 = LS2 = fs ∧ V1 = V2 = w

We have π (HIPPS) = fs, therefore π < ~Ofu�.
Now, consider the minterm τ defined as follows.

τ = S1 = fu ∧ S2 = S3 = fd ∧ LS1 = LS2 = V1 = V2 = w

We have τ (HIPPS) = fu, therefore τ ∈ ~Ofu�. But as τ < π, π ∈ VOfuW.

The following proposition brings us back in the realm of FDS.

Proposition 6 (Coherent hulls as epimorphisms). Let M : 〈V = S] F ,E〉 be a finite
degradation model and let O be an observer of M. Then, VOW is an epimorphism from
dom(S) into 2 = 〈{0, 1}, 0 < 1, 0〉.

The (probability of the) coherent hull provides a conservative approximation of (the
probability of) the observer. In many practical cases, this turns out to be a very good ap-
proximation:

p(VOW) ≈
∑
σ∈~O�

p(σ) (6)

4.4 Minimal Cutsets

Let π be a product built over a set of variables V, we denote by bπc, the smallest minterm
compatible with π. Formally,

bπc
de f
= σ ∈ dom(V); π(V) =

 π(V) if V ∈ var(π)

⊥dom(V) otherwise

We are now ready to lift up the notion of minimal cutset.
LetM : 〈V = S] F ,E〉 be a finite degradation model let O be an observer ofM and

finally let π be a product built over S. Then,

Finite Degradation Structures

– π is a cutset of O if bπc ∈ ~O�.

– π is a minimal cutset of O if it is a cutset of O and no product ρ such that ρ @ π is.

The set of minimal cutsets of an observer O is denoted by MCS (O). It can be interpreted as
the disjunction of its elements.

Example 9. Consider again the observer Ofu. The product π = S1 = fu∧S2 = fd∧S3 = fd
is a minimal cutset of Ofu.

– It is a cutset, because the minterm τ defined as in example 8 verifies τ ∈ ~O�.

– It is minimal because no product σ smaller than π is such that σ(O) = 1.

The following theorem establishes the relationship between prime implicants and mini-
mal cutsets.

Theorem 7 (Prime Implicants versus Minimal Cutsets). LetM : 〈V = S]F ,E〉 be a finite
degradation model and let O be an observer ofM. Then, the following equality holds.

MCS (O) = PI
(
VOW

)
To prove the above theorem it suffices to remark that a product π ∈ VOW if and only if

bπc(O) = 1.
We shall now give a characterization in terms of states of the notion of minimal cutsets.

4.5 Critical States

Let D : 〈D, <,⊥〉 be a finite degradation structure and let U ⊆ D. A state s ∈ D is critical
for U if s ∈ U and there is no state t ∈ U such that t < s. The set of critical states of U is
denoted CriticalStates (U).

Example 10. The minterm τ defined as in Example 8 is critical for the subset ~O� of
dom(S1) ⊗ · · · ⊗ dom(V2).

The above example is by no means a coincidence, as stated by the following theorem.

Theorem 8 (Minimal Cutsets versus Critical States). LetM : 〈V = S] F ,E〉 be a finite
degradation model and let O be an observer ofM. Then, the following equality holds.

MCS (O) � CriticalStates (~O�)

Rauzy and Yang

Any minimal cutset π one-to-one corresponds with bπc. It is easy to verify that bπc is a
critical state for ~O�. Reciprocally, any critical state s one-to-one corresponds to a product
π (once removed the variables assigned to the least state of their domain). It is easy to verify
that π is a minimal cutset. The minimal cutset π that corresponds with a certain critical state
σ is thus obtained by removing from σ the information about components that are working
properly.

Extracting minimal cutsets of an observer O, or equivalently critical states for this ob-
server, consists actually in defining an epimorphism κ : dom(S) → WCF—where WCF is
the finite degradation structure with three states w (working), c (failed and critical) and f
(failed but non critical), such that w < c < f—as stated by the following proposition.

Proposition 9 (Minimal cutsets as epimorphisms). Let M : 〈V = S] F ,E〉 be a finite
degradation model and let O be an observer of M. Then, MCS (O) is isomorphic to the
epimorphism κ : dom(S)→WCF defined as follows.

κ(σ) =

w if σ < VOW

c if σ ∈ CriticalStates (~O�)

f if σ ∈ VOW \ CriticalStates (~O�)

(7)

The proof follows from the definitions and theorem 8.
Proposition 9 closes the loop: finite degradation models, when assessed via minimal

cutsets, can be seen as epimorphisms of FDS.

4.6 Probabilities

As in the binary case, minimal cutsets can be used to approximate probabilities of formulas
via the so-called rare event approximation, denoted by pREA, and mincut upper bound,
denoted by pMCUB, which are defined as follows.

LetM : 〈V = S] F ,E〉 be a finite degradation model let O be an observer ofM and
let finally p be a random process associated with dom(S). Then,

pREA(O)
de f
=

∑
π∈MCS(O)

p(π)

pMCUB(O)
de f
= 1 −

∏
π∈MCS(O)

1 − p(π)

In practice, when the probabilities of atoms involved in minimal cutsets are sufficiently
low and when the formula O is (nearly) coherent, both pREA(O) and pMCUB(O) provide

Finite Degradation Structures

good approximation of p(O).

pREA(O) ≈ pMCUB(O) ≈ p(O) (8)

pMCUB has the advantage over pREA to be always comprised between 0 and 1, but the draw-
back to be less easy to calculate (especially when data structures such as zero-suppressed
binary decision diagrams [28] are used to encode the minimal cutsets).

5 Experimental Results

This section presents some experimental results we obtained on the safety instrumented sys-
tem presented Section 2. The whole model for this system can be interpreted as a function
from W3F7 (as there are 7 basic components) into W3F. However, logic solvers and valves
can be only in three states: dangerous failures of logic solvers are immediately detected and
dangerous failures of valves remain undetected between two tests. The system can thus be
in 43 × 34 = 5184 states. This is indeed not very much, but adding a few components would
make treatments requiring an explicit representation of the state space (like Markov chains)
unfeasible (e.g. 315 ≈ 14 × 106 and 320 ≈ 3.4 × 1012).

5.1 Assessment Techonology

For the purpose of the present article, we developed a package for Minato’s zero-suppressed
binary decision diagrams [28] that we adapted for the finite degradation calculus. This
technique makes it possible to extract minimal cutsets as well as to calculate performance
indicators.

The decision diagrams encoding the state of the HIPPS as well as the observers Ofs :
HIPPS = fs, Ofd : HIPPS = fd and Ofu : HIPPS = fu, which encode the states in
which the HIPPS is respectively failed safe, failed dangerous detected and failed dangerous
undetected. These decision diagrams are made respectively of 89, 72, 52 and 79 nodes. The
decision diagrams encoding the minimal cutsets of observers Ofs, Ofd and Ofu are made
respectively 31, 7 and 17 nodes. All these diagrams as well as the following performance
indicators presented below are calculated within in few seconds on an ordinary laptop (most
of the computation time is taken by printing out results of calculations).

Rauzy and Yang

5.2 Minimal Cutsets

The observer Ofs has 37 minimal cutsets. Among these minimal cutsets, one finds the
following ones.

S1 = fs ∧ S2 = fs ∧ S3 = fs

S1 = fs ∧ S2 = fs ∧ S3 = fd

S1 = fs ∧ S2 = fd ∧ S3 = fs

S1 = fs ∧ S2 = fd ∧ S3 = fd

The observer Ofd has the following 4 minimal cutsets.

LS1 = fd ∧ LS2 = fd

LS1 = fd ∧ S2 = fd ∧ S3 = fd

S1 = fd ∧ LS2 = fd

S1 = fd ∧ S2 = fd ∧ S3 = fd

Note that as the valves cannot be failed dangerous detected, no atom built over the
variables V1 and V2 shows up in the minimal cutsets of observer Ofd.

Finally, observer Ofu has the following 13 minimal cutsets.

V1 = fu ∧ LS2 = fd

V1 = fu ∧ S2 = fd ∧ S3 = fd

V1 = fu ∧ V2 = fu

LS1 = fd ∧ LS2 = fd ∧ V2 = fu

LS1 = fd ∧ S2 = fu ∧ S3 = fd

LS1 = fd ∧ S2 = fd ∧ S3 = fu

LS1 = fd ∧ S2 = fd ∧ S3 = fd ∧ V2 = fu

S1 = fu ∧ LS2 = fd

S1 = fu ∧ S2 = fd ∧ S3 = fd

S1 = fd ∧ LS2 = fd ∧ V2 = fu

S1 = fd ∧ S2 = fu ∧ S3 = fd

S1 = fd ∧ S2 = fd ∧ S3 = fu

S1 = fd ∧ S2 = fd ∧ S3 = fd ∧ V2 = fu

Finite Degradation Structures

Time p(Ofs) p(Ofd) p(Ofu)

73h 5.04 × 10−4 3.34 × 10−9 4.90 × 10−8

146h 1.98 × 10−3 1.34 × 10−8 1.96 × 10−7

219h 4.37 × 10−3 3.01 × 10−8 4.41 × 10−7

292h 7.62 × 10−3 5.35 × 10−8 7.83 × 10−7

365h 1.17 × 10−2 8.36 × 10−8 1.22 × 10−6

438h 1.65 × 10−2 1.20 × 10−7 1.76 × 10−6

511h 2.20 × 10−2 1.64 × 10−7 2.40 × 10−6

584h 2.82 × 10−2 2.14 × 10−7 3.13 × 10−6

657h 3.51 × 10−2 2.71 × 10−7 3.96 × 10−6

730h 4.25 × 10−2 3.34 × 10−7 4.89 × 10−6

Table 3: Probabilities of observers Ofs, Ofd and Ofs at different times.

5.3 Probabilities of Failures

Table 3 shows the evolution of probabilities of observers with the mission time.
Several remarks can be made here.
First, probabilities of all observers increase with the time. This is not surprising because

components are non-repairable (between two maintenance operations).
Second, the probability of safe failure is much higher than the probability of a dangerous

one. Again, no surprise here, given the reliability parameters of the components. A practical
consequence of that, confirmed by the industrial experience, is that most of the production
down-time is due to maintenance operations and spurious triggers of safety systems.

Third, the probability of an undetected dangerous failure is one order of magnitude
higher than the probability of a detected one. This is due to valves that have both a quite
high (safe) failure rate and whose failures cannot be detected between inspections.

6 Conclusion

In this article, we introduced the notion of finite degradation structures. This notion provides
a powerful and unified algebraic framework for Boolean and multistate models. It relies on
three fundamental ideas.

Rauzy and Yang

First, states of Boolean and multistate models shows a finite semilattice structure. The
partial order amongst the states is a degradation order. The bottom element of the semilattice
is the nominal operating state.

Second, finite degradation structures can be composed, thanks to a monoidal product,
which allows not only to assemble components into models, but also to reason in a uniform
way on components, subsystems and systems. Technically, finite degradation structures
form a symmetric monoidal category. Some very common finite degradation structures can
be seen as on-the-shelf types for modeling components.

Third, epimorphisms between finite degradation structures describe abstractions be-
tween models. Many concepts of fault tree analysis can be reinterpreted and better un-
derstood by means of such epimorphisms.

We revisited here the familiar notions of coherence, minimal cutsets and importance
measures from the new perspective of finite degradation structures. The nicest result we
obtained is probably the isomorphism between minimal cutsets and critical states.

The objective of the present article was to present the theoretical foundations of finite
degradation structures. In forthcoming articles, we shall discuss implementation issues, i.e.
how to lift-up the existing algorithmic corpus on Boolean models to the finite degradation
calculus, and modeling methodologies that can be deployed to take a full benefit of the new
theoretical framework we introduced here.

References
[1] N. C. Rasmussen, “Reactor Safety Study. An Assessment of Accident Risks in U.S. Commer-

cial Nuclear Power Plants,” U.S. Nuclear Regulatory Commission, Rockville, MD, USA, Tech.
Rep. WASH 1400, NUREG-75/014, October 1975.

[2] J. D. Andrews and R. T. Moss, Reliability and Risk Assessment (second edition). Materials
Park, Ohio 44073-0002, USA: ASM International, 2002.

[3] H. Kumamoto and E. J. Henley, Probabilistic Risk Assessment and Management for Engineers
and Scientists. Piscataway, N.J., USA: IEEE Press, 1996.

[4] “International iec standard iec61508 - functional safety of electrical/electronic/programmable
safety-related systems (e/e/pe, or e/e/pes),” International Electrotechnical Commission,
Geneva, Switzerland, Standard, April 2010.

[5] “Iso26262 functional safety - road vehicle,” International Standardization Organization,
Geneva, Switzerland, Standard, 2012. [Online]. Available: http://www.iso.org/iso/home.html

[6] “Guidelines and methods for conducting the safety assessment process on civil airborne sys-
tems and equipment,” Society of Automotive Engineers, Warrendale, Pennsylvania, USA,
Standard, July 2004.

[7] M. Ajmone-Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis, Modelling with
Generalized Stochastic Petri Nets, ser. Wiley Series in Parallel Computing. New York, NY,
USA: John Wiley and Sons, 1994.

http://www.iso.org/iso/home.html

Finite Degradation Structures

[8] A. Rauzy, “Notes on computational uncertainties in probabilistic risk/safety assessment,” En-
tropy, vol. 20, no. 3, 2018.

[9] L. G. Valiant, “The complexity of enumeration and reliability problems,” SIAM Journal of
Computing, vol. 8, no. 3, pp. 410–421, 1979.

[10] A. Rauzy, “Mathematical Foundation of Minimal Cutsets,” IEEE Transactions on Reliability,
vol. 50, no. 4, pp. 389–396, december 2001.

[11] A. Lisnianski and G. Levitin, Multi-State System Reliability, ser. Quality, Reliability and Engi-
neering Statistics. London, England: World Scientific, 2003.

[12] B. Natvig, Multistate Systems Reliability Theory with Applications. Hoboken, NJ, USA:
Wiley, 2010.

[13] G. Levitin and L. Xing, Eds., Reliability and Performance of Multi-State Systems, vol. 166,
October 2017.

[14] E. Zaitseva and V. Levashenko, “Reliability analysis of multi-state system with application of
multiple-valued logic,” International Journal of Quality and reliability Management, vol. 34,
pp. 862–878, 2017.

[15] S. Awodey, Category Theory, ser. Oxford Logic Guides. Oxford, United Kingdom: Oxford
University Press, 2010, vol. 52.

[16] A. Rauzy, “BDD for Reliability Studies,” in Handbook of Performability Engineering, K. B.
Misra, Ed. Amsterdam, the Netherlands: Elsevier, 2008, pp. 381–396.

[17] ——, “Anatomy of an efficient fault tree assessment engine,” in Proceedings of International
Joint Conference PSAM’11/ESREL’12, R. Virolainen, Ed., Helsinki, Finland, June 2012.

[18] J. B. Dugan, S. J. Bavuso, and M. A. Boyd, “Dynamic fault-tree models for fault-tolerant
computer systems,” IEEE Transactions on Reliability, vol. 41, no. 3, pp. 363–377, September
1992.

[19] A. Rauzy, “Modes Automata and their Compilation into Fault Trees,” Reliability Engineering
and System Safety, vol. 78, no. 1, pp. 1–12, October 2002.

[20] “Iso/tr 12489:2013 petroleum, petrochemical and natural gas industries – reliability modelling
and calculation of safety systems,” International Organization for Standardization, Geneva,
Switzerland, Standard, November 2013.

[21] T. Prosvirnova and A. Rauzy, “Automated generation of minimal cutsets from altarica 3.0
models,” International Journal of Critical Computer-Based Systems, vol. 6, no. 1, pp. 50–79,
2015.

[22] Y. Dutuit and A. Rauzy, “A Linear Time Algorithm to Find Modules of Fault Trees,” IEEE
Transactions on Reliability, vol. 45, no. 3, pp. 422–425, 1996.

[23] M. Markl, S. Shnider, and J. Stasheff, Operads in Algebra, Topology and Physics, ser. Math-
ematical Surveys and Monographs. Providence, RI, USA: American Mathematical Society,
2002.

[24] A. Rauzy, “Guarded transition systems: a new states/events formalism for reliability studies,”
Journal of Risk and Reliability, vol. 222, no. 4, pp. 495–505, 2008.

[25] S. M. Ross, Introduction to Probability Models. Cambridge, MA, USA: Academic Press,
2009.

Rauzy and Yang

[26] G. Shafer, A Mathematical Theory of Evidence. Princeton, NJ, USA: Princeton University
Press, 1976.

[27] O. Nusbaumer and A. Rauzy, “Fault tree linking versus event tree linking approaches: a rea-
soned comparison,” Journal of Risk and Reliability, vol. 227, no. 3, pp. 315–326, June 2013.

[28] S.-I. Minato, “Zero-Suppressed BDDs for Set Manipulation in Combinatorial Problems,” in
Proceedings of the 30th ACM/IEEE Design Automation Conference, DAC’93. Dallas, Texas,
USA: IEEE, 1993, pp. 272–277.

Received 14 March 2019

	Introduction
	Illustrative Example
	Finite Degradation Stuctures
	Formal Definition
	The Categorical Point of View
	Monoidal Product
	Formulas
	Finite Degradation Models
	Interpretation
	Probabilities

	Prime Implicants and Minimal Cutsets
	Observers
	Prime Implicants
	Coherence
	Minimal Cutsets
	Critical States
	Probabilities

	Experimental Results
	Assessment Techonology
	Minimal Cutsets
	Probabilities of Failures

	Conclusion

