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Abstract

In this paper, we set up a method to compare and evaluate variable ordering heuristics
for BDD based analyses of fault-trees, and give the results obtained with this method on
6 different heuristics, tried on a large benchmark of real-life fault-trees. Some of these
heuristics were already proposed in the literature, some are original. As a final synthesis
of all these results, we give the two strategies one can choose to process a new fault-tree,
depending on the objective of this processing. This objective may be either to obtain a
first BDD as soon as possible, or to minimize the size of the BDD, for further intensive
use.
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1 Introduction

Binary Decision Diagrams (BDDs for short) are the state-of-the-art data structure to han-
dle boolean functions [Bryant 92]. Since their introduction in the reliability field they have



proved to be in many cases a very powerful tool. They made possible the assessment of
complex fault-trees both qualitatively (computation of minimal cutsets) and quantitatively
(exact calculation of the top event). Tools such as Aralia1 can in many cases give more ac-
curate results than conventional tools, while running 1000 times faster [Groupe Aralia 95].

Any boolean function, coherent or not, can be encoded by a BDD. This encoding
requires to select a total order over the variables the function depends on. For a given
ordering, the representation is unique, up to an isomorphism. The smaller the BDD,
the more efficient subsequent operations using it (probability assessment, computation of
minimal cutsets) are likely to be. So it is of a great interest to get BDDs as small as
possible. From a theoretical point of view, this is hopeless: almost all the functions cannot
admit polynomial size representations (w.r.t. their number of variables). This holds indeed
for the particular case of BDDs whatever the chosen ordering is.

In many practical cases however, BDDs encoding fault-trees remain quite small, and
their size heavily depends on the chosen ordering. Actually, there is often a variation of
several orders of magnitude between the sizes of two BDDs built over reasonable variable
orderings. Finding the best variable ordering is an intractable task. So, one uses heuristics
to get good ones.

Several such heuristics have been proposed in the literature. However, they have been
designed for combinational or sequential circuits, which concern boolean functions of a very
different nature than those of boolean reliability models. It is not clear a priori whether
they are also efficient for fault-trees.

The aim of this paper is to compare 6 interesting heuristics (three of them were pro-
posed in the cited papers, the others are original), using Aralia. We also study the effect
of restructuring formulae, according to the principles described in [Bouissou 96], before
applying heuristics. We present a benchmark created for the purpose of this study. It
is made of fault-trees from different origins presenting a wide range of specificities (size,
structure, manual or automated trees, . . . ). We define an experimental protocol, based on
Monte-Carlo simulations, that ensures a fair comparison. Finally we provide experimental
results we got and we give some conclusions on advantages and drawbacks of the presented
heuristics.

The rest of this paper is organized as follows. We recall basics on fault-trees and BDDs
in the next section. We describe the heuristics we selected in section 3. Finally, we present
the benchmark, the experimental protocol we used and the results we got in section 4.

2 Fault-Trees, Binary Decision Diagrams

Fault-Trees For the purpose of this paper, fault-trees are essentially considered as boolean
formulae, i.e. terms inductively built over the two constants 0 and 1, a set of variables X ,
and usual logical connectives ∧ (and), ∨ (or), ¬ (not), k-out-of-n, . . . .

1Aralia is a boolean and stochastic model processing tool developed at the computer science lab. of
the university of Bordeaux and financed by a pool of French companies including EdF.



Fault-trees are in general presented as sets of equations in the form x = f , where x is
a variable and f is a formula. Sets of equations are a good representation of fault-trees
because they reveal their actual structure, which is a directed acyclic graph and not a tree
in the usual sense. In other words, a variable may have several fathers (also called fanouts)
in the tree, which has numerous consequences from an algorithmic point of view.

Binary Decision Diagrams The BDD associated with a function is a compact en-
coding of the truth table of this function. This representation is based on the Shannon
decomposition. Let f be a boolean function that depends on the variable x. Then, there
exists two functions f1 and f0 not depending on x such that f ≡ (x ∧ f1) ∨ (¬x ∧ f0). By
choosing an ordering among the variables and applying recursively the Shannon decom-
position, the truth table of any function can be graphically represented as a binary tree
whose leaves are labeled with constants, whose internal nodes are labeled with variables
and have outedges labeled with values assigned to variables. The value of the function for
a particular variable assignment is obtained by descending along the corresponding branch
of the tree. Such a representation is not compact at all since it has 2n−1 internal nodes for
a function of n variables. It is however possible to shrink it by means of the two following
reduction rules.
– Isomorphic subtrees merging. Since two isomorphic subtrees encode the same function,
at least one is superfluous.
– Deletion of useless nodes. A node encoding a formula of the form (x ∧ f) ∨ (¬x ∧ f) is
superfluous since it is equivalent to f .

By applying these two rules as far as possible, one gets the binary decision diagram
associated with the formula. It is unique, up to an isomorphism. In practice, the size
of a BDD heavily depends on the chosen variable ordering. Finding the best one is a
computationaly intractable. The best known algorithms are in O(3n), where n is the
number of variables. So, one uses heuristics to get good ones. Several such heuristics have
been proposed in the literature [Fujita et al 88, Malik et al 88, Berman 89, Minato et al 90,
Butler et al 91, Fujita et al 93].

3 Heuristics for Variable Ordering

This section presents the 6 best heuristics among a dozen we tried. All of these heuristics
are implemented in the Aralia toolbox [Rauzy 95]. We keep here the names they have in
that report. The above heuristics share a number of common features. First, they are easy
to compute (roughly linear in the size of the trees). Second, except for H1, they perform
some reordering of gates’ inputs. Third and more importantly, they respect modules. This
is very important because, as shown in [Berman 89], any optimal ordering has this property.

Heuristic H1: This heuristic is probably the simplest one can imagine. It consists in
ordering variables according to a depth-first left-most traversal of the formula considered



as a directed acyclic graph. Consider for instance the following set of equations.

r = g1 ∧ g2 g1 = a ∨ g3 g2 = d ∨ g3 ∨ e g3 = b ∧ c

Variables are visited in the following order.

1 2 3 4 5 6 7 8 9 10
r g1 a g3 b c g2 d g3 e

Which induces the ordering a ≺ b ≺ c ≺ d ≺ e. Note that the definition of g3 is visited
only once. It follows that this heuristic is of linear complexity w.r.t. the size of the
formula. Despite its simplicity, this heuristic seems to be quite efficient with hand-written
fault-trees.

Heuristic A3: This heuristic has been proposed in [Minato et al 90]. It works in three
steps.
– First, it associates the weight 1 to each terminal variable and it propagates bottom-up
these weights through the formula by associating to each intermediate variable the sum of
the weights of the variables occurring in its definition.
– Second, it sorts arguments of connectives in increasing order of their weights.
– Third, it applies heuristic H1 on the resulting formula.

Consider for instance the above set of equations. First, the weight 1 is associated to a,
b, c, d and e. Then, the weights of r, g1, g2 and g3 are computed as follows.

ω(g3) = ω(b) + ω(c) = 2 ω(g2) = ω(d) + ω(g3) + ω(e) = 4
ω(g1) = ω(a) + ω(g3) = 3 ω(r) = ω(g1) + ω(g2) = 7

Second, it rewrites g2 as g2 = d ∨ e ∨ g3 (definitions of r, g1 and g3 are kept unchanged).
Finally, it perfoms a depth-first left-most traversal of the formula to get the ordering
a ≺ b ≺ c ≺ d ≺ e. Since a list of length l can be sorted in O(l.log(l)), this heuristic is
in O(e.k.log(k)), where e denotes the number of equations and k denotes the maximum,
over the equations, of the number of arguments.

Heuristic H7: The principle of this heuristic is to sort the arguments of each connec-
tive according to their number of references (i.e. number of fanouts). The indexing re-
sulting from a depth-first left-most traversal of the formula after this rewriting has been
suggested by M. Fujita and H. Fujisawa and N. Kawato in [Fujita et al 88] (and also in
[Fujita et al 93]).

Consider, for instance, the above set of equations. g1 and g2 have only one fanout, thus
the definition of r remains unchanged. g3 has two fanouts (g1 and g2) while a, d and e

have only one, so g1 is rewritten as g1 = g3 ∨ a and g2 is rewritten as g2 = g3 ∨ d∨ e. b and
c have only one fanout. Thus the definition of g3 remains unchanged.

After a depth-first left-most traversal of the formula, one gets the ordering b ≺ c ≺ a ≺

d ≺ e. As A3, this heuristic is in O(e.k.log(k)).



Heuristic H4: This heuristic has been proposed by A. Rauzy (and is yet unpublished).
It works by reordering arguments of connectives while performing a depth-first left-most
traversal of the formula. More precisely, when it processes an equation in the form: g =
op(g1, ..., gn), where op is any connective, it first chooses the gi 1 ≤ i ≤ n such that:
1) gi contains the minimum number of leaves not already indexed. And, in case of tie:
2) the gi whose sum of indices of already indexed leaves is minimum.

Then, it calls the algorithm on gi, extracts gi from the list g1,. . . , gn and continues
with the rest of the list. When all of the gi’s are processed, the list of arguments of g is
recomposed in the order in which the gi’s have been treated.

Consider, for instance, the above set of equations. g1 has less leaves than g2 (3 vs.
4); so it is processed first. a has less leaves than g3; so it is processed first and it is put
in the first position. Then g3 is processed and we get the partial order a ≺ b ≺ c. g1

is thus kept unchanged. Now g2 is processed. Since g3 is entirely processed, it is put
before g2. Thereafter it just remains to complete the partial order with d ≺ e. We get
a ≺ b ≺ c ≺ d ≺ e, and g2 is rewritten as g2 = g3 ∨ d ∨ e.

It can be shown that this heuristic is in O(e.n.k.log(k)), where n denotes the number
of leaves and e and k keep the same meaning as above.

Heuristics H7(A3) and H7(H4): In most practical cases, the above heuristics are not
deterministic, i.e. a large number of arbitrary choices still have to be made in sorting
procedures because of ties. There are mainly two ways to deal with ties between gates’
inputs: either one keeps them in the order they were given or one selects a new order at
random. For the sake of repeatability, we adopted the first solution.

It was thus of interest to study how heuristics A3, H7 and H4 can be combined. For this
purpose, we selected the two best combinations (of 2 heuristics): H7(A3), i.e. H7 applied
on the result of A3, and H7(H4).

4 Benchmark, Experimental Protocol and Results

Benchmark In order to test the heuristics presented in the previous section, we selected
13 real life coherent fault-trees among those constituting the Aralia benchmark2. These
trees are from different origins and present a wide range of specificities (size, structure,
manual or automated trees, . . . ). For each tree we considered 3 versions: the initial one,
plus two optimized versions (O1, O2) that were obtained with the optimizer described in
[Bouissou 96].

Experimental Protocol A given heuristic may lead to significantly different results
when applied to different rewritings of the fault-tree. By simply changing the orders of
gates’ inputs one may observe variations in the BDD sizes up to a factor 1500 (see Figure 1).

2The Aralia benchmark (including more detailed characteristics of the fault-trees than those given here)
will be ftp/http available at the date of the conference, at http://www.labri.fr.



#nodes

name #var #gat #min-cuts fail% min max mean std.dev

baboab1 61 81 46,188 0% 1817 30121 5750.7 2212.37

baboab2 32 40 4,805 0% 145 1943 457.952 142.404

baboab3 80 107 24,386 0% 3305 27349 9926.87 3229.01

das9204 53 30 16,701 0% 53 153 79.4012 15.9311

das9208 103 145 8,060 0% 2614 20614 4833.58 1332.81

edf9r01 458 434 7,520,142 27.08% 551 289421 9437.65 22412.5

edfpa02 278 251 94.016 0% 7562 128847 53581.8 25209.2

edfpa09 196 142 497 0% 255 4727 1094.16 774.067

edfpr01 548 484 5,604,253 12.85% 8705 691766 185871 118286

edfrbd1 120 178 529,984 5.5% 145 34557 1325.65 2517.62

isp9602 116 122 5,197,617 0% 708 2993 1629.68 334.158

isp9603 91 95 3,431 0% 703 10950 4203.71 1783.94

isp9607 71 65 150,436 0% 149 805 409.923 64.4269

Table 1: Characteristics of fault-trees and some results

It is clear that there is no reason to write gates’ fanins in any order rather than in another.
This is why results found in some previous papers should be considered with care. In order
to tackle this problem, we reorder gates’ inputs at random, and we present the results
obtained by the 6 heuristics on 500 random rewritings of each version (initial, O1, O2) of
each tree.

Experimental Results The table 1 gives the characteristics of the trees as well as some
results. The columns give the name, the number of variables (#var), the number of gates
(#gat), the number of minimal cutsets (#min-cuts), the percentage of rewritings for which
we did not succeed in computing the BDD within a limit of 106 nodes (fail.%), the minimum
(min), the maximum (max), the mean (mean) and the standard deviation (std.dev) of the
numbers of nodes of the computed BDDs. These statistics amalgamate, for each tree, the
results obtained by the application of the 6 heuristics on 500 rewritings of each version of
the tree.

More detailed results are given in Figure 1. Since the number of nodes differ very much
from one tree to another, we “standardized” BDD sizes by defining a “relative size”. The
relative size of a BDD is the quotient of its actual number of nodes by the min given in
Table 1. This measure makes it possible to amalgamate the results obtained for different
trees. Since the minimum possible relative size is 1, it is interesting to note on how many
trees this minimum is obtained (see Fig. 1).

The statistics (min, max, etc) are computed on the subset of successful trials. This
makes direct comparisons uneasy, when the failure percentages differ. In contrast, the
cumulative distribution functions of the relative sizes, shown as graphs in cells of Fig. 1,
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Figure 1: Each cell of this table contains statistics on the 13 (trees) x 500 (trials per tree)
BDD relative sizes obtained for a given heuristic (row) and a given version of the trees
(column).



are directly comparable from cell to cell.
The results clearly show that there are 2 classes of heuristics. The first class, which

includes H4, A3, and the combinations H7(H4), H4(A3), tends to give results with a very
low standard deviation on a given tree (with a c.d.f. which looks like a step function),
because the rule which determines the order of the sons of each gate leads to ties that, in
most cases, are due to symmetrical sub-trees. Thus, the size of the BDD obtained by the
application of the heuristic is not very sensitive to the initial random order.

The second class, including H1 and H7, clearly shows a very high dispersion of the
obtained BDD sizes on a given tree, with an S-shaped, smooth c.d.f. from the smallest to
the largest sizes.

In most cases H7 gives better results than H1, be it in terms of medians, means, maxi-
mums or minimums.

The heuristics of the first class always give results which are “somewhere in between”
for initial trees (neither excellent, nor very bad), and good, or even close to optimal results
for optimized trees. But in all cases, the exploration capabilities of H1 and H7 remain the
best means to get the smallest BDD sizes.

The only problem with H1 and H7 is that they can also lead to extremely large BDDs
(up to 1500 times larger than the smallest one !). But this pitfall can easily be avoided by
the allocation of a maximum CPU time and of a maximum BDD size for each trial.

5 Conclusion

In this paper, we set up a method to compare and evaluate variable ordering heuristics
for BDD based analyses of fault-trees, and gave the results obtained with this method on
6 different heuristics, tried on a large benchmark of real-life fault-trees. Some of these
heuristics were already proposed in the literature, some are original. As a final synthesis of
all these results, we now give the two strategies one can choose to process a new fault-tree,
depending on the objective of this processing.

If the main objective is to obtain a first BDD as soon as possible, then the procedure
(which, of course, can be abandoned as soon as a result is obtained) should be to try once
the robust heuristics (H4, A3, H7(H4), H4(A3)) on the initial and then on optimized trees
(O1, then O2).

If the main objective is to obtain a BDD as small as possible for further intensive use
(once a first BDD has been obtained), one can afford to spend a lot of time in order to
optimize the BDD. The best strategy should be to try H7 and H1 on random rewritings
of the optimized O2 version of the tree (after each trial, the best already obtained result
should be used to limit the maximum running time allowed for further computations).
This process may, of course, be interrupted at any moment by the user.
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