
The AltaRica Data-Flow Language in Use: 

Modeling of Production Availability of a MultiStates System 

 

M. Boiteau
(1)
, Y. Dutuit

(2)
, A. Rauzy

(3)
 and J.-P. Signoret

(4)
 

 

(1)  8 rue samonzet, 64000 Pau, FRANCE marie.boiteau@fractal-systeme.com 

(2) LAP, Université Bordeaux I, 33405 Talence Cedex, FRANCE, Yves.Dutuit@iut.u-bordeaux1.fr 

(3) IML/CNRS, 169 avenue de Luminy, 13288 Marseille Cedex 09 FRANCE, arauzy@iml.univ-mrs.fr 

(4) Total, CSTJF, Avenue Larribau, 64018 Pau Cedex, Jean-Pierre.Signoret@total.com 

 

Abstract: This article presents an application of the AltaRica Data-Flow language to the 

assessment of the average production of a production line throughout a period of time. Its 

contribution is twofold. The problem is described. Modelling difficulties are pointed out. Solutions 

are proposed via the use of the AltaRica Data-Flow language. The ability of this language to 

represent complex systems is demonstrated. It is shown, by means of an experimental study, that 

AltaRica Data-Flow models can be assessed efficiently. 

1. Introduction 

This article presents an application of the AltaRica Data-Flow language to the assessment of the 

average production of a production line throughout a period of time. In many industries, e.g. oil 

extraction platforms and chemical plants, this problem has a strong economic impact. We consider 

here the production line as a network (a directed acyclic graph) with production units at the one end 

(root nodes) and storage units at the other end (sink nodes). In between, a number of treatment units 

transform the production. Units may be subject to different failure modes. There may be spare units 

(cold redundancies). Each unit has a limited production (or treatment) capacity that depends on its 

state. Units may be repaired. There may be a limited number of repair crews. The repairing policy 

may depend on various parameters. The problem is to assess the average production for a given 

period of time, i.e. the mathematical expectation of the production, of the whole production line 

and of each unit independently. This problem raises a number of modeling difficulties, some of 

which have been already studied in the literature, see e.g. reference [1]. 

To handle this problem at an industrial scale, a high level description formalism is required. 

Without such formalism, models are hard to design and to maintain. Low level descriptions are by 

far too error prone. Moreover, even minor changes in the system specification may affect strongly 



the model. AltaRica Data-Flow is a high level description language devoted to risk assessment 

studies. It can be seen as a generalization of both Petri nets and Block Diagrams [2]. To Petri nets, 

it borrows the notion of states, events and guarded transitions. To Block Diagrams, it borrows the 

notion of hierarchical descriptions and flows circulating through a network. All of these features 

make AltaRica Data-Flow especially suitable to model production availability problems. 

The design (or the choice) of a description formalism results of a trade-off. On the one hand, its 

modelling power must be sufficient enough to express the problem to be solved. On the other hand, 

calculations to be performed must remain tractable. From an algorithmic view point, the assessment 

of production availability is strongly related to the resolution of Markov Reward Model [3] and 

Stochastic Petri Nets Reward Models [4, 5]. We report here results of experiments performed with 

two tools designed to assess AltaRica Data-Flow descriptions, namely a Markov analyser and a 

stochastic simulator. We show that both are of interest, each with its advantages and its drawbacks. 

These experiments show that one of the major advantages of high level description formalisms, 

such as AltaRica Data-Flow, is that they make it possible to apply various algorithmic tools to the 

same model.  

The remainder of this article is organized as follows. Section 2 presents a generic test case that 

illustrates the problem and its difficulties. Section 3 introduces basic concepts of the AltaRica Data-

Flow language. Hierarchical descriptions are introduced in section 4. Synchronization of events, 

which is one of the most interesting features of the language, is introduced in section 5. Section 6 

shows how transitions are interpreted, i.e. how probability distributions for their durations are 

introduced. Section 7 discusses the remote interaction of treatment units and production units. 

Section 8 presents experimental results. Finally, sections 9 and 10 conclude the article. 

2. Working Example 

As an illustrative example, we shall consider the system pictured on Fig. 1. It represents a part of an 

oil extraction installation. Although close to a real-life system, this test case has been designed to 

concentrate most of the modelling difficulties of the assessment of production availability.  

• W1 and W2 are wells. Their production capacities are respectively 160 and 70 (for the sake 

of the simplicity, all capacities are normalized; they actually represent a given amount of 

barrels/day).  When they are failed, the production is stopped. 

• T1 and T2 are tanks. They are assumed to be perfectly reliable. Their storage capacities are 

respectively 110 and 100. 



• A, B are two treatment units. They have two failure modes: a failure that decreases their 

capacities from 170 to 100 (resp. 120 to 70), and a severe failure that stops the treatment. 

The latter may occur either when the unit is working correctly or when it is in a degraded 

mode. 

• Components Ci's, Di's and Ei's are treatment units. Their individual capacities are 

respectively 120, 80 and 50.  For all of these units, a failure stops the treatment. 

Components of bloc E are in hot redundancy. 

• The line D is in cold redundancy with the line C. As soon as the line C is repaired, the line 

D is stopped. If C1 fails, then C2 is stopped and vice-versa. Same thing for D1 and D2. 

• R is a pool of two repair men (i.e. at most two components can be repaired simultaneously). 

A component is not able to treat the production during a repair. No particular repair policy 

is carried out when more than three units are down. 

• The production entering in component A must be split into two fractions: a fraction goes to 

the tank T1 through the top line, the remainder goes to the tank T2 through the bottom line. 

This requires defining a splitting policy. We assume the following one. The production of 

W1 goes preferably to the top line. The production of W2 goes preferably to the bottom line. 

If needed, what remains available from W1 goes to the bottom line. 

Table 2 gives failure rates λ (λs for severe failures of components A and B), repair rates µ (µs for 

repairs of severe failures), and probability to fail on demand γ for each component D1 and D2. 

The problem is to assess the average production of wells W1 and W2 and storage of tanks T1 and 

T2 for a given period of time. 

 

It is clear that the supply of oil for a given unit depends on the states of all upper units. The 

reciprocal is also true: the demand of oil of a given unit depends of the states of all lower units. The 

model has to take into account these remote (and in some sense circular) interactions. Moreover, 

from an engineering viewpoint, it is desirable to design models by assembling reusable pieces (like 

a Lego construction). Therefore, remote interactions should be described by means of local 

connections only. 



 

 

 

Figure 1. A Part of a Production System. 

 

 

 λ µ λs µs γ 

W1, W2 2 10
-5
 5 10

-3
    

A, B 9 10
-3
 2 10

-2
 3 10

-5 
4 10

-3
  

C1, C2 3 10
-3
 4 10

-2
    

D1, D2 8 10
-3
 4 10

-2
   2 10

-2
 

E1, E2, E3 4 10
-3
 5 10

-2
    

 

Table 2. Transition rates for the system depicted on Fig. 1. 



3. Mode Automata 

Consider the component E1 of Fig. 1. It may be in three states: working or failed or in repair. It 

goes from state “working” to state “failed” when a failure occurs. It goes from state “failed” to state 

“in repair” when the repair starts. Finally, it comes back from state “in repair” to state “working” 

when the repair ends. States “failed” and “in repair” need to be distinguished because of the limited 

number of repair men: the repair of the component does not necessarily start as soon as the failure 

occurs because it depends on the availability of a repair man. The amount of oil treated by E1 

depends on its treatment capacity, on its internal state and finally on the quantity it receives in 

input. Fig. 3 shows a state graph to model E1. 

 

The AltaRica Data-Flow language relies on the notion of mode automaton [2]. A mode automaton 

is a states/transitions system with input and output flows. In each state, so-called a mode, the 

automaton realizes a transfer function, i.e. it computes the values of output flows from the values of 

input flows. The automaton may change of mode when an event occurs. Boolean conditions, so-

called guards, indicate whether an event may occur or not, i.e. whether the system may perform the 

corresponding transition. A formal definition of mode automata can be found in reference [2]. Fig. 

3 shows actually a mode automaton. The AltaRica Data-Flow code for this automaton is given by 

Fig. 4. 

 



 

 

 

 

Figure 3. A Mode Automaton for the component E1. 

 

 

domain unitEState = { working, failed, inRepair }; 

 

node unitE 

  state s:unitEState; 

  flow  oilIn:float:in; oilOut:float:out; capacity:float:in; 

  event failure, startRepair, endRepair; 

  trans 

    (s=working)  |- failure     -> s := failed; 

    (s=failed)   |- startRepair -> s := inRepair; 

    (s=inRepair) |- endRepair   -> s := working; 

  assert 

    oilOut = if (s=working) then min(oilIn,capacity) else 0; 

  init 

    s := working; 

edon 

 

Figure 4. The AltaRica Data-Flow code for the components Ei’s. 



Modes of basic components of AltaRica Data Flow descriptions are described by means of state 

variables. In our example there is only one state variable: s. Input and output flows are described 

by means of flow variables. In our example there are two input flows (oilIn and capacity) and 

one output flow (oilOut). The variable capacity does not represent a physical flow. It is just a 

convenient mean to reuse the same code for components that differ only by their treatment 

capacity. Variables (states or flows) are typed. A variable may be either a Boolean, or an integer, or 

a float or an enumerated set (as for the variable s). Events and transitions are used to describe 

changes of modes. Assertions describe transfer functions. Init clauses describe the initial state of 

the component. 

It is worth noticing that, as for Petri nets [6], the values of variables (states and flows) can evolve 

only when a transition is triggered. When a transition is triggered, first state variables are updated, 

and then values of output flows are recomputed according to the assertion. The whole operation is 

assumed to be infinitely fast. Therefore, in AltaRica Data-Flow, the time is just seen as a sequence 

of events. 

4. Hierarchical Descriptions 

Consider now the subsystem E made of components E1, E2 and E3 (in parallel). These three 

components are independent. The oil entering the subsystem E is distributed over the Ei’s. If one 

of the Ei’s is failed, then the oil must be distributed over the two others. The distribution policy 

therefore depends at least on the states of the Ei’s. Other factors could be taken into account, such 

as preferable loads for units. If one is interested in studying the production of components 

individually, then this policy has to be represented explicitly. The subsystem E may be also 

considered as a whole, which makes it possible to simplify its description, as follows. 

 



 

 

node subsystemE  

  flow oilIn:float:in; oilOut:float:out; 

  sub  E1:unitE; E2:unitE; E3:unitE; 

  assert 

    E1.oilIn = oilIn, 

    E2.oilIn = oilIn, 

    E3.oilIn = oilIn, 

    oilOut   = min(oilIn,E1.oilOut+E2.oilOut+E3.oilOut); 

edon 

 

Figure 5. The AltaRica Data-Flow code for the Subsystem E. 

 

 

node subsystemE  

  state E1.s:unitEDomain; E2.s:unitEDomain; E3.s:unitEDomain; 

  flow  oilIn:float:in; oilOut:float:out; 

        E1.oilIn:float:in; E1.oilOut:float:out; E1.capacity:float:in; 

        E2.oilIn:float:in; E2.oilOut:float:out; E2.capacity:float:in; 

        E3.oilIn:float:in; E3.oilOut:float:out; E3.capacity:float:in; 

  event E1.failure, E1.startRepair, E1.endRepair, 

        E2.failure, E2.startRepair, E2.endRepair; 

        E3.failure, E3.startRepair, E3.endRepair; 

  trans 

    (E1.s=working)  |- E1.failure     -> E1.s := failed; 

    (E1.s=failed)   |- E1.startRepair -> E1.s := inRepair; 

    (E1.s=inRepair) |- E1.endRepair   -> E1.s := working; 

    (E2.s=working)  |- E2.failure     -> E2.s := failed; 

    (E2.s=failed)   |- E2.startRepair -> E2.s := inRepair; 

    (E2.s=inRepair) |- E2.endRepair   -> E2.s := working; 

  assert 

    E1.oilOut = if (E1.s = working) then min(E1.oilIn,E1.capacity) else 0, 

    E2.oilOut = if (E2.s = working) then min(E2.oilIn,E2.capacity) else 0, 

    E3.oilOut = if (E3.s = working) then min(E3.oilIn,E3.capacity) else 0, 

    E1.oilIn  = oilIn, 

    E2.oilIn  = oilIn, 

    E3.oilIn  = oilIn, 

    oilOut    = min(oilIn,E1.oilOut+E2.oilOut+E3.oilOut); 

  init 

    E1.s := working, E2.s := working, E3.s := working; 

edon 

 

Figure 6. A basic component equivalent to the subsystem of Fig. 5. 

 



 The idea is to consider the maximum amount of oil each Ei is able to treat. The amount of oil 

treated by the subsystem is then the minimum of the amount of oil entering it on the one hand, and 

the sum of the maximum amounts of oil treated by its components on the other hand. This idea 

works for any parallel system. It is implemented by the AltaRica Data-Flow code given by Fig. 5. 

This code is rather straightforward and does not deserve long explanations. 

E is in some sense the “product” of the Ei’s. Reference [2] defines formally the notion of product 

of two or more mode automata. This operation is internal: its result is a mode automaton. The 

construction of the mode automaton for the subsystem E is performed in two steps: 

• First, three fresh copies of component componentE are created together with the 

additional flow variables oilIn, oilOut and capacity. The modes of the product are 

triples of modes of its components. Its events and transitions are the events and transitions 

of its components. Its assertion is the conjunction of the assertions of its components. 

• Second, flows are connected. This second step restrains the behaviour of the free product 

obtained at the previous step. In our case, this restriction implements the oil splitting policy. 

The resulting automaton could be described as an AltaRica Data-Flow node, as illustrated by Fig. 6. 

In practice, this operation is performed by assessment tools from the codes of Fig. 4 and Fig. 5. 

One of the major advantages of a hierarchical formalism, such as AltaRica Data-Flow, is that our 

description of the subsystem E could be unplugged of the description of the global system and 

replaced by another one (that implements, for instance, a more detailed oil distribution policy). In 

this way, a particular component or subsystem can be studied mutatis mutandis at various levels of 

details and may be modified easily as the system specifications evolve. 



 

Figure 7. Mode automaton for a pool of two repair men. 

 

node repairPool  

  state idleMen:int; 

  event startJob, endJob; 

  trans 

    (idleMen>0) |- startJob -> idleMen := idleMen-1; 

    true        |- endJob   -> idleMen := idleMen+1; 

  init 

    idleMen := 2; 

edon 

 

Figure 8. AltaRica code for the repair pool. 

 

node main  

  sub   …; E1:unitE; E2:unitE; R:repairPool; …; 

  event …, startRepairE1, startRepairE2, …; 

  … 

  sync 

    … 

    <startRepairE1: (E1.startRepair and R.startJob)>; 

    <startRepairE2: (E2.startRepair and R.startJob)>; 

    … 

edon 

 

Figure 9. A fragment of AltaRica code to illustrate the synchronization of events. 

 

    (E1.s=failed) and (R.idleMen>0) |- startRepairE1 -> 

        E1.s      := if (E1.s=failed) then inRepair else E1.s, 

        R.idleMen := if (R.idleMen>0) then R.idleMen-1 else R.idleMen; 

 

    (E2.s=failed) and (R.idleMen>0) |- startRepairE2 -> 

        E2.s      := if (E2.s=failed) then inRepair else E2.s, 

        R.idleMen := if (R.idleMen>0) then R.idleMen-1 else R.idleMen; 

 

Figure 10. Global transitions created by the synchronization of Fig. 9. 



5. Synchronizations 

Consider now the pool of repair men. A repair man may be idle or busy. When a repair man is 

called on a unit, she/he goes from state idle to state busy. When the repair ends, he makes the 

reverse transition. If we assume the repair men indistinguishable, the pool can be described by the 

mode automaton pictured on Fig. 7. The AltaRica Data flow code for this automaton is given by 

Fig. 8. 

At a global level, the events startRepair of the units and startJob of the repair pool must 

be simultaneous. They can be actually considered as two faces of the same event (same thing for 

the events endRepair and endJob). In a Petri nets description for instance, to make two events 

simultaneous, one must merge the corresponding transitions or create a cascade of events with no 

delay. AltaRica Data-Flow provides a simple construct to perform automatically this operation: the 

synchronization of events (which is borrowed from the model-checker MEC [7]). This construct is 

illustrated on Fig. 9. Global events (e.g. startRepairE1) are declared together with monotone 

Boolean functions over local events involved in the synchronization (e.g. E1.startRepair 

and R.startJob). The principle of synchronization is as follows. 

• Local events involved in the synchronization are removed from the model together with the 

transitions they label. 

• For each global event e, a new transition is created. The guard of this transition is the 

Boolean function associated with e in which the guards of local transitions are substituted 

for the local events. For each assignment “v:=E” of a local transition whose guard is G, an 

assignment “v:= if G then E else v” is added to the global transition. 

This operation is illustrated on Fig. 10. The global transition labelled with the event 

startRepairE1 is fireable if the local transition labelled with the event E1.startRepair 

and the local transition labelled with the event R.startJob are fireable. To fire this transition 

therefore consists in firing simultaneously all the local transitions that can be fired. 

This mechanism can be used to implement various types of synchronizations, including 

sender/receiver communications, broadcasting … It applies also in the case where several 

transitions are labelled with the same event. Moreover, in AltaRica Data-Flow, synchronizations 

can be introduced at any level of the hierarchy. 



6. Interpretation of Transitions 

Consider again the automaton pictured on Fig. 3. Events failure and endRepair are 

stochastic, i.e. they model ends of actions that have a (possibly unpredictable) duration. In other 

words, they are fired after a non null randomly distributed delay (if nothing prevents them to be 

fired in between). This delay may be, for instance, exponentially distributed with a given transition 

rate. On the converse, the event startRepair is immediate, i.e. it is fired as soon as possible. 

With that respect, AltaRica Data-Flow descriptions can be interpreted in the same way as classical 

Petri Nets are interpreted into Generalized Stochastic Petri Nets [8]: there are stochastic transitions 

with given delay distributions and immediate transitions. Priorities may be defined over immediate 

transitions. Distributions of event durations as well as other tool specific data are given in the 

clause extern of nodes, as illustrated by Fig. 12. Delays of event failure and endRepair are 

assumed to have an exponentially distributed with transition rates respectively lambda and mu. 

Consider now the spare line D of Fig. 1. Components Di’s are very similar to components Ej’s 

except that they may be in a fourth mode: idle, i.e. waiting to replace components Ck’s. When they 

are requested, i.e. when the line C fails, they move from the mode idle to the mode working 

(under the occurrence of the event start), or to the mode failed (under the occurrence of the 

event failureOnDemand). Both transitions are immediate. The behaviour of components Di’s 

is described by the mode automaton pictured on Fig. 11. The AltaRica code given by Fig. 12 

implements this mode automaton. The clause extern is used to set the probabilities of events 

start and failureOnDemand. The directive bucket indicates that they have to be considered 

together: when they are both fireable, one (and only one) is chosen and fired. The choice is made at 

random according to their respective probabilities (here 0.02 and 0.98). 

AltaRica Data-Flow makes it possible to give priority to immediate transitions (via the directive 

priority, as illustrated by Fig. 12). These priorities are integers (the higher the number, the 

higher the probability). Default priority is the lowest, i.e. 0. If two immediate events are fireable 

simultaneously, the one of higher priority is fired. In our case, priorities are introduced to make 

sure of the order or events. 

On this automaton, isRequested is a Boolean flow that goes out of the line C and enters into the 

line D. It ensures that the line D is started (or at least is attempted to start) as soon as the line C fails. 

The same result could have been achieved by means of synchronizations. However, it is somehow 

counterintuitive to synchronize a failure of component C1 with the failure on demand of 



component D2, although the latter follows the former by an irrelevant time period (at least at the 

study level). 



 

 

 

 

Figure 11. A mode automaton to represent spare units. 

 

 

 

node ComponentD 

  state s:{idle, working, failed, inRepair}; 

  flow  isRequested:bool:in; 

        capacity:float:in; input:float:in; output:float:in; 

  event failureOnDemand, start, stop, failure, startRepair, endRepair; 

  trans 

           (s=idle) and isRequested |- failureOnDemand -> s := failed; 

           (s=idle) and isRequested |- start           -> s := working; 

                        (s=working) |- failure         -> s := failed; 

    (s=working) and not isRequested |- stop            -> s := idle; 

                         (s=failed) |- startRepair     -> s := inRepair; 

                       (s=inRepair) |- endRepair       -> s := idle; 

  assert 

    output = if (s=working) then min(input,capacity) else 0; 

  init 

    s := idle; 

  extern 

    law <event failure>         = exponential(0.008); 

    law <event endRepair>       = exponential(0.04); 

    law <event failureOnDemand> = constant(0.02); 

    law <event start>           = constant(0.98); 

    bucket {<event failureOnDemand>, <event start>} = call; 

    priority {<event stop>, <event startRepair>} = 1; 

edon 

 

Figure 12. An AltaRica Data-Flow description for a spare unit. 



7. Production: Supply and Demand 

Consider a treatment unit such as C1. C1 receives a given amount of oil from upper units. It 

delivers it (after treatment) to lower units. This implies that the received amount of oil must not 

exceed not only the capacity of C1, but also the capacity of the whole network below C1. In other 

words, the supply must be regulated by the demand. Both depend on the states of the various units 

that compose the network. 

Flows can be used to model the supply and demand of each unit. Namely, four flow variables are 

necessary for each unit U: oilInSupply, oilOutSupply, oilInDemand and 

oilOutDemand that represent respectively the maximum amount of oil that of upper units can 

supply to U, the maximum amount of oil that U can supply to lower units, the actual demand of 

lower units to U and the actual demand of U to upper units. The equations that rule these variables 

are as follows. 

oilOutSupply = if (s=working) then min(capacity,oilInSupply) else 0; 

oilOutDemand = oilInDemand; 

An implicit additional constraint is that oilInDemand must not exceed oilOutSupply. In this 

way, the demand corresponds exactly to what is actually produced. Fig. 13 shows how the 

consequences of a change of state of one of the unit are propagated through the network: 

W.outSupply depends on W.state. U.inSupply equals W.outSupply. U.outSupply 

depends on U.state and U.inSupply and so on. Finally, W.inDemand, that equals 

U.outDemand, depends on all the variables encountered along the path. 

This principle works fine for series systems. However, problems arise when dealing with parallel 

systems, as illustrated on Fig. 14. This system is made of two parallel lines. The supply that enters 

in the system (S.inSupply) must be split in two parts. A part must go to the upper line and the 

remainder must go to the bottom line. Similarly, demand T.inDemand must be splitted in two 

parts. The problem is to define the splitting strategy. It would be quite natural to split the in-supply 

in proportion of  out-demands. E.g. 

U1.inSupply = S.inSupply × U1.outDemand/(U1.outDemand + U2.outDemand) 

 U2.inSupply = S.inSupply × U2.outDemand/(U1.outDemand + U2.outDemand) 

 Similarly, the global in-demand could be split in proportion of the out-supplies. E.g. 

U1.inDemand = T.inDemand × U1.outSupply/(U1.outSupply + U2.outSupply) 

 U2.inDemand = T.inDemand × U2.outSupply/(U1.outSupply + U2.outSupply) 



This model does not work because of circular dependencies induced by the four above equations. It 

can be shown that no local description can solve this problem. Therefore, a splitting policy must be 

defined a priori, as we did for the component A of our test case, or at a global level. 

It is worth noticing that the notion of flows is anyway very useful to model oil demand and supply. 

Even a powerful formalism such as Petri nets is unable to model this kind of propagation, at least 

without considering the entire network and performing a case study.   



 

 

Figure 13. Production of a series system. 

 

 

 

Figure 14. Production of two parallel lines. 



8. Experiments 

A number of tools have been designed to assess AltaRica Data-Flow descriptions, including an 

interactive simulator, a compiler to fault trees, a generator of sequences, a model-checker, a 

Markov analyzer and a stochastic simulator. We report here results obtained with the two latter 

tools. Both can be used to assess production availability. 

Markov Analysis: The Markov graph for the test case presented section 2 has been obtained by 

compiling the AltaRica description. It is made of 110,768 states and 861,232 transitions. The 

compilation takes 67 seconds on a modern laptop computer. 

To assess this Markov graph, we used the so-called Matrix Exponentiation Method (see [9] for a 

detailed description of this method). This method is an explicit method to compute transient 

solutions of Markov graphs. Any such a method can be extended to compute mean sojourn times in 

each state and from there many quantities of interest, as pointed out by Trivedi & al. in their articles 

on the notions of Markov Reward Model [3] and Stochastic Petri Nets Reward Models [4,5]. We 

applied the method for a mission time of 8760 hours (1 year) and with two time steps (the smaller 

the time step the more accurate the results but the more expensive the algorithm). Results are 

presented in Tab. 11. 

Stochastic Simulation: We performed a stochastic simulation over 10
5
 histories. Results are 

presented in Tab. 12. The running time for a stochastic simulation is roughly proportional to the 

number of histories. A rather large number of histories is mandatory to obtain precise results. 

 

AltaRica Data-Flow provides special constructs (in the clause extern) to describe which 

quantities are to compute. We introduced various mechanisms to observe these quantities along the 

time of the mission (mean values, percentiles, chronograms, ...). 



 

Time step 7.08165 0.708681 

Running time 176s 1184s 

Production of well  W1 83.6247 83.5633 

Production of well W2 47.6409 47.606 

Storage in tank T1 70.0677 70.0163 

Storage in tank T2 61.1979 61.153 

 

Table 11. Results of the Markov Analysis 

 

 

 

Number of histories 10
5
    

Running time 5405s    

Quantity mean value standard-deviation 95% confidence range 

Production of W1 83.5477 5.65194 83.5183 83.5771 

Production of W2 47.6074 3.00197 47.5918 47.623 

Storage in tank T1 70.0007 4.68182 69.9763 70.025 

Storage in tank T2 61.1544 3.97378 61.1337 61.175 

 

Table 12. Results of the Stochastic Simulation 

 



Comparison: Markov analysis and stochastic simulation give almost the same results. Markov 

analysis is more precise and faster. Its drawback stands indeed in the exponential blow up of the 

size of the underlying graph. Stochastic simulation does not suffer from this problem. It is however 

very time consuming and unable to deal with rare events. Several authors suggested techniques to 

decrease the size of the Markov graph, see e.g. reference [10]. Such techniques could be applied 

here as well. It is certainly even easier to detect symmetries, to group similar states at the 

description level or while generating the graph. 

9. Discussion 

We have seen so far that AltaRica Data-Flow is a textual language. However, we added here and 

there drawings to illustrate textual constructs. Graphics are of a definitive interest to design models 

to understand and to animate them. We believe strongly that no formal language can be used for 

real if it doesn’t provide graphical counterparts to textual constructs. However, it is almost 

impossible to capture the whole complexity of a model such as those we designed in this article 

within a single figure. Rather, graphics should be used to show different views of the system under 

study. Here how flows are circulating, there how spare units are allocated, and so on. The UML 

description language illustrates this idea in the software design framework [11]. That’s the way we 

use AltaRica Data-Flow in practice. 

The modeling of production availability requires real valued variables. Classical Petri nets do not 

provide that kind of variables. It may be argued that colored Petri nets could be used for that 

purpose [12, 13]. This is only partly true, for two reasons. First, the notion of flows makes it 

possible to represent remote interactions in a simple way. This can be done only via cascade of no 

delay events in Petri nets (colored or not), which by far more error prone. Second, colored Petri 

nets introduce a degree of complexity in assessment. In colored Petri nets, tokens are dynamically 

created while in AltaRica Data-Flow, as in classical Petri nets, all the variables are present from the 

start. In practice, this makes a significant difference in the complexity of algorithms to be used to 

assess models (and, at a less extent, for stochastic simulation as well). Colored Petri nets have 

indeed their own merits and make it possible to model systems that neither classical Petri nets nor 

AltaRica Data-Flow are able to handle. 

As pointed out by one of the referees, we did not take into consideration here modeling issues such 

as:  

• The dependence of the failure rate of a unit on the state of neighbouring units; 

• The dependencies of failure rates on the flows; 

• Transient, continuously evolving production modes. 



These problems enter into the so-called dynamic reliability framework. They are indeed of a great 

importance (and interest). The AltaRica Data-Flow theoretical model can be partly adapted to 

handle them. For instance, it would be possible to compute new values for transition rates each time 

an event is fired. On the other hand, continuously evolving processes, that are already hard to 

describe individually, are even harder to combine one another. Whether a hierarchical formalism 

such as AltaRica Data-Flow can embed such concepts is an open question. 

10. Conclusion 

In this article, we studied in details the assessment of production availability. We pointed out 

modeling difficulties. We proposed solutions via the use of the AltaRica Data-Flow language. We 

showed ability of this language to represent complex systems. We report results of an experimental 

study that shows that AltaRica Data-Flow model can be assessed efficiently by means of Markov 

analysis and stochastic simulation. 

We advocate the use of such a high level language to model complex problems. Several authors, 

e.g. Trivedi & al. [4], already advocate the use of Petri nets to generate Markov Rewards Models. 

AltaRica Data-Flow goes at step farther by embedding important concepts such as the notions of 

flow, hierarchy, and synchronization of events. Moreover, because of its structure AltaRica Data-

Flow makes it possible to detect properties, such as symmetries, that can be used to reduce the size 

of reachability graphs or to accelerate the Monte-Carlo simulation. 

11. References 

[1] Y. Kawauchi and M. Rausand. A new approach to production regularity assessment in the oil 

and chemical industries. Reliability Engineering and System Safety, 75:379-388, 2002. 

[2] A. Rauzy. Modes automata and their compilation into fault trees. Reliability Engineering and 

System Safety, 78:1-12, 2002. 

[3] A. Reibman, R. Smith and K. S. Trivedi. Markov and Markov Reward model transient analysis: 

An overview of numerical approaches. European Journal Of Operational Research, Vol. 40, 

pp 257-267. North Holland. 1989. 

[4] Stochastic Reward Nets for Reliability Prediction, Jogesh Muppala, Gianfranco Ciardo, and K. 

S. Trivedi, Communications in Reliability, Maintainability and Serviceability: An 

International Journal published by SAE International, Vol. 1, No. 2, pp. 9-20, July 1994. 

[5] G. Ciardo, J. Muppala and K. S. Trivedi. On the Solution of GSPN Reward Models. 

Performance Evaluation, Vol. 12, No. 4, pp. 237-254, July 1991. 



[6] T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE, 

77(4):541-580, April 1989. 

[7] A. Arnold. MEC: a System for Constructing and Analysing Transition Systems. In J.Sifakis, 

editor, Proceedings of the International Workshop on Automatic Verification Methods for 

Finite State Systems, volume 407 of LNCS. Springer Verlag, June 1989. 

[8] M. AjmoneMarsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Modelling with 

Generalized Stochastic Petri Nets. Wiley Series in Parallel Computing. John Wiley and Sons, 

1994. 

[9] An Experimental Study On Six Algorithms to Compute the Transient Probabilities of Large 

Markov Models. To Appear In Reliability Engineering and System Safety. 

[10] M. Lanus, L. Yin and K. S. Trivedi. Hierarchical Composition and Aggregation of State-Based 

Availability and Performability Models. IEEE Transitions on Reliability, vol 52, num 1, pp 

44-52, march 2003. 

[11] J. Rumbaugh and I. Jacobson and G. Booch, The Unified Modeling Language. Reference 

Manual, Addison Wesley, ISBN 0-201-30998-X, 1999 

[12] K. Jensen. Coloured Petri Nets, Volume 1: Basic Concepts. Springer-Verlag, 1992. 

[13] K. Jensen. Coloured Petri Nets, Volume 2: Analysis Methods. Springer-Verlag. 1994. 

 


