
Norwegian University of Science and Technology

Reseda
Networks as a Modeling Tool: a Pedagogical Implementation

by Antoine Rauzy

Norwegian University of Science and Technology

Licenses & Versions

2

The present document is distributed under Creative Common
License CC-BY-ND.

Reseda is free software distributed by the AltaRica Association under GNU
GPLv3 license.

Version 1.0.0

Date 18/02/2021

Norwegian University of Science and Technology

Table of Contents

1. Introduction

2. Getting Started

3. The S2ML+NET modeling language

3.1. Basic components

3.2. Structuring constructs

3.3 Properties

4. Commands

5. References

Appendix

A. Grammar of S2ML+NET models

B. Grammar of Reseda commands

C. Known bugs

3

Norwegian University of Science and Technology

1. INTRODUCTION

4

Norwegian University of Science and Technology

Rational

Graphs are pervasive in models. Not only virtually all modeling tools use them as
internal data structures, but graphs as such are a modeling tool, thanks to
fundamental algorithms to determine whether a node B is reachable from a node A,
to calculate shortest paths from A to B, to extract strongly connected components,
spanning trees, to determine the maximum flow that can circulate from A to B and so
on. As a modeling tool, graphs are in general called Networks.

Reseda is a pedagogical implementation of (some of) key network algorithms:

• Models are networks written in the S2ML+NET domain specific modeling
language, which is the combination of S2ML (system structure modeling
language), a set of object-oriented constructs to structure models and networks.

• It implements algorithms.

• It comes as a command interpreter, making it possible to perform various studies.

This document specifies S2ML+NET and presents the algorithms implemented by the
tool as well as the commands to apply them.

Reseda is developed in Python, for pedagogical purposes only. It is by orders of
magnitude less efficient than available commercial tools.

The objective is to familiarize students with network as a modeling language.

5

Norwegian University of Science and Technology

Installing and Running Reseda

To install Reseda you just need to decompress the archive "Reseda1.0.0.zip" into local
directory. Source files are the Python file "Reseda.py" as well as the directory "src" and
its content.

To run Reseda, open the file Python file "Reseda.py" into your Python environment,
set up the working directory and the name of script file and run the program.

6

Norwegian University of Science and Technology

Organization of this Document

The remainder of this document is organized as follows.

• Section Getting started is a small introduction to Reseda.

The two next sections describe S2ML+NET:

• Section Basic components presents the core of the language.

• Section Structuring constructs presents object-oriented constructs to structure models.

• Section Properties presents the constructs to describe sets of nodes and transitions.

The next section describe the command interpreter:

• Section Commands describes Reseda commands.

Finally, the appendix completes this document.

• Appendix S2ML+NET gives the Backus-Naur form of the modeling language.

• Appendix Reseda gives the Backus-Naur form of Reseda commands.

• Appendix Known bugs reports know problems with the current version of Reseda.

7

Norwegian University of Science and Technology

2. GETTING STARTED

8

Norwegian University of Science and Technology

S2ML+NET

9

S2ML+NET is a textual format to describe (hierarchical) graphs. E.g.

block Manchester

node Bury, Trafford, Rochdale,

Manchester, Stockport, Oldham,

Ashton;

edge

R01(length=15): Rochdale <-> Bury,

R02(length=10): Rochdale <-> Oldham,

R03(length=25): Rochdale <-> Manchester,

R04(length=8): Bury <-> Manchester,

R05(length=17): Bury <-> Trafford,

R06(length=14): Oldham <-> Manchester,

R07(length=23): Oldham <-> Ashton,

R08(length=14): Manchester <-> Trafford,

R09(length=17): Manchester <-> Ashton,

R10(length=20): Manchester <-> Stockport,

R11(length=9): Trafford <-> Stockport,

R12(length=13): Ashton <-> Stockport;

end

Bury Trafford

Rochdale StockportManchester

Oldham Ashton

17

15 8 14 9

10 14 17 13

25

20

23

Norwegian University of Science and Technology

S2ML+NET (bis)

10

block Manchester

node Bury,

…

edge

R01(length=15): Rochdale <-> Bury,

…

end

• Each model is described in a block which contains declarations of objects of the model.
A block starts with keyword block followed by the name of the model (here
Manchester) and ends with the keyword end.

• Three types of objects are used to define graphs: nodes, edges and parameters. Nodes
must be declared before they are referred to in edges.

• Nodes have a name and possibly some attributes.

• Edges have a name and possibly some attributes.

• Edges can be unidirectional, which is indicated with the symbol "->", or bidirectional
which is indicated by the symbol "<->".

Norwegian University of Science and Technology

S2ML+NET (ter)

11

block Manchester

node Bury,

…

edge

R01(length=15): Rochdale <-> Bury,

…

end

• Attributes are given between after the name (of the node or the edge). They are pairs
(name, value), where value is an arithmetic expression, possibly involving parameters.

• Declarations of nodes, edges and parameters are separated with commas “,” and
terminated with a semicolon ";".

• Although this is not mandatory, models are usually stored into text files with the
extension ".net".

Norwegian University of Science and Technology

Assessment Process

12

The assessment process of a model is typically made of the following steps:

1. The model is loaded from a text file.

2. The model is checked and rewritten in a form in which the calculation
process can start. This steps is called instantiation in the S2ML jargon.

3. Calculations are performed. Results are printed out into text files.

Norwegian University of Science and Technology

Scripts

Reseda is a command interpreter: it reads commands into a text file and execute
them. There are commands to perform each of the steps described in the previous
slide.

Step 1: the model is loaded

load "example/Manchester/Manchester.net"

Step 2: the model is instantiated

instantiate model

Step 3: some calculations are performed

compute shortest-path Rochdale Stockport length \

output="result.txt" mode=write

Scripts are text files. Although this is not mandatory, models are usually stored into
text files with the extension ".rsd".

13

Norwegian University of Science and Technology

Results

14

Model Manchester

source Rochdale

target Stockport

edge target distance

R01 Bury 15

R05 Trafford 32

R11 Stockport 41

result.txt

In result files, items are separated with tabs so that results can be easily loaded into
spreadsheets (Excel or equivalent).

Norwegian University of Science and Technology

3. S2ML+NET:
3.1 BASIC COMPONENTS

15

Norwegian University of Science and Technology

Basic Components

Basic components of S2ML+NET models are:

• Domains that are sets of symbolic constants;

• Blocks that contain declarations of other objects of a model;

• Declarations of nodes;

• Declarations of edges;

• Declarations of parameters involved in arithmetic expressions;

• Declarations of attributes associated with nodes and edges;

In the sequel, models are described using this font. Keywords are underlined using
this font.

16

Norwegian University of Science and Technology

Comments

It is possible to add comments everywhere in a S2ML+NET model.

• Any sequence of text between /* and */ is a comment, even if it spreads over
several line.

• All characters after // until the end of the line is a comment.

In the sequel, we shall color comments in italic and green.

/*

* This is a comment before a block declaration

*/

block Plant // This is a comment till the end of the line

// declarations

end

17

Norwegian University of Science and Technology

Identifiers

S2ML+NET models must be written using ASCII characters.

Identifiers, i.e. names of blocks, states, ports and parameters (and other objects
introduced in the next sections) obeys the following syntax:

• They start with a letter from a to z or from A to Z.

• They are made of any number of letters, digits, underscores "_".

E.g. Plant, failed, R3151, this_is_a_valid_although_a_big_long_name.

18

Norwegian University of Science and Technology

Domains

Domains are sets of symbolic constants that can be used in expressions. More exactly,
if you want to use a symbolic constant in an expression, you must declare it in a
domain. E.g.

domain State {STANDBY, WORKING, FAILED}

Here the domain State contains three symbolic constants STANDBY, WORKING and
FAILED.

A symbolic constant may belong to more than one domain.

19

Norwegian University of Science and Technology

Blocks

Blocks are the basic container of S2ML+NET. They are prototypes in the sense of object-
orientation theory. Blocks contain declarations of parameters, states, ports and sources
(and other elements that will be described later).

A block declaration starts with the keyword "block", followed by the name of the block.
It finishes with keyword "end". E.g.

block Valve

node A, B, C, D;

parameter Real baseCapacity = 100.0;

edge

e1(capacity=0.85 * baseCapacity): A -> B,

e2(capacity=0.79 * baseCapacity): A -> C,

e3(capacity=0.83 * baseCapacity): B -> D,

e4(capacity=0.75 * baseCapacity): C -> D;

end

Within a block, all elements must have a different name, even though they are of
different types, e.g. a node and a parameter. Elements can be declared in any order.

20

Norwegian University of Science and Technology

Nodes & Parameters

Nodes can be declared either individually or several at a time. They can be associated
attributes (multiple attributes are separated with commas. E.g.

node Bury, Trafford, Rochdale (capacity = 100.0);

The three nodes have their capacity set to 100.0.

Parameters are used in arithmetic expressions. They are declared together with the
expression that defines them. E.g.

parameter Real baseCapacity = 100.0;

parameter Real specialCapacity = 2 * baseCapacity;

21

Norwegian University of Science and Technology

Edges

Edges have a name and connect two nodes, the source node and the target node.
Both nodes must be declared before the edge is declared.

Edges can be unidirectional, which is indicated with the symbol "->", or bidirectional
which is indicated by the symbol "<->".

The declaration of one or several edges must be preceded with the keyword "edge".

Edges are associated attributes. E.g.

edge

e1: A -> B,

e2: B <-> C,

e3(capacity = 2.0 * baseCapacity) D -> E;

22

Norwegian University of Science and Technology

Expressions

Expressions are used to define the value of parameters as well as to define attributes
of nodes and edges. The current version of Reseda provides several types of
expressions:

• Arithmetic expressions and built-in functions

• Trigonometric functions

• Boolean expressions

• Inequalities

• Random-deviates

• Conditional expressions

• Special built-in functions

In any expression, a reference to a parameter can be used, under the condition that
parameters can only depend on parameters and cannot depend on themselves.

23

Norwegian University of Science and Technology

Arithmetic Expressions

24

The current version of Janos implements the following arithmetic expressions.

Syntax #arguments Semantics

Floating point number 0 The number

pi 0 p

e1 + … + en  1 Sum of the arguments

e1 - … - en  1 First argument minus the others

e1 * … * en  1 Product of the arguments

e1 / … / en  1 First argument divided by the others

- e 1 Opposite

min(e1, …, en)  1 Minimum of its arguments

max(e1, …, en)  1 Maximum of its arguments

Examples:
0.8 * weight max(f-g, g-f, 1.0) 3*(x+y)

-e

Norwegian University of Science and Technology

Arithmetic Built-In Functions

25

The current version of Janos implements the following arithmetic built-ins.

Syntax #arguments Semantics

exp(e) 1 exponential

log(e) 1 (Natural) logarithm

pow(e1, e2) 2 Power

sqrt(e) 1 Square root

floor(e) 1 Largest integer under

ceil(e) 1 Smallest integer above

abs(e) 1 Absolute value

mod(e1, e2) 2 Modulo

Gamma(e) 1 Gamma function

Norwegian University of Science and Technology

Trigonometric Functions

26

The current version of Janos implements the following arithmetic built-ins.

Syntax #arguments Semantics

sin(e) 1 Sine

cos(e) 1 Cosine

tan(e) 1 Tangent

asin(e) 1 Arc sine

acos(e) 1 Arc cosine

atan(e) 1 Arc tangent

Norwegian University of Science and Technology

Boolean Expressions

27

The current version of Janos implements the following Boolean expressions.

Syntax #arguments Semantics

false, true 0 Boolean constants

e1 and … and en  1 Conjunction of the arguments

e1 or … or en  1 Disjunction of the aguments

not e 1 Negation

count(e1, …, en)  1 Number of true expressions in the list

Examples:
a and b (f and g) or (not f and h)

not e

Norwegian University of Science and Technology

Inequalities

28

The current version of Janos accepts the following inequalities.

Syntax #arguments Semantics

e1 == e2 2 Equal

e1 != e2 2 Different

e1 < e2 2 Less than

e1 > e2 2 Greater than

e1 <= e2 2 Less or equal

e1 >= e2 2 Greater or equal

Examples:
0.8==weight f - g < x * y

Norwegian University of Science and Technology

Random Deviates

29

The current version of Janos implements the following random deviates

Syntax #arg Semantics

uniformDeviate(l, h) 2
The value is drawn at random uniformly in
the range [l, h]

normalDeviate(m, s) 2

The value is drawn at random according to
a normal distribution of mean m and
standard deviation s.

lognormalDeviate(m, s) 2

The value is drawn at random according to
a lognormal distribution of mean m and
standard deviation s.

triangularDeviate(l, h, m) 3

The value is drawn at random according to
a triangular distribution of lower bound l,
higher bound h and mode m.

Norwegian University of Science and Technology

Random Deviates (bis)

30

The current version of Janos implements the following random deviates

Syntax #arg Semantics

exponentialDeviate(r) 1

The value is drawn at random according to
a the inverse of a negative exponential
distribution of rate r.

WeibullDeviate(a, b) 2

The value is drawn at random according to
the inverse of a Weibull distribution of
scale parameter a and shape parameter b.

Norwegian University of Science and Technology

Conditional Expressions and Special Built-In

31

The current version of Janos implements the following conditional expressions.

Syntax #arg Semantics

if c then e1 else e2 3 Equal to e1 if c is true and to e2 otherwise

Example:
if x<=y then 1.0 else 2.0

The current version of Janos implements the following special built-in.

Syntax #arg Semantics

missionTime() 0 Returns the current mission time

Norwegian University of Science and Technology

Priority Rules (Precedence of Operators)

32

S2ML+DFE (and more generally all languages of the S2ML+X family) obeys the usual
precedence rules for operators. Parentheses are used to solve ambiguities.

Priority (decreasing order)

or

and

not

==, !=, <, >, <=, >=

- (n-ary)

+

/

*

- (unary)

all others

f and g or not f and h

reads
(f and g) or ((not f) and h)

x>=y+0.0 and x<y+1.0

reads
(x>=(y+0.0)) and (x<(y+1.0))

3*-x+3/4

reads
(3*(-x)) + (3/4)

Norwegian University of Science and Technology

Attributes

It is sometimes convenient to define or to redefine an attribute associated with a node
or an edge. This can be done by the directive attribute. E.g.

attribute MainPropulsionSystem.Converter.state = FAILED;

The general form of attribute (re)declaration is as follows.

attribute Path = Expression;

33

Norwegian University of Science and Technology

3. S2ML+NET:
3.2 STRUCTURING CONSTRUCTS

34

Norwegian University of Science and Technology

Blocks in Blocks

35

Consider the graph on the right which describes a
railway network. The nodes represent stations and
edges are labelled with distances, e.g. in minutes,
between these stations.

block StationA

node arrival, departure;

edge stop(time = stopTime): arrival -> departure;

parameter Real stopTime = 3;

end

A

B

D

C

E

F

G

65

30
35

50

35

75

25

30

40 35 60

20

Trains usually stop at each station they pass through
during their journey.
The time they stop at each station must be taken
into account to get the duration of a travel.

On way of doing that is to consider stations themselves as (simple) graphs, with one
arrival node, one departure node and one edge going from the former to the latter
and labelled by the duration of the stop (assuming it is the same for all lines). E.g.

Norwegian University of Science and Technology

Blocks in Blocks (bis)

36

The system can then be represented by the following hierarchical model:

block Network

block StationA

…

end

block StationB

…

end

…

edge

AtoB(time=30): A.departure -> B.arrival;

BtoA(time=30): B.departure -> A.arrival;

…

end

The block Network composes the blocks StationA and StationB.

Norwegian University of Science and Technology

Instantiated Form

37

The previous hierarchical model is equivalent to the following instantiated model:

block Network

node StationA.arrival, StationA.departure;

edge

A.stop(time = A.stopTime): A.arrival -> A.departure;

parameter Real A.stopTime = 3;

node StationB.arrival, StationB.departure;

edge

B.stop(time = B.stopTime): B.arrival -> B.departure;

parameter Real B.stopTime = 3;

…

edge

AtoB(time=30): A.departure -> B.arrival;

BtoA(time=30): B.departure -> A.arrival;

…

end

Norwegian University of Science and Technology

Cloning

38

Duplicating "by hand" blocks representing similar components would be both tedious
and error prone in large systems studies. Cloning is the a first solution to this problem.

block Network

block StationA

node arrival, departure;

edge stop(time = stopTime): arrival -> departure;

parameter Real stopTime = 3;

end

clones StationA as StationB;

…

edge

AtoB(time=30): A.departure -> B.arrival;

BtoA(time=30): B.departure -> A.arrival;

…

end

This model is equivalent to the first one: their instantiated form are the same.

Norwegian University of Science and Technology

Models as Scripts

39

It is possible to change elements of clones in two ways.
Either directly in the clone directive:

clones StationA as StationB

parameter Real stopTime = 5.0;

end

Or later in the model:

clones StationA as StationB;

parameter Real StationB.stopTime = 5.0;

This results of the "model as script" concept.

Norwegian University of Science and Technology

Paths

40

Thanks to absolute and relative paths, it is possible to refer to any element from any
block of hierarchical model.

block Network

block Zone1

block StationA

node arrival, departure;

end

end

block Zone2

block StationB

node arrival, departure;

edge

ToStationA: departure -> main.Zone1.StationA.arrival;

FromStationA: owner.owner.Zone1.StationA.departure -> arrival;

end

end

end

Absolute path: the keyword main denotes
the top level block of the hierarchy.

Relative path: the keyword owner denotes
the parent block in the hierarchy.

Norwegian University of Science and Technology

Classes & Instances

41

Another solution consists in creating a on-the-shelf reusable component, via the notion
of class. Then to instantiate this component as many time as needed. This makes it
possible to create libraries of reusable modeling components.

class Station

node arrival, departure;

edge stop(time = stopTime): arrival -> departure;

parameter Real stopTime = 3;

end

block System

Station A;

Station B;

…

edge

AtoB(time=30): A.departure -> B.arrival;

BtoA(time=30): B.departure -> A.arrival;

…

end

Again, this model is equivalent to the first one: their instantiated form are the same.

Norwegian University of Science and Technology

Models as Scripts (bis)

42

It is possible to change elements of instances in two ways.
Either directly in the instance declaration:

Station StationB

parameter Real stopTime = 5.0;

end

Or later in the model:

Station StationB;

parameter Real StationB.stopTime = 5.0;

Norwegian University of Science and Technology

Inheritance

43

Assume that we have to consider two kinds of stations: simple stations, which only
one duration of stops and large stations, with two (or more) stop durations. It is
possible to create first a class describing simple stations, then to extends this class for
large stations. This mechanism is called inheritance.

class SimpleStation

node arrival, departure;

edge stop(time = stopTime): arrival -> departure;

parameter Real stopTime = 3;

end

class LargeStation

extends SimpleStation;

node largeArrival, largeDeparture;

edge

largeStop(time = largeStopTime):

largeArrival -> largeDeparture;

parameter Real largeStopTime = 5;

end

Norwegian University of Science and Technology

Aggregation

44

Aggregation denotes a "uses" kind of a relation between blocks (or instances of classes).

block Network

block Controller

parameter Real shortStopTime = 3.0;

end

block Zone1

block StationA

embeds main.Controller as CTRL;

node arrival, departure;

edge

shortStop(time = CTRL.shortStopTime)

arrival -> departure;

end

end

end

Aggregation: within the block StationA, CTRL becomes
an alias for main.Controller.

Norwegian University of Science and Technology

3. S2ML+NET:
3.3 PROPERTIES

45

Norwegian University of Science and Technology

Offsite Power Supply: P&ID

46

GR

TR TR

DG

CBD CBD

CB3

Busbar

CBU CBU

Backup Power Supply

Primary Power Supply

Line1 Line2

Grid

Norwegian University of Science and Technology

Offsite Power Supply: Network

47

CBU

BB

GR

TR

CBD

CBU

TR

CBD

DG

CB

BackupPowerSupply

PrimaryPowerSupply

Line1 Line2

Norwegian University of Science and Technology 48

block OffsidePowerSupply

node GR(active = true);

block PrimaryPowerSupply

block Line1

node CBU(active = true);

node TR(active = true);

node CBD(active = true);

edge cbu-tr: CBU -> TR;

edge tr-cbd: TR -> CBD;

end

clones Line1 as Line2

attribute CBU.active = false;

attribute TR.active = false;

attribute CBD.active = false;

end

block

node DG(active = false);

node CB(active = false);

edge dg-cb: DG -> CB;

end

node BB(active = true);

…

end

Norwegian University of Science and Technology 49

block OffsidePowerSupply

...

edge gr-cbu1: GR -> PrimaryPowerSupply.Line1.CBU;

edge gr-cbu2: GR -> PrimaryPowerSupply.Line2.CBU;

edge cbd1-bb: PrimaryPowerSupply.Line1.CBD -> BB;

edge cbd2-bb: PrimaryPowerSupply.Line2.CBD -> BB;

edge cbdg-bb: BackupPowerSupply.CB -> BB;

assertion

Set PowerSources = {GR, BackupPowerSupply.DG};

Set PoweredNodes =

reachableNodes(PowerSources, active, true);

Set PoweredBusbars = PoweredNodes /\ { BB };

end

Norwegian University of Science and Technology

Assertions and Sets

50

block OffsidePowerSupply

...

assertion

Set PowerSources = {GR, BackupPowerSupply.DG};

Set PoweredNodes =

reachableNodes(PowerSources, active, true);

Set PoweredBusbars = PoweredNodes /\ { BB };

end

Reseda makes it possible to describe sets of blocks, nodes and edges. These sets can
be described extensionally, by giving their elements, or intentionally by characterized
them in a logical way.
Sets are declared in an assertion. Assertions defined in any block (and object-oriented
constructs instantiated in blocks).

extensional definition

intensional definition

Norwegian University of Science and Technology

Set Expressions: Extensional Sets and Set Operations

51

Syntax #arguments Semantics

S1 \/ … \/ Sn  1 Union

S1 /\ … /\ Sn  1 Intersection

S1 / S2 2 Set difference

S : E 1 : 1
Selection on the attribute values
E: Boolean expression

Extensional sets:

{GR, BackupPowerSupply.DG}

Set Operations

Norwegian University of Science and Technology

Builtin Set Expressions (1)

52

Syntax #arg Semantics

parentBlocks(S) 1 Set of parent blocks of elements given in argument

ancestorBlocks(S) 1 Set of ancestor blocks of elements given in argument

childBlocks(S) 1 Set of child blocks of blocks given in argument

descendantBlocks(S) 1 Set of descendant blocks of blocks given in argument

childNodes(S) 1 Set of child blocks of nodes given in argument

descendantNodes(S) 1 Set of descendant nodes of blocks given in argument

childEdges(S) 1 Set of child edges of nodes given in argument

descendantEdges(S) 1 Set of descendant edges of blocks given in argument

inEdges(S) 1 Set of in-coming edges of nodes given in argument

outEdges(S) 1 Set of out-going edges of blocks given in argument

Norwegian University of Science and Technology

Builtin Set Expressions (2)

53

Syntax #arg Semantics

reachableNodes(S, E, F) 3

Set of nodes that are reachable from nodes
given in first argument.
The second argument is a Boolean expression
that tests the attributes of the nodes.
The third argument is a Boolean expression that
tests the attributes of the edges.

coreachableNodes(S, E, F) 3

Set of nodes from nodes which nodes given in
first argument are reachable.
The second argument is a Boolean expression
that tests the attributes of the nodes.
The third argument is a Boolean expression that
tests the attributes of the edges.

Norwegian University of Science and Technology

4. RESEDA COMMANDS

54

Norwegian University of Science and Technology

Role of Commands

Categories of commands:

Reseda commands can be split into the following categories.

1. Commands to load, to check and to instantiate models.

2. Commands to compute indicators.

3. Commands to print out information, e.g. models.

Normally, commands of type 1, 2 and 3 are applied in sequence.

Order of arguments:

The order of arguments in a command matters, even though some arguments are
optional. You have to follow strictly the syntax described in this section.

Optional arguments:

Optional arguments are given in a special form: name=value, where name is the name
of the argument and value its value.

55

Norwegian University of Science and Technology

General Considerations

One line commands:

Reseda commands spread normally over one line. It is however possible to write a
command on several line by escaping the end of line is escaped with an anti-slash "\",
e.g.

compute shortest-path departure arrival time \

output="statistics.txt" mode=append

Comments:

Comments can be introduced in Reseda scripts. Any character between the character
and the end of the line is a comment. We shall underline comment in green. E.g.

this is a comment

56

Norwegian University of Science and Technology

File Names and Modes

File names:

Most of the commands require an input or an output file name as argument. File
names can be given directly, e.g. examples/Manchester.net or surrounded with
quotes, e.g. "examples/Manchester.net".

The second form is mandatory when the file name or path includes spaces. It is wise
to use it anyway.

Output file modes:

When opening a file to print out something, Reseda can do it in two modes: either the
file is overwritten if it exists already -- this is the mode write --, or the new
information is appended at the end of the existing file -- this is the mode append. If
the file did not exist, it is created in both cases. By default, the mode is write. E.g.

compute shortest-path A B time output="path.txt" mode=append

The above command calculate the shortest path from node A to node B and appends
the result to the file probas.txt.

57

Norwegian University of Science and Technology

Result Files

58

Model Stations

source A.departure

target G.arrival

edge target distance

AtoB B.arrival 30

B.stop B.departure40

BtoF F.arrival 105

F.stop F.departure115

FtoG G.arrival 135

result.txt

As much as possible, result files are organized in a way they can be loaded into
spreadsheets (Excel or equivalent). Items are separated with tabs. Methods to load
such text files differ from one spreadsheet tool to another.

Norwegian University of Science and Technology

Commands to Compute Indicators

compute shortest-path sourceNodeName targetNodeName attributeName

options

This command applies the Dijskra's algorithm to compute the shortest path from
the given source node to the given target node. Length of edges are calculated
from the given attribute. The result is stored in the given file.

Lengths of edges must be non-negative.

compute dates sourceNodeName targetNodeName attributeName

options

This command calculate the early dates and the last dates (as in PERT diagrams) of
nodes of the given graph, start the given source node and ending in the given
target node. Duration of activities (edges) are calculated from the given attribute.
The result is stored in the given file.

The graph must be oriented and loop-free. Durations of edges must be non-
negative.

59

Norwegian University of Science and Technology

Commands to Compute Indicators (bis)

compute maximum-flow sourceNodeName targetNodeName attributeName

options

This command applies the Ford and Fulkerson algorithm to compute the maximum
flow from the given source node to the given target node. Capacity of edges are
calculated from the given attribute. The result is stored in the given file.

Capacity of edges must be non-negative.

60

Norwegian University of Science and Technology

Commands to Compute Sets

compute properties options

This command computes the values of sets declared in assertion.

Options are the following.

• target-block = blockName

• output = filename

• mode = write or append

• mission-time = [number ("," Number)*]

61

Norwegian University of Science and Technology

Commands to Print Information

print model fileName [mode=(append|write)]

This command prints out the original model.

print instantiated-model fileName [mode=(append|write)]

This command prints out the instantiated model.

62

Norwegian University of Science and Technology

5. REFERENCES

63

Norwegian University of Science and Technology

References

Recommend books on (graphs) algorithms:

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein. Introduction to Algorithms (Second
ed.). The MIT Press. Cambridge, MA, USA. ISBN ISBN 0-262-03293-7. 2001.

Robert Endre Tarjan. Data Structures and Network Algorithms. Society for Industrial and Applied Mathematics.
Philadelphia, PA, USA. ISBN 9780898711875. 1983.

64

Norwegian University of Science and Technology

APPENDIX

65

Norwegian University of Science and Technology

APPENDIX

A. GRAMMAR OF S2ML+NET

66

Norwegian University of Science and Technology

Models

Model ::= (DomainDeclaration | ClassDeclaration | BlockDeclaration)*

DomainDeclaration ::=

domain Identifier "{" Identifier ("," Identifier)* "}"

ClassDeclaration ::=

class Identifier BlockField* end

BlockDeclaration ::=

block Identifier BlockField* end

BlockField ::=

NodeDeclaration | EdgeDeclaration| ParameterDeclaration

| BlockDeclaration | InstanceDeclaration

| ExtendsDirective | EmbedsDirective | ClonesDirective

| AttributeDirective

| Assertion

67

Norwegian University of Science and Technology

Nodes, Edges & Parameters

NodeDeclaration ::=

node Identifier Attributes? ";"

EdgeDeclaration ::=

edge Identifier Attributes? ":" Path ("->" | "<->") Path ";"

Attributes ::=

"(" Attribute ("," Attribute)+ ")"

Attribute ::=

Identifier "=" Expression

ParameterDeclaration ::=

parameter DomainIdentifier Path "=" Expression ";"

68

Norwegian University of Science and Technology

Expressions

Expression ::=

Path

| ArithmeticExpression | ArithmeticBuiltIn | TrigonometricFunction

| BooleanExpression | Inequality

| RandomDeviate

| ConditionalExpression | SpecialBuiltIn

| "(" Expression ")"

ConditionalExpression ::=

if BooleanExpression then Expression else Expression

SpecialBuiltIn ::=

missionTime()

69

Norwegian University of Science and Technology

Arithmetic Expressions

ArithmeticExpression ::=

Float

| pi

| ArithmeticExpression ("+" ArithmeticExpression)+

| ArithmeticExpression ("-" ArithmeticExpression)+

| ArithmeticExpression ("*" ArithmeticExpression)+

| ArithmeticExpression ("/" ArithmeticExpression)+

| "-" ArithmeticExpression

| min "(" ArithmeticExpression ("," ArithmeticExpression)* ")"

| max "(" ArithmeticExpression ("," ArithmeticExpression)* ")"

70

Norwegian University of Science and Technology

Arithmetic Built-In & Trigonometric Functions

ArithmeticBuiltIn ::=

| exp "(" ArithmeticExpression ")"

| log "(" ArithmeticExpression ")"

| pow "(" ArithmeticExpression "," ArithmeticExpression ")"

| sqrt "(" ArithmeticExpression ")"

| floor "(" ArithmeticExpression ")"

| ceil "(" ArithmeticExpression ")"

| abs "(" ArithmeticExpression ")"

| mod "(" ArithmeticExpression "," ArithmeticExpression ")"

| Gamma "(" ArithmeticExpression ")"

TrigonometricFunction ::=

| sin "(" ArithmeticExpression ")"

| cos "(" ArithmeticExpression ")"

| tan "(" ArithmeticExpression ")"

| asin "(" ArithmeticExpression ")"

| acos "(" ArithmeticExpression ")"

| atan "(" ArithmeticExpression ")"

71

Norwegian University of Science and Technology

Boolean Expressions & Inequalities

BooleanExpression ::=

| BooleanExpression (or BooleanExpression)+

| BooleanExpression (and BooleanExpression)+

| not BooleanExpression

| count "(" BooleanExpression ("," BooleanExpression)* ")"

Inequality ::=

| Expression "==" Expression

| Expression "!=" Expression

| ArithmeticExpression "<" ArithmeticExpression

| ArithmeticExpression ">" ArithmeticExpression

| ArithmeticExpression "<=" ArithmeticExpression

| ArithmeticExpression ">=" ArithmeticExpression

72

Norwegian University of Science and Technology

Random Deviates

RandomDeviate ::=

uniformDeviate "(" [ArithmeticExpression]2 ")"

| normalDeviate "(" [ArithmeticExpression]2 ")"

| lognormalDeviate "(" [ArithmeticExpression]2 ")"

| triangularDeviate "(" [ArithmeticExpression]3 ")"

| exponentialDeviate "(" ArithmeticExpression ")"

| WeibullDeviate "(“ [ArithmeticExpression]2 ")"

73

Norwegian University of Science and Technology

Directives

InstanceDeclaration ::=

Identifier Identifier ";" # ClassName InstanceName

| Identifier Identifier BlockField* end # idem

ClonesDirective ::=

clones Path as Identifier ";" # BlockPath CloneName

| clones Path as Identifier BlockField* end # idem

ExtendsDirective ::=

extends Identifier ";" # ClassName

EmbdesDirective ::=

embeds Path as Identifier ";" # BlockPath LocalName

| embeds Path as Identifier BlockField* end # idem

AttributeDirective ::=

attribute Path "=" Expression ";"

74

Norwegian University of Science and Technology

Identifiers, Paths, Constants & Comments

Identifier ::= [a-zA-Z_][a-zA-Z0-9_-]+

Path ::= Identifier ("." Identifier)*

Integer ::= [0-9]+

Float ::= [+-]? [0-9]+ ("." [0-9]+)? ([eE] [+-]? [0-9]+)?

Comments can be added everywhere in the code.

• Single line comments introduced by //, which comment out the rest of the line.

• Multiline comments which comment out the text between /* and */.

75

Norwegian University of Science and Technology

Assertion

Assertion ::=

assertion SetDeclaration

SetDeclaration ::=

Set Path "=" SetExpression ";"

SetExpression ::=

Path

| "{" Path ("," Path)* "}"

| BuiltinSetExpression

| SetExpression ("\/" SetExpression)*

| SetExpression ("/\" SetExpression)*

| SetExpression "/" SetExpression

| SetExpression ":" TestOnAttributes

| "(" SetExpression ")"

TestOnAttributes ::=

BooleanExpression

76

Norwegian University of Science and Technology

Builtin Set Expressions

BuiltInSetExpression ::=

parentBlocks "(" SetExpression ")"

| ancestorBlocks "(" SetExpression ")"

| childBlocks "(" SetExpression ")"

| descendantBlocks "(" SetExpression ")"

| childNodes "(" SetExpression ")"

| descendantNodes "(" SetExpression ")"

| childEdges "(" SetExpression ")"

| descendantEdges "(" SetExpression ")"

| sourceNodes "(" SetExpression ")"

| targetNodes "(" SetExpression ")"

| inEdges "(" SetExpression ")"

| outEdges "(" SetExpression ")"

| reachableNodes "(" SetExpression ","

TestOnAttributes "," TestOnAttributes ")"

| coreachableNodes "(" SetExpression ","

TestOnAttributes "," TestOnAttributes ")"

77

Norwegian University of Science and Technology

APPENDIX

B. GRAMMAR OF RESEDA COMMANDS

78

Norwegian University of Science and Technology

Scripts, Commands load and instantiate

Script ::= Command*

Command ::=

CommandLoad

| CommandInstantiate

| CommandCompute

| CommandPrint

| CommandSet

CommandLoad ::=

load model fileName

| load script fileName

CommandInstantiate ::=

instantiate model

79

Norwegian University of Science and Technology

Command compute

CommandCompute ::=

CommandComputeShortestPath

| CommandComputeDates

| CommandComputeMaximumFlow

| CommandComputeProperties

CommandComputeShortestPath ::=

compute shortest-path sourceNodeName targetNodeName attributeName

CommandComputeOption*

CommandComputeDates ::=

compute dates sourceNodeName targetNodeName attributeName

CommandComputeOption*

CommandComputeMaximumFlow ::=

compute maximum-flow sourceNodeName targetNodeName attributeName

CommandComputeOption*

80

Norwegian University of Science and Technology

Command compute (bis)

CommandComputeProperties ::=

compute properties CommandComputeOption*

CommandComputeOption ::=

target-block = blockname

| output = filename

| mode = (append|write)

| mission-time = "[" Number ("," Number)* "]"

81

Norwegian University of Science and Technology

Command print

CommandPrint ::=

CommandPrintModel

| CommandPrintInstantiatedModel

CommandPrintModel ::=

print model fileName [mode=(append|write)]

CommandPrintInstantiatedModel ::=

print instantiated-model fileName [mode=(append|write)]

82

Norwegian University of Science and Technology

Command set

CommandSet ::=

set option-name value

83

Norwegian University of Science and Technology

Comments

All characters comprised between a # symbol and the end of the line are considered
as part of a comment.

84

Norwegian University of Science and Technology

APPENDIX

C. KNOWN BUGS

85

Norwegian University of Science and Technology

Known Bugs

• No error message for edges with no capacity.

86

