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a b s t r a c t

Cars embed a steadily increasing number of electric and electronic systems. One of the means at hand to
enhance the safety of these systems is to reinforce them with so-called safety mechanisms. The ISO
26262 standard discusses at length how to estimate the contribution of these mechanisms to functional
safety. These calculations rely however on fault tree models or ad-hoc formulas that are hard to check for
completeness and validity. In this article, we propose generic Markov models for electric and electronic
systems protected by first and second order safety mechanisms. These models are of a great help to
clarify the behavior of these systems as well as to determine the domain of validity of simpler models
such the above mentioned fault trees or ad-hoc formulas. Experimental results make it possible to have a
better understanding of which parameters really matter in terms of safety.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Cars embed a steadily increasing number of electric and
electronic systems. In order to guaranty their functional safety,
the ISO 26262 standard was published in November 2011 [1]. This
standard defines a number of constraints and rules that the
development of automotive electric and electronic systems must
obey. One of the means at hand to enhance the safety of electric
and electronic systems is to reinforce them with so-called safety
mechanisms. Safety mechanisms are various types of devices that
typically prevent spurious usages of the system, or warn the driver
when something wrong happens.

The ISO 26262 standard discusses at length the use of these
safety mechanisms and how to estimate their contribution to
functional safety. To do so, it relies essentially on fault tree models
or ad-hoc formula. Such models or formulas are indeed of interest
for practitioners. But they are only approximations. Without a
more explicit representation of failure scenarios to serve as a
reference, it is hard to check them for completeness, to understand
their domain of validity and to ensure their accuracy. Explicit
models have been proposed by several authors for safety instru-
mented system described in the mother IEC 61508 Standard [2]
(see e.g. [3,4]). In the case of the ISO 26262 standard, at least to our
knowledge, this work has not been done yet.

The purpose of this article is therefore to fill this hole by
proposing generic Markov models for electric and electronic
systems reinforced by first order and possibly second order safety
mechanisms. The interest of these models is twofold: first, they are
of a great help to clarify the behavior of safety mechanisms;
second, they make it possible to determine the domain of validity
of simpler models such as fault trees or ad-hoc formulas of the
standard.

The remainder of this article is organized as follows. First, we
present two typical examples of safety mechanisms in Section 2.
Then, we propose Markov models for these safety mechanisms in
Section 3. We report numerical results obtained on these models
in Section 4 and we discuss their significance. Finally, we review
related works in Section 5.

2. Two typical examples of safety mechanisms

In this section, we present two representative examples of
automotive systems embedding safety mechanisms.

2.1. Vehicle management unit for inversion

We shall first consider the case of a Vehicle Management Unit
(VMU). In an electric vehicle, a VMU is responsible for command-
ing the electric motor inverter, among other functions. A VMU
consists typically in a microcontroller which, given certain inputs
(gas and brake pedal positions), sends a torque set-point to the
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inverter that in turn commands the electric motor (traction and
regenerative braking), as illustrated Fig. 1.

Such a VMU is a critical function: if the microcontroller gets
stuck in a loop and continuously sends a command higher (or
lower) than expected, it could lead to unintended vehicle accel-
eration or braking.

In order to prevent such hazards, a watchdog is added which is
in charge of bringing the system to a safe state in case the
microcontroller is detected to be stuck. The watchdog is an
electronic component that is used to detect and recover from
microcontroller malfunctions. The microcontroller refreshes reg-
ularly the watchdog in order to prevent him from timing out. If it
gets stuck in a loop, the watchdog cannot be reset, so the watch-
dog times out and sends a reboot order to the microcontroller.

Such a watchdog is a first order safety mechanism based on
error detection.

As a physical component, the watchdog may fail (although the
reliability of the watchdog is much higher than the one of the
microcontroller). Also, the watchdog is able to detect only certain
kind of errors of the microcontroller: typically, it is not able to
detect memory corruption problems.

In order to ensure that the watchdog is working, the micro-
controller tests the watchdog at each vehicle start. The role of this
second order mechanism is to warn the driver in a case of a
problem with the watchdog. It may itself fail and is itself not able
to catch all of the problems of the watchdog.

As the torque calculation function and the second order safety
mechanism function are never executed in parallel, their failures
are considered as independent (and are independent from watch-
dog failures).

The above example is representative of safety mechanisms
based on error detection as embedded for instance in electric
steering column controller, electric braking, several types of
microcontrollers protected with watchdogs and more generally
command-control systems.

2.2. Electric driver seat controls

Another type of safety mechanism is used in Electric Driver
Seat Controls (EDSC). An EDSC allows the driver to tune his seat
position. A spurious tuning action while the vehicle is running
(over a certain speed, e.g. 10 km/h) can indeed cause an accident,
for instance because the driver is no longer able to reach the brake
pedal or because he gets suddenly pushed onto the steering wheel.

In order to prevent this from happening, the system embeds a
mechanism in charge of turning off the power supply of the EDSC
when the vehicle is running (see Fig. 2). This first order mechan-
ism is therefore based on inhibition. As previously, it is in general
completed with a second order one in charge of testing it at each
vehicle start (obviously, it cannot be tested while the vehicle is
running).

The above mechanism is representative of safety mechanisms
based on inhibition, as embedded for instance in electric steering
column lock, automatic doors opening systems and more generally
all systems that must be inhibited when the speed of the vehicle
gets above a give threshold.

2.3. Discussion

The majority of automotive first order safety mechanisms can
be actually categorized in either of the two categories presented
above:

� Most of them are based on error detection. The idea is to switch
the system into a safe state when an error is detected. These
safety mechanisms are usually made of two elements: the
detection device and the actuation device.

� Some of them inhibit the system they protect when the vehicle
is in a state where the failure of the system is potentially
dangerous.

As a failure of the first order safety mechanism has in general
no direct influence of the system it controls, it can hardly be
perceived by the driver. A second order safety mechanism is thus
often added in order to check periodically the availability of the
first one, typically when the engine is turned on or the vehicle
starts to move. The role of such a second order mechanism is to
warn the driver.

The improvement in vehicle safety provided by first and second
order safety mechanisms can be measured by means of indicators
such as the Probabilistic Metric for random Hardware Failures
(PMHF).

The target value for the PMHF (and more generally for the
reliability of the system) is determined by the so-called

Fig. 1. Simplified functional representation of the vehicle management unit for inversion.

Fig. 2. Functional representation of an electric driver seat control.
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Automotive Safety Integrity Level (ASIL). The ASIL consists of an
aggregation of three parameters: the severity (quotation of the
consequences of the function failure), the controllability (quota-
tion of the driver control over the situation and its ability to limit
the consequences) and the exposure (quotation of the frequency of
the situation where the dangerous hazard could happen) [1].
These indicators are estimated prior to and thus independently
of any probabilistic calculation regarding the system. Safety
mechanisms such as those presented above have obviously noth-
ing to do with severity. They are somehow potentially related to
the two other parameters, but in a different way depending on the
type of the considered safety mechanism.

Safety mechanisms based on inhibition aim only at reducing the
probability of a certain event to happen, e.g. a spurious tuning
action of the driver seat while the vehicle is running, i.e. they reduce
the probability that something bad happen in case of exposure to a
dangerous situation. The Markov models presented in the sequel
can be used to measure as accurately as possible the probability of
such an event to occur with and without safety mechanisms.

Safety mechanisms based on error detection are related to both
the controllability of the system (for they put the vehicle into a
safe state in case of a failure of the function) and the exposure (for
they reduce the probability of a dangerous event to occur in case
of exposure), as exemplified by the watchdog for vehicle manage-
ment unit presented above. Although the Markov models pre-
sented in the sequel aim primarily at assessing as accurately as
possible the probability of a dangerous event to occur with and
without safety mechanisms, they provide also some information
about the controllability (via the probability to be in a safe state).

3. Generic Markov models

To have a clear understanding of the behavior of electric and
electronic systems in the presence of failures (including those of
safety mechanisms), the best method is probably to design state/
transition models for these systems. It is often the case that
Markovian hypotheses are verified or at least are a good approx-
imation for calculation purposes so that these models can be
turned into Markov chains in a straightforward way.

In this section, we shall propose Markov chains for systems of
each of the two above categories. These Markov chains are generic
in the sense that one has just to adjust values of parameters (such
as failure rates, coverage rates…) to assess the safety of a
particular system. Markov chains presented hereafter can be
subsequently embedded into larger Markov models or approxi-
mated either by means of fault tree constructs or by ad-hoc
formulas. They serve as a reference.

3.1. Case of a hardware block protected by a first order safety
mechanism based on error detection

Let us consider first the case of a Hardware block HB protected
by a first order safety mechanism SM1 based on error detection.
The generic Markov chain for this system is given in Fig. 3.

Such a system fails in a dangerous state if both the hardware
block and the safety mechanism fail, no matter in which order.
Therefore, the Markov chain encodes basically three failure
scenarios.

In the initial state (1), both the hardware block and the safety
mechanism are working. The failure rates λHB for the hardware
block and λSM1 are assumed to be constant over the time (no
ageing effect). If the hardware block fails first, the system goes to
state 2, where the safety mechanism detects or not this failure
instantaneously. As a graphical convention, we denote instanta-
neous states and their outgoing probabilities by dashed lines, as on

the figure. The probability not to detect the failure is 1-DC1, where
DC1 stands for the diagnostic coverage of the safety mechanism. In
the state (2), if the failure of the hard block is not detected the
system goes to the failure state (5) (first failure scenario). Other-
wise, it goes to the safe state (3). In this state, the mean time
before the vehicle is taken to the garage is TM, i.e. the repair rate of
the hardware block is μV¼1/TM. Now, if the safety mechanism fails
before the vehicle is repaired, then the system goes to the failure
state (5) (second failure scenario). Otherwise it goes back to the
initial state (1).

Finally, if, in the initial state, the safety mechanism fails before
the hardware block fails, then the system goes to state (4). In this
state, we have nothing to do but to wait until the hardware block
fails to go into the failure state (5) (third failure scenario).

Note that since there is no mean to detect a failure of the safety
mechanism, there is no mean to repair it neither. Moreover, we
assume that neither the hardware block nor the safety mechanism
is inspected during periodic maintenances of the vehicle. This
hypothesis is realistic, although pessimistic.

3.2. Case of a hardware block protected by first order mechanism
based on error detection and a second order safety mechanism

We shall consider now the case of a hardware block HB
protected with a first order safety mechanism SM1 based on error
detection which is itself tested by a second order safety mechan-
ism each time the vehicle starts. The generic Markov chain for
such a system is given in Fig. 4.

This model extends the previous one. The second order
mechanism has its own failure rate λSM2 as well as its own
diagnostic coverage DC2. Note that it is assumed that when the
vehicle is taken to the garage, it is fully repaired and is as good as
new after this repair.

In the initial state (0), the hardware block HB and the two
safety mechanisms SM1 and SM2 are assumed to work correctly.
Now there are three possibilities:

� The second order mechanism fails first. In that case, according
to our hypotheses, we are exactly in the same situation as if
there was no second order mechanism. So the model obeys the
same pattern as previously. We kept actually the same number-
ing of states 1–5 to emphasize this point.

� The hardware block fails first. This situation is also very similar
to the previous one, for the second order mechanism plays no
specific role in the subsequent scenarios. State 0, 6 and 7 are
therefore symmetric to states 1, 2 and 3. The only difference
stands in the availability of the second order mechanism.

Fig. 3. Generic Markov chain for a hardware block protected by a first order safety
mechanism based on error detection.
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� The interesting scenarios are therefore those where the first
safety mechanism fails first, i.e. the system goes to state 8. We
shall now develop these scenarios.

In state 8, we are in the situation where the first order safety
mechanism failure is unnoticed. Here again there is a race
condition amongst three possibilities:

� The hardware block fails first, including before the current
journey ends. In that case, the whole system fails (state 5).

� The second order safety mechanism fails first. In that case, we
can make the pessimistic assumption that the driver did not
notice the warning before this failure. So, we are back to the
situation where there is no second order safety mechanism
(and the first order one is failed), i.e. to state 4.

� The current journey ends before both the hardware block and
the second order mechanism fail (state 9). We can assume that
the mean time before the journey ends is TJ so that the
transition rate between states 8 and 9 is δV¼1/TJ. Now at the
next start of the vehicle, the second order mechanism tests the
first order one with a probability DC2 of successful detection.
If the detection is successful (state 10) then either the driver
takes the vehicle to the garage before the hardware block fails
(in which case the system goes back to the initial state 0) or the
hardware block fails first (in which case the whole system fails,
i.e. goes to state 5). If the second order mechanism does not
detect the failure of the first order one, then we have to wait for
another start of the vehicle to make the test again (so the
system goes back to state 8)

It is worth to note that the model described here is quite
different from those proposed for safety instrumented systems in
Refs. [3,4]. The difference stands mainly in assumptions about the
maintenance policy. As already pointed out, the designer of an
automotive electric and electronic system has no control on
maintenance. So, he has to make pessimistic hypotheses about
what the driver will (reasonably) do.

3.3. Case of a hardware block protected by a first order safety
mechanism based on inhibition and a second order safety mechanism

We shall now consider the case of a hardware block HB
protected with a first order safety mechanism SM1 that inhibits

the hardware block functionality, itself periodically tested by a
second order safety mechanism SM2. The generic Markov chain
for such a system is given in Fig. 5. As the reader has immediately
noticed, this model is embedded in the previous one. The reason is
that if the hardware block fails before the first order safety
mechanism, then there is nothing to inhibit and the system is
safe (but of course not available).

Note also that there is no detection device and therefore no
diagnostic coverage for the first order safety mechanism.

4. Experimental study

Once the modeling of prototypical electric and electronic
systems was established on the solid ground of the Markov chains
presented in the previous section, we were in position to study the
sensitivity of their safety to the variations of their reliability
parameters. This section reports experiments we made on the

Fig. 4. Generic Markov chain for a hardware block protected by a first order safety mechanism based on error detection and a second order safety mechanism.

Fig. 5. Generic Markov chain for a hardware block protected by a first order safety
mechanism based on inhibition and a second order safety mechanism.
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model pictured in Fig. 4, which is the most general one. To do so,
we used the XMRK tool developed by one of the authors [5].

4.1. Realistic values of the parameters

In practice, mission times, transition rates and diagnostic
coverage's are by no means arbitrary. They vary within bounds
from one system to the other but this variation is rather limited.

The considered lifetime of a vehicle is about 10,000 driving
hours. This corresponds to an average of 15 years or 400 thousand
kilometers (660 h of driving per year, with an average speed of
40 km/h). We performed most of the calculations for this value. In
this section, we present results up to 20,000 h lifetime to give the
reader more insight about how the indicators evolve.

The failure rate of hardware blocks (λHB) stands typically
between 10�6 and 10�7 failures per hour. The failure rates of first
and second order safety mechanisms (λSM1 and λSM2) stand
typically between 10�6 and 10�8 failures per hour. We made
most of the experiments around these values which corresponds
to the failure rates ranges of the majority of the automotive
components extracted from IEC 62380 [12].

ISO 26262 annex D clarifies the evaluation of diagnostic cover-
age of safety mechanisms. Different tables are proposed in order to
identify the type of safety mechanism that allows the detection of
specific element failures. It also associates to each of those
combinations the expected diagnostic coverage value, which
represents the effectiveness of a safety mechanism with respect
to the different failures modes [1]. The diagnostic coverage is
typically sorted into three ranks: Low (60%), Medium (90%) and
High (99%). However, these values can be adapted based on the
analysis of the component or with the expert judgment in order to
take into account specific characteristics such as specific imple-
mentations constraints or specific test periodicity. Also, a 100%
diagnostic coverage can be considered if it can be justified. In
practice, as it relies on the expert judgment, it's very unlikely to
have a diagnostic coverage percentage with more than one or two
decimal digits (e.g. 99.5%, 99.95%).

The mean journey time (TJ¼1/δV) is of course more difficult to
estimate. It is usually taken as to be 1 h. We made it vary from this
value to larger values to take into account a large variety of
situations.

Similarly, the mean time before the vehicle is taken to the
garage when a warning is raised (TM¼1/μV) depends dramatically
on the driver. We made it vary also from 1 h (i.e. the journey mean
time) to the lifetime of the vehicle. Here again the ISO26262
standard provides typical values (Part 5, requirement 9.4.2.3, note
2) of the average time to vehicle repair, depending on the fault
type:

� 200 vehicle trips for reduction of comfort features;
� 50 vehicle trips for reduction of driving support features;
� 20 vehicle trips for amber warning lights or impacts on driving

behavior; and
� one vehicle trip for red warning lights.

The time taken for repair is usually not considered (except to
evaluate hazards that can expose maintenance personnel).

Table 1 summarizes realistic variations of the values of
parameters.

In the case of the Vehicle Management Unit presented Section
2.1, the per hour failure rate of the hardware block, i.e. the torque
calculation part of the microcontroller has an estimated value of
0.4E-6. This estimation results from the weighting of failure
probabilities and rates of different constituent of the microcon-
troller. The per hour failure rate of the watchdog is estimated at
5.0E-8. The diagnostic coverage of the watchdog is estimated from

its capacity to detect different failure modes of the microcontroller
and the proportion of failures of each mode. For a simple watch-
dog it would be around 60%, for a more elaborated watchdog (so-
called window watchdog) it would be around 90%. The per hour
failure rate and diagnostic coverage of the second order mechan-
ism are estimated respectively at 0.4E-6 and 60%.

4.2. Most influential parameters

According to numbers given in Table 1, the hardware block and
both safety mechanisms are reliable with respect to the expected
mission time of vehicle. As a consequence, scenarios involving
more than one or two failures of these components are extremely
improbable. Although the Markov chain pictured Fig. 4 encodes an
infinite number of failure sequences, only the shortest ones are of
real interest. Fig. 6 presents an unfolded (tree-like) view of this
Markov chain. Sequences that go back to an already visited state
are not expanded so to keep only shortest sequences.

Fig. 6 makes clear that all of the failure sequences involve the
failure of the hardware block. Therefore, its failure rate is an
influential parameter. To illustrate this point, we calculated the
probability of failure of the system for different values of λHB
(λHB¼1.00E-6, 0.80E-6, 0.60E-6, 0.40E-6, and 0.20E-6 h�1) and
fixed values of the other parameters: λSM1¼1.00E-6 h�1,
DC1¼99%, λSM2¼1.00E-6 h�1, DC2¼99%, TJ¼1 h, and TM¼10 h.
We made these calculations from 0 h to 20,000 h by step of 100 h.
Values of the failure probability of the system are plotted Fig. 7. This
figure shows that the dependence of the failure probability w.r.t. the
failure rate of the hardware block is quasi-linear. We observed such

Table 1
Typical values of parameters.

Lower
bound

Higher
bound

Lower
bound

Higher
bound

λHB 1E-07 1E-06 λSM2 1E-08 1E-06
λSM1 1E-08 1E-06 DC2 0% 100%
DC1 0% 100% TM¼1/μV 1 10,000
TJ¼1/δV 1 10

Fig. 6. Unfolded view of the Markov chain representing hardware block protected
with a first and second order mechanisms based on error detection.
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a quasi-linear dependence for other realistic values of the other
parameters.

Table 2 gives the quotient of the failure probability by λHB for
different times (and different values of λHB). These numbers
confirm our quasi-linearity hypothesis.

We performed similar experiments to determine the influence
of the diagnostic coverage DC1 of the first order mechanism on the
failure probability. We let DC1 vary (DC1¼95%, 96%, 97%, 98%,
99%) while the other parameters are fixed (λHB¼1.00E-6,
λSM1¼1.00E-6, λSM2¼1.00E-6, DC2¼99%, TJ¼1 h, TM¼10 h) and
we computed the failure probability from 0 h to 20,000 h by step
of 100 h (although this value is twice higher than the vehicle
lifetime, it allows a better visualization and interpretation of the
different behaviors). Results are plotted Fig. 7. This figure shows
clearly the direct influence of this parameter on the failure
probability. Again, similar results are obtained for different values
of the other parameters.

4.3. Influence of other parameters

We established so far that both the failure rate of the hardware
block and the diagnostic coverage of the first order mechanism
have a direct and quasi-linear influence on the failure probability
of the whole system. What about the other parameters?

Fig. 6 makes clear that sequences S9, S10, S11 and 12 are
obtained respectively by prefixing sequences S1, S2, S3 and S7
with a failure of the second order mechanism (λSM2) and that
sequence S8 is obtained from sequence S7 by inserting a failure of
the second order mechanism in between the failure of the first
order mechanism one and the failure of the hardware block.
Moreover, the failure of the second order mechanism occurs only
in sequences S8, S9, S10, S11 and S12.

As a consequence, the failure rate of the second order mechan-
ism cannot greatly influence the probability of failure of the
system.

There are two possibilities here: either we consider a perfect or
nearly perfect diagnostic coverage of the first order mechanism, or
we consider an imperfect (although possibly quite good) one.

If the diagnostic coverage is not perfect, it turns out that the
other parameters have a minor role in the determination of the
failure probability. The failure probability comes almost exclu-
sively from the scenario: failure of hardware block (state 0 to state
6), non-detection of this failure (state 6 to state 5). As an
illustration consider the four following extreme cases (see Fig. 8).

� Case 1: both the first order and the second safety mechanisms
are highly reliable (λSM1¼λSM2¼1.0E-8), the second order
mechanism detects perfectly the failures of the first one
(DC2¼100%) and the driver takes immediately the vehicle to
the garage when she is advised to do so (TM¼1 h).

� Case 2: Similar to case 1, but with a passive driver who never
takes the vehicle to the garage (TM¼20,000 h).

� Case 3: the first order safety mechanism is only reasonably
good (λSM1¼1.0E-6) and the second order mechanism is
ineffective (DC2¼0, TJ¼20000 h). The driver is active
(TM¼1 h).

� Case 4: similar to case 3, but with a passive driver (TM¼
20,000 h).

In all of the cases, we took λHB¼1.0E-6.
As shown by Fig. 9, the probability of failure of the worst case

(case 4) is less than three times as much as the probability of
failure of the best one (case 1) after 20,000 h and only two times
this probability after 10000 h (the expected life time of a vehicle).

If the first order safety mechanism is highly reliable
(λSM1¼1.0E-8), the driver behavior has not much influence. If it
is only reasonably reliable (λSM1¼1.0E-6), the driver behavior has
some influence.

With a smaller value diagnostic coverage of the first order
safety mechanism, e.g. DC1¼90%, the differences between the
above test cases are negligible. The situation is rather different in
the case of a perfect or nearly perfect diagnostic coverage of the
first order mechanism. First, the failure rate of the first order
mechanism comes into the play, second the behavior of the driver
has a great influence especially in the case the first order
mechanism is highly reliable, as illustrated Table 3.

Fig. 7. Variations, mutatis mutandis, of the failure probability with respect to the failure rate λHB of the hardware block (with λSM1¼1.00E-6 h�1, DC1¼99%, λSM2¼1.00E-
6 h�1, DC2¼99%, TJ¼1 h, TM¼10 h).

Table 2
Quotient of the probability of failure divided by λHB for different mission times.

Vehicle life time (h)

5000 10,000 15,000 20,000

λHB
1.00E-6 49.89 99.54 148.97 198.19
0.80E-6 49.89 99.54 148.97 198.19
0.60E-6 49.89 99.54 148.97 198.19
0.40E-6 49.89 99.54 148.97 198.19
0.20E-6 49.89 99.54 148.97 198.19
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4.4. Wrap-up

The large experimental study we performed showed that,
within the bounds set up by the current technologies, the two
most influential reliability parameters are the failure rate of the
hardware block and the diagnostic coverage of the first order
safety mechanism. In a case of a perfect diagnostic coverage of the
first order mechanism, the failure rate of the first order mechan-
ism and the driver behavior have a significant impact on the

reliability of the system. In all of the cases, the reliability of the
second order mechanism has only a minor influence.

5. Related works

As we said in the introduction, the design of Markov models for
safety systems has been done for the type of systems the mother
standard IEC 61508 [2] is dealing with (see e.g. [3,4]). Such a work
has not been done yet for automotive safety mechanisms.

In their works, Zhang, Long and Sato [6] propose models for the
representation of multi-channels safety related systems. The
Markov models proposed in this paper take into account two
kinds of failure: the self-detected ones and the undetected ones.
This can be compared to the safety mechanisms diagnostic cover-
age in this paper. Their models also take into account a “down
time” parameter which can be assimilated to the exposure time
introduced in ISO 26262 and which is taken into account in our
models.

In another article, Yoshimura, Sato and Suyama propose a
Markov model to calculate the failure probability of a system

Fig. 8. Variations, mutatis mutandis, of the failure probability with respect to the diagnostic coverage DC1 of the first order safety mechanism.

Fig. 9. Influence of other parameters (but λHB¼1.0E-6) in case of an imperfect diagnostic coverage of the first order mechanism (DC1¼99%).

Table 3
Influence of other parameters (but λHB¼1.0E-6) in case of a perfect diagnostic
coverage of the first order mechanism (DC1¼100%).

Vehicle life time (h)

5000 10,000 15,000 20,000

λSM1¼1.0E-8, TM¼1 h 1.49E-11 3.13E-11 5.02E-11 7.28E-11
λSM1¼1.0E-8, TM¼20,000 h 2.22E-08 8.36E-08 1.76E-07 2.92E-07
λSM1¼1.0E-6, TM¼1 h 1.25E-06 4.98E-06 1.12E-05 1.98E-05
λSM1¼1.0E-6, TM¼20,000 h 2.40E-06 9.21E-06 2.00E-05 3.44E-05
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without self-diagnostic by taking into account dynamic demand
rates [7]. Holub and Bor̈csok̈ enhanced this model by adding the
support of the self-diagnostic allowing to distinguish the danger-
ous detected failures from the undetected ones [8].

In their study, Winkovich and Eckardt propose Markov models
to evaluate the failure probability of the IEC 61508 related systems.
The models proposed in this paper take into account block
equipped with self-test mechanism, each of them characterized
by a self-test period and a diagnostic coverage percentage. How-
ever, unlike our models, the proposed models do not take into
account the possibility of self-test mechanisms failures [9].

6. Conclusion

In this article, we proposed Markov chains that model the
behavior of a large class of automotive Electric and Electronic
systems protected by first and possibly second order safety
mechanisms. These Markov chains are generic in the sense that
the analyst has just to set up the values of parameters such as
failure rates and diagnostic coverage to assess a particular system.
We report experiments we made to determine the most influential
of these parameters.

These Markov chains can serve as reference models for the
systems the ISO 26262 standards deal with. Together with our
findings on the relative influence of the different parameters, they
make it possible to propose approximate models, such as fault
trees patterns or ad-hoc formulas. The determination of fault tree
patterns is of a special interest for most of the analysts are familiar
with this technology. We are currently working on this issue.

Another promising idea would be to combine the Markov
chains we propose here with the ones modeling other components
in order to model a whole automotive system (not only an
individual electric and electronic system). Of course, the resulting
Markov chain would be gigantic even for a relatively small number
of components. It is however possible to generate partial Markov

chains (typically from AltaRica descriptions, see e.g. [10]) that
provide excellent approximations for the failure probability, as
recently demonstrated in [11].
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