
Automated generation of partial Markov chain from high
level descriptions

P.-A. Brameret a,n, A. Rauzy b, J.-M. Roussel a

a LURPA, ENS Cachan, Univ Paris-Sud, F-94235 Cachan, France
b CHAIRE BLÉRIOT-FABRE, LGI École Centrale de Paris, Grande voie des vignes, 92295 Châtenay-Malabry cedex, France

a r t i c l e i n f o

Article history:
Received 19 August 2014
Received in revised form
12 February 2015
Accepted 22 February 2015
Available online 3 March 2015

Keywords:
Model Based Safety Assessment
Markov chains
State space build
AltaRica

a b s t r a c t

We propose an algorithm to generate partial Markov chains from high level implicit descriptions, namely
AltaRica models. This algorithm relies on two components. First, a variation on Dijkstra's algorithm to
compute shortest paths in a graph. Second, the definition of a notion of distance to select which states
must be kept and which can be safely discarded.

The proposed method solves two problems at once. First, it avoids a manual construction of Markov
chains, which is both tedious and error prone. Second, up the price of acceptable approximations, it
makes it possible to push back dramatically the exponential blow-up of the size of the resulting chains.

We report experimental results that show the efficiency of the proposed approach.
& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Markov chains are pervasive in Probabilistic Safety Analyses.
They make it possible to assess performance indicators for systems
with complex control structures such as cold spare units, or
systems with limited number of resources. However, they suffer
from the exponential blow-up of the number of states and
transitions. This drawback has two aspects. First, the manual
construction of Markov chains is both tedious and error prone.
Second, assessment of large Markov chains is very resource
consuming.

A way to solve the first problem consists in generating Markov
chains from higher level descriptions, typically Generalized Sto-
chastic Petri Nets [1] or AltaRica models [2]. These descriptions
represent the state space in an implicit way. To obtain the Markov
chain, a space exploration algorithm is used: starting from the
initial state, states and transitions are progressively added to the
resulting chain, until no more state or transition can be added.

However, only some of the many states of a very large Markov
chain are relevant to the calculation of reliability indicators. The odds
of reaching them is very low. Therefore, they have almost no influence
on the calculated quantities and can be safely ignored. The same idea
is behind algorithms that consider failure sequences in turn, while
keeping only probable enough sequences; see e.g. [3–5]. What we

propose here is rather to generate a relevant fraction of the whole
Markov chain. Technically, the idea is to explore the underlying state
graph at a bounded depth, i.e. to keep states (and transitions between
these states) that are at the shortest distance from the initial state.
Our algorithm relies on two components:

� An efficient way to explore the underlying graph in order to
avoid revisiting states. To do so, we apply a variation of
Dijkstra's algorithm to determine on-the-fly shortest paths in
a graph [6].

� A suitable notion of distance which is basically the probability
of the path and that is used as an indicator of relevance for
states.

The combination of these two components proves extremely
efficient. We present here examples for which a partial chain,
whose size is a tiny fraction of the complete chain, makes it
possible to approximate system unreliability with a relative error
less than 0.25%.

It is not possible to guarantee a priori the quality of the approxima-
tion (to get a “probably approximately correct” result according to
Valiant's scheme for approximation algorithms [7]). However, we show
that it is possible to calculate a posteriori an upper bound of the
probability of discarded states. This bound provides the analyst with a
means to assess the accuracy of the approximation.

The method we propose in this paper is a contribution to the
so-called Model-Based Safety Analyses: it makes Markov chains an
effective tool to assess large high level models. This tool is of
paramount interest for systems that show dependencies amongst

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ress

Reliability Engineering and System Safety

http://dx.doi.org/10.1016/j.ress.2015.02.009
0951-8320/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: pierre-antoine.brameret@lurpa.ens-cachan.fr (P.-A. Brameret),

Antoine.Rauzy@ecp.fr (A. Rauzy),
jean-marc.roussel@lurpa.ens-cachan.fr (J.-M. Roussel).

Reliability Engineering and System Safety 139 (2015) 179–187

failures, i.e. systems for which combinatorial representations (such
as Fault Trees) are not suitable.

The remainder of this paper is organized as follows. Section 2
introduces the context of the present work, and discusses related
works. Section 3 presents the algorithm. Section 4 discusses issues
regarding the practical implementation of the algorithm and the
accuracy of the approximation. Finally, Section 5 presents experi-
mental results.

2. Problem statement

2.1. Context

Classical formalisms used in safety analyses, such as Fault Trees
and Markov chains, are well mastered by analysts. Moreover, they
provide a good tradeoff between the expressiveness of the modeling
formalism and the efficiency of assessment algorithms. They stand
however at a low level. As a consequence, there is a significant
distance between the specifications of the system under study and
the safety models of this system. This distance is both error prone and
a source of inefficiency in the modeling process. Not only are models
difficult to share amongst stakeholders but any change in the
specifications may require a tedious review of safety models.

Hence the idea is to describe systems with high level modeling
formalisms and to compile these high level descriptions into lower
level ones, typically Fault Trees and Markov chains, for which
efficient assessment algorithms exist. AltaRica 3.0 is such a high
level formalism (see e.g. [8]).

The semantics of AltaRica 3.0 is defined in terms of Guarded
Transition Systems [9]. Prior to most of any assessment, including
compilation into Markov chains, AltaRica 3.0 models are flattened
into Guarded Transition Systems as illustrated Fig. 1 which gives
an overview of the AltaRica 3.0 project.

As defined in [8], a Guarded Transition System (GTS for short) is
a quintuple 〈V ; E; T ;A; ι〉, where

� V ¼ S⊎F is a set of variables, divided into two disjoint subsets:
the subset S of state variables and the subset F of flow variables.

� E is a set of events.
� T is a set of transitions. A transition is a triple 〈e;G; P〉, denoted

as e : G-P, where eAE is an event, G is a guard, i.e. a Boolean

formula built over V, and P is an instruction built over V, called
the action of the transition. The action modifies only state
variables.

� A is an assertion, i.e. an instruction built over V. The assertion
modifies only flow variables.

� ι is the initial assignment of variables of V.

In a GTS, states of the system are represented by variable assign-
ments. A transition e : G-P is said to be fireable in a given state σ if
its guard G is satisfied in this state, i.e. if GðσÞ ¼ true. The firing of
that transition transforms the state σ into the state σ0 ¼ AðPðσÞÞ, i.e. σ0

is obtained from σ by applying successively the action of the
transition and the assertion.

Guarded Transition Systems are implicit representations of
labeled Kripke structures, i.e. of graphs whose nodes are labeled
by variable assignments and whose edges are labeled by events.
The so-called reachability graph Γ ¼ 〈Σ;Θ〉 of a GTS 〈V ; E; T ;A; ι〉 is
the smallest Kripke structure such that

� ιAΣ.
� If σAΣ, e : G-P is a transition of T and GðσÞ ¼ true (the

transition is fireable in σ), then σ0 ¼ AðPðσÞÞAΣ and
e : σ-σ0AΘ.

If exponential distributions are associated with events of E, the
Kripke structure Γ ¼ 〈Σ;Θ〉 can be interpreted as a Continuous Time
Homogeneous Markov Chain (for sake of brevity we shall just write
Markov Chain in the remainder of the paper). The reliability indicators
(such as system unavailability) can be defined by associating a reward
(a real number) with each state of the chain.

The reachability graph may be very large, even for small GTS.
Assume for instance that we model a system made of n indepen-
dent, repairable components. Then, the number of variables of V is
n, the number of transitions of T is 2� n, but the number of states
of Σ is 2n and the number of transitions of Θ is n� 2n. Even when
the components of the system are not fully independent, safety
models tend to show the same picture, i.e. a number of states
which is exponential in the number of components (or the
variables in the GTS) and a number of transitions which is a small
multiple of the number of states.

The idea is thus to generate (still starting from the initial state and
applying the above principle) only a fraction of the Kripke structure,

Fig. 1. Overview of the AltaRica 3.0 project.

P.-A. Brameret et al. / Reliability Engineering and System Safety 139 (2015) 179–187180

keeping only states that are relevant with respect to the calculation of
reliability indicators, and transitions between these states.

2.2. Related work

Several strategies have been proposed to overcome, or at least
to contain, the combinatorial explosion of the size of Markov
chains. Establishing a full review of the literature on this topic is
quite difficult, because Markov chains are pervasive in many areas
of science. We review here a few ideas that are related to the
proposed work, but our aim is not to provide a comprehensive
review of related research.

As already pointed out in the Introduction, methods have been
developed to assess implicitly described Markov chains sequence
by sequence (see e.g. [3–5]). The calculated quantity is obtained by
summing-up individual values obtained for sequences. Sequences
with a too low probability are discarded. This method is used by
Bouissou and Bon to assess the so-called Boolean-Driven Markov
Processes [10]. Of course, Generating a partial Markov chain
induces a higher memory consumption than considering
sequences in turn (if sequences are not saved), but subsequent
calculations are much easier. The partial chain is actually gener-
ated independently of any specific target indicator or mission time.
It can then be used to calculate any indicator defined in terms of
rewards and transient probabilities, steady state probabilities or
sojourn times.

Another approach has been proposed by Plateau et al. for the
assessment of Stochastic Automata Network – SAN are another
high level formalism to describe finite state automata –, see e.g.
[11,12]. The idea is to express the Markov chain in terms of a
generalized tensor product, using the modularity of SAN models.
This approach makes it possible to reduce the size of the chain, but
it does not reduce its number of states.

Pribadi et al. introduced a method to reduce the size of Markov
chains while guaranteeing the exact assessment of the rewards
[13]. This method seems efficient to reduce the chain but it relies
on a strong ergodicity hypothesis. This hypothesis is not always
verified, in particular in the case of non-repairable systems.

Fourneau et al. proposed a theoretical framework to study state-
space truncation, i.e. to estimate bounds on the error made by
applying such censoring (see e.g. [14,15]). These theoretical develop-
ments are of interest although it seems difficult to apply them to our
concrete problem because of the complexity of underlying algorithms.

Mercier developed in [16] approximate bounds to quickly
calculate transient and steady-state probabilities. Unfortunately,
the method uses the inversion of a matrix which is similar to the
transition matrix, so the method is not scalable.

Carrasco proposed in [17] approximate bounds with error control
to calculate transient rewards of a Markov chain. This method is
interesting because it uses a smaller Markov chain to approximate the
bigger one, and is based on sequences. It is an optimized algorithm to
calculate rewarded Markov chains. However, the algorithm to build
the smaller chain uses matrix product involving the transition matrix
of the bigger chain, so the method is not scalable.

Muntz et al. developed in [18] a method to bound steady-state
performance indicators of a system using approximate aggregation in
Markov chains. They build the Markov chains from (simple) high level
description, and avoid the construction of the whole chain. Themethod
we develop in this paper is close to that one: we generate also a partial
Markov chain from a higher level modeling language. However, in
contrast to Muntz et al., we do not make any assumption about the
input model. The method proposed by Muntz et al. works only for
models in which the number of possible failures in each state of the
system is known prior to the calculation of the chain and only one
component can be repaired at a time.

To the best of our knowledge, the approach we propose in this
paper is original. It can evaluate any performance indicator of any
system, while the full Markov chain is never generated.

3. Partial construction of the reachability graph

The algorithm to build a partial reachability graph relies on two
components: first, a variation of Dijkstra's shortest path algorithm,
second the calculation of suitable notion of distance, i.e. a relevance
factor for states. In this section, we shall present them in turn.

3.1. Variation on Dijkstra's shortest path algorithm

Let 〈V ; E; T ;A; ι〉 be a Guarded Transition System and Γ ¼ 〈Σ;Θ〉

be its reachability graph. Assume that a length lðe : σ-τÞ, i.e. a
positive real number, is associated with each transition of Θ (no
matter what it means for now).

The distance from a state σ to any state τ of Σ is defined as
usual as the minimum, over the paths from σ to τ, of the lengths of
the paths. The length of a path is the sum, over the transitions of
the path, of the length of the transitions.

The Dijkstra's algorithm [6] calculates distances of all states from a
source state. The basic idea is as follows. At any time, there is a set C of
candidates, i.e. of states that have been reached but not treated yet.
Initially C contains only the source state. The calculation is completed
when there are no more candidates. If C is not empty, the algorithm
picks up the candidate σ that is at the shortest distance from the
source, removes it from C and then considers in turn all of the
successors of σ. Let τ be such a successor. If τ is already treated, there

Limited state space when
the exploration is stopped

Explored () Candidates (C)

Sink

Concentrate
Candidates
into a single
new state

Fig. 2. Building the Markov chain with a sink state to gather discarded candidate states.

P.-A. Brameret et al. / Reliability Engineering and System Safety 139 (2015) 179–187 181

is nothing to do. If τ is not in C, then it is added to C and its distance to
the source dðτÞ is set to dðσÞþ lðσ; τÞ, where lðσ; τÞ denotes the length
of the edge ðσ; τÞ. Finally, if τ already belongs to C, then its distance to
the source is updated, i.e. is replaced by dðσÞþ lðσ; τÞ if this value is
smaller than the previous value of dðτÞ.

This strategy ensures that each state is treated only once and
therefore the algorithm is linear in the number of transitions of
the graph. To understand why it works, it suffices to remark that
there cannot be a shortest path from the source to the selected
candidate σ going through non-treated states because all of these
states are already at the longer distance from the source than σ.

We designed a variation of Dijkstra's algorithm to build on-the-
fly a partial reachability graph up to a given size S. Algorithm 1
sketches the way it works. The limiting size S of the graph can be
either the number of states, or the number of transitions, or the
number of bytes of the objects in memory or any other convenient
measure. In our experiments, we used the number of transitions.

Algorithm 1. Algorithm for the construction of a partial reach-
ability graph of size at most S.

Input: A GTS 〈V ; E; T ;A; ι〉
Input: A function lðe : σ-τÞ that calculates the length of a
transition
Input: A threshold S on the size of the reachability graph
Output: ΓS ¼ ðΣ;ΘÞ the partial reachability graph
Local: C the set of candidate states

Local: dðσÞ the distance of each state σ to the initial state ι

1 begin

2

3

4
5
6

7
8
9
10
11
12
13
14
15

16
17
18
19

// Initialization

C’fιg; Σ’∅; Θ’∅; dðιÞ’0:0;
// Construction of the state space

while Ca∅ and Γ
�� ��rS do

// Selection of the best candidate

let σ be the candidate with the minimum value dðσÞ;
C’C\fσg;
Σ’Σ [fσg;

// Calculation of its successors

for each fireable transition e : G-P of T do
let τ¼ AðPðσÞÞ;
let d¼ dðσÞþ lðe : σ-τÞ;
if τAC and dðτÞ4d then
⌊dðτÞ’d;

else if τ=2C and τ=2Σ then
dðτÞ’d;

C’C [fτg;

$

Θ’Θ [fe : σ-τg;

666666666666666664

6666666666666666666666666666666664
// Removal of discarded candidates

create a sink state ω and add it to Σ;

for each transition e : σ-τ in Θ s:t: τ=2Σ do

remove e : σ-τ from Θ;

add e : σ-ω to Θ;

$

6664

The initial state ι is the initial assignment of variables of the
given GTS 〈V ; E; T ;A; ι〉. The algorithm builds the reachability graph
by adding in order states that are at the shortest distance from ι. It
is thus possible to stop the exploration at any time while keeping
only the “best” states.

The last part of the algorithm redirects to a sink state transi-
tions whose target state has been discarded (see Fig. 2). An
alternative consists in just discarding these transitions. We shall
explain in the next section the interest of the sink state ω.

3.2. Suitable notion of distance

In Algorithm 1, the notion of distance is rather abstract. From a
mathematical viewpoint, we just need a set of values D together
with a comparison operation o and a binary aggregation (or sum)
operation þ so that for any two elements a and b of D, the
following properties hold:

� o is a total order over D, i.e. either [arb or bra].
� The sum of two distances is a distance, i.e. aþbAD.
� By adding a distance to a distance we get a longer distance, i.e.

araþb.

Assume that each event e is associated with a transition rate
λðeÞ. Let σ be a state of Σ with out transitions
e1 : σ-τ1;…; ep : σ-τp. Then, the probability pðei : σ-τiÞ to take
the transition ei : σ-τi (1r irp) is as follows:

pðei : σ-τiÞ ¼
λðeiÞP

1r jrpλðejÞ
ð1Þ

Moreover, the mean time θðσÞ to get out of the state σ is as
follows:

θðσÞ ¼ 1P
1r jrpλðejÞ

ð2Þ

Our original idea was to define a notion of distance that takes
into account both pðei : σ-τiÞ and θðσÞ. Multiple experiments with
various combinations of these two quantities showed however
that taking into account θðσÞ is of no help for our objective.
Eventually, we define the distance just as pðei : σ-τiÞ with the
multiplication (of conditional probabilities) as the aggregation
operation, and 4 as order relation. It is easy to verify that these
operations verify the properties stated above.

This relevance indicator for states is essentially heuristic. It is
fully compatible with Dijkstra's algorithm, therefore making the
generation of the chain very efficient.

4. Discussion

In this section, we discuss two important issues regarding our
algorithm: first, its practical implementation; second, the accuracy
of approximations.

4.1. Practical implementation

To implement efficiently the algorithm proposed in the previous
section, we have to choose carefully data structures to encode states
of Σ, the set Σ itself, transitions ofΘ, the setΘ itself, and the set C of
candidates. We shall examine them in turn.

Each state σmust encode a value for each variable of V. In Guarded
Transition Systems (and more generally in AltaRica 3.0), the value of
flow variables can be calculated (by means of the assertion A) from
the value of state variables. Therefore it is possible to store values of
state variables only, up to the cost of the recalculation of the assertion
(which is linear in the number of flow variables). We simply encoded
states as arrays of values. More elaborated data structures such as
Binary Decision Diagrams [19] that makes it possible to share
information amongst the different states and therefore to get more
compact encoding could be tested in future implementation. States
embed also a real number to encode their distance to the origin.

We encoded the set Σ by means of an AVL Tree (see e.g. [20]),
so that testing whether a given state belongs to the set, insertions
and removals can be performed in OðjV j � log ðjΣ j ÞÞ (the factor
jV j is the cost of a comparison between two states). The size of
the encoding of Σ is in OðjV j � jΣ j Þ.

P.-A. Brameret et al. / Reliability Engineering and System Safety 139 (2015) 179–187182

Transitions are encoded as triples of pointers (to source and
target states and to the event). The set Θ can be just implemented
as a list so that insertions can be done in constant time. Removals
of the last part of the algorithm can be done efficiently as well for
the whole list has to be traversed anyway. The encoding of Θ is
therefore linear in the size of this set.

Finally, the set C must be implemented in such a way that
insertions and removals as well as the selection of the state at the
shortest distance of the initial state are efficient. We chose a binary
heap to do so (see e.g. [21]) which makes the former insertions
and removals in OðjV j � log ðjC j ÞÞ and selection of the candidate
in Oð1Þ. C is also backed up with an AVL Tree, because testing
whether a given state is a candidate would not be efficient with
the binary heap.

As already pointed out, the algorithm visits each transition at
most once. With the chosen data structures, the cost of a visit of a
transition is in OðjV j � log ðjΣ j ÞÞ (given that C is in any case
smaller than the final size of Σ). So eventually, the whole
algorithm runs in OðjV j � log ðjΣ j Þ � jΘj Þ.

The number of transitions is in general in OðjV j � jΣ j Þ (for the
reasons given Section 2.1). So, the size of the encodings of Σ andΘ
are comparable and related. Again, the really limiting factor is the
number of states of the reachability graph.

4.2. Accuracy of the approximation

The algorithm we propose here is a heuristic to build a partial
Markov chain. It would be desirable to guarantee the accuracy of
this approximation, i.e. to be able, given a model (a GTS) M and a
maximum percentage of error ϵ, to determine a priori (prior to the
construction of the chain) a threshold S on the size, such that the
error made by calculating reliability indicators from ΓS rather than
from Γ is at most ϵ. Of course S should be small enough, i.e.
typically be polynomially related to the size of M. Unfortunately,
guaranteeing the accuracy is not possible. To prove this negative
result, we use a counterexample. We can observe first that a Fault
Tree can be easily encoded as a GTS:

� Each basic event is encoded by means of Boolean state variable
and a failure transition that turns the state variable from false
to true.

� Each gate is encoded bymeans of a flow variable and an instruction
of the assertion that updates the value of the variable according to
the value of its fan-ins.

Now, if we were able to build a polynomial size Markov chain for
that GTS that provides a predictable degree of approximation, we
would be able to this degree of approximation in polynomial time
for the probability of the top event of the Fault Tree. However, the
calculation of the probability of the top event of a Fault Tree is P-
hard [22] and even approximations of P-hard problems are hard,
as predicted by the computational complexity theory (see e.g.
[23]). It follows that obtaining predictable approximations is not
possible.

Note also that in practice, the question must be set in different
terms. In fact, we have a computer (or network of computers) with
a given memory. So the question is actually what can we do within
this memory? In this respect, the value of S does not depend on
the model, but on the calculation resources at hand.

Does it mean that the algorithm we propose here is just a
heuristic method without any possibility to monitor the error? Not
exactly.

Here comes into the play the sink state ω we introduced in the
last part of our algorithm. The reward for that state can be set to 0
(or to any convenient value) so that it does not influence the
calculation of the reliability indicator of interest. The probability to

be in any other state of the partial chain state is necessarily smaller
than the probability to be in the same state in the complete chain,
because the sink state absorbs a fraction of this probability with-
out restituting anything (the same reasoning applies to sojourn
times). As a consequence, the error made by considering the
partial chain is bounded by the probability to be in the sink state
(or the sojourn time in this state) times the suitable value of the
reward.

Note that we can consider the absolute value of this indicator to
obtain an absolute bound on the error, or to compare it with the
approximated value of the reliability indicator, so to get a relative
bound on the error. Of course, the latter error is in general much
higher than the former one.

This is only an a posteriori result about the accuracy of the
approximation (as it comes after the construction of the partial
chain), but it is better than nothing. As we shall see in the next
section, this indicator is of real practical interest. It could be used
for instance to seek for a suitable value of S by means of a
dichotomic search, in case one tries to get the smallest partial
chain that approximates the complete chain with a given degree of
approximation.

5. Experiments

In this section, we report experimental results we obtained
with our algorithm in two test cases of the literature. First, a non-
repairable system for which the complete state space can be
explored (so that the accuracy of approximations can be assessed
directly). Second, a repairable system for which the complete state
space is too big to be fully explored. On this example, the sink state
technique makes it possible to show that the accuracy of the
approximation is good enough, even for small maximum sizes.

5.1. A computing system

This example comes from Malhorta et al. [24]. It was used in
[25] to compare three safety tools which assess the unreliability of
a system, based on different approaches: DBNet [25], DRPFTproc
[26] and Galileo [27]. The safety model, technical data and mission
times we use here were described in [25].

The objective is to assess the (transient) unreliability of the
system at different mission times.

5.1.1. Description
The system pictured Fig. 3 is a non-repairable multiprocessor

computing system made of two computing modules CM1 and
CM2. Table 1 gives reliability data of components.

� CM1 consists of a processor P1, a memory M1, a primary hard
disk D11 and a backup disk D12.

� CM2 consists of a processor P2, a memory M2, a primary hard
disk D21 and a backup disk D22.

� M3 is a spare memory. It can replace M1 or M2 in case of
failure, but not both.

� A unique bus connects CM1, CM2 and M3.
� The power supply PS is used by both processors.

The disks and the memory are warm spares, which deteriorate,
even when unused.

5.1.2. Experimental results
Table 2 shows unreliabilities for several mission times calcu-

lated with different tools. Values given for DBNet, DRPFTproc, and
Galileo come from [25]. The complete Markov chain is made of

P.-A. Brameret et al. / Reliability Engineering and System Safety 139 (2015) 179–187 183

3328 states and 17,152 transitions. As the reader can see, results
obtained with the four methods are almost identical.

As the size of the Markov chain is roughly determined by its
number of transitions, we shall study partial Markov chains for
successive values (fractions) of the maximum number of transi-
tions (1/2, 1/5, 1/10…).

To start with, we shall consider the Markov chain obtained by
merging all discarded candidate transitions into a sink node. As
explained in Section 4.2, this chain is used to obtain a lower bound
and an upper bound for the unreliability of the system. The lower
bound is obtained by summing up the probability of failed states.
The upper bound is obtained by adding the probability to be in the
sink state to the lower bound.

Results are reported in Table 3. The first column gives the
maximum number of transitions before discarding candidate states.

The second one expresses this number as a fraction of the number of
transitions of the full chain. The third column gives the number of
states of the partial chain. The fourth column gives its number of
transitions. This number is slightly bigger than the threshold for it
incorporates also the transitions to the sink state. The fifth and sixth
columns give respectively the lower and the upper bound obtained
for the unreliability calculated at t¼10,000 h. Finally, the last two
columns give the running time in second (the first number is the
running time for the generation of the partial chain, the second one
is the running time for the assessment of the chain).

Two lessons can be learned from these results:

� Both lower and upper bounds are very close to the actual
unreliability, even for partial chains which represent tiny
fractions (1/20, 1/50) of the full chain.

� The actual unreliability is systematically much closer to the
lower bound.

These two lessons apply to all (reasonable) thresholds and mission
times we tested.

Next, we consider the partial chains obtained by ignoring
transitions going to discarded candidate states. These chains are
approximations of the original one in the full sense (the calculated
unreliability is neither a lower nor an upper bound of the
unreliability). Table 4 gives the calculated approximations for the
same thresholds as previously.

Although the partial chains without sink state cannot provide
bounded approximations, these approximations are in practice
even better than the bounds obtained previously, again with
partial chains which represent only tiny fractions of the full chain.

To deepen these results, we measured the error percentage δðtÞ
of the unreliability U0ðtÞ calculated with a partial Markov chain
made of 74 states and 470 transitions. This error percentage δðtÞ is
defined as follows:

δðtÞ ¼ U0ðtÞ�UðtÞ
UðtÞ

����
����� 100

Fig. 4 presents the evolution of δðtÞ w.r.t. the mission time. The
curve is drawn from 1000 measures (one every 50 h).

It is noticeable that the error percentage never exceeds 0.25%.
Its evolution is influenced by absorbing states in the Markov chain
(the system is made of non-repairable components). The overall
evolution of the error percentage significantly depends on the
system.

5.2. An electric power supply system

The second example is taken from [28,10,29]. It is an electric
power system with repairable components, failures on demand,
cold redundancies, and common cause failures. We shall use here
an augmented version of the model given in [29].

P1 M1 D11 D12

CM1

B

U

S
P2 M2

CM2

PS

M3

D21 D22

Fig. 3. A multiprocessor computing system (taken from [25]).

Table 1
Failure rates and dormancy factors for the computing system.

Component Failure rate (h�1) Dormancy factor

BUS 2.0�10�9 –

P1, P2 5.0�10�7 –

PS 6.0�10�6 –

D11, D12, D21, D22 8.0�10�5 0.5
M1, M2, M3 3.0�10�8 0.5

Table 2
Unreliability of the computing system, assessed with different tools.

Time (h) DBNet DRPFTproc Galileo AltaRica

1000 0.0060086 0.0060088 0.0060088 0.0060088
2000 0.0122452 0.0122455 0.0122455 0.0122456
3000 0.0191820 0.0191832 0.0191832 0.0191833
4000 0.0273523 0.0273548 0.0273548 0.0273548
5000 0.0372379 0.0372413 0.0372413 0.0372413

Table 3
Bounds on the unreliability obtained for the computing system with different partial Markov chains with a sink state, t¼5000 h.

Threshold Fraction states transitions Lower bound Upper bound Generation (s) Assessment (s)

17,152 1/1 3,328 17,152 0.0372413 0.0372413 0.9 1.1
8576 1/2 1433 8637 0.0372413 0.0372413 0.6 0.6
3430 1/5 556 3,473 0.0372412 0.0372413 0.3 0.2
1715 1/10 274 1,719 0.0372339 0.0372430 0.2 0.1
858 1/20 145 876 0.0371127 0.0373886 0.1 0.1
343 1/50 55 344 0.0361117 0.0405602 0.1 0.0

P.-A. Brameret et al. / Reliability Engineering and System Safety 139 (2015) 179–187184

5.2.1. Description
The system is pictured Fig. 5. The role of the system is to supply

electricity out of the boards LHA or LHB. The regular power supply
of boards LHA and LHB comes from the transformer TS. TS is
supplied by the NET and by the plant PLT. When the NET is
available, PLT works in regular mode. Otherwise the PLT works in
standalone mode, which is rather unstable. LHA and LHB can also
be powered by the NET alone through transformer TA. Diesels
generators DA and DB supply respectively LHA and LHB when
these boards are not powered by LGD and LGF. Boards LGD, LGF,
LHA and LHB may fail.

In this paper, we extended the original system with circuit
breakers whose role is to protect the boards. They were chosen to
have an influence on the overall availability while not being the
prevailing components. Careful attention was given to avoid
symmetries, useless components, useless components, and other
means to simplify the model.

Table 5 gives the reliability data taken from [29]. Components
are repairable and have a failure rate λ, a repair rate μ. The plant
PLT may fail on demand to switch to standalone mode with
probability γ. Diesels may fail on demand and have a common
cause failure with rate λcc and repair rate μcc. Diesels which failed
on demand are repaired with rate μd.

The problem at hand is to assess the unavailability of the
system, typically for a mission time of 10,000 h, i.e. about one year.

The system is made of the following elements: 18 “binary”
repairable components, the plant which has 2 failure modes
(failure and failure on demand), and the 2 diesel generators which
have 3 failure modes. The estimated number of states is then about
226 (67 millions) and the estimated number of transitions is 26�
226 (1.7 billions).

5.2.2. Bounds on unavailability
As in the previous section, bounds on the unavailability of the

system are first calculated by means of partial chains with a sink state.
It is important to note that the sink state absorbs an increasing
proportion of probability as the mission time grows. Therefore, the
lower and upper bounds calculated with this technique tend respec-
tively to 0 and 1 as the mission time tends to infinity. Fig. 6 shows a
typical evolution of the bounds (calculated with a threshold
ξ¼ 400;000 on the number of transitions). For a realistic mission time
however (such as 10,000 h), bounds are very significant.

Table 6 gives the bounds calculated at t¼10,000 h with
different thresholds on the number of transitions. Columns give
the same information as previously. These results show that it is
possible to obtain accurate bounds within reasonable amounts of
computing resources (time and memory). Note that generating
and assessing a Markov chain with more than 1 million states and
20 millions of transitions is at the current limit of the technology:

Table 4
Approximations of the unreliability obtained for the computing system with
different partial Markov chains without sink state.

Threshold Fraction states transitions Unreliability Relative error

17,152 1/1 3,328 17,152 0.0372413 (reference)
8576 1/2 1,432 5,859 0.0372413 –

3430 1/5 555 1,888 0.0372413 –

1715 1/10 273 797 0.0372384 7:8� 10�5

858 1/20 144 345 0.0371881 1:4� 10�3

343 1/50 54 105 0.0366998 1:7� 10�2

Fig. 4. Evolution of the error percentage δ with the time.

Line GEV

NET

Line LGR

Plant PLT
Diesel DA Diesel DB

Circuit Breaker
CBD

CBA CBB

CBF
CBD_R

CBA_R CBB_R

CBF_R

Transformer TS

Transformer TP
Transformer TA

400 kV

6.6 kV
20 kV

LGF
LGD

LHA LHB

Fig. 5. An electric power supply system.

Table 5
Reliability data for the electric power supply system.

λ (h�1) μ (h�1) γ μd (h�1) λcc (h�1) μcc (h�1)

NET 1:0� 10�6 8:0� 10�3

GEV, LGR 5:0� 10�6 1:0� 10�2

TP, TS, TA 2:0� 10�6 1:0� 10�3

LGD, LGF, LHA, LHB 2:0� 10�7 1:0� 10�1

PLT (regular mode) 1:0� 10�4 1:0� 10�1 0.5

PLT (standalone mode) 1:0� 10�1 1:0� 10�3

DA, DB 1:0� 10�4 2:0� 10�2 0.001 1:0� 10�1 1:0� 10�4 1:0� 10�2

CBD, CBD_R, CBF, CBF_R 1:0� 10�4 1:0� 10�1

CBA, CBA_R, CBB, CBB_R

P.-A. Brameret et al. / Reliability Engineering and System Safety 139 (2015) 179–187 185

it took us about 6 h to perform the whole computation on a rather
fast PC. Two-third of this calculation time was taken by the
assessment of the Markov chain.

Table 7 reports approximations obtained with chains without sink
state. These chains involve significantly less transitions (and therefore
are faster to assess) than the previous ones. The approximations are
very close to the lower bounds obtained previously.

Fig. 7 plots the “relative” error (as explained Section 4.2) with
different thresholds on the number of transitions. It is calculated
as follows: at mission time, the probability to be in the sink stateω
(which is the absolute error) is divided by the upper bound. It is
not the relative error, as the latter involves the unavailability,
which cannot be computed for this system. However, this value
shows how close the bounds are, relatively to the calculated
unavailability of the system. For instance, with 2,000,000 transi-
tions, the error is 1:3� 10�4, so the unavailability is calculated
accurately with 3 significant figures. The overall evolution of the
error is interesting. The first part shows that there is a minimum
number of transitions fromwhich a limited Markov chain is able to
represent the behavior of the system. The second part shows that
the error decreases regularly when the number of transitions of
the Markov chain is increased.

5.3. Discussing stiff Markov chains

The core idea of the method is to keep only the most probable
states of the system, assuming that those states are close enough
to the initial state. Therefore, its efficiency depends strongly on
whether this assumption is verified or not.

If components of the system are very unreliable (e.g. failure
rates are close to repair rates), then all the states are about equally
probable and the partial generation cannot give accurate results.

If, on the contrary, the components of the system are highly
reliable (failure rates are low, repair rates are high), then the
Markov chain is stiff and the method gives good results because
the probability is concentrated in a few states.

To illustrate this point, let us consider again the electric power
supply in which all the failure rates are divided by ten and all the

repair rates are multiplied by ten (all components are therefore
100 times more reliable than in the original system).

Results for that system (at t¼10,000 hours) are presented in
Table 8. The overall reliability of the system is indeed greatly
improved and the bounds are much closer one to another.

6. Conclusion

In this paper, we proposed an algorithm to build partial Markov
chains from high level descriptions, namely AltaRica 3.0 models.
This algorithm actually applies not only to AltaRica or Guarded

Fig. 6. Evolution of bounds on unavailability as a function of the mission time.

Table 6
Bounds on the unavailability obtained for the power unit with different partial Markov chains with a sink state.

Threshold states transitions Lower bound Upper bound Time (s)

20,000,000 1,259,491 20,000,115 5:5798� 10�7 5:5798� 10�7 7200 þ 19,000

2,000,000 123,722 2,001,075 5:5798� 10�7 5:5805� 10�7 990 þ 2,200

800,000 49,082 800,292 5:5796� 10�7 5:6401� 10�7 380 þ 680

400,000 23,753 400,004 5:5771� 10�7 6:8857� 10�7 180 þ 270

200,000 12,008 200,439 5:5496� 10�7 2:1205� 10�6 86 þ 130

Table 7
Approximations of the unreliability obtained for the power unit with different
partial Markov chains without sink state.

Threshold states transitions Approximation Time (s)

20,000,000 1,259,490 13,279,823 5:5798� 10�7 7200 þ 14,000

2,000,000 123,721 989,637 5:5798� 10�7 990 þ 1,200

800,000 49,081 353,408 5:5798� 10�7 380 þ 330

400,000 23,752 160,920 5:5806� 10�7 180 þ 120

200,000 12,007 73,248 5:6407� 10�7 86 þ 43

Fig. 7. Error of the unavailability obtained for the power unit at mission time, with
different partial Markov chains with a sink state.

Table 8
Bounds on the unavailability obtained for the modified power unit with more
reliable components.

Threshold Lower bound Upper bound

800,000 4:9333� 10�14 4:9341� 10�14

400,000 4:9333� 10�14 5:0674� 10�14

200,000 4:9332� 10�14 2:3141� 10�13

P.-A. Brameret et al. / Reliability Engineering and System Safety 139 (2015) 179–187186

Transition Systems but to any implicit representation of a Markov
chain. It relies on two principles: first, a variation on Dijkstra's
algorithm to compute shortest path in a graph; second, a suitable
definition of distance based on the probability to leave a state by a
given transition. Eventually, the algorithm is a heuristic method to
select which states to keep and which to discard. We showed that,
although it is not possible to bound a priori the accuracy of the
approximation, it is possible to assess it a posteriori, i.e. once the
partial chain has been generated.

We show, by means of test cases taken from the literature, that
it is possible to obtain very accurate approximations, even with
partial Markov chains that represent only a tiny fraction of the
complete chain.

In a word, the compilation into partial chains plays the same
role for Markov models as calculation of Minimal Cutsets with
cutoffs plays for combinatorial models (Fault Trees).

The results presented here are very important in the perspec-
tive of the deployment of Model-Based Safety Assessment. Sys-
tems for which combinatorial models are not suitable (typically
because they involve dependencies amongst events) can be
assessed by means of Markov chains, thanks to the proposed
method.

Future research should explore several potential improvements
and extensions of the proposed algorithm. For instance

� Binary Decision Diagrams-like data structures could be used to
encode states of the reachability graph to obtain more compact
representations.

� Other notions of distances could be designed and compared
with the one we proposed here.

� Deterministic transitions could be taken into account, typically
periodic maintenances, with the idea of compiling the AltaRica
model into a multiphase Markov chain.

The present work opens many interesting perspectives that we
shall explore in the near future.

References

[1] Ajmone-Marsan M, Balbo G, Conte G, Donatelli S, Franceschinis G. Modelling
with generalized stochastic Petri nets, Wiley series in parallel computing.
West Sussex, England: John Wiley and Sons; 1995.

[2] Boiteau M, Dutuit Y, Rauzy A, Signoret J-P. The altarica data-flow language in
use: assessment of production availability of a multistates system. Reliab Eng
Syst Saf 2006;91(7):747–55.

[3] Bon J-L, Bouissou M. Fiabilité des grands systèmes séquentiels: résultats
thèoriques et applications dans le cadre du logiciel gsi. Rev Stat Appl
1992;39(2):45–54.

[4] Collet J, Renault I. Path probability evaluation with repeated rates. In:
Proceedings of annual reliability and maintainability symposium, RAMS'97.
Philadelphia, PA, USA: IEEE; 1997. p. 184–7.

[5] Bouissou M, Lefebvre Y. A path-based algorithm to evaluate asymptotic
unavailability for large Markov models. In: Proceedings of annual reliability
and maintainability symposium, RAMS'2002. Seattle, USA: IEEE; 2002. p. 32–9.

[6] Dijkstra EW. A note on two problems in connexion with graphs. Numerische
Mathematik 1959;1(1):269–71.

[7] Valiant LG. Probably approximately correct: nature's algorithms for learning
and prospering in a complex world. New York, NY, USA: Basic Books; 2013.

[8] Prosvirnova T, Batteux M, Brameret P-A, Cherfi A, Friedlhuber T, Roussel J-M,
et al. The altarica 3.0 project for model-based safety assessment. In: Proceed-
ings of 4th IFAC workshop on dependable control of discrete systems,
DCDS'2013. Great Britain: International Federation of Automatic Control, York;
2013. p. 127–32, iSBN: 978-3-902823-49-6, ISSN: 1474-6670.

[9] Rauzy A. Guarded transition systems: a new states/events formalism for
reliability studies. J Risk Reliab 2008;222(4):495–505.

[10] Bouissou M, Bon J-L. A new formalism that combines advantages of fault-trees
and Markov models: Boolean logic-driven Markov processes. Reliab Eng Syst
Saf 2003;82(2):149–63.

[11] Fourneau J-M, Plateau B. A methodology for solving Markov models of parallel
systems. J Parallel Distrib Comput 1991;12:370–87.

[12] Fernandes P, Plateau B, Stewart WJ. Efficient descriptor-vector multiplications
in stochastic automata networks. J Assoc Comput Mach 1998;45(3):381–414.

[13] Pribadi Y, Voeten JPM, Theelen BD. Reducing markov chains for performance
evaluation. In: Proceedings of PROGRESS'01, STW Technology Foundation;
2001. p. 173–9.

[14] Fourneau J-M, Pekergin N, Younès S. Censoring Markov chains and stochastic
bounds. In: Formal methods and stochastic models for performance evalua-
tion. Lecture notes in computer science, vol. 4748; 2007. p. 213–27.

[15] Busic A, Djafri H, Fourneau J-M. Bounded state space truncation and censored
markov chains. In: Proceedings of IEEE 51st annual conference on decision and
control (CDC). Maui, HI, USA: IEEE; 2012. p. 5828–33.

[16] Mercier S. Bounds and approximations for continuous-time Markovian transi-
tion probabilities and large systems. Eur J Oper Res 2008;185(1):216–34.

[17] Carrasco JA. Computation of bounds for transient measures of large rewarded
Markov models using regenerative randomization. Comput Oper Res 2003;30
(7):1005–35.

[18] Muntz RR, de Souza e Silva E, Goyal A. Bounding availability of repairable
computer systems. SIGMETRICS Perform. Eval. Rev. 1989;17(1):29–38. http:
//dx.doi.org/10.1145/75372.75376.

[19] Brace KS, Rudell RL, Bryant RS. Efficient Implementation of a BDD Package. In:
Proceedings of the 27th ACM/IEEE design automation conference. Orlando, FL,
USA: IEEE; 1990. p. 40–5.

[20] Cormen TH, Leiserson CE, Rivest RL. Introduction to algorithms. Cambridge,
MA, USA: The MIT Press; 1990.

[21] Atkinson MD, Sack J-RW, Santoro N, Strothotte TE. Min-max heaps and
generalized priority queues. Program Tech Data Struct 1986;29(10):996–1000.

[22] Valiant LG. The complexity of enumeration and reliability problems. SIAM J
Comput 1979;8(3):410–21.

[23] Papadimitriou CH. Computational complexity. Boston, MA 02116, USA: Addi-
son Wesley; 1994.

[24] Malhotra M, Trivedi KS. Dependability modeling using petri-nets. IEEE Trans
Reliab 1995;44(3):428–40.

[25] Montani S, Luigi Portinale AB, Varesio M, Codetta-Raiteri D. A tool for
automatically translating dynamic fault trees into dynamic bayesian net-
works. In: Proceedings of annual reliability and maintainability symposium,
RAMS'06. Newport Beach, CA, USA: IEEE; 2006. p. 434–41.

[26] Bobbio A, Raiteri DC. Parametric fault trees with dynamic gates and repair
boxes. In: Proceedings of the annual reliability and maintainability sympo-
sium (RAMS'2004). Los Angeles, CA, USA: IEEE; 2004. p. 459–65.

[27] Dugan JB, Sullivan KJ, Coppit D. Developing a low-cost high-quality software
tool for dynamic fault-tree analysis. IEEE Trans Reliab 2000;49(1):49–59.

[28] Gondran M, Pagès A. Fiabilité des systèmes, Collection de la Direction des
Études et Recherches d’Électricité de France, Eyrolles, vol. 39; 1980.

[29] Rauzy A. An experimental study on six algorithms to compute transient
solutions of large Markov systems. Reliab Eng Syst Saf 2004;86(1):105–15.

P.-A. Brameret et al. / Reliability Engineering and System Safety 139 (2015) 179–187 187

