A Realistic Involvement of Formal Methods

D. Bégay / A. Rauzy
CNRS-LaBRI/ MVTsi
351, cours de la Libération
F 33405 Talence cedex
Tel. + 33 5 56 84 60 83
fax + 33 5 56 84 66 69

{begay,rauzy}@Iabri.u-bordeaux.fr

! Didier Bégay is now with France Telecom /CNET, tieal Methods and Logics” Group, 2 avenue Pierre

MARZIN, F 22307 LANNION; didier.begay@cnet.francletgom.fr

1/29



Summary: In this article, we report a real-life applicatiohso-called “Formal Methods”. The part of the ject
we were involved in was to verify that an embeddiecuit satisfies a safety property. We descriteedincuit as
well as the mathematical and computer tools we.Us&xldiscuss methodological issues and we presemt of
the various experiments we performed. Finally, wewdsome general conclusions about the practityluifi
formal verification techniques.

Keywords: embedded circuits, formal verification techniguesdel-checkers, proof assistants.

Introduction

For more than a decade, so called “Formal Methods” have raised hapésis possible to
design techniques to make software development safer, more ralabless expensive. The
existence of adequate mathematics and powerful computing resor&Rg arguments to
support these hopes. However, some industrial experiments gave bag] vasigh led many
practitioners to have some doubts about the actual practicabiliyro&f techniques. In this
context, one of our industrial partners — an avionics manufacturer étinged of highly
dependable embedded software — asked us to study whether it is of interest to introduce som
formal verification techniques in his development process. We agilidedw partner to start
the project with some experiments on a typical real-life gt@anThe example he selected is
an embedded programmed circuit. We were given a description boarchde@nd a safety
property. This property was assumed to be verified.

The first step of the study was therefore to select the matieahand computer tools to be
used. The computer tools had to be widely distributed, preferably alusadyin avionics
applications and sufficiently user-friendly to be handled by engimeerproduction context.
This latter requirement means that engineers do not have muctotimmke them confident
with the tools. From a survey of the literature and a prelimistugy of the circuit, we
selected SMV [1] and PVS [2]. This choice is motivated by seveesons. First, both tools
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meet at least the first two of the above requirements. Secondarthegpresentative of their
category — model checkers for SMV and proof assistants for PV&d, Tthey had been
coupled for the very interesting experiments conducted at Rockweéih€Caluring the
development of the AAMP-5 embedded processor [3, 4]. These latterregpesiare not the
only ones reported in the literature (see for instance [5]). Howélvey were of special
interest for our partner who is involved in the development of the samdeokiembedded
systems.

Without skipping straight to the conclusion, we would like to forewarnrélagler who is
mainly interested in experiments with proof assistants thatattide focuses on the use of
SMV ... in a PVS style. After some experiments, we decided lactogpostpone a full study
of the circuit with PVS. There are mainly two reasons for thie first one is inherent to
proof assistants: as noted in Reference 2, a tool such as PV®segujuite long training
period for one to be confident with. Therefore, in spite of the greattestt of this tool, it is
pretty clear that it cannot be used in our partner's industrial xtofitee second reason is
more specific to the circuit itself. The available descriptinthe circuit stand at a low level.
For confidentiality reasons, high-level specifications of the direuere not available.
Therefore, we were unable to do a full reverse engineering to gadoélzese specifications
from which should normally start a PVS study. Moreover, a model checemwell suited
and almost sufficient for the purpose of the study. PVS had howeveatimgftuence on our
work. The methodology we adopted — we call it “navigate to convince” delived from
the PVS philosophy.

The aim of this article is to report the experiments we paed; to discuss methodological

issues, to provide some ideas to improve the tools and finally to dvave general
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conclusions about the question we were asked. Namely, are formadatenif techniques of
interest in our partner’s strongly constrained context?

The following sections describe the circuit, the mathematicatamgbuter tools we used, and
discuss methodological issues. Examples taken from the studyaiéudtie paradigm

“navigate to convince”.

A realistic example

The circuit that was the subject of this study presents mosedeatures of circuitry in the
field: Boolean and analogic components, memory registers and feedlaskTgas circuit is
described hereafter (Fig. 1) as a graphical board. Inputs dne bft of the figure. Outputs
are at the right. The C code that implements the circuit \8asa@ailable. This code cannot
be given here because it is too large and for confidentialitpmeagiowever, the graphical
board provides a good insight about what the studied circuit looks like.

The informal property to validate was thaur any time and whatever are the values of the

inputs, at most one of the outputs is set to 1”.
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Fig.1. Graphical board of the circuit.
The circuit includes thirty-two inputs, numbered in01 through in20. Twentyar@m@&oolean
and three are integers. There are ten Boolean outputs, numbered outO1 tuiaghnd
computed by seventy electronic components. These components are of the following types.
» Logical operators@R AND NOT), that are denoted on the board respectively by +, -,
and o.
» RStriggers R*S, RS* ), that are denoted on the board by these letters.
* Delay componentsQonfd , Confu , Mtrigu ); the corresponding boxes on the board
are labeled with the number of seconds to delay.
* Integral comparators, whose input is an integer and output is a Bothleasign of the
comparison (“<” or “>") and the reference value are indicated in the box.
The circuit is therefore not too large, but sufficiently comptexnake pure simulation either

far too costly or too incomplete, or both.
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Tools

In order to be able to proceed to any verification, it is necessamave a formal system
description that ignores irrelevant details. So-called abstradicm mean to reduce the
information to handle (to achieve feasibility) and to focus on relefeatures (for the

efficiency of the process). Mealy machines are a well sutathematical model to abstract
circuits [6]. The temporal logic CTL is well suited to expreatety properties [7]. SMV and

PVS handle these formalisms.
Mealy machines

A Mealy machine is an input/output automaton (see, for instance,elReéeB for a formal
definition). Informally, a Mealy machine is composed of a setBaflean inputs, a set O of
Boolean outputs, and a set R of Boolean registers. At any time, depehdhg values of
inputs and registers the machine computes the vafied) of the outputs and(R,I) of the

registers at next time. This process is graphically illustrated on Fig. 2.

| — 3| R |——p 0=uR)

—>

3(R,1)

Fig.2. Mealy machines
Registers are used to represent the state of the components afcthe i.e. memories,

triggers, delay elements, counters, loop back values (str09).

A Mealy machine describes implicitly a set of reachableestastarting from an initial state,

this set is built stepwise by feeding the machine with all ptesgmputs and adding the new
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reached states to the set until no more state is added (thenfixpaeached). Behavioral
properties of the system under study may therefore be expresgetpagies of the graph of
reachable states. Roughly speaking, the circuit contains 5 regisié7 delay elements. Each
register may be in two states. A good abstraction for delayesits is made of 16 states each.
Therefore, the graph of reachable states may contain up‘*fosttes! Indeed, this
approximation does not take into account dependencies. The actual number of redatesble
is very difficult to estimate. It is anyway huge, even by ordérsagnitude smaller thart.
Moreover, this estimation does not take into account the size ofatisstiion relation, which
depends not only on the source and target state, but also on the possibléhienguthere are
2%2such inputs). To provide the reader with an idea of its size, ittmapid already that the
binary decision diagram encoding (an abstraction of) the set diai@lacstates does not fit

into a half-gigabyte computer memory.
Computation Tree Logic

CTL formulae characterize sets of the reachable statese Huedean properties refer to the
“future” of a given state (past time operators are not allowksl)se operatorB, G, U or X

are associated with quantifietsor £, in order to express properties of “all possible futures

or “at least one possible future”. More formally,

* Every atomic proposition (value of an input, an output or a register oMtady
machine) is a CTL formula, and
e |[ffand g are CTL formulae, then so arléd, -f, AXf, EXf, A(fU g), E(fU g).
The other operators are derived from the above ones, according to the following rules:
fhg=-(=fL-g
AF g = A(true U g)
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EF g =E(true U g)

AG = =E(true U —f)

EG f= =A(true U —f)
A state satisfies an atomic proposition if this atomic proposigotrue in the state. The
semantics of connectives and//is as usual. A state satisfies the formilaf (resp.EX ) if
all (resp. one or more) of its successors satisfyinally, a state satisfies the formulg U g)
(resp.E(f U g)) if all (resp. one or more) of the paths starting from the steg¢ such that all
the states satisfiyuntil a state satisfying is encountered. The semantics of CTL operators is
illustrated graphically on Fig. 3 (where states that safiafg filled with black and those that

satisfyg are filled with grey).

EXfO)o EG;,O—»O E(ng).)O—PO
A9 A9 A »0»0

AX | @ AG;M A(ng).,0—>O
“xe e = The—>0>0

Fig. 3. Validity of CTL formulae
A verification consists in proving that a given assertion is tru¢he initial state, or in
exhibiting a subset of reachable states (including the initial angich it is false. It is worth
noticing that different tools, based on various technologies, can be upedidom such a

verification. The Mealy machines/CTL formalism is versatile.

The SMV system

K. McMillan has designed the SMV (Symbolic Model Verifier) teys in 1992 at Carnegie-

Mellon University [1]. The SMV input language is designed for ther@son of sequential
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circuits, including Boolean, ranged integer, and enumerated variablebudhdip from
parameterized modules. Both synchronous and asynchronous systems canribeddesc
Partially designed, abstract and non-deterministic behaviors wedl Hence, Mealy
machines are easy to specify.

Once the modules are defined, the MAIN module describes the whtdenslgg composing
the different (sub) modules. The specification to verify is expresda the MAIN module, as

a CTL property of initial state. Without any action from the uS&i\V determines whether

the specified formula is true. SMV carries out two kinds of answers:
* The specification is verified,

* The specification is not verified, in which case SMV exhibits one counter-example.
While using SMV along the study, it appeared that the diagnosi$aiceeis not informative
enough: exhibiting a single counter-example is too little an infoomao understand and to
characterize the situations in which the property under studysisiddl This point will be
discussed later.

The strength of SMV comes from its use of a Binary Decisi@gi@im (BDD) technology [9,
10] to encode sets of states (hence the prefix symbolic). Huge stasesf may be encoded as
demonstrated in [11]. We do not present here BDDs, the interested shadkl see the cited

papers or Reference 1.

Aralia

In order to get more informative answers than those given by SM\Wsee Aralia [12].
Aralia is dedicated to the assessment of Boolean reliabildgiets such as fault trees or
events trees (see for instance [13] for an introduction to rislsameat techniques). It is

developed, since 1994, by one of the authors as a part of a partnershigweithl farge
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companies. It is now commercially distributed. As SMV, Aralidiese on a BDD
representation of Boolean functions. It includes many features to mpebfuth qualitative and
guantitative (i.e. probabilistic) analyses of the models. It is naa as the reference tool for
probabilistic safety studies of French nuclear installations.Heopitesent study, we used only
two features of Aralia: the possibility to deal with quantifiedo®an formulae and the
computation of prime implicants. In the context of reliability stadm@ime implicants can be
interpreted as minimal sets of basic component failures that iraldasure of the whole
system [12]. For what concerns circuit analysis, the use of @Auld (should!?) be

efficiently replaced by extending SMV with the two mentioned features.

Discussion

As any choice, the one we made to use SMV and Aralia was phiign by objective
reasons and partly due to purely subjective ones. Among the objectemsethe industrial
context, as already explained in the introduction, plays the mainltradeworth mentioning
however that both authors have quite a good background in the use of model-checkers for they
were involved in the development of such tools. In our opinion, model-checkerspmord to
engineers’ way of working. They make it possible to design modeldoapkhy with these
models, i.e. to perform computations. From that point of view, they arelotjieal
counterparts of numerical calculus tools. SMV was patrticularly sweted for the present
study because it has been designed to deal with sequential citasitherefore very easy to
describe such a circuit in the SMV input language and to verify properiesda as the CTL
basic mechanisms are understood). Nevertheless, other model-chea&leras sSpin [14],
could be considered as well. Another interesting alternative couldldoe ta write a

specification of the circuit using a reactive language suchusisd [15]. However, the model

10/29



checker associated with Lustre (Lesar) is not as powerfulMdg. She interest of proof

assistants such as PVS was already discussed in the introduction.

Methodological issues

A classical exponential blow up

We began the work by (manually) translating the C code of the vdnolgt into a SMV
description of a Mealy machine. This was achieved relatively quitklen, we expressed the
property to be verified in CTL, which is also quite easy. Howevervérdication of the
property led to a disastrous run out of memory, even on the very l@&m@m computer we
use in such occasions (a half-gigabyte). The various abstracttrdions of the range of
admissible values for numerical variables such as triggeses nagrsufficient to overcome this
exponential blow up. Nor was the use of a partitioned transitionaelfit6]. Therefore, it
became clear that a rough use of SMV would be not sufficient¢b tha goal. This led us to
a more deductive approach, mixing different concepts and tools. We dabedetts

methodology here and we shall illustrate it in the next section.
Navigate to convince

The following sentence, taken from Reference 2, illustrates tt& g?Mosophy: “to enforce
conviction that a system meets its specifications, one can @#8tdt by running on real data
sets, or test it symbolically by proving lemmas and theoremss @xécutions”. Indeed, PVS
is designed to follow the second line. In the case of our study, this approadtisconsiitting

the circuit into smaller units, then in proving relevant propertiesheset small units, and
finally in proving compositional properties of the units. This is natallt a linear process,

but an iterative one, embedding the three activities. Cutting ibyldtle need for realistic-
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sized independent pieces and by the topology of the circuit. Properassdrt on the pieces
or their assembling are either derived from the global speuificgin a top down way) or
from general properties on the pieces themselves (in a bottom up way).

Let us remark that the nature of the tool that is used to prove pespsrhot very important.
The process is robust in the way that a model checker and/or a psigiiat may be used
alternatively. The most efficient tool depends of the property tertaga an exploratory
phase, or to prove a combinatorial property, a model checker should besbietietr To prove
the validity of an abstraction, a proof assistant should be of a better use.

We call “navigate-to-convince” the methodology that consists in aimglypieces of the

system in both top down and bottom up ways.
Divide to conquer

Real-life applications are in general too large to be verifiredh straightforward way.
Therefore, they have to be decomposed. What is the decomposition process and wdagther i
be, at least partly, automated depend on the application and ... theatienfitools, see for
instance references [17,18,19]. In the case of the study presentadién re decomposition
was processed manually. It would be hard to give a formal algorithrdo it fully
automatically. However, we used a number of rules of thumb:

* We tried to make parts not too large (to be able to prove lenbuaspt too small (to

make the lemmas of interest). Parts with more than ten components are in gerlargkt

Parts with less than three components are hardly of interest.

* We tried to isolate the parts that are independent from thenmemaif the circuit. As

we shall see, lemmas can be easily proved about these partslérheses make explicit

the relationship between the inputs and the outputs of the parts.
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* We tried to isolate complex components such as delay elemegi®rsri ... Several
models can be adopted for these components. It is therefore of ihbecessidermutatis
mutandis, the impact of a change of abstraction level for one of them.

It would be unrealistic to design a fully automated decomposition process. Howepéicgl

tools and graph algorithms (for instance to look at isthmus) would be useful.
The translation C to SMV

The translations from the C code to SMV and to Aralia were peddrmanually. This is
indeed a source of errors. It would be interesting (and much safeontpile automatically
the C code, or even better a higher-level specification of theitcintto the input language of
the model checker. This is precisely the main objective of vealdnguages such as Lustre
[15]. We did not develop a compiler because it would have been too costliojube
purpose of the present study. However, such an automatic translatistedegnachievable.
The C code of the circuit is actually quite simple and made afovdefinitions that are
plugged together. Combinatorial parts are easy to translate. Thé&amdl point is therefore
the translation of delay elements, triggers... A solution could be $@mrdea library of
translations for such components. For each complex component, transldtidiferant
abstraction levels could be proposed. In this way, the translation prneoess be semi-
automated. The user would be in charge of selecting the abstramtela and the system
would be in charge of translating easy parts and to plug together the various compotents
finally that, in practice, the size of the corresponding SMV code is rouglelgrlin the size of

the C code.
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What are the relevant lemmas?

The main part of the analysis consists in proving general lenalmaist the pieces of the
circuit. These lemmas are driven either by the global propere teerified, or by general
considerations about the possible behaviors of the pieces. A part afcthielas in general
some inputs and one (or few) output(s). It may also contain some registers yalei@lants).
The lemmas that are expected to be of interest explicietaganship between the inputs and
the outputs. They typically answer the following questions:

* For which values of the inputs (and registers), the output is 1?

* Are there values of the inputs that enforce the output to be 1, whatevée values of

the registers?

» Are there values of the registers that enforce the output to bealewer are the values

of the inputs?

* Isit always possible to produce an output 1 in the future?

And so on, ...
The need of counter-examples

When the tested property is not verified, SMV provides a single ceexaanple. In many
practical cases, it appears that a single counter-exammi¢ ssifficient enough to understand
why the property is not verified. More counter-examples are req(tinedneed of counter-
examples in the symbolic model checking framework was alreadysdied in [20]). Note
that examples are also needed when the property is verified. Sachples help to
understand why it is verified and what is necessary to verifjoitproduce extra (counter-)
examples, one has to remove the previous ones from the model. Thigis tevork, and

dangerous with respect to the model and the reliability of the mokesrder to avoid this
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drawback, we used another tool — Aralia — to compute the set of gratfans falsifying
the property. This set of configurations is obtained by computing thes pniplicants of a,
possibly quantified, Boolean formula extracted manually from the SMV description.

More formally, the problem of finding counter-examples can be sdollsvs. A Mealy
machine is fully described by the two functicfR,l) andd(R,I) that give respectively the
value O of the outputs at time t and the value R’ of the regiatdisie t+1 from the value R
of the registers and | of the inputs at time t. Now, the gegegstion we are interested in can
be formulated as follows. Is there a sequence of vajues,l I, of inputs and R..., R, of
registers such that (i);Rs the initial value of the registers (ii).R=0(R,l;) for t=1,...,n-1 and
(i) Op=w(Rn,In) satisfies (or falsifies) a given predicate q. The problemndsed that n is
unknown. The idea of Bounded Model Checking [21] is to unfold the machine upvera gi
n, which indeed works only if a small enough n does exist. We used ardghgwhich is
new, as far as we know). It consists in looking for values | ofrtpets such that g(R,1)) is
satisfied whatever are the values R of the registers. We certtpuprime implicants of the
guantified Boolean formulal [OR g((R,1)). This is indeed an lower approximation of the set
of inputs }, such that there exists a sequengdR({l)...,(k,Ry) that verifies (i), (i) and (iii).
But, it is of a great interest during the navigate-to-convince psoc®loreover, the

computation does not depend on n.

Discussion

As already said, it would have been too costly to design such a copptléor the purpose
of the present study. This i fortiori true for the design of a tool in charge of the
decomposition of the circuit. Moreover, we are convinced that, as soom & wealing with

large systems, a fully automated verification process is ouwcoéssibility, because of
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exponential blow up problems. This means that the models, possibly obtameah vi
automatic or a semi-automatic translation process, should be matounati, In other words,
we have to deal with models that are abstractions of the syistisndoubtful that the human
intervention can be removed from such a modeling/abstraction actiwity.dbes not mean
that nothing can be done to improve the verification process. The designethodology for

the use of model checkers, which is one of the objectives of the ppesmmt could be a step

in that direction.
Experimental issues
In this section, we illustrate the methodology “navigate-to-convidedhed in the previous
section by means of examples from the circuit.
Divide to conquer

The first step of the study consists in dividing the circuit intacgseof tractable sizes.
According to the principles discussed in the previous section, thetdsawther naturally
decomposed into three areas (from left to right); each of te¢een decomposed into several
other ones. This is illustrated on Fig. 4, where the different pegtsolored in different gray

levels.
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Fig. 4. Decomposition of the circuit.

Bottom up navigation

The circuit was decomposed into a two level hierarchy. Basic comgookttis hierarchy

are good candidates for a bottom up analysis.

Fig. 5. The part La of the circuit.
Consider, for instance, tHea area pictured Fig. 5. This component is isolated in the circuit
(in terms of graphs, its output wire is an isthmus). An interegimogerty to assert is that

“whatever the state of the circuit, there exists always a sequence of values for the inputs

1717129



producing output 1, and another sequence producing output (”. A SMV modeling can be

used for this validation. The C code correspondingatas as follows.

str03 = RSstar_op(&RS_str03,
in09,
OR4_op(in01,
ANDZ2_op(in02,
NOT_op(AND2_op(in03, in04))),
AND3_op(in05,
NOT_op(in04), in06),
AND2_op(OR2_op( in06,
AND2_op(NOT_op(in04),
in07)), in08)));

Where operator©Ri_op and ANDj_op are just macro-definitions for the corresponding

combinatorial operations. THeSstar_op trigger is defined by following function.

TBoolean RSstar_op(TBoolean* RSstarQ, TBoolean R, TBoolean S){
if(!S & R)
*RSstarQ = FALSE;
else
if (S)
*RSstarQ = TRUE;
return *RSstarQ);

}

The SMV code to model this function is as follows.

MODULE RSstar(R,S,RSinit)
VAR
memory : boolean ;
ASSIGN
init(memory) := RSinit;
next(memory) := output;
DEFINE
output :=
case
(IS&R):0;
S 21
1 > memory;
esac;

The pointer to th&boolean

typed variable is modeled by a permanent Boolean variable (a

register for the Mealy machine). The initial value of thisstey is passed as a parameter, and
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will actually never be assigned to prove properties. The value esdtdr clock tick and the

value of the output are fixed by the “case” statement. The SMV code is as follows.

MODULE
sheet_partLa(RSinit,in01,in02,in03,in04,in05,in06,in07,in08,in09)
VAR

RS : RSstar(in09,La7,RSinit);
DEFINE

Lal :=in03 & in04;

La2 :=lin04 & in07;

La3:=in02 & ILal;

La4 :=in06 | La2;

La5 :=in05 & lin04 & in06;

La6 := La4 & in08;

La7 :=in0l1 | La3 | La5 | La6;

La8 := RS.output;

It is clear enough that the SMV translation follows not only theo@e, but the drawing as
well. Now, we write down the main SMV module and the property tdweétit every time
(AG) there exists a sequence of input values (EF) leading to a state where str03 is true and it

exists a sequence of input values leading to a state in which str03 is false .

MODULE main
VAR
RSLa8init : boolean;
in01 : boolean; in02 : boolean; in03 : boolean;
in04 : boolean; in05 : boolean; in06 : boolean;
in07 : boolean; in08 : boolean; in09 : boolean;
La :sheet_partLa(
RSLa8init,in01,in02,in03,in04,in05,in06,in07,in08,in09);
DEFINE
str03 := La.La8;
SPEC
AG ((EF str03) & (EF !str03))

The SMV answer is the following, which confirms the hypothesis.

-- specification AG (EF str03 & EF (!str03)) is true
resources used:

user time: 0.02 s, system time: 0.01 s

BDD nodes allocated: 284

Bytes allocated: 917504

BDD nodes representing transition relation: 15 + 5
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We can then refine the property and wonder whether, from any reachatglea long input
sequence is needed to reach a state where str03 is set fo. D) rédsway to achieve this is to
test sequences of length 1, then 2, and so on. In our example, there etvgéysan input
value producing the required output, whatever the value of the registdihés SMV

specification of this property consists in replacing in the previousfee by EXS.

The use of Aralia

The next refinement is to enquire which inputs lead to the required gatgustrO3 set to 1).
Unfortunately, the actual release of SMV does not allow such ai@ueBhat is the reason to
use Aralia. As Aralia is not designed to handle sequential dramé have first to abstract the
circuit in a combinatorial circuit, leaving free the registeues. Then, these values are
universally quantified to obtain valid results whatever the event segukefore the

considered state is. The Aralia modeling oflthearea of the circuit is as follows.

Lal := (in03 & in04);

La2 := (-in04 & in07);

La3 := (in02 & -Lal);

La4 := (in06 | La2);

La5 := (in05 & -in04 & in06);

La6 := (La4 & in08);

La7 := (in01 | La3 | La5 | La6);

La8 := (La7 | (-in09 & La8.memory));
str03-true := forall La8.memory La8 ;
str03-false := forall La8.memory -La8 ;

We can then compute the prime implicants of the functions assottateginesstrO03-

true andstrO3-false . Forstr03-true we obtain following prime implicants.

{in01}

{in02, -in03}
{in02, -in04}
{-in04, in05, in06}
{-in04, in07, in08}
{in06, in08}
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This can be read as followsftn01 is set to 1, then whatever the rest of it, strtO3  is set to
I”. We notice that this result can be confirmed by running the C codesting the SMV
modeling with the specificatioAG (in01 -> str03 ).

This example illustrates the interest of prime implicantdHerverification process: they give
a concise view of the reasons why a property is verified or not.dir ¢o provide the user
with clear examples, model-checkers should embed a module to compute apiatpmime

implicants.
Models for complex elements

While modeling the other parts in the lower area of the circ@tencounter complex (i.e.
involving memory) operators. Modeling thiestarS operator is similar to th&sstar
operator; we have to deal with comparators such as input<value or injpet>aad the
Confu , Confd andMtrigu boxes.

Modeling comparators is an easy job. Their inputs are modeled in BMiiree valued
variables to avoid the combinatorial explosion. For example, the inpubroparators
>50kts and<37kts are modeled by means of a variable of domain {0, 40, 80}. It is not
difficult then to translate this variable into Boolean variables to be used by.Aralia

Modeling the operatorSonfd andConfu is more delicate. These operators update a counter

according to their input values. For example, the C code for the op€atfit is as follows.

TBoolean Confd_op(TConfSymbol* PConf,
TBoolean BE,
TBoolean BIC,
int p,
int m) {

TBoolean BS;

if (BIC && 'BE)
PConf->Count = p-m;

21/29



if (BE) {
BS = TRUE;
PConf->Count =1;
}
else
if (( 0 < PConf->Count) && ( PConf->Count <= p)) {
PConf->Count ++;
BS = TRUE;
}
else {
PConf->Count = 0;
BS = FALSE;
}

return BS;

}

The behavior of the operator depends not only from the iBeutut also from the initial
valuesBIC, p andm In order to model it in SMV, we choose domains for the variables
depending of the constants in the C copelQ, m=4 or 5). The SMV code is somewhat

different from the C code, but the correspondence is easily found.

MODULE Confd (BE, BIC, p, m, initCount)
VAR
count:{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
ASSIGN
init(count) := initCount;
next(count) := c2;
DEFINE
cl = case
(BIC&'BE) :p-m;
1 . count;
esac;
c2 .= case
BE 1
((0<cl)&(cl<=p)) : c1+1;
1 . 0;
esac;
BS := case
BE 1
((0<cl)&(cl<=p)): 1,
1 . 0;
esac;
output ;= BS;
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An interesting abstraction, that enables computations with Aralta,@xtend the idea already
used to model triggers: what is merely combinatorial is esptgsand free variables are
created for the registers. As an illustration, we can moddéathe¢hat theBS output is set to 1

if the inputBE equals 1 and takes an undetermined value otherwise. Aralia equations to model

thelLe area are therefore as follows.

Lel :=(in19 | inla);
Le2 := (Lel | Le2.nonDeterminism);

The Mtrigu  operator is modeled in a similar way in SMV. On the Aralde sho merely

combinatorial part can be exhibited. Its output is thus considered fully non-deteninisti
Top down navigation

Up to now, we showed examples of bottom-up navigation. Let us show now raplexat
top-down navigation.

The property dne and only one output set to 1” implies that for all subsets of outputs, at most
one of them can be set to 1 (all outputs of the subset may be GetToerefore, we can
isolate the sub-aredda andHb of the circuit and wonder whether there exists a value of
inputs of this sub-circuit that falsifies this derived property. Ahia model for these sub-

areasHa andHb is the following equations set:

Hal := (str03 & -str04 & -str05);
Ha2 := (str09 & Hal);
Ha3 := Ha3.nonDeterminism;

Ha4 := (-Ha3 & Hal);
Hab := (Ha3 & Hal);

Hbl := (str03 & -str04 & str05 & -str06);
Hb2 := (str03 & -str04 & str06);

Hb3 := (str03 & str04 & str06);
Hb4 := (str03 & str04 & -str06);
Hb5 := (-str09 & Hbl);

Hb6 := (str09 & Hb1):
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One can then express the derived property and compute the prime mspditd, quantifying

universally the non-deterministic output value of operitiigu.

constraint := #(2,7,[out01,0ut02,0ut03,0ut04,0ut05,0ut06,0ut07]);
property := forall Ha3.nonDeterminism constraint;

One gets only one prime implicantstf03 , -strO4 , -strO5 , str06 }. This leads to
another property to verify: the values 1, 0, 0 and 1 must never occuragisausly on wires
str03 , str04 , strO5 andstrO6 . We have there an example of “proof obligation” as
quoted in PVS. Notice that this lemma was not easy to produce, ahelphieom Aralia has
been invaluable.
Going on in this process, we come to the conclusion that there are isputevalues
falsifying the required property.
Under the condition that circuit inputs are pair wisely independent, the
property “at any time one and only one output set to 1” is false.
This was quite surprising for us since our partner claimed that the propertyiedverif
In order to exhibit sets of input values falsifying the specibecatit has been sufficient to
connect together the Aralia models of the different parts of iticeiitc For example, the
following set of values shows that the property can be falsifiemhéstep (the other inputs

may take any value).

in01=1, in0a<37kts, inOb=0, in0c=0, in0d=0, in0e=0, in11=0, in12=0, in13=0,
in19=1

This can be verified either by running the circuit, or using the Sidel. In the later case,
we have to fix the input values, otherwise the combinatorial explostaidwprevent from

computing the set of states.
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Hence, by means of an iterative process, using bottom up and top down applioaahe
balancing way, using Aralia and SMV alternatively, we have been tabtietermine rather

quickly that the circuit did not meet its specification.

Conclusion

In this article, we reported a real-life application of soezhllFormal Methods”. The part of
the project we were involved in was to verify that an embedded progrdrnircuit satisfies a
given safety property. By means of the two tools SMV and Arakibeamethodology derived
from the PVS philosophy, we were able to show that the circuit doesmeet its
specification, conversely to what was claimed by our industrial partner.

From these experiments, we may draw a number of general conclusions.

The methodology we adopted, so-called “navigate to convince”, seemswellbguited to
deal with the kind of applications we were involved in. This approach stiradaby the
three steps: (1) decomposition of the system into pieces, (2) proof of comiidatomas on

the pieces, (3) collection of the lemmas in order to prove or disprove the required property.

* The decomposition of the circuit by “topologically” cutting it intoelatively
independent” pieces of “tractable sizes” seems arbitrary amdtivet It is actually a
reverse engineering technique, and therefore essentially a maocesgrit could be the

case however that some graph techniques provide a useful help to do it.

* The proof of the properties on the pieces, using a model-checker sUsN\4s
augmented by a prime implicant engine (e.g. Aralia) is the csiorex of the whole

process. We discussed it in details in this article.
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* The collection of the many small lemmas proved about pieces has doneevery

carefully. It is probably the case that, for larger and more aomgtamples than the one

presented here, a proof assistant such as PVS provides a useful help to do so.
It should be noticed that the above process is not a linear one. It inbolyebottom-up and
top-down navigation through the system under study and the properties to be verified.
SMV is a very efficient tool when used as an interactive lbgieéculator. However, it
appears clearly that it lacks of functionalities to provide the wié illustrative answers. In
order to overcome this lack, we used Aralia. The use of this tladércould be replaced
advantageously by extending SMV with a new module to produce sequencésy pelsng
on new principles.
Finally, we would like to say that we are convinced that formafie&tion techniques can be
inserted successfully in the development process, even under the sinditgpns set by our
industrial partner. The methodology we adopted does not change radieallyork of
engineers. On one hand, it provides a general framework, i.e. somerggdelimanage the
studies; on the other hand, it is pretty easy to be confident wiblolastich as SMV, the

functionalities of which may be learned stepwise, when needed.
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