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SUMMARY & CONCLUSIONS 

Fault tolerance has been an essential architectural 

attribute for achieving high reliability in many critical 

applications of digital systems. Automatic recovery and 

reconfiguration mechanisms play a crucial role in 

implementing fault tolerance because an uncovered fault may 

lead to a system or subsystem failure even when adequate 

redundancy exists. In addition, an excessive level of 

redundancy may even reduce the system reliability.  

Therefore, an accurate analysis must account for not only the 

system structure but also the system fault and error handling 

behavior. The models that capture the fault and error handling 

behavior are called coverage models. The appropriate 

coverage modeling approach depends on the type of fault 

tolerant techniques used.  

 Recent research emphasizes the importance of two new 

categories of coverage models: Fault Level Coverage (FLC) 

models and One-on-one Level Coverage (OLC) models. 

However, the methods for solving FLC and OLC models are 

much more limited, primarily because of the complex nature 

of the dependency introduced by the reconfiguration 

mechanisms. In this paper, we propose an efficient algorithm 

for solving FLC and OLC models. 

1 INTRODUCTION 

A system is called a fault tolerant system if it can tolerate 

some faults and functions successfully even in the presence of 

these faults [1]. In many critical applications of digital 

systems, fault tolerance has been an essential architectural 

attribute for achieving high reliability [2]. Fault tolerant 

designs are particularly important for computer and 

communication systems that are used in life-critical 

applications such as flight control, space missions, and data 

storage systems [3]. Fault tolerance is generally achieved by 

using redundancy concepts that utilize such techniques as 

error correcting codes (ECC), built-in tests (BIT), replication, 

and fault masking [1, 4]. Automatic recovery and 

reconfiguration mechanisms (detection, location, and 

isolation) play a crucial role in implementing fault tolerance 

because an uncovered fault may lead to a system or subsystem 

failure even when adequate redundancy exists [5]. Hence, 

systems subjected to imperfect fault coverage may fail prior to 

the exhaustion of redundancy due to uncovered component 

failures [2]. In addition, an excessive level of redundancy may 

reduce the system reliability [6]. Therefore, an accurate 

reliability analysis of these systems is important. An accurate 

analysis must consider the fault and error handling behavior 

[7] in addition to the system structure and its provision of 

redundancy [8]. 

1.1 Acronyms & Abbreviations 

BIT Built-In Test 

CCF Common Cause Failure 

CF Coverage Factor 

ECC Error Correcting Codes 

ELC Element Level Coverage (model) 

FEHM Fault/Error Handling Model 

FLC Fault Level Coverage (model) 

HARP Hybrid Automated Reliability Predictor 

IPC Imperfect Coverage 

OLC One-on-one Level Coverage (model) 

PFC Perfect Fault Coverage (model) 

RBD Reliability Block Diagram 

SDP Sum of Disjoint Products 

XHARP Extended HARP 

1.2 Terminology and Definitions 

In this paper, we borrow some terminology from [9, 10].  

• System: A collection of components arranged 

according to a specific design in such a manner to 

perform a specific desired function or functions.  

• Subsystem: A subdivision of the system that performs 

a specific function or functions that are needed for 

the overall system functionality. 

• Component: A self-contained element of an entire 

system or its subsystem that performs a function 

necessary to the operation of the system or the 

subsystem.  

• Failure: A deviation from the required functionality. 

A system failure occurs as a result of its component 

or subsystem failures. 



• Error: A part of the system state which is liable to 

lead to failure. 

• Fault: The cause of an error, i.e., a short circuit, 

electromagnetic perturbation, etc. Upon occurrence, a 

fault creates a latent error, which becomes effective 

when it is activated. When the error affects the 

delivered service or functionality, a failure occurs.  

• Fault/Error Handling Model (FEHM): A model that 

describes the behavior of the system in response to a 

fault. It is also called coverage model. If the 

offending fault is transient, and it can be handled 

without discarding the component, a transient 

restoration is taking place, and the component returns 

to its normal working state. If the fault is determined 

to be permanent, and the offending component is 

discarded, a permanent coverage is taking place, and 

the component is considered to be in the covered 

failure mode (safe failure mode). If the recovery 

mechanism is unable to detect, locate, or isolate the 

fault, the fault may lead to an uncovered failure. If 

the fault by itself causes the system to fail, the single-

point failure is taking place. However, depending on 

the type of recovery mechanisms used, some systems 

can tolerate multiple undetected or non-isolated 

faults. If the system can tolerate only one non-

isolated fault at a time, the occurrence of a second 

fault that interfaces interferes with the recovery 

process of the first fault can cause an uncovered 

failure, which is called a near-coincident failure. 

• Covered Failure: A failure that is mitigated by the 

successful recovery of faults.  A component fails in 

the covered mode if the fault is determined to be 

permanent and the component is removed from the 

system. A system fails in the covered mode due to 

exhaustion of redundancy as a result of the covered 

failures of its components.  

• Uncovered Failure: A failure that results from the 

unsuccessful recovery of faults. A successful 

recovery of a fault includes both the transient 

restoration and permanent removal of the faulty 

component. An unsuccessful recovery of a fault is the 

situation that leads to the system or the subsystem 

failure in the uncovered mode. This happens either 

due to single or multiple non-isolated faults that 

defeat the redundancy. If the effects of the uncovered 

failures are local to a subsystem, then the subsystem 

can be analyzed independently and it can be replaced 

by a logically equivalent component. Therefore, only 

the uncovered failures that lead to the system failure 

need to be considered. Hence, without loss of 

generality, we can assume that the system fails in the 

uncovered mode if at least one of its components fails 

in the uncovered mode.  

• Coverage: A factor used to account for the efficiency 

of fault tolerance mechanisms. More specifically, 

coverage is the [conditional] probability of 

successfully covering a fault, i.e., avoiding fault 

propagation, given that the fault has occurred. It is 

also called coverage factor or coverage probability.           

coverage ≡≡≡≡ CF = Pr{system recovery |  fault occurs}  

If the coverage value is less than 1, then it is called 

imperfect coverage (IPC). 

• Single-Point Failure: A system failure caused by a 

single fault without interference of other faults.  

• Near-Coincident Failure: A system failure resulting 

from the occurrence of two coexisting (not 

simultaneously occurring) faults. The near-coincident 

failure condition occurs when the system has already 

experienced one fault and is in the process of 

recovering from it when a second statistically 

independent fault occurs in another unit that is 

critically coupled to the unit experiencing the first 

fault. 

• Single-Fault Model: The effectiveness of recovery 

mechanisms depend on the occurrence of individual 

faults. The system failures that are caused by 

uncovered single-faults are known as single-point 

failures. 

• Multi-Fault Model: The effectiveness of recovery 

mechanisms depend on the occurrence of multiple 

faults.  

• Combinatorial Model: A model that represents the 

system state (success or failure) as a combination of 

the states of its components (success or failure). 

Examples include RBDs, fault trees, diagraphs, and 

reliability networks.  

1.3 Coverage Models 

The models that consider the effects of imperfect fault 

coverage are known as imperfect fault coverage models or 

simply fault coverage models or coverage models [2]. 

Depending on the type of fault tolerant techniques used, the 

models are classified as [4]: 

• Perfect Fault Coverage (PFC).  The coverage factor is 

1. Hence, the system can be analyzed using classical 

reliability analysis techniques, which do not consider 

the effects of coverage.  

• Element Level Coverage (ELC). A particular 

coverage value is associated with each component. 

This value is independent of the status of other 

components.  

• Fault Level Coverage (FLC). The coverage value 

depends on the number of good components that 

belong to a specific group (i.e., the status of other 

components).  

• One-on-one Level Coverage (OLC). OLC is a special 

case of FLC where the coverage factor is 1 when the 

number of good components in a specific group is 

greater than 2.  

The ELC model is appropriate when the selection among 

the redundant elements is made on the basis of a self-

diagnostic capability of the individual elements. Such systems 

typically contain a built-in test (BIT) capability. The FLC 



model is appropriate for modeling systems in which the 

selection among redundant elements varies between initial and 

subsequent failures. An example is a majority voting system 

among the currently known working components. In the 

HARP terminology, ELC models are known as single-fault 

models, whereas the OLC and FLC models are known as 

multi-fault models.  

Perfect fault coverage models, which are extensively 

studied in the literature, are actually special cases of the other 

three model types. Because OLC is a special case of FLC, 

there are effectively two classes of models (ELC and FLC) 

that need special attention. In the fault tolerant literature, ELC 

models have been studied for a long time. The landmark 

developments in solving these models include decomposition 

techniques (1983) [11], Markov chain-based solutions (1985-

1995) [9, 12], multi-state combinatorial techniques (1995) 

[13], and a separable method (1999) called the Simple and 

Efficient Algorithm (SEA) [8], which uses conditional 

probabilities. As its name suggests, SEA provides the most 

simple and efficient method available for solving ELC models.  

Methods for solving FLC models are much more limited, 

primarily because of the complex nature of the dependency 

introduced by reconfiguration mechanisms.  The only existing 

published methods are Markov chain-based solutions [12] and 

sum of disjointing products methods (2006) [4]. Both of these 

methods require huge significant computer space and time for 

systems with large n. In this paper, utilizing the concepts in [2, 

4], we propose an efficient method for solving both OLC and 

FLC models by introducing a new implicit Common Cause 

Failure (CCF) model and a new extension of the separable 

method used in SEA.   

2 SYSTEM DESCRIPTION AND ASSUMPTIONS 

The system description and assumptions are: 

• The system consists of several components.  

• The system is subjected to imperfect fault coverage. 

The uncovered failure of any component causes 

immediate system failure, even in the presence of 

adequate redundancy.  

• The fault coverage = Pr{system recovers | fault 

occurs} depends on the faulty component and system 

state. Specifically, the system consists of several 

groups of components, and the fault coverage of a 

component depends on the number of working 

components in its group (called an FLC group).  

• Component failures are s-independent. The only 

dependency among the component failures is due to 

the uncovered failures caused by imperfect fault 

coverage mechanisms. 

• An s-coherent combinatorial model (RBD, fault tree, 

digraph, or reliability network) can be used to 

represent the combinations of covered component 

failures (or successes) that lead to system failure (or 

success). 

• Fault occurrence probabilities are given either (a) as 

fixed probabilities (for a given mission time), or (b) 

in terms of a lifetime distribution. They are s-

independent of the system state. 

Therefore, the inputs for the reliability analysis are:  

• A combinatorial model describing the combinations 

of covered failures (or successes), which lead to 

system failure (or success). 

• A set of parameters describing the component time to 

failure behavior. 

• A set of FLC groups. Each component belongs to 

only one group. For each group, the set of FC 

probabilities depend on the number of working 

components. If a set contains n components, it needs 

n FC probabilities. In [4], the coverage probability 

when all components have failed is considered to be 

zero. Although this assumption is valid for most  

systems, our proposed method removes this 

restriction while still providing the ability to support 

this case.  

3 AN EXISTING COMBINATORIAL METHOD 

3.1  k-out-of-n System with Identical Components 

In this section, we describe the method provided in [4] for 

analyzing k-out-of-n systems subjected to FLC models. The 

method has the following steps: 

• Compute the probability of exactly m-out-of-n 

functioning components. 

• Multiply this probability by an appropriate coverage 

factor. 

• Sum these updated probabilities over the values of m, 

ranging from k and n, to find the system reliability. 

Consider a 2-out-of-4 system with identical components, 

where all components belong to a single FLC group. Assume 

that p is the reliability of each component and ci is the 

coverage probability at the i
th
 failure. Because the system fails 

after three failures (irrespective of fault coverage), both c3 and 

c4 are not applicable and can be considered as c3=c4=0. The 

values of c3 and c4 are required only if we want to distinguish 

the failures as covered or uncovered. Such a distinction is 

required when analyzing systems consisting of several k-out-

of-n subsystems that are subjected to imperfect fault coverage.  

Under the perfect coverage, the reliability of a 2-out-of-4 

system is: 

R = Pi =
i= 0

n−k

∑ P0 + P1 + P2   (1) 

where Pi is the probability of exactly i components failed. For 

an identical component case, Pi can be calculated using the 

binomial distribution. 
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where q=1-p = unreliability of each component. Now consider 

the imperfect fault coverage case. Here, we should multiply Pi 

with the coverage probabilities associated with the 1
st
, 2

nd
, ..., 
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Note: By definition, we have: c0 = r0 = 1. Therefore, system 

reliability is: 
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This is exactly the procedure used in [2, 4]. The coverage 

probabilities ci can be calculated using an appropriate coverage 

model. Although the method in [4] can be used for generic 

multi-fault coverage models, the coverage probabilities in [4] 

are calculated using the near-coincident fault model, where an 

uncovered failure occurs if the system experiences a second 

fault during the recovery from a first fault. For example, let τ 

be the recovery time for a fault. During the first failure, any 

one of the remaining (n-1) components can fail during τ and 

can cause the system failure. Extending the same logic for 

other cases, we have: 

])(exp[ λτinci −−=   (5) 

where λ is the failure rate of each component. It should be 

noted that [4] uses a different approach, which is based on BIT 

coverage, for calculating cn-1 and cn=0.  

3.2 k-out-of-n System with Non-Identical Components 

Extending the k-out-of-n System method for a non-

identical component case is simple. The only difference is that 

Pi should be computed using an appropriate formula. For 

simplicity, consider a 2-out-of-3 system. We have: 

22110 PrPrPR ++=    (6) 

The probabilities Pi’s can be calculated in several ways. The 

algorithms with complexity O(kn) or better are available in the 

literature and are discussed in [14]. However, if we use the 

classical truth-table approach, we have: 

3210 pppP =    (7) 

3213213211 qpppqpppqP ++=    

3213213212 pqqqpqqqpP ++=    

The calculations can be generalized for the case where ci 

is dependent on a set of components that already failed instead 

of on just the number that have failed. The details of these 

calculations are discussed in [14].  

3.3 General System Configurations 

The reliability of a general system is computed in a 

similar fashion, where each term in the system reliability 

expression represents exactly a specific number of working 

components from each of the k-out-of-n group. The 

probability of each term is multiplied with an appropriate 

coverage factor to find the overall system reliability. The main 

contribution of Myers’ approach [4] is that as long as the 

system failure logic is represented using a combinatorial 

model, the inclusion of uncovered failures, resulting from 

either single-fault or multi-fault coverage models, does not 

require a complex Markov chain-based solution. Hence, we 

can solve both single-point failures and near-coincident 

failures using combinatorial models, which is a major break 

through in the analysis of coverage models.  

The disadvantage of this method is its computational 

complexity. To produce correct results, the system reliability 

expression should be expressed in a sum of disjoint products 

(SDP) form that is grouped according to a specific 

combination of “number of good units from each FLC group”. 

Due to this restriction, it cannot be combined with efficient 

algorithms available for combinatorial reliability analysis. In 

this paper, combining the concepts of Myers’ approach, SEA 

and CCF, we propose an efficient algorithm to solve FLC 

models and its special case OLC models. In addition to this, 

we also propose an approximate algorithm that produces the 

results quickly. 

4 PROPOSED SOLUTION 

In this section, we provide two efficient algorithms for 

computing the reliability of general system configurations 

subjected to FLC and OLC models.  

• The first algorithm is based on an implicit CCF   

model, and it produces exact results.  

• The second algorithm converts the problem into an 

equivalent perfect coverage model, and it produces 

an approximate result with a very small deviation 

from the exact results. 

4.1 Algorithm 1: Exact Solution 

This algorithm uses SEA-based calculations and CCF 

analysis concepts. The basic idea of this algorithm is that the 

conditional reliability of the system can be computed using 

implicit CCF analysis given that there are no uncovered 

failures in the system. To apply implicit CCF analysis, we 

should know the joint probabilities of events that belong to an 

s-dependent group (FLC group). The procedure is explained 

through a simple example of 2-out-of-3 system with non-

identical components subjected to imperfect fault coverage. 

To apply this method, first we should compute the uncovered 

failure probability (U) of each FLC group j as in equation (8).  

∑
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Because this example contains only one FLC group, for 

simplifying notation, we omit the subscript for the FLC group. 

For this example, we have: 

32321211 )1()1()1( PrcPrcPcU −+−+−=          (9) 

  Let xi be the probability that only the i
th
 component in 

the FLC group has failed and that failure is covered. Similarly, 

xij represents the probability that only the i
th
 and j

th
 

components have failed. Hence, we have: 

                             )1/(32111 Uppqrx −=            (10) 

)1/(321212 Upqqrx −=     

)1/(3213123 Uqqqrx −=     



Similarly, we can compute (1) x2 and x3, and (2) x13 and x23. 

Let  yij be the probability that at least components i and j have 

failed in the covered mode, and assume that there are no 

uncovered failures in the system. Hence, we have: 

                             
123131211 xxxxy +++=                        (11) 

1231212 xxy +=      

123123 xy =      

Similarly, we can compute (1) y2 and y3, and (2) y13 and 

y23. Once we know these x and y values, it is straightforward to 

compute the system reliability. Most algorithms use the y 

values. For example, the conditional unreliability of 2-out-of-3 

system is: 

123231312 yyyyQc
−++=   (12) 

Finally, the overall system reliability is: (1-U)(1-Q
c
). 

These results match the results in section 3.2. However, this 

method is not required for the simple k-out-of-n systems. This 

method is developed for the most complex systems considered 

in [4], where the system consists of several FLC groups. The 

algorithm for complex systems follows: 

• Using equation (8), for each FLC group j in the 

system, find the uncovered failure probability, (Uj).  

• Using Uj, for each FLC group, find the x and y values 

required for the common cause analysis as shown in 

equations (10) and (11). 

• Using these x and y values, compute the system 

conditional reliability, R
c
. 

• Compute the probability of “no uncovered failure in 

the system,” (C). 
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• Finally, the overall system reliability is: 
c

RCR .=   

It should be noted that it is straightforward to convert an 

implicit method into an equivalent explicit method that 

involves only independent components [15]. Therefore, the 

system reliability can be solved using any existing 

combinatorial reliability algorithm, including BDD [16]. The 

details are given in [14]. 

4.2 Algorithm 2: An Efficient Approximation 

This algorithm also uses SEA-based calculations. The 

basic idea of this approximate algorithm is “the conditional 

reliability of the system, given that no uncovered failure in the 

system (R
c
),” is almost equivalent to the “unconditional 

reliability of the system with perfect coverage (R
p
).” In fact, R

p
 

≤ Rc
. Hence, this algorithm produces provably conservative 

results for the system reliability. The algorithm follows: 

• Using equation (8), for each FLC group j in the 

system, find the uncovered failure probability, (Uj).  

• As in equation (13), compute the probability of “no 

uncovered failure in the system,” (C). 

• Assuming perfect coverage, i.e., using unconditional 

component reliabilities, compute the system 

reliability, R
p
, using any combinatorial algorithm. 

• Finally, the overall system reliability is: .. pRCR =   

5 EXAMPLE 

In this section, we demonstrate the exact and approximate 

algorithms proposed in section 4.1 and section 4.2. We 

consider two cases of a simple hypothetical quadruplex 

redundant real time control system discussed in [4]. The 

system consists of four sets of components. 

• Four electric power sources: P1, P2, P3, and P4. 

• Four power distribution buses: B1, B2, B3, and B4. 

• Four feedback sensors: S1, S2, S3, and S4. 

• Four control computers: C1, C2, C3, and C4. 

The buses are considered to be perfect and never fail. All 

components within each group are considered to be identical. 

The coverage of power sources is perfect. The parameters of 

the system are shown in Table 1. 

 

Parameter Value 

Computer frame rate 100 hz = 10 ms 

Fault window 3 frames = 30 ms 

Power source failure rate 500 fpmh 

Sensor failure rate 250 fpmh 

Computer failure rate 750 fpmh 

Sensor BIT coverage 0.99  = c3(S) 

Computer BIT coverage 0.999  = c3(C) 

Mission time 1 hour 

Table 1 – Parameters for the Quadruplex System 

The Boolean expression that represents the system 

success (SS) in terms of component success is: 

22)21(11)41( CSPPCSPPSS ⋅⋅++⋅⋅+=    

                  44)43(33)32( CSPPCSPP ⋅⋅++⋅⋅++    (14) 

The sensors and computers form two FLC groups. Hence, 

FLC-S = {S1, S2, S3, S4} and FLC-C = {C1, C2, C3, C4}.  

The coverage values c1 and c2 are calculated using equation 

(5). The c3 is equivalent to the corresponding BIT coverage, 

and c4 = 0. The corresponding coverage values are shown in 

Table 2. Refer to [4] for more details on this system.  

 

CF Sensor  Computer 

c1 c1(S) = 0.99999999375 c1(C) = 0.99999998125 

c2 c2(S) = 0.99999999583 c2(C) = 0.9999999875 

c3 c3(S) = 0.99 c3(C) = 0.999 

c4 c4(S) = 0.0 c4(C) = 0.0 

Table 2 – Coverage Factors 

We consider two cases: (1) all components are 

independent – the only dependency among the component 

failures is due to the uncovered failures caused by imperfect 

fault coverage, and (2) dependency among component failures 

in addition to the imperfect coverage dependency.  The 

analysis presented in this paper is applicable for case 1. 

However, it can also be extended for the case 2. 



5.1 Case 1: Independent Component Failures 

The system reliability is computed by utilizing the fact 

that all components within each group are identical. Therefore, 

the reliability of the system is calculated considering 4 distinct 

cases of i ∈ {1, 2, 3, 4}: exactly i-out-of-4 power sources are 

working. For each of this case, we computed the system 

reliability using Sylvester-Poincare’s expansion method. The 

overall system reliability is calculated using the total 

probability theorem.  

The exact answer for unreliability using the implicit CCF 

analysis is 6.583E-11. The unreliability of the perfect 

coverage system is 1.062E-12. The uncovered failure 

probability of the system is 6.502E-11. Therefore, the upper 

bound on the system unreliability is 6.608E-11. Hence, the 

percentage error with the unreliability approximation is 0.38, 

whereas the percentage error in the reliability approximation is 

only 2.55E-11. This small error indicates that algorithm 2 is 

nearly as accurate as algorithm 1 and requires much less 

computational time.  

5.2 Case 2: Dependent Component Failures 

The analysis presented in this paper can be integrated 

with the PFC analysis methods applicable for the dependent 

component failures to compute the reliability IPC models with 

dependent failures. For example, consider the following 

dependencies: 

• Both sensors and computers in a specific channel are 

forced to fail when associated power is failed, i.e., 

failure of both P1 and P4 force S1 and C1 to fail. 

Similarly, failure of both P1 and P2 force S2 and C2 

to fail, and so on. 

• Failure of a computer in any channel forces its 

associated sensor, i.e., failure of C1 forces the failure 

of S1. Similarly, failure of C2 forces the failure of 

S2, and so on. 

• Therefore, the coverage factors of sensors and 

computers are dependent on all other components. 

Because the coverage factors of components are not 

independent, we cannot use equation (13) to compute C: 

probability of “no uncovered failure in the system”. However, 

the equation (13) can be modified using conditional 

probabilities. For case 2 of this system, we first computed the 

probability of exactly i-out-of-4 power sources are working. 

Then using the condition that exactly i-power sources are 

working, we computed the reliability j-out-of-4 computers are 

working and multiplied this probability with its coverage 

factor. Similarly, we performed the same analysis for 

computing the k-out-of-4 sensors are working. For each 

combination of i, j, and k, these probabilities are multiplied. 

Finally, the probability of “no uncovered failure in the 

system” is calculated as a sum of these probabilities.  The 

corresponding uncovered failure probability of the system is 

1.238E-10. Therefore, the upper bound on the system 

unreliability is 1.248E-10. However, the exact answer using 

truth-table approach is 1.239E-10. The results indicate the 

SEA based algorithm can also be used for analyzing IPC 

models with dependent failures. The exact results for this case 

are also presented in [4]. A more detailed analysis of case 2 is 

presented in [14]. 

6 CONCLUSIONS 

In this paper, we propose an efficient algorithm for 

solving FLC and OLC models by introducing a new implicit 

common cause failure model and an extension of the separable 

method used in the Simple and Efficient Algorithm (SEA).  

The proposed algorithm can solve a wide range of coverage 

models that include both single-point faults and near-

coincident faults in an efficient way. In addition to this, we 

also propose an approximate algorithm that produces the 

results quickly. The proposed algorithms are demonstrated 

using an example of a quadruplex control computer system.  
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