
AnOptimizedProcedureToGenerateSumsofDisjointProductsE. Châtelet a, Y. Dutuit b, A. Rauzy c & T. Bouhoufani da Universit�e de Technologie de Troyes/LM2S. 10010, Troyes cedex, Franceb Universit�e Bordeaux I/LAP-ADS. 33405, Talence cedex, Francec Universit�e Bordeaux I/LaBRI. 33405, Talence cedex, Franced Universit�e de Batna/Institut d'Hygi�ene et S�ecurit�e. 05000, Batna Alg�erieThis paper describes an e�cient procedure, so-called SODA, to generate a sumof disjoint products (SDP) from a set of minimal products representing eitherthe minimal s-t paths of reliability networks or the minimal cutsets of coherentfault trees. The proposed procedure involves the concept of multiple-variablesinversion or grouped-variables inversion. The process is improved by carrying outa preprocessing of the initial formula which reduces the number of terms of theresult, and hence the overall computation time. A previous version of this paperwas submitted to RESS by the fall of 1993 and was accepted up to minor revisionsone year later. Unfortunately, the �nal redaction has been delayed since. Thepresent version takes into account some other papers published in between andincludes new ideas that improve the implementation of the proposed algorithm.At least on classical test examples, SODA produces shorter formulae than theother SDP methods known by the authors.1 INTRODUCTIONManymethods have been proposed in order to makedisjoint the elements of a set of products repre-senting either the minimal s-t paths of a reliabil-ity network or the minimal cutsets of a coherentfault tree (see [1] or [2] for a survey on Sum of Dis-joint Products methods). The aim of such a rewrit-ing is to make it possible to assess the probabil-ity of the formula in an e�cient way. It is worthnoticing that the determination of the probabilityof a Boolean formula is a very hard problem | itis #P-complete | even under very strong restric-tions (such as monotony) on the type of the formula[3]. Without entering into details of computationalcomplexity theory, this means that it is hopeless to�nd an e�cient algorithm (i.e. an algorithm of poly-nomial worst case complexity) to solve it. As a con-sequence, it is hopeless as well to �nd an e�cient

algorithm to rewrite a set of products into an equiv-alent set of disjoint products, for the probability ofthe later can be determined linearly with respectto the number of variable occurrences it contains.Also hopeless is the aim to compare algorithms andheuristics from a general and theoretical viewpoint.This does not mean however that nothing can bedone in practice. SDPmethods should be compared(experimentally) with respect to the following cri-teria:(i) The form of the resulting formulae, which ismainly a matter of data structures.(ii) The size of the results.(iii) The size of intermediate data structures thatare necessary to build the results.(iv) The computation time.In this article, we stand in the classical framework ofSDP techniques where it is assumed, quite arbitrar-Preprint submitted to RESS 25 November 1998

ily 1 , that the result has to be an explicitely givenlist of products. Several authors consider howeverproducts in which several variables can be negatedat once. Algorithms using that technique (see forinstance [5{7]) give in general shorter results thanalgorithms that produce only negative literals (seefor instance [8{10]). For all of these algorithms, apreprocessing of the initial set is able to reduce the�nal number of disjoint products, and consequentlythe overall running time.In this paper, we present a new procedure, so-called Disjunction Approach (DA), that uses themultiple variables negation technique. We proposealso a preprocessing module, so-called PPM, whichis a heuristics to order the products of the initialset. The whole method PPM+DA, is called Semi-Optimal Disjunction Approach (SODA).The rest of this paper is organized as follows. Theprinciple of the DAmethod is presented at section 2by means of a small example. The section 3 de-scribes the preprocessing module PPM by means ofanother small example. A comparison with alreadyproposed heuristics is provided. The e�ciency ofSODA is shown in section 4 by comparing its re-sults with those obtained by means of some othermethods on a reference test example. Implemen-tation issues are discussed at section 5. Finally, ashort conclusion ends the paper.2 THE DISJUNCTION APPROACH2.1 PrincipleThe principle of the disjunction approach (DA) isas follows.First, the products of the formula F under studyare sorted according to any heuristics. Let us denoteP1; P2; : : : ; Pn the obtained sequence of products.The result R is initialized with P1.Second, the products are considered in turn, in in-creasing order (of their indices). For each productPk (k = 2; n), the following sum is built:1 This remark is motivated by the fact that there existsmethods that do not produce this type of results but thatmake it possible to assess e�ciently the probability ofthe formula.We think here especially to Binary DecisionDiagrams (see for instance [4] for a survey on the use ofBDDs in the reliability analysis framework).

Tk = k�1Xi=1 Pi n Pk (1)where Pi n Pk denotes the constant 0 if Pi and Pkcontains two opposite literals, and the product ofthe literals of Pi that do not belong to Pk otherwise.For instance, if P1 = ab and P2 = bcd then P1nP2 =a.Third, the de Morgan laws are applied on the nega-tion of Tk in order to get an equivalent sum of dis-joint products.Tk =Dk;1 + : : :+Dk;rk (2)Fourth, the products Dk;1:Pk, : : : , Dk;rk :Pk areadded to the result R. By construction, the Dk;j'sare pairwisely disjoint and disjoint from the Pi's(i < k). Moreover, it is easy to verify that the resultR is equivalent to the initial formula F .Two improvements can be achieved on that process.First, if the termPinPk implies another termPjnPk,then it can be safely removed from the sum Tk.Second, if the term Tk;i = PinPk does not share anyvariable with the other terms of the sum Tk, then Tkcan be rewritten as Tk =Pj<k;j 6=i Tk;j:Tk;i. This isthe principle multiple variables inversion method.The disjonction approach embeds these two im-provements.2.2 ExampleIn order to illustrate how the DA method works,let us consider the four products given in tables 1and 2 of reference [11]. Let f be the sum of theseproducts: f = ab + bcd + dei + acei. The problemis to transform f into an equivalent sum of disjointproducts with the minimal number of terms.As presented by one of us in [12], let us construct atable T in which the initial products are arrangedin marginal column (Pi) and row (Pj) in increasingorder of their lengths (see table 1). The cell Tj;i con-tains the product Pi n Pj if i < j, and the constant0 otherwise.An example of the �rst improvement is provided bythe cells T4;2 and T4;1: T4;2 = bcd nacei = bd can beremoved because it implies T4;1 = ab n acei = b.The �fth and sixth columns give respectively theTi's and the Ti's. The last column gives the �ve2

Table 1. The Disjunction Approach applied to the �rst sequence.PinPj ab bcd dei acei Ti Ti DPi = Ti:Piab 0 0 0 0 0 1 abbcd a 0 0 0 a �a �a:bcddei ab bc 0 0 ab+ bc �b+ �ab�c �b:dei+ �ab�cdeiacei b 0 d 0 b+ d �b �d a�bc �deiresulting disjoint products DPi and we have f =PiDPi.The DA method is very simple and slightly simi-lar to the one presented in [11]. However, it is wellknown that the e�ciency of this kind of proce-dures, in terms of resulting disjoint products, de-pends strongly on the order in which the productsof the initial set are arranged. In order to illustratethis dependency, let us consider the same exampleas above, but for the order f = ab+dei+bcd+acei(table 2).With this second order, DA provides a four termsresult instead of a �ve terms one in the former case.It is worth noticing that this improvement is pos-sible because of the use of the multiple variablesinversion principle (here applied to DP2 with aband to DP3 with ei). The question is thus to designheuristics that arrange the initial sequence in orderto obtain as few disjoint products as possible in theresult. This is the role of the preprocessing modulePPM.3 THE PREPROCESSING MODULE3.1 PrincipleA brief examination of the table 1 shows clearlythat the term DP3 involves more products than itscorresponding product P3. This fact is obviouslydue to the disjunction process which generates ad-ditional terms related to the presence of some lit-erals common to several Ti;j's. The role devoted tothe preprocessing module (PPM) of SODA is to re-duce, as far as possible, the number of these addi-tional terms. This is done thanks to discriminativecoe�cients ri computed for each product Pi. Thesecoe�cients make it possible to sort the initial se-quence in a semi-optimal manner (the order is onlysemi-optimal because the obtention of the optimal

sequence cannot be guaranted).The principle of PPM is as follows.First, products are grouped according to theirlengths. The groups are sorted in increasing or-der of the length of their products. Therefore, itremains to sort the products inside each group.Second, for each product Pi, the products Ti;j =Pj nPi are built for all of the products Pj 's such thatthe length of Pj is less or equal to the length of Pi(i.e. each Pj that is potentially before Pi in the �nalorder). The Ti;j's are collected into a set Ti. TheTi;j 's that verify the preconditions of one of the twoimprovements described in the previous section arenot collected. Namely, if Ti;j implies another Ti;kor if it does not share any variable with the otherTi;k's, then it is not collected into Ti.Third, the Pi's such that Ti = ; are put at the endof their group.Fourth, the products that remains inside each groupare sorted in increasing order of the coe�cient ride�ned as follows (the considered Ti;j 's are thosethat belong to Ti).ri= �����12 � card[Sj 6=k Ti;j \ Ti;k]card[Sj Ti;j] ����� (3)LetN = card[Sj 6=k Ti;j\Ti;k] andD = card[Sj Ti;j].The coe�cient ri comes the experimental obser-vation that the disjunction approach produces rel-atively few terms when N=D is close to 0 or to 1(and consequently it is of interest to put the Pi'swith ri's close to 1/2 at the end of the sequence).3.2 ExampleAs an illustration, let us consider the network pic-tured Fig. 1, so-called modi�ed ARPANET, thathas been already used as a reference case by sev-eral authors [2,6,13]. The table 3 summarizes the3

Table 2. The Disjunction Approach applied to the second sequence.PinPj ab dei bcd acei Ti Ti DPi = Ti:Piab 0 0 0 0 0 1 abdei ab 0 0 0 ab ab (ab)eibcd a ei 0 0 a+ ei �a(ei) �a(ei)bcdacei b d 0 0 b+ d �b �d a�bc �deiTable 3. Complete analysis of the ARPA net with SODAPi initialrank �nalrank terms from which Ti and DPi are built ri DPiadh 1 1 j bfi; be 0:25 adhbfi 3 2 adh j eh 0:25 bfi(adh)beh 2 3 ad; fi j beh(ad)(fi)acfi 5 4 dh; b; beh j dg; bdh; bgh; eh; beg 0 acfi�b(dh)adgi 6 5 h; bf; beh; cf j bch; bfh; ceh; be 0 adgi�h �f + adgi�hf�b�cbcdh 7 6 a; fi; e; afi; agi j fg; ae; egi 0:167 bcdh�a�e(fi)bfgh 9 7 ad; i; e; aci; adi; cd j ace; ei 0:167 bfgh�e�i �d+ bfgh�e�id�a�caceh 4 8 d; bfi; b; fi; dgi; bd; bfg j bgi aceh�b �d(fi)begi 8 9 adh; f; h; acf; ad; cdh; fh; ach j begi �f�h(ad)acegi 10 10 dh; bf; bh; f; d; bdh; bfh; h; b j fh; df; bd adegi�b �d �f�hacfgh 11 11 d; bi; be; i; di; bd; b; e; bei; ei j dei; bdi acfgh�b �d�e�iadefi 12 12 h; b; bh; c; g; bch; bgh; ch; bg; cg; cgh j bcg adefi�b�c�g�hbcdgi 13 13 ah; f; eh; af; a; h; fh; aeh; e; ae; afh; aef j bcdgi�a�e �f�huuu uuu��@@ @@������ ts b c def g hia
Fig. 1. The modi�ed ARPA networkresults obtained by applying PPM to this network.The terms not collected in the Ti because they im-ply some other term are crossed out. The characterj separates the terms that are taken into account tobuild DPi (at its left) from those that are not (atits right). An empty cell in the ri column indicatesthat the set Ti is actually empty once the improve-ments have been achieved.

3.3 Comparison between PPM and sixother preprocessing techniquesSoh and Rai provided experimental results to com-pare the performance of six di�erent preprocess-ing techniques applied to minimal paths of manynetworks [13]. They used the CAREL (ComputerAided RELiability evaluator) algorithm [14] to ob-tain SDP terms. The table 4 reports a comparisonbetween these six methods and PPM. The mean-ings of H, L, C are respectively the decreasing Ham-ming distance, Lexicographic ordering and increas-ing Cardinality (more details can be found in thecited papers).4

Table 4. Comparison between six preprocessing techniques of [13] and PPMHeuristics Random H L C C + H C + L SODAadh adh acegi b� adh adh adhadgi bcdh aceh beh beh beh b�ade� acfgh acfgh adh b� b� behaceh aceh ac� bfgh adgi aceh ac�acegi ade� ade� begi ac� ac� adgiacfgh adgi adgi bcdh begi adgi bcdhac� bfgh adh ac� aceh bcdh bfghbcdh beh bcdgi aceh bcdh begi acehbcdgi bcdgi bcdh adgi begh bfgh begibeh ac� begi bcdgi ade� acegi acegibegi acegi beh acfgh acegi acfgh acfghbfgh b� bfgh acegi acfgh ade� ade�sequencesof
paths

b� begi b� ade� bdfgi bcdgi bcdgi#SDP 23 22 26 16 16 17 15Table 5. The number of disjoint products given by some SDP techniquesSVI-methods MVI-methodsAbraham ALR ALW SLR CAREL [14] Heidtman Singh SODA[8] [10] [10] [15] H L C C+H C+L [5] [7]71 61 59 55 101 76 39 41 41 41 37 35u u uuuuuu��@@ ��@@����HHHH66??..........................�..........................�..........................RR..........................�?6..........................	 -- -.....................j.....................Ys thigefac bk j ld
Fig. 2. Network of example 24 FURTHERCOMPARISONBETWEENSODA AND OTHER APPROCHES4.1 A benchmark exerciseThe second test example, pictured Fig. 2, is a12-components system with 24 minimal paths. Itis also one of the most frequently cited example[6{10,13,15]. The table 5 summarizes the numberof disjoint products obtained by means of severalSDP techniques. These techniques are splitted into

two categories: those that use single variable inver-sion (SVI) and those that use multiple variablesinversion (MVI). The meaning of the acronymsused in this table is as follows. ALR: Abraham-Locks Revised, ALW: Abraham-Locks-Wilson,SLR: Schneeweiss-Lin Revised. As for the previousexample, the SODA procedure appears as the bestalgorithm to reduce the number of terms in theSDP resulting from the second network analysis.4.2 The R�'s networksThe third test example is the generic network R�of reference [5]. This network is made of � squaresjoined side by side in a linear chain as shown Fig. 3.In that network, each edge corresponds to a compo-nent. Therefore, there are n = 3� + 1 componentsand m = 2� minimal s-t paths. The generic expres-5

uu uu uu u uuu ts 23 56 n-2n-1 nn-3741Fig. 3. General structure of the R� networkssion of the number of minimumpaths of each lengthis as follows.L� = f � + 1� !:[� + 1]; � + 1� � 2!:[� + 3]; : : : ;: : : ; � + 1p !:[2� + 1� p]gwhere the binomial expressions denote the numberof paths of the length given between brackets andp = � � 2:b�=2c indicates the parity of �.We applied the Heidtmann's procedure [5], so-called KDH, as well as SODA on the �rst R� 's net-works. The results are reported in table 6, where Ndenotes the number of disjoint products and t(s)the running time in seconds on a IBM computer(series 9021-820).Some comments can be made above these results:{ As expected, the running times of both proce-dures increases exponentially as � increases. Thisis a drastic limitation of "classical" SDP tech-niques.{ Due to the computation time needed by thepreprocessing module PPM (surrounded withbracket in the last column), the overall runningtime of SODA is greater than the KDH one forsmall networks (� < 7), but it becomes attrac-tive beyond.{ For all of the considered networks, SODA givesbetter results (in term of number of disjoint prod-ucts) than KDH.5 IMPLEMENTATION ISSUESThe implementation of a procedure such as SODAis mainly a matter of data structures. For that kindof methods that are highly combinational, the mainproblem is memory consumption (as opposed totime consumption). It is in general the case that,among two di�erent implementations of the samemethod, the most e�cient is the one that allocatesthe less memory. Based on these considerations, we

propose in what follows some guidelines to imple-ment SODA.5.1 Implementation of PPMWe assume that the products of the initial set areencoded by means of lists of literals.For each product Pi, we have to perform the follow-ing operations:(i) Build, for each Pj (i 6= j), the di�erence Ti;j =Pj n Pi.(ii) Remove the Ti;j's that imply another Ti;j .(iii) Remove the Ti;j's that do not share any vari-able with the other Ti;j 's.(iv) Compute the cardinals of [j;k(Ti;j \ Ti;k) and[jTi;jFirst, it can avoided to build explicitely the Ti;j 's:the Pj 's can be used for that purpose. It su�ces toset a mark on the literals of the Pj 's that belong toPi (in order to shadow them). In this way, one getsa representation of the Ti;j's without creating anynew data structure. This can be achieved in lineartime w.r.t. the size of the formula.The second operation may remove the unwantedTi;j 's just by setting a mark on these products. Thisoperation requires two nested loops over the prod-ucts. It is thus basically of quadratic complexity.In order to isolate the Ti;j 's that do share anyvariable with the other Ti;j's, it su�ces to countthe number of occurrences of each variable in thesurviving products. The Ti;j's that contain onlyvariables with only one occurrence are those tobe removed. This third operation can be thereforeachieved in linear time.The fourth operation is of linear complexity as well:the cardinal of [jTi;j is just the number of variablesthat occur in the surviving products, and the cardi-nal of [j;k(Ti;j\Ti;k) is the number of variables thatoccur more than once in the surviving products.Therefore, the whole PPM method is of cubic com-plexity (since the four operations described abovehave to be repeated for each product and that thesecond one, which is the most costly, is of quadraticcomplexity). A cubic complexity induces a veryquick growth of the running times as the size ofthe problem increases. However, the implementa-tion we sketched does not require the allocation ofadditional data structures.6

Table 6. Results of KDH [5] and SODA on some R�'s networksCharacteristics parameters KDH SODA� = 4, n = 13, m = 16 N 34 26L4 = f5(5); 10(7); 1(9)g t(s) 0.0011 0.0026 (0.0013)� = 5, n = 16, m = 32 N 89 66L5 = f6(6); 20(8); 6(10)g t(s) 0.0071 0.0148 (0.0067)� = 6, n = 19, m = 64 N 233 181L6 = f7(7); 35(9); 21(11); 1(13)g t(s) 0.059 0.083 (0.034)� = 7, n = 22, m = 128 N 610 469L7 = f8(8); 56(10); 56(12); 8(14)g t(s) 0.434 0.463 (0.178)� = 8, n = 25, m = 256 N 1597 1191L8 = f9(9); 84(11); 126(13); 36(15); 1(17)g t(s) 2.61 2.78 (1.08)� = 9, n = 28, m = 512 N 3756 3133L9 = f10(10); 120(12); 252(14); 120(16); 10(18)g t(s) 18.60 17.02(6.92)� = 10, n = 31, m = 1024 N 10880 9020L10 = f11(11); 3030(13); : : : ; 55(19); 11(21)g t(s) 126.5 111 (47.1)5.2 Implementation of DAThere are basically two ways of implementing DA.The �rst one is derived straight from the presenta-tion of the method. It consists in building the Ti;j'sand then applying the de Morgan laws to get theDPi's. We do not go further into the discussion ofthis way, for we gave already some guidelines in theprevious section.The second one is based on the Shannon decompo-sition. Consider the product Pi to be inserted intothe SDP at a given step of the algorithm. There aretwo cases:(i) Either Pi is pairwisely distinct from all of theproducts Pj 's (j < i). In that case, Pi can beadded straight to the SDP.(ii) Or Pi is not pairwisely distinct from all of theproducts Pj 's (j < i). In that case, it exists avariable x occurring in the Pj 's (j < i) but notin Pi and the problem can be reduced to insert�rst x:Pi and second �x:Pi into the SDP.This means that the principle of DA can be im-plemented by means of a recursive procedure thatexplores implicitely a binary tree. Such proceduresare extensively studied in the automated demon-

stration and arti�cial intelligence frameworks ande�cient data structures and heuristics have beendesigned to implement them (see for instance [16]).At this point, two remarks may be made. The �rstimprovement is automatically embedded (withoutany additional cost) into such a recursive proce-dure. This is of a great importance because we justsaw at the last section that it is costly. The secondimprovement is more di�cult to achieve in a cheapway, although the principle of autark (detailed in[16]) could be an interesting alternative.6 CONCLUSIONIn this article, we presented an optimised proce-dure, so-called SODA, to generate disjoint productsfrom a set of products representing either the mini-mal s-t paths of a reliability network or the minimalcutsets of a coherent fault tree.We showed on a number of classical test examplesthat SODA performs better than other proceduresproposed in the literature in terms of the numberof terms of the results.We discussed some implementation issues.We showthat a procedure such as SODA can be interpreted7

in terms of a recursive procedure based on the Shan-non decomposition. This opens new perspectivessince this kind of procedures is extensively studiedin the automated demonstration and arti�cial in-telligence frameworks.Anyway, we are convinced that the future of SDPmethods depends on their ability to compete fairlywith Binary Decision Diagrams techniques. Such acomparative study remains to do.REFERENCES1. K.R. Misra. New Trends in System ReliabilityEvaluation. Elsevier, 1993.2. S. Rai, M. Veeraraghavan, and K.S. Trivedi. ASurvey of E�cient Reliability Computation UsingDisjoint Products Approach. Networks, 25:147{163,1995.3. L.G. Valiant. The complexity of enumeration andreliability problems. SIAM Journal of Computing,8:410{421, 1979.4. Y. Dutuit and A. Rauzy. Exact and TruncatedComputations of Prime Implicants of Coherent andnon-Coherent Fault Trees within Aralia. ReliabilityEngineering and System Safety, 58:127{144, 1997.5. K.D. Heidtmann. Smaller Sums of Disjoint Productsby Subproduct Inversion. IEEE Transactions onReliability, 38:305{311, 1989.6. M. Veeraraghavan and K.S. Trivedi. An ImprovedAlgorithm for Symbolic Reliability Analysis. IEEETransactions on Reliability, 40(3):347{358, 1991.7. B. Singh. A procedure for generating sumsof disjoint products. Micro-electronic Reliability,33(15):2269{2272, 1993.8. J.A. Abraham. An improved method for networkreliability. IEEE Transactions on Reliability, R-28:58{61, 1979.9. J.M. Wilson. An Improved Minimizing Algorithmfor Sum of Disjoint Products. IEEE Transactionson Reliability, 39:42{45, 1990.10. M.O. Locks and J.M. Wilson. Note on DisjointProducts Algorithms. IEEE Transactions onReliability, 41(1):81{84, 1992.11. S. Rai and J.L.. Trahan. Pseudo-boolean Approachto Solve Reliability Problems. In Proceedings of theESREL'97 Conference, volume 3, pages 2079{2086,1997.

12. T. Bouhoufani. Contribution �a la construction etau traitement des arbres de d�efaillance. Th�ese dedoctorat, Universit�e Bordeaux I, 1993.13. S. Soh and S. Rai. Experimental resultson preprocessing of path/cut terms in sum ofdisjoint products technique. IEEE Transactions onReliability, 42(1):24{33, 1993.14. S. Soh and S. Rai. CAREL: Computer AidedRELiability evaluator for distributed computingnetworks. IEEE Transactions on Parallel andDistributed Systems, 2:199{213, 1991.15. H.H. Liu, W.T. Yang, and C.C. Liu. A improvedminimizing algorithm for the summation of disjointproducts by Shannon's expansion. Micro-electronicReliability, 33(4):599{613, 1993.16. A. Rauzy. Polynomial restrictions of SAT: Whatcan be done with an e�cient implementationof the Davis and Putnam's procedure. InU. Montanari and F. Rossi, editors, Proceedingsof the International Conference on Principle ofConstraint Programming, CP'95, volume 976 ofLNCS, pages 515{532. Springer Verlag, 1995.

8

