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Abstract
In discrete event simulations, the system is assumed to change of state when and only when an event occurs. This change
of state can be more or less sophisticated depending on the modeling formalism. In this article, we discuss the whys and
wherefores of the fixpoint assertion mechanism introduced in AltaRica 3.0 to perform changes of states. We show how
it can be used to handle complex phenomena such as change in flow directions depending on the states of components.
We propose an efficient implementation of this mechanism, thanks to ideas stemmed in theoretical computer science
and artificial intelligence. We compare the AltaRica 3.0 approach with alternative ones, including those of the previous
versions of the language.
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Introduction

In discrete event simulations, the system is assumed to
change of state when and only when an event occurs.
This change of state can be more or less sophisticated
depending on the modeling formalism. The expressive
power of the latter depends heavily on the former. A
tradeoff must be found however between expressive
power and algorithmic efficiency. A simulation may
actually call this basic mechanism a tremendous num-
ber of times. The overall algorithmic efficiency of the
simulation is thus directly related to the algorithmic
efficiency of this basic brick. This may have in turn a
strong influence on the quality of the results. In a
Monte-Carlo simulation, for instance, within a given
amount of calculation resources, the more histories can
be drawn, the more accurate the results.

In this article, we discuss the whys and wherefores
of the fixpoint assertion mechanism introduced in
AltaRica 3.0 to perform changes of state.

AltaRica is a high-level modeling language dedi-
cated to (probabilistic) safety analyses. Its semantics is
defined in terms of transition systems: the state of the
system, which is described by means of variables, is
assumed to be modified when and only when an event
(typically the failure of a component) occurs, that is,
when a transition labeled with this event is fired. Since
its very first version,1–4 AltaRica distinguishes two
types of variables: state variables and flow variables.

As their name indicates, state variables are used to rep-
resent the state of the system. They can be modified
only through actions (post-conditions) of transitions.
Flow variables are primarily used to model information
circulating between the components of a system, that
is, eventually to model remote interactions between
these components. The value of flow variables is calcu-
lated from the value of state variables by means of
assertions. Assertions are thus applied after each transi-
tion firing.

The ability to model ‘‘simply’’ remote interactions is
of paramount importance for safety analyses. One of
the primary objectives of these analyses is actually to
study the consequences of failures of individual compo-
nents onto the system as a whole. Typically, one wants
to model the consequences of the loss of power supply
onto pumps, valves, engines, and so on. Widely used
combinatorial modeling formalisms such as fault trees
and reliability block diagrams rely heavily on this
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propagation mechanism. AltaRica assertions are very
interesting with that respect because they make it possi-
ble to create complex hierarchical models from simple
component descriptions just by connecting these
descriptions together. Assertions can be seen as the glue
between components.

The successive versions of AltaRica differ mainly by
the way assertions are defined and calculated. AltaRica
3.05 semantics is defined in terms of guarded transition
systems.6 It introduces a fixpoint mechanism to calcu-
late assertions. This fixpoint mechanism makes it possi-
ble to handle looped models, that is, models with flow
variables that depend instantaneously (i.e. without fir-
ing of transition) on one another. Electric networks or
computer networks are typical examples of systems for
which it is very hard to avoid the introduction of loops.
We shall explain in this article why a mechanism with
at least the expressive power of fixpoints is needed in
order to deal with looped systems and why fixpoint pro-
vides a minimal solution for that purpose.

Not only the fixpoint semantics for assertion pro-
vides an elegant solution to complex modeling prob-
lems but it can also be implemented in an efficient way,
that is, in quasi-linear time with respect to the size of
the assertion, thanks to ideas stemmed in theoretical
computer science (namely, Tarjan’s7 algorithm to com-
pute strongly connected components in graphs) and
artificial intelligence (namely, unit resolution8). We
shall show how to apply these ideas in the framework
of modeling languages such as AltaRica.

The contribution of this article is as follows: first, to
explain in detail and by means of examples why a fix-
point mechanism has been introduced to solve asser-
tions in AltaRica 3.0; second, to show how this
fixpoint mechanism can be implemented efficiently;
third, to compare the AltaRica 3.0 approach with other
approaches proposed in the literature, including those
of previous versions of the language.

The remainder of this article is organized as follows.
Section ‘‘Problem statement’’ states the problem by
means of an example and reviews different state update
mechanisms available in modeling languages. Section
‘‘Main ideas’’ discusses the main ideas behind the design
and the treatment of AltaRica 3.0 assertions. Section
‘‘Assertions and their semantics’’ presents the AltaRica
3.0 assertions and gives their formal semantics. Section
‘‘Related works’’ compares the AltaRica 3.0 mechan-
isms with related works. Section ‘‘Conclusion’’ con-
cludes the article.

Problem statement

Motivating example

Most of the industrial systems can be represented as
(possibly hierarchical) networks of components. In dis-
crete events models, states of individual components
change when and only when events such as failures or
repairs occur. There are in general remote interactions

between components: a flow of information is circulat-
ing through the network. The term information must
be taken here in a broad sense. It can be fluid, energy,
data, and so on. Widely used modeling formalisms such
as block diagrams and fault trees rely on the principle
‘‘local events + propagation’’ (see, for example,
Andrews and Moss9 and Rausand and Høyland10 for
reference textbooks).

In fault trees and block diagrams, this propagation
mechanism is quite simple. It goes one way from
sources (basic events or source blocks) to targets (top
events or target blocks). But there are systems for
which things are more difficult. As an illustration, con-
sider the network depicted in Figure 1 which is inspired
from the fueling system of a two-engine aircraft fighter.
This network is made of four types of components:

� Producers P1 and P2, represented as cylinders (in
the fueling system, they are tanks);

� Consumers C1 and C2, represented as trapeziums
(in the fueling system, they are engines);

� Switches S1 to S6, represented as squares (in the
fueling system, they are pumps and valves);

� Directional connections between these different
units, represented as arrows (in the fueling system,
they are pipes).

Producers, consumers, and switches may fail and be
repaired. Without a loss of generality, we can assume
that connections are perfectly reliable. The problem is
to assess the probability that for each consuming unit
Cj, there is a working path from at least a production
unit Pi to Cj.

As stated above, the problem can be casted as a ‘‘net-
work reliability’’ problem for which a large literature
exists.11–13 It is however easy to complicate the formula-
tion a bit, so that purely Boolean models are not suit-
able. It suffices, for instance, to introduce non-binary
states to represent degradation levels or different stress
of components (not to speak indeed to limited access to
resources such as repair crews).

Whether there is an operating path from producers
to consumers depends only on the state of components.

Figure 1. The network.
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Depending on the operating path, flows can go in dif-
ferent directions (e.g. from S3 to S4 or the reverse way).
Therefore, there is no simple way to propagate the
availability of producers down to the consumers. For
instance, it is not possible to write a fault tree and more
generally a data-flow representation, that is, a set of
equations in the form x= f(y1, . . . , yk) such that none
of the yi depends on x. Writing such set of equations
would require actually to solve the problem upfront,
that is, to determine paths from producers to consu-
mers, which is precisely what the model is designed for.

A discrete event simulation of such a network needs
to implement two different mechanisms: first, change
of states of components under the occurrence of events
(such as failures and repairs); second, propagation of
information through operating components. The design
of a suitable propagation mechanism is far from easy
because of the loops, that is, the mutual dependencies
between components.

AltaRica model

To make things a bit more concrete, we shall propose
now an AltaRica 3.0 implementation of our red wire
example. All components could be described by the
same generic component. However, we shall assume
that they are implemented by means of different com-
ponents. The code for switches is given in Figure 2. It is
rather simple to interpret. The state of the switch is rep-
resented by a Boolean (state) variable working. The fact
that the switch is powered is represented by a Boolean
(flow) variable powered. State and flow variables are
declared in the same way. They are differentiated by
the attribute ‘‘init’’ for state variables and ‘‘reset’’ for
flow variables (the default value). A negative exponen-
tial distribution of parameter lambda is associated with
the event failure. The parameter can be changed when
the component is instantiated. The code declares a tran-
sition. This transition is labeled with the event failure.
Its guard (precondition) is that the Boolean variable
working is true. Finally, its action (post-condition) con-
sists of setting the variable working to false.

The code for the system is given in Figure 3. After
the declaration of components, the assertion is written.
This assertion describes how power is propagated from
producers to consumers. According to this set of equa-
tions, ‘‘X.powered’’ variables depend on each other
(and on the ‘‘X.working’’ variables).

Note that the assertion would not change if compo-
nents would have more complex states, typically to take
into account degradation or stress levels. Note also that
advanced AltaRica programmers would probably pre-
fer to create more flow variables so not to have to use
state variables outside of components. Note finally that
the set of Boolean equations of Figure 3 is apparently
much simpler than differential equations one would
write in modeling languages such as Modelica (see, for
example, Fritzson14 for a introduction). However, in
Modelica, sets of equations have to be data-flow at run
time. The orientation and ordering of equations are
obtained by means of a Gaussian elimination at com-
pile time. Such a compilation technique does not work
on looped networks because the direction of the flow
depends on the states of components (which change
with transition firings).

The question is thus how to handle the set of equa-
tions of Figure 3.

Formal statement

Let us state formally the problem as follows.
Let S= fs1, . . . , smg be a finite set of variables. si

are used to describe the states of individual components
of a system. Each si takes its value into a finite or denu-
merable set dom(si) called the domain of si. The set of
the system states belongs, therefore, to the Cartesian
product dom(s1)3 � � � 3 dom(sn) of domains of the si.
Note that it does not matter whether the state of an
individual component is represented by one or more
state variables.

In addition to the si, a second finite set F= f1, . . . , fn
of variables is used to model the information circulating
through the network of components. As for the si, each
fj takes its value into a finite or denumerable set
dom( fj).

The value of flow variables depends on the value of
state variables: we assume given an update mechanism
update to perform the calculation, that is,
F= update(S).

The state of the system changes when and only when
an event occurs. Thus, we have a finite set
E= fe1, . . . , erg of events, as well as a finite set

Figure 2. AltaRica 3.0 implementation of switches. Figure 3. AltaRica 3.0 implementation of the network.
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T= ft1, . . . , tpg of transitions. Each transition ti is a
triple hguard(S,F), e, action(S,F)i, where

� guard(S,F) is a Boolean condition on the value of
the variables;

� e is an event of E;
� action(S,F) is a mechanism that changes the value

of state variables.

For the sake of clarity, we shall denote a transition t:
hguard(S,F), e, action(S,F)i as guard(S,F)!e action(S,F).

The transition t : guard(S,F )!e action(S,F ) is fire-
able in a given state h�s, �f i, that is, in a given assignment
of the variables, if guard(�s, �f )= true. In that case, the
firing of the transition changes the state h�s, �f i of the
system to the state h�s0, �f0i such that �s0= action(�s, �f ) and
�f0= update(�s0, �f ).

Starting from an initial state h�s0, �f0i, it is possible to
calculate the reachability graph G=(V,E) of the sys-
tem as follows:

� h�s0, �f0i 2 V;
� If h�s, �f i 2 V and t : guard(S,F )!e action(S,F ) is a

transition of T such that t is fireable in h�s, �f i, then
h�s0, �f0i 2 V, where �s0= action(�s, �f ) and
�f0= update(�s0, �f ), and h�s, �f i!e h�s0, �f0i 2 E.

Pedantically, G is a Kripke15 structure. The above
calculation principle is a fixpoint mechanism for it is
iterated until no more vertex or edge can be added to
G. The size of G can be exponentially larger than the
size of the system description (but it may never be fully
constructed, nor even explored).

The actions of transitions act in general very locally:
they involve only a small subset of state variables (only
one in the code of Figure 2). On the converse, the
update function may impact many if not all flow vari-
ables. Its algorithmic efficiency is thus of primary
importance.

Probability distributions can be associated with
events so to give the model a probabilistic interpreta-
tion (as illustrated Figure 2). This interpretation is
essentially the same as in generalized stochastic Petri
nets.16 Three types of assessment tools can then be
applied: compilation into fault trees,17 compilation into
possibly partial Markov chains,18 and of course Monte-
Carlo simulation (see, for example, Zio19 for an intro-
ductory textbook).

Main ideas

In this section, we present the main ideas behind the
design and the treatment of AltaRica 3.0 assertions.

Non-determinism of value propagation

Consider again the set of equations of Figure 3.
Assume that after a transition firing, all units but S4
are working correctly. Then, we can use equations to

make the following deductions in order (the right-hand
side number indicates which equation is applied).

Values of state variables are propagated step by step
to flow variables. Each equation is used (at most) once
as a deduction rule, where the right-hand side is the
hypothesis and the left-hand side is the conclusion.

There is, however, a problem with the above propa-
gation method. Consider now that after the last transi-
tion firing, all units are working correctly but S4 (as
previously) and S1 (the last transition failed S1). Then,
we can make the following deductions.

At this point, nothing can be deduced anymore and
we end up with the following simplified set of equations
(by applying Boolean reduction).

This set of equations has actually two solutions: (1)
all variables set to false which is the only physically rea-
listic solution and (2) all variables set to true.

Preferred solutions and reachability in graphs

The first question is therefore whether it is possible to
write a set of equations, or more generally constraints,
so to keep only the physically realistic solutions in the
above and other similar situations. In order word, we
would like to express a preference between the two
solutions. The artificial intelligence community devoted
a lot of work on the representation of preferences or
default values.20 However, these works are hardly

P1.working ) P1.powered (1)
P2.working ) P2.powered (2)
not S4.working ) not S4.powered (6)
S1.working and P1.powered ) S1.powered (3)
S2.working and P2.powered
and S1.powered

) S2.powered (4)

S3.working and S1.powered ) S3.powered (5)
S5.working and S3.powered ) S5.powered (7)
S6.working and S5.powered ) S6.powered (8)
C1.working and S5.powered ) C1.powered (9)
C2.working and S6.powered ) C2.powered (10)

P1.working ) P1.powered (1)
P2.working ) P2.powered (2)
not S1.working ) not S1.powered (3)
not S4.working ) not S2.powered (6)
S2.working and P2.powered ) S2.powered (4)
S3.working and not
S1.powered and not S4.powered

) not S3.powered (5)

7#: S5.powered = S6.powered
8#: S6.powered = S5.powered
9#: C1.powered = S5.powered
10#: C2.powered = S6.powered
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applicable in our framework. In our case, the problem
consists actually of determining whether a node is
reachable from another node in a graph: a component
is powered if there is at least one operating path from a
source to that component.

Any graph can be seen as a binary relation G(s, t)
where s represents the source states and t represents the
target states. Ideally, we would like to write a generic
first-order formula (a predicate calculus formula) R(s, t)
incorporating G(s, t), such that R(s, t) is true if and only
if the state t is reachable from the state s in the graph
G(s, t). However, a fundamental theorem of computa-
tional complexity theory asserts reachability is not first-
order expressible.21 In other words, theorem asserts that
such a generic formula cannot exist. Predicates, logical
connectives (and/or/not), and quantification over vari-
ables are not sufficient to express reachability. To
express reachability, we need a form of quantification
over relations as in monadic second-order logic.22

Unfortunately, no efficient solver exists for such an
expressive logic.

An idea could be to live with non-determinism for
flow update, that is, to accept the two solutions, and to
solve the problem using immediate events and reconfi-
guration transitions. Although feasible to some extent,
this solution has several major drawbacks: first, it over-
loads the model with ad hoc events and transitions that
have nothing to do with the studied system. Second, it
is very inefficient. Constraint solving (that would be
used to determine solutions) requires much more calcu-
lation resources than value propagation. Third, there
may be many intermediate states. Consider for instance
the case where components P1, P2, S3, and S4 are
failed. In that case, the two subsystems S1/S2 and S5/
S6/C1/C2 are isolated. Each of them has two possible
states, so there are four possible states. This can be
extended ad libitum. Fourth, writing immediate transi-
tions to eliminate non-physical solutions may not be
that easy. It requires actually to introduce preferences
at transition level, which is moving from Charybdis to
Scylla.

Choosing among the two solutions of the above sys-
tem of equations requires, thus, an extra-logical prefer-
ence mechanism.

Fixpoint solutions

Computational complexity theory tells us that the least
mechanism at hand to solve reachability in graph is the
notion of fixpoint. The idea is to iterate a calculation
that accumulates reachable states until no more states
can be added, that is, a fixpoint is reached. The proposi-
tional logic equipped with fixpoint mechanisms is called
the m-calculus (see, for example, Arnold and Niwiński23

for a survey on the m-calculus). It is extensively used in
computer science, particularly in works on formal soft-
ware verification and model checking.24 Basically, the
idea is to express reachability as follows

R(s, t) =
def

G(s, t) _ 9u,G(s, u) ^ R(u, t)½ �

The above definition is recursive. It is solved by
means of at least fixpoint mechanism: at first, the set of
pairs satisfying the relation is empty, then all pairs of
states (s, t) such that there is an edge from s to t are
added to the set, then all pairs of states such that there
exists a third state u and two edges from s to u and
from u to t are added to the set, and so on, until no
more pairs can be added, that is, the fixpoint is reached.
Since there is finite number n of states, the longest path
with no loop in the graph has length n and thus the fix-
point is reached in at most n+1 steps.

An idea could be as follows: first, to reset flow vari-
able to a default value after each transition firing; sec-
ond, to use equations as value propagation rules to
recalculate values of flow variables. Rules are applied
until a fixpoint is reached. In our example, this default
value is false for all flow variables.

AltaRica 3.0 implements actually this idea but in
such a way that the value of a flow variable is calcu-
lated only once and only flow variables that need to be
updated actually are, hence, reaching an optimal algo-
rithmic complexity. This algorithmic efficiency is
obtained by means of ideas stemmed from graph the-
ory (partitioning) and artificial intelligence (unit resolu-
tion). We shall present them in the next two
subsections.

Partitioning

Assume now that all units are working and that the
switch S4 fails (so we are back to the situation exam-
ined above). The failure of S4 may impact units down-
stream, that is, S3, S5, S6, C1, and C2, but not units
upstream, that is, P1, P2, S1, and S2.

The idea consists, therefore, of creating a depen-
dency graph among the variables. The nodes of the
graph are the variables. There is an edge between the
node labeled with the variable x to the node labeled
with the variable y if x occurs in the right-hand side
member of an equation whose left member is y (there
may be more than one such equation for reasons that

Figure 4. Dependency graph with its strongly connected
components.
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will be explained in the next section). The dependency
graph for our example is pictured in Figure 4.

When the value of a state variable is modified by a
transition firing, only the flow variables that depend
(recursively) on that variable need to be updated.
Moreover, the assertion can be separated into several
subsets according to strongly connected components
(recall that a strongly connected component C is a sub-
set of nodes such that for any two nodes u and v in C,
there is a path from s to t and a path from t to s) of the
dependency graph and each of these subsets of equa-
tions can be assessed independently (in the order
induced by the dependency relation).

In our example, equations defining ‘‘S3.powered’’
and ‘‘S4.powered’’ are assessed first, then those defining
‘‘S5.powered’’ and ‘‘S6.powered,’’ and finally and inde-
pendently those defining ‘‘C1.powered’’ and
‘‘C3.powered.’’

This partitioning technique is widely used in compi-
ler construction, model-checking, and other computer
science and engineering domains.

The calculation of strongly connected components is
performed offline and is linear in the size of the depen-
dency graph, thanks to Tarjan’s7 algorithm.

Unit resolution

The AltaRica 3.0 update mechanism works in two
steps: first, values of impacted flow variables are reset
to the value ‘‘unknown’’ and values of states variables
are propagated as explained below. Second, all flow
variables whose values have not been deduced are set to
their default value and the equations are checked for
consistency (which is possible since the value of all vari-
ables is known). If the values of the left-hand and right-
hand sides of an equation differ, an error is raised (just
as for division by 0 or if a variable is given a value out-
side of its domain).

Both steps of the update mechanism are warranted
to be performed in a quasi-linear number of operations
(with respect to the number of variables and equations)
since once a flow variable is given a value, it keeps this
value until the end.

In our example, strongly connected components are
small (at most two variables), but there are indeed cases
where they are much bigger. The idea consists of build-
ing a list of occurrences for each variable. When the
value of the variable is modified, the equations in which
this variable occurs are checked to see whether it is pos-
sible to deduce the value of another variable.

Variables whose value has been deduced (or modi-
fied) are stored into a stack. The equations to be looked
at are stored into another stack. Each time the value of
a variable is modified or deduced, its occurrence list is
traversed and equations that are not already stacked
and whose left-hand side variable is not already known
are stacked. Then, each stacked equation is considered
in turn.

This double-stack mechanism is an adaptation of
the one used in Dowling and Gallier’s8 unit propaga-
tion (which requires only one stack). It warranties a
quasi-linear complexity, although not a strictly linear
one (conversely to unit propagation) for an equation
can be looked at several times.

It is of primary importance to note that if the set of
equations is data-flow, that is, if strongly connected
components are made of only one variable at a time,
the mechanism warranties the same algorithmic com-
plexity as in data-flow languages. In other words, the
increased expressive power and in particular the ability
to handle looped systems is obtained without any sig-
nificant overhead.

Discussion

If the AltaRica model is correctly written, the propaga-
tion mechanism cannot end up with an inconsistency. It
is however easy to write an (incorrect) AltaRica model
that raises a contradiction, as illustrated in Figure 5.

Initially, the state variable A is false and the flow
variables B and C are free to take any value (however,
if B is true, then C must also be true), so they take their
default value, namely. false, and everything is all right.
If the transition e is fired, then A gets true. By means
of the first if-then rule of the assertion, B also gets true.
Then, by means of the second if-then rule, C also gets
true. But by means of the third if-then rule, C gets false.
The propagation thus results in a contradiction. In this
case, it would be easy to detect the problem at compile
time (e.g. by trying the two possible values of A). In
the general case, detecting such a potential contradic-
tion is non-deterministic polynomial-time (NP)-hard at
best, that is, computationally intractable. Therefore, we
made the choice to accept incorrect models and to raise
errors at run time, if any.

It is possible to write incorrect programs in any suf-
ficiently powerful programming language. Detecting
bugs at compile time is computationally intractable
and in many cases even undecidable.21 Therefore, it is
accepted to live with the problem of incorrect programs
and to detect issues at run time. Modeling languages
do not show a different picture. A tradeoff must be

Figure 5. An incorrect model.
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found between detecting potential problems and spend-
ing time in looking for them.

Assertions and their semantics

In this section, we present the AltaRica 3.0 assertions
together with their semantics in a structured opera-
tional semantic way.25

Expressions and instructions

Let C be a denumerable set of constants and V be a
finite set of symbols, called variables. These variables
may be of any type: Boolean, integer, real, or symbols.
Let denote by dom a function that associates with each
variable its domain (a set of values of the variable), that
is, a subset of C. Expressions can be built over vari-
ables, for example, arithmetic expressions (addition,
subtraction, etc.) and Boolean expressions (conjunc-
tions, disjunctions, etc.).

A variable assignment is a function, s : V! C, that
associates for each variable v 2 V its value. We say that
the variable assignment s is acceptable if
8v 2 V,s(v) 2 dom(v). Variable assignments can be
extended into mapping of expressions to values, assum-
ing a natural semantics for expressions (e.g.
s(A+B)=s(A)+s(B)).

Let s be a possibly partial variable assignment, v be
a variable, and finally, E be an expression. If s does
not give a value to a variable v, we write s(v)= ? By
extension, if s does not give a value to sufficiently
many variables to evaluate the expression E, we write
s(E)= ? The calculation of s(E) may raise an error, in
that case, we say that s is not acceptable for E and we
write s(E)=ERROR.

Let c be a constant, we denote by s½c=v� as the
assignment such that

s½c=v�(w)= c if w= v
s(w) for any other variable w

�

From now, we assume that the set of variables V is a
disjoint union of the set S of state variables and the set
F of flow variables, V=S ] F. Moreover, we assume
that each flow variable has a default value.

The set I of instructions is the smallest set such that

� If v is a flow variable and E is an expression, then
‘‘v : =E’’ is an instruction;

� If C is a Boolean expression, I is an instruction,
then ‘‘if C then I’’ is an instruction;

� If I1 and I2 are instructions, then so is the parallel
composition ‘‘I1; I2.’’

An assertion is a set of instructions. It can be assimi-
lated as the parallel composition of its instructions.
However, to ensure an optimal algorithmic complexity,
thanks to the mechanisms presented in the previous
section, the assertion is implemented differently.

Structured operational semantics

Let A be the assertion and p be the state variable
assignment obtained after the firing of a transition.
Applying A consists of calculating a new variable
assignment (of flow variables) t as follows. We start by
setting all state variables in t to their values in p:
8v 2 St(v)=p(v). An assertion A extends a variable
assignment t which is total on S but possibly partial on
F, according to the rules given in structural operational
semantics style in Table 1.

These rules read as follows. If the conditions given
above the bar are fulfilled, then the transformation
given below the bar can be applied. Conditions above
the bar are separated with commas, which should be
thus understood as conjunctions. Transformations are
made of a pattern at the left-hand side of the arrow
sign (!) and the transformed pattern to the right-hand
side.

As an illustration, consider first rule S1. It reads as
follows. If the variable assignment t does not give value
to the variable v (i.e. the value of v is not yet

Table 1. Semantics of assertions.

S1 :
t(v) = ?, t(E) 6¼ ?, t(E) 2 dom(v)

hv := E, ti ! t½t(E)=v� S2 :
t(v) = t(E), t(E) 2 dom(v)

hv := E, ti ! t

S3 :
t(E) = ERROR or t(E) 62 dom(v) or t(v) 6¼ ?, t(E) 6¼ t(v)

hv := E, ti ! ERROR

S4 :
t(C) = TRUE

hv := if C then I, ti ! hI, ti S5 :
t(C) = FALSE

hif C then I, ti ! t

S6 :
t(C) = ERROR

hif C then I, ti ! ERROR

S7 :
hI1, ti ! t0

hI1; I2, ti ! hI2, t0i S8 :
hI2, ti ! t0

hI1; I2, ti ! hI1, t0i

S9 :
hI1, ti ! hI1 0, t0i

hI1; I2, ti ! hI1 0; I2, t0i S10 :
hI2, ti ! hI20, t0i

hI1; I2, ti ! hI1; I2
0, t0i

S11 :
hI1, ti ! ERROR

hI1; I2, ti ! ERROR
S12 :

hI2, ti ! ERROR

hI1; I2, ti ! ERROR
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determined) but gives a value to the expression E and if
moreover the value of E belongs to the domain of v,
then the instruction ‘‘v : =E,’’ transforms t into the
assignment t0 such that t0(v)= t(E) and t0(w)= t(w)
for all variables w 6¼ v.

Now consider rule S4. It reads as follows. If the con-
dition C is evaluated to TRUE in the variable assign-
ment t, then the instruction ‘‘v : =if C then I,’’ acts on
t as the instruction I.

Finally, consider rule S7. It reads as follows. If
instruction I1 transforms the variable assignment t into
t0, then the instruction ‘‘I1; I2,’’ that is, the parallel com-
position of instructions I1 and I2, acts on t as the
instruction I2 on t0.

Let i be an assignment that associates each variable
with its initial or default value. If after applying A to p

there are unevaluated variables, then all these variables
are set to their default values and A is applied to t in
order to verify that all assignments are satisfied. If there
is at least an assignment that is not satisfied, then an
error occurs.

The update mechanism of section ‘‘Formal state-
ment’’ is the function update(A, i, t) that

� Extends the partial variable assignment t by the
instruction A according to the rules given in
Table 1;

� Completes t by setting all unassigned flow variables
to their default values 8v 2 F : t(v)= ?=t(v)= i(v)
and checks, still by means of rules of Table 1, that
there is no contradiction.

Discussion

Rules of Table 1 are thus used into two different con-
texts. First, when the value of not all of the variables is
determined, in order to determine more values. Second,
when the value of all variables is determined, to check
there is no contradiction.

It is easy to show by structural induction that if the
assignment is complete (second use), at least one rule is
applied to each possible instruction, that is, the check-
ing process will reach a conclusion is any case. It is also
easy to show, still by structural induction, that all pos-
sible transformations are performed in the first use.
There may be, however, some non-determinism in both
cases due to parallel composition. The semantics does
not say which instruction is evaluated first. Of course,
tools make a choice. But the analyst cannot rely on the
particular choice made by a particular model to design
her or his models. To put it in another way, to be cor-
rect, a model must give the same result whether the first
instruction is evaluated first or the second one.

We come back here to section ‘‘Discussion.’’ It
would be great to be able to check potential non-
determinism at the compile time. Unfortunately, as
AltaRica 3.0 is a very expressive language, such a check
would be extremely resource consuming, if not
undecidable.

Note, however, that it would be possible to modify
the rules so as to take into account the particular policy
of a particular tool, for example, to evaluate the first
instruction first. This would remove the non-determin-
ism. The semantics of AltaRica 3.0 does not make this
choice. One of the reasons is that it would rely on the
order of declarations. But in the context of model-based
safety assessment, where graphical interfaces are used
to author models, the analyst may not have the control
on this order. Therefore, it is much better not to rely on
any particular tool policy to design models.

Related works

The description of systems given section ‘‘Formal state-
ment’’ is very general since it does not say how the
actions and update functions are actually described and
calculated. Many modeling formalisms can actually be
seen as particular cases of this description.

It is obvious for combinatorial formalisms such as
fault trees and block diagrams. In fault trees, basic
events can be seen as two state components with a
Boolean output flow set to true when the component is
failed and false otherwise. Gates are just propagating
values bottom-up. Similarly, in block diagrams, basic
blocks can be seen as two state components with an
input flow and an output flow. The output flow is true
if and only if the input flow is true and the component
is working. Hierarchical blocks propagate values from
sources to sinks of the network. Extensions of block
diagrams with multi-valued flows such as in HiP-
HOPS26 work the same way.

It has also been recently showed that dynamic fault
trees (as introduced, for instance, in Dugan et al.27) and
Boolean driven Markov processes28 can be encoded
within this formalism as well.29

Reliability networks11,12 make it possible to handle
looped systems under the condition that components
are binary (working or failed) and flow variables are
Boolean. Dedicated algorithms have been proposed to
handle this kind of models13,30 but they do not scale
well.

If we look now at modeling formalisms directly rely-
ing on state machines, we can see that flow propagation
is extensively used in data-flow modeling languages
such as Lustre,31 SAML,32 and AltaRica data-flow,3,4

the former version of the AltaRica language. These lan-
guages make it possible to assemble components in an
effortless way, just like a Lego construction. They can
be seen as powerful extensions of block diagrams. The
data-flow requirement imposes that there exists a total
order over the variables such that if x\ y, then the
value of x does not depend on the value of y. It is there-
fore possible to update the values of variables according
to this order (i.e. from sources to sinks). This mechan-
ism is algorithmically efficient, but cannot be used to
handle looped systems with systems of equations such
as the one in Figure 3.
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Two main alternative patterns have been proposed
in the literature to model remote interactions between
components:

� Shared variables, such as in Lynch and Tuttle’s33

input/output automata;
� Synchronization of events such as in Arnold–Nivat

automata.34

Other formalisms such as Harel’s35 state charts or
some variants of generalized stochastic Petri nets16,36

mix these two approaches in different ways. With the
above mechanisms, propagations of values have to be
programmed ‘‘by hand,’’ that is, by writing explicitly all
instructions (or synchronizations) that perform these
propagations. These mechanisms are thus not sufficient
to handle remote interactions in a simple way because
they are not declarative. Moreover, as we shall see in
the next section, they cannot be used to handle looped
systems (but of course by calculating beforehand work-
ing paths).

In the first version of AltaRica,1,2 as it is still imple-
mented in tools developed by LaBRI’s team,37 the
assertion was seen as a constraint and flow variables
are updated by constraint resolution. Constraint sol-
ving is probably too costly to be used at industrial
scale. It would be, for instance, very inefficient to call a
constraint solver at each step of a stochastic simulation.
Moreover, as we explained in section ‘‘Non-determin-
ism of value propagation,’’ constraint solving is not
suitable to handle looped systems. To conclude this
brief overview, we should mention two related model-
ing formalisms.

First, flow propagation and looped systems can be
handled to some extent in the Figaro modeling lan-
guage.38 Figaro technology is close to those of expert
systems and de Kleer’s assumption truth maintenance
systems.39 Bouissou and colleagues40,41 sketch the syn-
tax and semantics of the language. Some techniques are
common to both languages (Figaro and AltaRica): the
distinction between two types of variables, the use of
dependency graphs, and the definition of the semantics
of models in terms of reachability graph. The two last
points are actually common to many programming and
modeling languages. It remains that AltaRica syntax
and semantics make, in authors’ opinion, a much
clearer distinction between transitions and flow updates
with fewer and more elegant constructs. Moreover, and
that is what this article about, assertions are handled in
a very efficient way in AltaRica 3.0, while keeping a
high expressive power.

Second, the idea to separate the description of states
of components (and transitions between these states)
from the description of (stateless) interactions (the glue)
between components is at the core of BIP algebra.42 We
are deeply convinced that Sifakis et al.’s work is at least
a great source of inspiration for modeling languages
dedicated to safety and reliability engineering.

Conclusion

In this article, we presented AltaRica 3.0 assertions. We
explained why the fixpoint mechanism introduced in
AltaRica 3.0 provides the language the unique feature
of being able to handle looped systems. We showed that
this expressive power comes with an excellent algorith-
mic efficiency, thanks to compilation techniques and
ideas stemmed in artificial intelligence and automated
deduction. More exactly, the increased expressive
power and in particular the ability to handle looped sys-
tems is obtained without any significant overhead for
data-flow models.

The ideas presented here are worth not only for
AltaRica but also for any modeling language dedicated
to discrete event simulation.

The authors are convinced that modeling languages
dedicated to discrete event simulation and probabilistic
safety analyses should be studied in a systematic way.
Mechanisms that are presented here should be seen as
basic bricks for these languages.
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