An Optimized Procedure To (Generate
Sums of Disjoint Products

E. Chatelet?, Y. Dutuit ®, A. Rauzy ¢ & T. Bouhoufani“

& Université de Technologie de Troyes/LM2S. 10010, Troyes cedex, France

b Université Bordeauxr I/LAP-ADS. 33405, Talence cedex, France
¢ Université Bordeaux I/LaBRI. 33405, Talence cedez, France

4" Université de Batna/Institut d’Hygiéne et Sécurité. 05000, Batna Algérie

This paper describes an efficient procedure, so-called SODA, to generate a sum
of disjoint products (SDP) from a set of minimal products representing either
the minimal s-t paths of reliability networks or the minimal cutsets of coherent
fault trees. The proposed procedure involves the concept of multiple-variables
inversion or grouped-variables inversion. The process is improved by carrying out
a preprocessing of the initial formula which reduces the number of terms of the
result, and hence the overall computation time. A previous version of this paper
was submitted to RESS by the fall of 1993 and was accepted up to minor revisions
one year later. Unfortunately, the final redaction has been delayed since. The
present version takes into account some other papers published in between and
includes new ideas that improve the implementation of the proposed algorithm.
At least on classical test examples, SODA produces shorter formulae than the

other SDP methods known by the authors.

1 INTRODUCTION

Many methods have been proposed in order to make
disjoint the elements of a set of products repre-
senting either the minimal s-t paths of a reliabil-
ity network or the minimal cutsets of a coherent
fault tree (see [1] or [2] for a survey on Sum of Dis-
joint Products methods). The aim of such a rewrit-
ing is to make it possible to assess the probabil-
ity of the formula in an efficient way. It is worth
noticing that the determination of the probability
of a Boolean formula is a very hard problem — it
is #P-complete — even under very strong restric-
tions (such as monotony) on the type of the formula
[3]. Without entering into details of computational
complexity theory, this means that it is hopeless to
find an efficient algorithm (i.e. an algorithm of poly-
nomial worst case complexity) to solve it. As a con-
sequence, it is hopeless as well to find an efficient

Preprint submitted to RESS

algorithm to rewrite a set of products into an equiv-
alent set of disjoint products, for the probability of
the later can be determined linearly with respect
to the number of variable occurrences it contains.
Also hopeless is the aim to compare algorithms and
heuristics from a general and theoretical viewpoint.

This does not mean however that nothing can be
done in practice. SDP methods should be compared
(experimentally) with respect to the following cri-
teria:

(i) The form of the resulting formulae, which is
mainly a matter of data structures.
(ii) The size of the results.
(iii) The size of intermediate data structures that
are necessary to build the results.
(iv) The computation time.

In this article, we stand in the classical framework of
SDP techniques where it is assumed, quite arbitrar-

25 November 1998

ily !, that the result has to be an explicitely given
list of products. Several authors consider however
products in which several variables can be negated
at once. Algorithms using that technique (see for
instance [5-7]) give in general shorter results than
algorithms that produce only negative literals (see
for instance [8-10]). For all of these algorithms, a
preprocessing of the initial set is able to reduce the
final number of disjoint products, and consequently
the overall running time.

In this paper, we present a new procedure, so-
called Disjunction Approach (DA), that uses the
multiple variables negation technique. We propose
also a preprocessing module, so-called PPM, which
is a heuristics to order the products of the initial
set. The whole method PPM+DA, is called Semi-
Optimal Disjunction Approach (SODA).

The rest of this paper is organized as follows. The
principle of the DA method is presented at section 2
by means of a small example. The section 3 de-
scribes the preprocessing module PPM by means of
another small example. A comparison with already
proposed heuristics is provided. The efficiency of
SODA is shown in section 4 by comparing its re-
sults with those obtained by means of some other
methods on a reference test example. Implemen-
tation issues are discussed at section 5. Finally, a
short conclusion ends the paper.

2 THE DISJUNCTION APPROACH

2.1 Principle

The principle of the disjunction approach (DA) is
as follows.

First, the products of the formula F' under study
are sorted according to any heuristics. Let us denote
Py, P, ..., P, the obtained sequence of products.
The result R is initialized with P;.

Second, the products are considered in turn, in in-
creasing order (of their indices). For each product
Py, (k = 2,n), the following sum is built:

I This remark is motivated by the fact that there exists
methods that do not produce this type of results but that
make it possible to assess efficiently the probability of
the formula. We think here especially to Binary Decision
Diagrams (see for instance [4] for a survey on the use of
BDDs in the reliability analysis framework).

k-1
T,=> P\ P (1)
i=1

where P; \ P denotes the constant 0 if P; and Py
contains two opposite literals, and the product of
the literals of P; that do not belong to Py otherwise.
For instance, if P, = ab and P, = bed then P\ Py =
a.

Third, the de Morgan laws are applied on the nega-
tion of T} in order to get an equivalent sum of dis-
joint products.

Tk = Dk71 +...+ Dk,rk (2)

Fourth, the products Dy ;.P, ..., Dg,, .P; are
added to the result R. By construction, the Dy, ;’s
are pairwisely disjoint and disjoint from the P;’s
(1 < k). Moreover, it is easy to verify that the result
R is equivalent to the initial formula F'.

Two improvements can be achieved on that process.

First, if the term P;\ P, implies another term P;\ Py,
then it can be safely removed from the sum T}.

Second, if the term T}, ; = P;\ P does not share any
variable with the other terms of the sum T}, then T},
can be rewritten as Ty = Do i<k jti Ty ;T ;- This is
the principle multiple variables inversion method.
The disjonction approach embeds these two im-
provements.

2.2 Example

In order to illustrate how the DA method works,
let us consider the four products given in tables 1
and 2 of reference [11]. Let f be the sum of these
products: f = ab + bed 4 dei + acei. The problem
is to transform f into an equivalent sum of disjoint
products with the minimal number of terms.

As presented by one of us in [12], let us construct a
table T" in which the initial products are arranged
in marginal column (P;) and row (P;) in increasing
order of their lengths (see table 1). The cell T} ; con-
tains the product P; \ P; if ¢ < j, and the constant
0 otherwise.

An example of the first improvement is provided by
the cells Ty 2 and Ty 1: Ty 2 = bed \ acei = bd can be
removed because it implies Ty ; = ab \ acei = b.

The fifth and sixth columns give respectively the
T;’s and the T;’s. The last column gives the five

Table 1. The Disjunction Approach applied to the first sequence.

P\P;| ab bed | dei | acei T; T, | DP,=T,.P,
ab 0 0 0 0 0 1 ab
bed a 0 0 0 a a a.bed
dei ab be 0 0 |lab+ bc|b + abe|b.dei + abedei
acei b 0 d 0 b+d | bd abedei

resulting disjoint products DP; and we have f =
> DP;.

The DA method is very simple and slightly simi-
lar to the one presented in [11]. However, it is well
known that the efficiency of this kind of proce-
dures, in terms of resulting disjoint products, de-
pends strongly on the order in which the products
of the initial set are arranged. In order to illustrate
this dependency, let us consider the same example
as above, but for the order f = ab+ dei+ bed + acei
(table 2).

With this second order, DA provides a four terms
result instead of a five terms one in the former case.
It is worth noticing that this improvement is pos-
sible because of the use of the multiple variables
inversion principle (here applied to DP, with ab
and to D P3 with ei). The question is thus to design
heuristics that arrange the initial sequence in order
to obtain as few disjoint products as possible in the
result. This is the role of the preprocessing module
PPM.

3 THE PREPROCESSING MODULE

3.1 Principle

A brief examination of the table 1 shows clearly
that the term D Pj3 involves more products than its
corresponding product P3. This fact is obviously
due to the disjunction process which generates ad-
ditional terms related to the presence of some lit-
erals common to several T; ;’s. The role devoted to
the preprocessing module (PPM) of SODA is to re-
duce, as far as possible, the number of these addi-
tional terms. This is done thanks to discriminative
coefficients r; computed for each product P;. These
coefficients make it possible to sort the initial se-
quence in a semi-optimal manner (the order is only
semi-optimal because the obtention of the optimal

sequence cannot be guaranted).
The principle of PPM is as follows.

First, products are grouped according to their
lengths. The groups are sorted in increasing or-
der of the length of their products. Therefore, it
remains to sort the products inside each group.

Second, for each product P;, the products T;; =
P;\ P; are built for all of the products P;’s such that
the length of P; is less or equal to the length of P;
(i.e. each P; that is potentially before P; in the final
order). The T; ;’s are collected into a set T;. The
T; ;’s that verify the preconditions of one of the two
improvements described in the previous section are
not collected. Namely, if T; ; implies another T;
or if it does not share any variable with the other
T x’s, then it is not collected into Tj.

Third, the P;’s such that T; = () are put at the end
of their group.

Fourth, the products that remains inside each group
are sorted in increasing order of the coefficient r;
defined as follows (the considered T; ;’s are those
that belong to Tj).

I card[U#k T;; N Tkl

D) card[J; T; 5] 3)

Let N = card[U#k T; jNT; k] and D = card[Uj T; ;-
The coefficient r; comes the experimental obser-
vation that the disjunction approach produces rel-
atively few terms when N/D is close to 0 or to 1
(and consequently it is of interest to put the P;’s
with 7;’s close to 1/2 at the end of the sequence).

3.2 Example

As an illustration, let us consider the network pic-
tured Fig. 1, so-called modified ARPANET, that
has been already used as a reference case by sev-
eral authors [2,6,13]. The table 3 summarizes the

Table 2. The Disjunction Approach applied to the second sequence.

P\P;| ab | dei | bed | acei T; T, |DP; =T,.P;
ab | 0 0 0 0 0 1 ab
dei | ab 0 0 0 ab | ab (ab)ei
bed | a e 0 0 |la+eila(ei)| a(ei)bed
acei | b d 0 0 ||b+d| bd | abedei

Table 3. Complete analysis of the ARPA net with SODA

initial | final

P rank | rank | terms from which T; and D P; are built T DP;

adh 1 1 || bfi,be 0.25 adh

bfi 3 2 |adh | eh 0.25 bfi(adh)

beh 2 3 l|ad, fi | beh(ad)(f1)
acfi 5 4 |dh,b,bek | dg, bdh, bgh, ch, beg 0 acfib(dh)
adgi | 6 5 |h,bf, bek, cf | bek, bth, eeh, be 0 | adgihf + adgih fbc
bedh | 7 6 |a,fi,e afi,agi| fg,ae, eqi 0.167 bedhae(fi)
bfgh| 9 7 |ad,i, e, aci, adi, cd | ace, e 0.167|bfgheid + bf ghéidac
aceh, 4 8 |d,bfi,b, fi,dgs, bd; bfg | bgs acehbd(fi)
begi 8 9 |adh, f,h,ecf, ad, edh, fh, ach | begi fh(ad)
acegi | 10 10 |dh,bf, bh, f,d, bdhs bfh, h, b | £h, df, bd- adegibd fh
acfgh| 11 11 |d,bs, be, i, ¢é, b b, e, bet, ei | des, bds- acfghbdei
adefi| 12 12 |h, b, bk, c, g, beh, bgh, ¢k, by, eg, egh | beg- adefibegh
bedgi | 13 13 |eh, f,eh, &f, a,h, Fh,aeh, e, ae, afh, aef | bedgiaefh

Fig. 1. The modified ARPA network

results obtained by applying PPM to this network.
The terms not collected in the 7; because they im-
ply some other term are crossed out. The character
| separates the terms that are taken into account to
build DP; (at its left) from those that are not (at
its right). An empty cell in the r; column indicates
that the set 7; is actually empty once the improve-
ments have been achieved.

3.3 Comparison between PPM and six
other preprocessing techniques

Soh and Rai provided experimental results to com-
pare the performance of six different preprocess-
ing techniques applied to minimal paths of many
networks [13]. They used the CAREL (Computer
Aided RELiability evaluator) algorithm [14] to ob-
tain SDP terms. The table 4 reports a comparison
between these six methods and PPM. The mean-
ings of H, I, C are respectively the decreasing Ham-
ming distance, Lexicographic ordering and increas-
ing Cardinality (more details can be found in the
cited papers).

Table 4. Comparison between six preprocessing techniques of [13] and PPM

Heuristics | Random H L C C+H| C+L|SODA
adh adh | acegi bfi adh adh adh
adgi bedh | aceh | beh beh beh bfi
adefi acfgh | acfgh | adh bfi bfi beh
aceh aceh | acfi | bfgh adgi aceh acfi
acegi adefi | adefi | begi acfi acfi adgi
acfgh adgi | adgi | bedh | begi adgi bedh
. acfi bfgh | adh acfi aceh bedh | bfgh
f’g bedh beh | bedgi | aceh | bedh begi aceh
is bedgi | bedgi | bedh | adgi | begh bfgh begi
§ beh acfi | begi | bedgi | adefi | acegi | acegi
% begi acegi | beh | acfgh | acegi | acfgh | acfgh

bfgh bfi bfgh | acegi | acfgh | adefi | adefi

bfi begi bfi adefi | bdfgi | bedgi | bedgi

#SDP 23 22 26 16 16 17 15

Table 5. The number of disjoint products given by some SDP techniques

SVI-methods

MVI-methods

Abraham | ALR | ALW | SLR CAREL [14] Heidtman | Singh | SODA
8] o] | [10] | (15 | H | L | ¢ |0+ | CctL [5] [7]
71 61 59 55 101 | 76 | 39 41 41 41 37 35

Fig. 2. Network of example 2

4 FURTHER COMPARISON BETWEEN
SODA AND OTHER APPROCHES

4.1 A benchmark exercise

The second test example, pictured Fig. 2, is a
12-components system with 24 minimal paths. It
is also one of the most frequently cited example
[6-10,13,15]. The table 5 summarizes the number
of disjoint products obtained by means of several
SDP techniques. These techniques are splitted into

two categories: those that use single variable inver-
sion (SVI) and those that use multiple variables
inversion (MVI). The meaning of the acronyms
used in this table is as follows. ALR: Abraham-
Locks Revised, ALW: Abraham-Locks-Wilson,
SLR: Schneeweiss-Lin Revised. As for the previous
example, the SODA procedure appears as the best
algorithm to reduce the number of terms in the
SDP resulting from the second network analysis.

4.2 The R,’s networks

The third test example is the generic network R,
of reference [5]. This network is made of v squares
joined side by side in a linear chain as shown Fig. 3.
In that network, each edge corresponds to a compo-
nent. Therefore, there are n = 3v + 1 components
and m = 2¥ minimal s-t paths. The generic expres-

S

3 6 n-1
Fig. 3. General structure of the R, networks

sion of the number of minimum paths of each length
is as follows.

L,,:{(”‘:1>.[u+1], (Zf;).[w?,],...,

.,(V;_1>.[2V+1—p]}

where the binomial expressions denote the number
of paths of the length given between brackets and
p =v — 2.|v/2] indicates the parity of v.

We applied the Heidtmann’s procedure [5], so-
called KDH, as well as SODA on the first R,’s net-
works. The results are reported in table 6, where N
denotes the number of disjoint products and t(s)
the running time in seconds on a IBM computer
(series 9021-820).

Some comments can be made above these results:

— As expected, the running times of both proce-
dures increases exponentially as v increases. This
is a drastic limitation of ”classical” SDP tech-
niques.

— Due to the computation time needed by the
preprocessing module PPM (surrounded with
bracket in the last column), the overall running
time of SODA is greater than the KDH one for
small networks (v < 7), but it becomes attrac-
tive beyond.

— For all of the considered networks, SODA gives
better results (in term of number of disjoint prod-
ucts) than KDH.

5 IMPLEMENTATION ISSUES

The implementation of a procedure such as SODA
is mainly a matter of data structures. For that kind
of methods that are highly combinational, the main
problem is memory consumption (as opposed to
time consumption). It is in general the case that,
among two different implementations of the same
method, the most efficient is the one that allocates
the less memory. Based on these considerations, we

propose in what follows some guidelines to imple-
ment SODA.

5.1 Implementation of PPM

We assume that the products of the initial set are
encoded by means of lists of literals.

For each product P;, we have to perform the follow-
ing operations:

(i) Build, for each P; (i # j), the difference T; ; =

P\ P.

(ii) Remove the Tj ;’s that imply another Tj ;.

(iii) Remove the T; ;’s that do not share any vari-
able with the other T; ;’s.

(iv) Compute the cardinals of U; (T; ; N T; 1) and
U;Ti,;

First, it can avoided to build explicitely the T} ;’s:

the P;’s can be used for that purpose. It suffices to

set a mark on the literals of the P;’s that belong to

P; (in order to shadow them). In this way, one gets

a representation of the 7T; ;’s without creating any

new data structure. This can be achieved in linear

time w.r.t. the size of the formula.

The second operation may remove the unwanted
T; ;s just by setting a mark on these products. This
operation requires two nested loops over the prod-
ucts. It is thus basically of quadratic complexity.

In order to isolate the T;;’s that do share any
variable with the other T ;’s, it suffices to count
the number of occurrences of each variable in the
surviving products. The Tj;’s that contain only
variables with only one occurrence are those to
be removed. This third operation can be therefore
achieved in linear time.

The fourth operation is of linear complexity as well:
the cardinal of U;T; ; is just the number of variables
that occur in the surviving products, and the cardi-
nal of U; ;. (T; ;NT; 1) is the number of variables that
occur more than once in the surviving products.

Therefore, the whole PPM method is of cubic com-
plexity (since the four operations described above
have to be repeated for each product and that the
second one, which is the most costly, is of quadratic
complexity). A cubic complexity induces a very
quick growth of the running times as the size of
the problem increases. However, the implementa-
tion we sketched does not require the allocation of
additional data structures.

Table 6. Results of KDH [5] and SODA on some R,’s networks

Characteristics parameters | KDH SODA
v=4,n=13,m=16 N 34 26
Ly = {5(5),10(7),1(9)} t(s) 0.0011 | 0.0026 (0.0013)
v=>5,n=16m =32 N 89 66
L; = {6(6),20(8),6(10)} t(s) 0.0071 | 0.0148 (0.0067)
v==6,n=19,m=064 N 233 181
L¢ = {7(7),35(9),21(11),1(13)} t(s) 0.059 0.083 (0.034)
v="7,n=22, m=128 N 610 469
L7 = {8(8),56(10),56(12),8(14)} t(s) 0.434 | 0.463 (0.178)
v=_8,n=25 m =256 N 1597 1191
Lg = {9(9),84(11),126(13),36(15), 1(17) } t(s) 2.61 2.78 (1.08)
v=9,n=28, m=>512 N 3756 3133
Ly = {10(10),120(12), 252(14),120(16), 10(18)} t(s) 18.60 17.02(6.92)
v =10, n =31, m = 1024 N 10880 9020
Ly = {11(11),3030(13), ... ,55(19), 11(21)} £(s) 126.5 111 (47.1)

5.2 Implementation of DA

There are basically two ways of implementing DA.
The first one is derived straight from the presenta-
tion of the method. It consists in building the T ;’s
and then applying the de Morgan laws to get the
DP;’s. We do not go further into the discussion of
this way, for we gave already some guidelines in the
previous section.

The second one is based on the Shannon decompo-
sition. Consider the product P; to be inserted into
the SDP at a given step of the algorithm. There are
two cases:

(i) Either P; is pairwisely distinct from all of the
products P;’s (j < 4). In that case, P; can be
added straight to the SDP.

(ii) Or P; is not pairwisely distinct from all of the
products P;’s (j < 7). In that case, it exists a
variable z occurring in the P;’s (j < ¢) but not
in P; and the problem can be reduced to insert
first z.P; and second Z.P; into the SDP.

This means that the principle of DA can be im-
plemented by means of a recursive procedure that
explores implicitely a binary tree. Such procedures
are extensively studied in the automated demon-

stration and artificial intelligence frameworks and
efficient data structures and heuristics have been
designed to implement them (see for instance [16]).

At this point, two remarks may be made. The first
improvement is automatically embedded (without
any additional cost) into such a recursive proce-
dure. This is of a great importance because we just
saw at the last section that it is costly. The second
improvement is more difficult to achieve in a cheap
way, although the principle of autark (detailed in
[16]) could be an interesting alternative.

6 CONCLUSION

In this article, we presented an optimised proce-
dure, so-called SODA, to generate disjoint products
from a set of products representing either the mini-
mal s-t paths of a reliability network or the minimal
cutsets of a coherent fault tree.

We showed on a number of classical test examples
that SODA performs better than other procedures
proposed in the literature in terms of the number
of terms of the results.

We discussed some implementation issues. We show
that a procedure such as SODA can be interpreted

in terms of a recursive procedure based on the Shan-
non decomposition. This opens new perspectives
since this kind of procedures is extensively studied
in the automated demonstration and artificial in-
telligence frameworks.

Anyway, we are convinced that the future of SDP
methods depends on their ability to compete fairly
with Binary Decision Diagrams techniques. Such a
comparative study remains to do.

REFERENCES

1. K.R. Misra. New Trends in System Reliability
Evaluation. Elsevier, 1993.

2.S. Rai, M. Veeraraghavan, and K.S. Trivedi. A
Survey of Efficient Reliability Computation Using
Disjoint Products Approach. Networks, 25:147-163,
1995.

3. L.G. Valiant. The complexity of enumeration and
reliability problems. SIAM Journal of Computing,
8:410-421, 1979.

4.Y. Dutuit and A. Rauzy. Exact and Truncated
Computations of Prime Implicants of Coherent and
non-Coherent Fault Trees within Aralia. Reliability
Engineering and System Safety, 58:127-144, 1997.

5. K.D. Heidtmann. Smaller Sums of Disjoint Products
by Subproduct Inversion. IEEE Transactions on
Reliability, 38:305-311, 19809.

6. M. Veeraraghavan and K.S. Trivedi. An Improved
Algorithm for Symbolic Reliability Analysis. IEEE
Transactions on Reliability, 40(3):347-358, 1991.

7. B. Singh. A procedure for generating sums
of disjoint products. Micro-electronic Reliability,
33(15):2269-2272, 1993.

8. J.A. Abraham. An improved method for network
reliability. IEEE Transactions on Reliability, R-
28:58-61, 1979.

9. J.M. Wilson. An Improved Minimizing Algorithm
for Sum of Disjoint Products. IEEE Transactions
on Reliability, 39:42—-45, 1990.

10. M.O. Locks and J.M. Wilson. Note on Disjoint
Products Algorithms. IEEE Transactions on
Reliability, 41(1):81-84, 1992.

11. S. Rai and J.L.. Trahan. Pseudo-boolean Approach
to Solve Reliability Problems. In Proceedings of the
ESREL’97 Conference, volume 3, pages 2079-2086,
1997.

12.

13.

14.

15.

16.

T. Bouhoufani. Contribution 4 la construction et
au traitement des arbres de défaillance. These de
doctorat, Université Bordeaux I, 1993.

S. Soh and S. Rai. Experimental results
on preprocessing of path/cut terms in sum of
disjoint products technique. IFEE Transactions on
Reliability, 42(1):24-33, 1993.

S. Soh and S. Rai. CAREL: Computer Aided
RELiability evaluator for distributed computing
networks. IEFEE Transactions on Parallel and
Distributed Systems, 2:199-213, 1991.

H.H. Liu, W.T. Yang, and C.C. Liu. A improved
minimizing algorithm for the summation of disjoint
products by Shannon’s expansion. Micro-electronic
Reliability, 33(4):599-613, 1993.

A. Rauzy. Polynomial restrictions of SAT: What
can be done with an efficient implementation
of the Davis and Putnam’s procedure. In
U. Montanari and F. Rossi, editors, Proceedings
of the International Conference on Principle of
Constraint Programming, CP’95, volume 976 of
LNCS, pages 515-532. Springer Verlag, 1995.

