Toupie: the p-calculus over Finite Domains as a Constraint
Language

Marc-Michel Corsini and Antoine Rauzy
LaBRI, URA CNRS 1304 — Université Bordeauz I
351, cours de la Libération,

383405 Talence Ceder FRANCE

e-mail: {corsini, rauzy} @labri.u-bordeaus.fr

Abstract. In this paper, we report experiments we did with the constraint language Toupie.
Toupie is a finite domain p-calculus interpreter. In addition to classical functionalities of a
finite domain constraint solver, it provides a full universal quantification and relations (predi-
cates/constraints) can be defined as least or greatest fixpoints of equations. This expressiveness
is coupled with a practical efficiency that comes from the management of relations via Decision
Diagrams. We advocate the use of this paradigm to model and solve efficiently difficult constraint
problems such as the computation of properties of finite state machines and the implementation
of abstract interpretation algorithms for logic languages.
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1. Introduction

Constraint Logic Programming (CLP) has shown to be a very attractive field of
research over recent years, and languages such as CLP(R) [40], CHIP [54] and
ProloglIII [21] have proved that this approach opens Logic Programming to a wide
range of real life problems. Advantages of CLP are well known: declarativity, ver-
satility, fast prototyping and last but not least, efficiency. A large part of the
CLP success is due to finite domain constraint solvers. Languages of the family
CLP(FD) rely on the paradigm enumeration/propagation. It follows that they are
mainly designed to find one solution to a given problem, eventually an optimal
one according to a given criterion (objective function). Problems handled with
CLP(FD) come mainly from operation research (see [48] where several applica-
tions are presented).

In this paper, we are interested in problems whose solutions are not individual
assignments of variables, but sets of such assignments. These problems come typ-
ically from model checking where one is interested in determining sets of states
of a given transition system that verify a given property. In general, they cannot
be handled directly within available CLP(FD) systems because their resolution
requires universal quantifications and computations of fixpoints. The motivation
of our work was to study whether the CLP approach can be applied to this kind
of problems. In other words, we wanted to investigate the ways constraint logic
programming and model checking can be cross-fertilized.
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To this aim, we designed the constraint system Toupie. In addition to classical
functionalities of finite domain constraint solvers, it provides a full universal quan-
tification and definitions of relations as least or greatest fixpoints of equations.
These definitions can be seen as a kind of quantification over relations or, in other
words, as second order constraints. Namely, Toupie is a finite domain p-calculus
interpreter.

The propositional p-calculus is a logic that permits the description of properties
of finite state machines and that can be seen as an assembly language for temporal
logics (see for instance [50, 13]). From this point of view, Toupie is close to model
checkers such as the Concurrency Workbench [18] or SMV [45], or to programs
computing the fixpoint of the Loyd’s Tp operator [43] of Datalog programs. How-
ever, Toupie has been designed with the will to obtain a language, i.e. a versatile
tool, conversely to model-checkers that are specific purpose tools.

In this paper, we advocate the use of the u-calculus over finite domain variables
to model and to solve efficiently interesting and difficult problems such as the
analysis of two players games [24], the implementation of abstract interpretation
algorithms for logic languages [22] and the computation of properties of finite state
machines [23, 24, 7].

We show that this expressiveness can be coupled with a practical efficiency
thanks to the management of relations via Decision Diagrams, an extension to
finite domain of Bryant’s Binary Decision Diagrams (BDD’s) [8, 6, 9]. We report
experiments showing that Toupie performances are comparable to those of classical
model-checkers.

A tool such as Toupie can be considered from different points of view:

As a new solver for CLP(FD) allowing a kind of relational calculus within this
framework. This solver could come in addition to the already embedded ones.

As a new paradigm for constraint logic languages. In this case, the p-calculus
should be extended in order to be a full programming language. We give some
indications on this question in the conclusion.

As a versatile model checker that can be used for prototyping and pedagogical
purposes and from which can be derived customized tools.

The remaining of the paper is organized as follows: Section 2 is devoted to a
presentation of the Toupie language. A formal semantics of Toupie program is giv-
en section 3. In Section 4, we give a short presentation of the Decision Diagrams.
Sections 5, 6 and 7 are devoted to applications: problem solving, abstract interpre-
tation of logic programs and computation of finite states machines properties.

2. Informal Presentation of Toupie

In order to present syntax and semantics of Toupie in an informal way, we deal,
through this section, with the well-known two players Nim’s game.
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Nim’s game: The game starts with NV lines numbered from 1 to N and con-
taining 2 x ¢ — 1 matches (where i is the number of the line). At each step, the
player who has the turn takes as many matches as he wants in one of the lines.
Then the turn changes. The winner is the player who takes the last matches.

Variables, Constants, Domains, Variable Tuples: A position in the Nim’s game
is characterized by the player who has the turn and the number of matches in
each line. In Toupie, such a position is described by means of a variable tuple that
groups several individual variables. Before using a variable tuple, one must declare
its type. For the Nim’s game with three lines of matches, this is done as follows.

let position = tuple (P:{a,b}, L1:0..1, L2:0..3, L3:0..5)

A variable of type position groups four individual variables: P (for Player)
that takes its value in the set of symbolic constants {a,b} and L1, L2 and L3 (for
Line 1, 2 and 3) that take there values in ranges of integers. {a,b}, 0..1, 0..3
and 0. .5 are the domains of the variables P, L1, L2 and L3. As in Prolog, variable
and constant identifiers begin respectively with upper and lower case letters.

Formulae, Predicates: Assume declared a variable Pos of type position. In order
to constrain Pos to describe the initial state of the game, one uses a formula:

((Pos.P=a) & {Pos.L1=1, Pos.L2=3, Pos.L3=5})

The above formula is a conjunction — & stands for A — of two atomic con-
straints: an equality and a system of linear inequations. The “field” F of a variable
tuple T is denoted by T.F. When a variable tuple is manipulated per se its identifier
is prefixed with a caret: “T. All of the usual connectives are available, including
=, V, A, =, ... (denoted respectively by ~, |, &, =>), as well as all of the linear
inequation relations =, #, <, ... (denoted respectively by =, #, <=).

A move is described by means of binary predicate, i.e. a relation, whose first
member (°S for Source) is the position before the move and the second member
(“T for Target) is the position after the move. move is thus defined as a conjunction
of the difference S.P#T.P — meaning that the turn changes — and the disjunction
of three systems of linear inequations — representing the different ways the player
who has the turn can take matches in a line:

move (~S:position, "T:position) += (
(S.P#T.P)

& ( {S.L1>T.L1, S.L2=T.L2, S.L3=T.L3}
| {S.L1=T.L1, S.L2>T.L2, S.L3=T.L3}
| {S.L1=T.L1, S.L2=T.L2, S.L3>T.L3}

)

A Toupie program is a set of n-ary predicate definitions.
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Quantifiers, Queries: Toupie is an interpreter. Once entered the definition of
position and move, it is possible to ask queries. For instance, positions where no
move is playable are obtained by means of the following query.

lambda (“S:position) forall “T:position “move("S,"T) 7

The form lambda is just a way to declare the type of the variable(s) of the
query. The quantifier forall has its intuitive meaning. In response to the above
query, one obtains:

This encodes the two final positions (player a wins or player b wins). Toupie is
a deterministic language. In response to a query, it computes the decision diagram
associated with this query and then goes through this data structure to display
tuples belonging to the relation. The result of a computation is thus an unique
relation eventually containing several tuples as it could be obtained in Prolog by
means of the meta-predicate bagof.

Fizpoints: All of the possible positions are not reachable from the initial one (for
instance, <a,0,3,5> is not). A position ~T is reachable either if it is the initial one
or if there exists a reachable position S and a move from ~S to “T. This natural
characterization of reachable positions is recursive. It is a typical least fixpoint
definition. Actually, it is not possible to remove recursivity since reachability is
not first order expressible (see for instance [49]).

Toupie predicates are always defined as least or greatest fixpoints of equations
for the inclusion in the powerset 27 of the cartesian product D = D; x ... x D,
of the domains D;’s of their formal parameters. Syntactically, least and greatest
fixpoint definitions are denoted by equations respectively in the form p += f and
p = f£.

The predicate move is thus defined as a least fixpoint, but, since there is no
recursive call in its equation, it could be defined as a greatest fixpoint as well.

The predicate encoding reachable positions is as follows.

reachable("T:position) += (
initial("T)
| exist "S:position (reachable("S) & move("S,"T)))

Winning Positions: A position is winning if there exists a move leading to a
losing position and conversely a position is losing if any playable move leads to a
winning position. This is simply what express the two following predicates.

winning(“S:position) += exist "T:position (move("S,"T) & losing("T))

losing(~S:state) += forall “T:position (move(”S,"T) => winning(~T))
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At this point, we have presented almost all of the fundamental constructions
of the p-calculus over finite domain variables (as it is implemented in Toupie):
constraints, universal and existential quantifications, systems of fixpoint equations.
It should be point out that in order to find winning positions of the Nim game,
we maked an extensive use of universal quantification and fixpoint definitions.
Indeed, both can be programmed in classical theorem provers such as Prolog by
using auxiliary lists in which already encountered positions are stored. However,
such a meta-programmation introduces procedural aspects in the description of the
problem, breaking in this way the declarivity of the language. In addition, it would
be very inefficient as soon as the number of positions becomes large. The table I
gives some running times necessary to compute reachable and winning positions
on a SUN IPX Spark Station with 48 MgB memory.

TABLE I
Running times for the Nim’s game.

|Numberoflines | 4 | 5 | 6 | 7 | 8 |

| Number of reachable positions | 763 | 7,674 | 92,153 | 1,290,232 | 20,643,831 |

| Times reachable positions | 0s21 | 0s43 | 0s75 | 1525 | 1593 |

|Times winning positions |0550| 1573| 6523 | 25518 | 141s60 |

3. The p-calculus over finite domain variables

This section is devoted to the denotational semantics of Toupie programs and
formulae, i.e. the p-calculus over finite domain variables. For sake of clarity, we
present it for an abstract syntax (the translation from the concrete syntax, sketched
in the previous section, to this abstract one is straightforward). In addition, we
consider atomic constraints in a very abstract way. Taking into account actual
atomic constraints, especially systems of linear inequations, is easy but tedious and
adds nothing to our purpose. Finally, we consider a restricted version of program
in which there is only local fixpoint definition. A full denotational semantics of
Toupie would be too complicate to be interesting here.

3.1. ABSTRACT SYNTAX

Formulae are built over four denumerable (distinct) alphabets: a set X = {Xy,...}
of individual variables, a set K = {ki1,ka,...} of constants, a set C = {c1,ca,...}
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of atomic constraints, and a set P = {p1,pa,...} of predicate variables. Each indi-
vidual variable X; is associated with its domain, i.e. a finite subset of K. In the
sequel, the domain of X; is denoted by dom(X;) or by D; when i is clear from the
context. An arity, i.e. a positive integer, is associated with each atomic constraint
and each predicate variable.

The set of formulae is smallest set such that:

— If Xy,...,X,, are individual variables or constants and r is an atomic con-
straint or a predicate variable of arity n then r(X7y,..., X)) is a formula.

If f and g are two formulae then so are =f, fAg, fVg, f=g ...

If f is a formula and X is an individual variable then 34X f and VX f are
formulae.

— If Xq,...,X, are individual variables, p is a predicate variable and f is a
formula monotone in p (i.e. in which p does not occur under an odd number
of negation) then up(Xy,...,X,).f and vp(Xy,...,X,).f are formulae.

Note that concrete equations do not appear in this abstract syntax. It means
that some work must be performed to handle not only individual fixpoints but
systems of fixpoint equations. This has been already done in the literature, (see
for instance [17]). Intuitively, a system of fixpoint equations is translated into a
tuple of p-calculus formulae, one for each equation. Then, the semantic function
is applied pointwisely.

Note also that usual duality rules apply here too.

-(fVvg) = (=f A—g)
~3AXf = VXf

vp.f = —up.—~flp < —p]

Where f[p < g| denotes the formula f in which g has been substituted simultane-
oulsy for all of the occurrences of p.

Finally, we consider in what follows only closed formulae, i.e. formulae in which
each individual variable appear within the scope of a quantifier or as the parameter
of a fixpoint formula and each predicate variable appear within the scope of a
fixpoint formula.

3.2. DENOTATIONAL SEMANTICS

As said in the previous section, a formula in which occur the variables X,..., X,
whose domains are respectively D;, ..., D, is interpreted into the powerset 27 of
the cartesian product D = Dy x ... x D,,, with respect to an environment p. An
environment is a function that maps each atomic constraint and predicate variable
of arity n into a subset of the cartesian product ™.

We denote by Var(f) the set of individual variables occurring in a formula f.
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We denote by p[p — R] the environment that results by updating the binding
of the predicate variable p to R in p.

Let Xy,...,X, be variables whose domains are respectively D,..., D,.

Let R be arelation over the Xy,..., X, and X;,, ..., X;, beasubset of X;,..., X,,.
We denote by W{Xil,...,Xik}(R) the projection of R on the indices 71, ..., i.

Now, let P be a relation over X; ,...,X;,, ie. a subset of D;, x ... x D;,.
We denote by oyx, . x,}(P) the maximal subset @ of D1 X ... x D, such that
W{Xil,...,Xik}(Q) =P.

By abuse, we denote by 1 the full relation, when the underlying powerset is
clear from the context.

Finally, we denote by \ the set difference.

Semantics of formulae is as follows. Let Xi,..., X, be individual variables or
constants and Dy, ..., D, be their domains (by extension, the domain of a constant
k is {k}). Let f and g be formulae, and let ¢ and p be respectively an atomic
constraint and a predicate variable of arity n.

[e(X1,....X)]p <€ ple)NDy x...x D,
[-flp < N\[flp
[V ale € ovarrvg ([F10) Uovar(rvg (l9lp)
[f Agle = ovar(rag) (Lf1P) N ovar(ing) (l9lp)
Bxflp ® U [IfIX o

kedom(X)

VXflp € () [fIX Ko

kedom(X)
[p(X1,....Xn)]p = p(p) N Dy x...x Dy
(X1, ... X0)flp € (R C D1 x ... x Dy|R 2 [flplp — R]}
[vp(X1s- ., Xn)-f1p & (R C D1 x ... x D,|R C [f]plp = R}

The syntactic restriction on the occurrences of p in formulae of the form up.f
and vp.f ensures that semantically, the bodies (f) rise to monotone functions in
the powerset ". In addition, the semantics of a formula is always a finite subset
of K™. Let D = D; x ... x D,, be a finite subset of X". 2P equipped with the set
inclusion forms a complete lattice. The Knaster-Tarksi’s theorem [53] asserts that
given a monotone function f from 2P to 2P,

1. f is continuous.

2. The equation R = f(R) (R € 2P) admits a least and a greatest solutions,
denoted with pR.f(R) and vR.f(R), that are respectively equal to {R|f(R) C
R} and U{R|f(R) 2 R}.
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3. There exist two integers m and n such that pR.f(R) = f™(() and vR.f(R) =
f™(D) where f¥(R) denotes the k-nth application of f to R.

Finally, the following lemma holds, that asserts that the semantics of a formula
does not depend of its environment.

LEMMA 1. Let f be a formula and p and p' be two environments that interpret in
the same way atomic constraints. Then [f]p = [f]p'-

3.3. TOUPIE VERSUS PROPOSITIONAL u-CALCULUS:

There exist several different presentations of the p-calculus in the literature. This
formalism allows the expression of state properties of automata. The differences
between the presentations stand mainly in the type of the considered automata.
The key point being to know whether transitions are labeled or not. Authors
working with labeled transitions add to the formalism connectives allowing to
characterize transition labels and coming typically from the Henessy & Milner’s
logic [36]. Toupie is closer to the Park’s original presentation [50] (used for instance
in [13]). We prefer this version because it is as expressive as the former but does
not impose interpretations in terms of automata and thus is far more versatile.

Toupie is different from this theoretical formalism for essentially two reasons.

— Atoms of the propositional u-calculus are in the form X =Y, where X and Y
are individual variables. If individual variables are interpreted in a finite domain,
there is no substantial difference with Toupie. In general, the authors consider only
individual variables belonging to {0,1}. The extension to finite domain variables
improves the efficiency, especially when dealing with arithmetical constraints (of
course, it does not provide any improvement for what concerns expressiveness).
Infinite interpretation domains would raise some effectiveness problems ...

— The p-calculus does not allow to name relations and thus it does not consider
systems of fixpoint equations. However, this extension is easy and useful [17].

In our informal presentation, we omit nested fixpoints. In the literature, nested
fixpoint definitions are used mainly to express infinite path properties on graphs.
For instance, states of a graph g that are source of paths going infinitely often
through states having a property p are characterized by means of a vu term, i.e.
a greatest fixpoint of a least fixpoint, as follows.

tau(U:vertex) -=
let aux(V:vertex) += (/% local definition */
exist W:vertex (g(V,W) & aux(W))
| exist W:vertex (g(V,W) & p(W) & tau(W))
)
in aux(U) /* body of the definition */

Nested fixpoints are not strictly necessary (except for sake of efficiency) since
any expression with nested fixpoint can be rewritten into a expression that is just
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a fixpoint hierarchy. This result is due to Immerman [38]. For instance, states
characterized above can be computed in two steps. First, one computes the tran-
sitive closure of the automaton, second one selects states s such that there exists
a path from s to a state ¢ verifying p and conversely a path from ¢ to s. Indeed,
this requires to compute a binary relation which is more costly than the presented
program. Moreover, we don’t know any “natural” property requiring more than
two nested fixpoints.

4. Decision Diagrams

The interest of a CLP(X) language is not only a matter of expressiveness: it stands
also in the practical efficiency of the embedded solver for X. CLP(FD) systems
solves first order constraints, i.e. decision or optimization problems that are in
general NP-complete. The resolution of second order constraints, such as those
expressible within the p-calculus over finite domain variables, is far more difficult
because the size of solutions (that are sets of tuples) can be exponential w.r.t.
the number of variables. Therefore, the design an efficient method to solve such
constraints consists mainly in chosing a data structure as compact as possible to
store relations. Fortunately, Bryant’s Binary Decision Diagrams (BDD for short)
[8, 6, 9] provide such a data structure. The BDD associated with a Boolean formula
is a compact encoding of the decision tree describing the set of solutions of this
formula. This encoding is canonical up to a variable ordering. Even if the worst case
size of a BDD is exponential w.r.t. the number of variables, in many practical cases
this size is quite small. Classical Boolean operations can be performed directly on
BDD'’s. One of the most interesting features of BDD’s is that, once built the BDD’s
associated with formulae, testing whether a formula is satisfiable or is a tautology,
testing the equivalence of two formulae becomes trivial.

In Toupie, we extend BDD’s techniques to Decision Diagrams, i.e. to the case
where variables are not Boolean but take their values into finite domains. The aim
of this paper is not to present BDD’s and DD’s, so we limit ourselves to what is
necessary to discuss innovations introduced in Toupie. For a comprehensive survey
on BDD’s, the interested reader should see the paper by Bryant [9].

Reduced Ordered Decision Diagrams: The main difference between BDD’s and
DD’s is that nodes of DD’s are of various arities (and not always binary).

Let X¢, ..., X,, be variables whose domains are Di, ..., D, and let D =
Dy x ... x Dy. A Decision Diagram « for Xq,..., X, is a directed acyclic graph
with an unique root node and verifiying conditions (i) and (ii).

(i) a has two sink nodes labeled respectively with 0 and 1.

(ii) Each internal node of « is labeled with a variable X; whose domain is D; =
{k1,...,k.} and has r outedges labeled respectively with ki,. .. k.
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The denotation [«] of the root node « of a DD is a formula defined as follows.
If o is a leaf labeled with 0 or 1 then [«] is the corresponding Boolean constant.
If « is an internal node labeled with X; and whose outedges point respectively to
ai, ..., ap, then:

o] def case(X;, [aa],- .., [ar])

Where, the case connective is defined as follows. Let X be a variable and {k1, ...,k }
be its domain, let fq,..., f, be formulae. Then,

case(X, f1,.. 0 fr) (X =k)Af)V...V(X =k)Af)

Let < be a total order on the variables Xi,...,X,. A DD is said ordered if
condition (iii) holds.

(iii) For any pair of nodes («,3) labeled respectively with the variables X; and X,
if 3 is reachable from « then X; < Xj.

A DD is said reduced if conditions (iv) and (v) hold.

(iv) It contains no internal node whose outedges are all pointing to the same sub-
graph.

(v) It contains no isomorphic sub-graphs.

Condition (iv) follows from the equivalence: case(X, f,..., f) = f.

It is clear that for any relation R in 2P it exists at least one reduced ordered
decision diagram (RODD) whose denotation is a formula encoding R. Moreover,
the following property holds.

LEMMA 2 (Canonicity of reduced ordered decision diagrams). For given a vari-
able order, the RODD associated R is unique up to an isomorphism.

In the sequel, we will write simply DD for RODD.

Negation: The case connective keeps another interesting property of BDD’s: it
is orthogonal with the negation:

—case(X, f1,..., fr) = case(X,=f1,...,~f)

The DD encoding the complementary of a relation R is thus obtained from the
DD encoding R by exchanging its leaves. This makes a negation in constant time
possible by putting flags on edges that indicate whether the pointed DD’s must
be considered positively or negatively. In order to preserve the canonicity of the
representation, one uses orthogonality to encode only nodes with a positive leftmost
outedge. As a side effect, only one leaf remains necessary (the other one being its
negation).
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Toupie = p-calculus(Finite Domains) 11
a b
(a) (b)

0..4 5..10

Fig. 1. The DD associated with X +Y <1, X,Y € 0..2 (a), and the compacted DD associated
with X < 5,X € 0..10 (b) (complemented edges are marked with a black dot).

Let X and Y be two variables and 0. .2 be their domain. The DD encoding the
constraint (X + Y <=1) is pictured Fig. 1(a).

Memory Management for DD’s:  DD’s are a very compact representation thanks
to the sharing of isomorphic subtrees. This sharing is automatically performed by
keeping nodes into a hashtable: each time a node case(X, ay,..., ;) is required,
one first looks up the table and the node is created only if it is not already in the
table (as we will see DD’s are always created in a bottom-up way, which makes
the above principle possible).

Logical Operations on DD’s: In order to compute the DD associated with
a formula f = g ® h, where ® is any usual connective, one first computes the
DD’s associated with ¢ and h, then one performs ® on these DD’s. Usual logical

operations (V, A, ®, ...) are performed by means of a single connective, so-called
ite for If-Then-Else. ite is defined as follows:
def

ite(fagah) = (f/\g)\/(_lf/\h)

Usual connectives can be rewritten using an ¢te and possibly a negation:

fVvg =ite(f,1,9) fNg = ite(f,g,0)
f<:>g = ite(faga_'g) f®g = ite(fa_'gag)

Let «, 3, be three DD’s. The operation ite(q, 3,7) is performed by means of
the following inductive principle:

ite(a, /67 ’Y) - CCLSB(X, itB(OéX<_k1 ) BX(—kl y VX —kq )7 ey ite(aX(—kr ) BX(—/CT ) 7X<—kr))

Where X is the least variable labeling the root of the DD’s o, 8 and v, {k1,...,k,}
is its domain and o x . j denotes the son of the DD ¢ pointed by the outedge labeled
by k if the root node of o is labeled by X, and o itself otherwise.

It is easy to induce an effective procedure from this principle.
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Another very important point that makes BDD’s and DD’s efficient in practice
is that the computation procedure uses a learning mechanism: a second hast-table
is used to store 4-tuples < «, 3,7, p > such that p = ite(«, 3,7). Each time a com-
putation ite(a, 3,7) must be performed, one first looks up this table to see whether
the result has not been already computed. If it not the case, the computation is
actually performed and its result stored. This ensures that a computation is almots
never performed twice which achieves a substantial improvement of efficiency.

Table II summarizes the main computational costs of operations on DD’s.

TABLE II
Computational costs of operations on DD’s

| Creation of a new node | 0(1) |
| ite(a, B,7) | Olal x |8] x 7)) |
| 3Xa, VXa | O(la|ltem))) |

Compacted representation: When dealing with variables having rather large
domains (it could be the case especially for numerical variables) many consecutive
outedges of a node may point to the same son. In this case, one can compact
the representation by labeling outedges with ranges of constants rather than with
individual constant (such a DD is pictured Fig. 1(b)).

“Good” properties of DD’s are preserved by this new compaction. The repre-
sentation is canonical if any two adjacent ranges that point to the same DD are
merged. Logical operations may be even accelerated since one may treat several
values at once.

Note finally that such a representation could be used to encode approximations
of relations between variables taking their values in dense domains.

Constraint solving: In order to solve systems of linear equations, we use the
classical implicit enumeration/propagation technique (similar, for instance, to one
embedded in CHIP [54]). Note that solving a system means here computing a DD
that encodes all the solutions of the system.

The principle is to enumerate variables domains in the order of their indices,
and to build the DD in a bottom-up way. The propagation we adopt — the Waltz’s
filtering [55] — consists in maintaining, for each variable a minimum and maximum
value. Each time a variable domain is modified, this modification is propagated
until a fixpoint is reached (see [42] for a discussion about these techniques).

Note that the compacted representation of DD’s shown above is well adapted
to this kind of propagation.
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Toupie = p-calculus(Finite Domains) 13

Variable ordering: Since the seminal paper by R. Bryant [8], it is well known
that the size of a (binary) decision diagram depends dramatically on the cho-
sen order over variables. By default, Toupie orders variables with a very simple
heuristic, known for its rather good accuracy. It consists in traversing the formula
considered as a syntactic tree in a depth-first left-most way and to number vari-
ables in the induced order. Nevertheless, this heuristic sometimes produces very
poor performances. The user is thus allowed to define its own indices.

What’s new ? The idea that the case connective allows a canonical encoding
of discrete functions is rather old and due, as far as we know, to J.P. Billon [4].
Buettner, in [10], used this encoding for multivaluated functions. However, none
of these works fully implements BDD’s techniques as they are described in [6].
The extension from BDD’s to DD’s has been proposed in [52]. We proposed it
independently in 1992. The compacted representation proposed here is original (at
least in our knowledge). The integration of constraint solving techniques and DD’s
is also new.

5. Problem Solving

As shown at section 2, one can model mathematical games within Toupie thanks
to universal quantification and fixpoints. In this section, we examine several very
simple problems that permit a comparison of performances of the various ways
constraint solving techniques and decision diagrams can be integrated.

Classical Artificial Intelligence Puzzles: We start with classical artificial intelli-

gence puzzles that can be found in [41, 54]. These problems do not require second

order constraints but they are of a special interest for our comparison purpose.
Let us first consider the pigeon-hole problem (recall that the problem is to put

M pigeons into N holes in such way that there is at most one pigeon per hole).
The table IIT and IV give running times obtained with:

1. Toupie using N-ary DD’s, the outedges being labeled with constants.
2. Toupie using N-ary DD’s, the outedges being labeled with ranges.

3. Toupie using binary DD’s. In order to encode that a variable takes its value
in a domains of size N, one uses [loga(N)] Boolean variables. These variables
being ordered consecutively.

4. Same as 3, but with an interleaved order on variables.

5. Toupie using binary DD’s. In order to encode that a variable takes its value
in a domains of size IV, one uses N Boolean variables. These variables being
ordered consecutively.
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14 Marc-Michel Corsini and Antoine Rauzy

TABLE III
Running times for the Pigeon-Hole problem N/N

|N|6|7|8|9|10|11|12|13|14|15|

| 1 | 0s10 | Os18| 0s43 | 1503 | 2556 | 6s56 | 1691 | 46500 | 127535 | 336s00 |

| 2 | 0s11 | 0526| 0s65 | 1563 | 4521 | 10s65 | 27516 | 69s45 | 174s58 | 449515 |

|3 | 0s23 | 0s53 | 1s53 | 6s51 | 29s40 | 114828 | 7 | 2 | 7 | 7 |
| 4 | 0s20 | 1513 | 2s16 | 3858 | 265883 | 2 | 7 | 2 | ? | 7 |
| 5 | 0s91 | 5s16 | 41s25 | 325598 | 7 | 7 | 7 | 7 | 7 | 7 |
| 6 | 0s11 | 0s25 | 0s63 | 2518 | 5s80 | 15s11 | 39s28 | 10233 | 279503 | 7 |
|7 | | | | 8296 | 84880 | 2 | 7 | 2 | 7 | 7 |

6. Same as 3, using the BDD package Aulne [51]. Aulne is implemented following
the Bryant’s paper [6] which makes it a good comparison tool.

7. The constraint logic language CHIP [54] using finite domain constraints’.

Running times for instances with N pigeons and N holes (N! solutions) are
presented Table III. Those for instances with N 4 1 pigeons and N holes (no
solution) are presented Table IV.

As one can see, DD’s are slightly more efficient than BDD’s one the Pigeon-
Hole problem (moreover, Aulne is more optmized than Toupie as it appears clearly
when comparing binary DD’s with BDD’s. The compacted representation has no
interest on this example. However, it is not too bad too. The logarithmic coding
of finite domains is more efficient than the linear one. Notice that is not true
for enumerative methods such as the Davis and Putnam’s procedure [28]. Finally,
DD’s give better results than enumerative methods on this problem as shown by
the comparison with CHIP running times. However, this is not true in general since
DD’s are efficient only for problems having many regularities (symmetries).

Cryptogram: Let us consider now the following cryptogram.

! Daniel Diaz communicated us these times, we would like to thanks him here.
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TABLE IV
Running times for the Pigeon-Hole problem N + 1/N

|N|5|6|7|8|9|10|11|12|13|14|

| 1 | 0s06 | 0s11 | 0s25 | 0s51 21 | 2598 | 7s56 | 20s25 | 50s58 | 138s50 |

| 1s
| 2 | 0s08 | 0s16 | 0s35 | 0s80 | 1s98 | 4s96 | 12s33 | 32815 | 78593 | 197s60 |
|

| 3 | 0s11 | 0s21 | 0s50 | 1851 | 6s56 | 29540 | 111855 | ? | ? | ? |
| 4 | 0s15 | 0528 | 1s33 | 2570 | 39898 | 2 | 7 | ? | 7 | ?
| 5 | 0s28 | 1528 | 7595 | 6186 | 467556 | ? | ? | ? | ? | ?

| 6 | 0s06 | 0s25 | 0s31 | 0s75 | 2s61 | 6s76 | 17s38 | 44500 | 115546 |

-~

~

I T T P T .0 T A A O

The problem is to assign a number in 0..9 to each letter in such a way that no
number is assigned to more than one letter and that the addition is verified. This
problem can be solved in several ways within Toupie, thanks to constraints and
logical formulae.

The first way to solve the problem is to write a set of finite domain constraints
(the R.s take their values in {0,1}).

donald(D,0,N,A,L,G,E,R,B,T) +=
exist R1, R2, R3, R4, R5, R6 {
2xD=10%R1+T,
R1+2xL=10%R2+R,
R2+2%A=10*R3+E,
R3+N+R=10*R4+B,
R4+0+E=10*R5+0,
R5+D+G=10*R6+R,
R6=0,
D#0, D#N, D#A, D#L, D#G, D#E, D#R, D#B, D#T,
O#N, O#A, D#L, O#G, O#E, O#R, O#B, O#T,
N#A, N#L, N#G, N#E, N#R, N#B, N#T,
A#L, A#G, A#E, A#R, A#B, A#T,
L#G, L#E, L#R, L#B, L#T,
G#E, G#R, G#B, G#T,
E#R, E#B, E#T,
R#B, R#T,
B#T,
D#0, G#0, R#0
}
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16 Marc-Michel Corsini and Antoine Rauzy

A general heuristic in constraint problems is that variables with smallest domains
must be assigned first. This is called the first fail principle in the literature. In the
above formulation, with the a variable ordering that follows this principle, the
unique solution computed in 1s75.

An alternative to the previous formulation is to use as few constraints as possi-
ble, leaving to decision diagram mechanisms the main part of the computation.

The equality is modeled by means of the following predicates:

equality(D,0,N,A,L,G,E,R,B,T) +=
exist R1, R2, R3, R4, R5 (
add(0, D,D,T,R1)
add(R1,L,L,R,R2)
add(R2,A,A,E,R3)
add(R3,N,R,B,R4)
add(R4,0,E,0,R5)
add(R5,D,G,R,0))

Freee

add(R1,I1,I2,0,R2) += (
((R1+I1+I2 < 10) & (R2=0) & (0=R1+I1+I2))
| ((R1+I1+I2+C >= 10) & (R2=1) & (0=R1+I1+I2-10)))

The solutions of equality are computed in 2s35. The mutual exclusion is just
a pigeon-hole problem with ten pigeons (the letters) and ten holes (in 0..9). By
combining both, one obtains the unique solution of donald in 4s95.

This example shows that even on typical CLP(FD) examples Toupie has good
performances and that performances of DD’s, if well used, can often be compared
with performances of forward-checking algorithms.

Advantages of the Compacted Representation: The compacted representation
could be far more efficient than the standard one. The following example, coming
from data base literature, gives an illustration. The problem is to compute the
relation “cousin” in a complete binary tree of height H (two vertices are cousins
if they are at the same deep in the tree).

father (P,F) += ((F=2xP) | (F=2xP+1))
cousin(C1,C2) += (
exist P (father(P,Cl1) & father(P,C2))

| exist P1, P2 (father(P1,C1) & father(P2,C2) & cousin(P1,P2))
)

The table V gives running times following the same numbering than in tables
of results for the pigeon-hole problem.

Conclusion: This small set of problems is sufficient to show that from pure con-
straint solving to pure DD solving (with exhaustive or compacted representations)
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TABLE V

Running times for Cousin

(H] 5 |6 | 7 | 8 | o | 10 |

| 1 | 0s65 | 4510 | 28358 | 219506 | ? | ? |

| 2 | 0s10 | 0s35 | 1s28 | 5s38 | 27s86 | 173526 |

| 3 | 0s20 | 0s53 | 1591 | 9586 | 105531 | ? |

each mechanism has its advantages and its drawbacks. This is a strong argument
in favour of embedding and integrating these mechanisms into a versatile tool.

6. Abstract Interpretation of Logic Programs

In this section, we give some arguments to show that the p-calculus over finite
domain variables is a natural framework to define abstract semantics of program-
ming languages. We examplify that by using Toupie to perform abstract interpre-
tations of logic programs. Abstract Interpretation of logic languages (and Prolog
in particular) has been very active in the last few years. The motivation of these
researches is the need of optimizations in compilers. Roughly speaking an abstract
interpretation consists in executing a program over a finite abstract domain —
which is a partition of the concrete Herbrand domain — in order to get informa-
tion about the concrete executions of the program. The idea of using constraint
languages for this purpose has been proposed in [20, 34] (but only from a theo-
retical point of view). Here we translate almost directly abstractions of definite
logic programs into Toupie programs whose variables take their values in the cho-
sen abstract domains. We only give an informal presentation of the method, for a
detailed discussion see [22]. This approach can be related to works on abstract com-
pilation, e.g. [37], but here we abstract the syntax of the programs as in [33, 34].

Semantics of definite logic programs: A definite clause is a clause of the form
H + By,...,B,, where H, By, ..., B, are first order atoms. A definite program
is a set of definite clauses. Lloyd in [43] showed that the semantics of a definite
program P can be defined as the least fixpoint in the lattice 287, where Bp is the
Herbrand’s base of P, of the mapping Tp : 287 — 257 defined as follows. Let I
be an Herbrand interpretation. Then

Tp(I) def {H € Bp: H + By,...,B, is a ground instance of a clause in P and
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18 Marc-Michel Corsini and Antoine Rauzy

gsort(X1 , X2 ) :-
X3 = [], gsort( X1 , X2 , X3 ).

partition(X1 , X2 , X3 , X4 ) :-
Xt =101, x3=11, X4 = [].
partition(X1 , X2 , X3 , X4 ) :-
Xt1= [X5 | X6] ,X3= [X5] X711, X6 <= X2,

partition( X6 , X2 , X7 , X4 ).

partition(X1 , X2 , X3 , X4 ) :-
Xt1= [X5 | X6] ,X4= [X5] X711, X6 > X2,
partition( X6 , X2 , X3 , X7 ).

gsort(X1 , X2 , X3 ) :-
X1 =[], X3 = X2.

gsort(X1 , X2 , X3 ) :-
X1= [X4 ] X517,
partition( X5 , X4 , X6 , X7 ),
gsort( X6 , X2 , X8 ),
X8= [X4 ] X971,
gsort( X7 , X9 , X3 ).

Fig. 2. Flat version of Quicksort in Prolog

{B1,...,B,} C I} (1)

Abstract Domains: A typical example of abstract domains is Prop [44, 25]. This
domain uses two constants g (for ground) and ng (for nonground). The intuition
behind this is that a substitution  is abstracted by a function f such that f(z;) = g
if and only if for all instances €’ of 6, 6’ grounds z;.

Flat Programs: For technical reasons, Toupie works on flat version of logic
programs. Any pure logic programs can be translated into flat forms in a straight-
forward manner, thus it is not a restriction to only consider flat programs. The
basic idea is to write explicitely all the unifications with two builtins X =Y where
X and Y are variables or X =t where X is a variable and ¢ a flat term i.e. a term
with a functor and only variables as arguments. As an example, the flat version of
the quicksort program using difference lists is given figure 2.

The Toupie translation: The translation of a (flat) Prolog program into a
Toupie program is rather simple. To each Prolog literal corresponds a Toupie least
fixpoint equation. Each sequence of Prolog literals is translated into a conjunc-
tion of predicate calls. Finally each set of clauses with same head is viewed as a
disjunction of conjunction of relations. The figure 3 will enlight the process. It is
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set domain {g, ng}
gsort(X1,X2) += (nil(X3) & gsort(X1,X2,X3))

partition(X1,X2,X3,X4) += (
(nil(X1) & nil(X3) & nil(X4))
| (cons(X1,X5,X6) & cons(X3,X5,X7) & ari(X5,X2) & partition(X6,X2,X7,X4))
| (cons(X1,X5,X6) & cons(X4,X5,X7) & ari(X5,X2) & partition(X6,X2,X3,X7))
)

gsort(X1,X2,X3) += (
(nil(X1) & (X3=X2))
I (
cons(X1,X4,X5) & partition(X5,X4,X6,X7)
& gsort(X6,X2,X8) & cons(X8,X4,X9) & gsort(X7,X9,X3)
)
)

nil(X1) += (X1=g)
ari(X1,X2) += ((X1=g) & (X2=g))

cons (X1,X2,X3) += (
(X1=g) & (X2=g) & (X3=g)
| (X1=ng & ((X2=ng) | (X3=ng)))
)

Fig. 3. Toupie translation of Quicksort

rather clear, even without entering into technical details, that abstract semantics
“a la Lloyd” of definite logic programs and denotational semantics of the translated
Toupie programs coincide. We proved formally the correctness of the translation
in in [22].

The remaining difficulty is to deal with the explicit unification of the form
X =Y and X =t where X,Y are variables and ¢ is any (flat) prolog term. The
translation of the builtin X =Y is straightforward, whereas the translation of the
builtin X = ¢ heavily depends on the domain under interest, as an example figure 3
depicts the automated translation of the quicksort program for the domain Prop
wherein nil, cons and ari are domain-dependent translation of built-ins.

As a response to the query gqsort (L1,L2), one obtains {{L1=g, L2=g}, {L1=ng,
L2=ng}}, which means that L1=L2 in the interpretation domain Prop.

Performances: We use the benchmark programs proposed by B. Le Charlier
and P. Van Hentenryck in [14]. In the table VI, the running times (in seconds)
for the domain Prop are presented as well as those for the domain Types. Types

main.tex; 13/08/2001; 11:39; no v.; p.20



20 Marc-Michel Corsini and Antoine Rauzy

TABLE VI

Running times for abstract interpretations

| name | cs | disj | gabriel | kalah | peep | pg | plan | pressl | press2 | read |

| Prop | 0s53 | 0s48 | 0s18 | 0s50 | 0s83 | 0s11 | 0s10 | 0s76 | 0s75 | 0s83 |

| Types | 0s20 | 0s30 | 0s18 | 0s35 | 0s55 | Os11 | 0s06 | 0s68 | 0s70 | 2s40 |

contains four elements: int for integer, 1st for lists, cst for symbolic constants
and fct for the other terms. Note that only the definitions of the built-ins have to
be changed according to the domain.

The results show that Toupie is extremely fast on the benchmark programs
and much faster that any system we are aware of. Similar experiments for the
Prop domain and the same programs have been reported in [15] for the generic
abstract interpretation algorithm GAIA. Toupie is at least five time faster than
GAIA, on the average. Interestingly, the implementation of [15] also uses decision
diagrams for the domain and caching techniques. However, caching is used to a
lesser extent. Finally, it is fair noticing that GAIA performs a top-down analysis
implying that input patterns have to be recorded, not only success patterns. This
also complicates the fixpoint algorithm. In [19], M. Codish & al use a similar
approach to abstract interpretation over the domain Prop. Instead of translating
logic programs to Toupie, Codish et al transform them to Datalog, and apply a
simple T'p evaluation. Their approach is simpler since they do not use a constraint
language. But, we believe that our approach is more powerful, since Extended DDs
encoding permit larger interpretation domains without loss of efficiency, see the
benchmarks in [22].

It is clear that the same kind of techniques could be applied to any languages
with a well defined fixpoint semantics.

7. Symbolic Model Checking

In this section we show, by means of an example, how the y-calculus over finite
domain variables can be used to perform analyses of systems of concurrent process-
es. As an illustration, we detail the implementation in Toupie of a very simple and
powerful model of concurrency that was proposed by A. Arnold and M. Nivat in [3]
(see [2] for a comprehensive survey). This model consists in describing individual
processes by means of labeled transition systems and in combining these transition
systems in a convenient way to describe interactions between processes.
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Formally, a labeled transition system is a tuple A =< S, L,T >, where S is a
set of states, L, is as set of labels, and T is a set of transitions, i.e. a subset of the
cartesian product S x L x S. In a transition < s,[,t >, s is called the source state,
[ the label and ¢ the target state.

A process is thus considered as a set of states. An action or an event changes
the current state of the process. It is represented by a transition whose label is the
name of the action or the event.

A system P of n communicating processes P, ..., P, is also described by means
of a transition system A, called the synchronized product of the transition systems
A, ..., A, describing Py, ..., P,. States (resp. labels) of A are n-tuples of states
(resp. labels) of the A;’s. Some constraints are put on the tuples of labels in order
to describe the way processes communicate. The allowed tuples of labels are called
synchronization vectors.

Formally, the synchronized product of n labeled transition systems A; =<
S, L1, Ty >, ..., A, =< Sy, Ly, T, > for the set V of synchronization vectors
(V C Ly x...x Ly), is a labeled transition system A =< S, L, T > such that:

S =5 x...x8,
L=V
T = {<5[t>e8SxLxS|Vi=1.n,<5,l;i > T}

Where Z denotes a n-tuple and #; denotes its i-th component.

Once the labeled transition system describing the behavior of the system obtained,
one can test whether the system verify some desired properties (such as deadlock
freeness, safety, fairness and so on) by computing graph properties.

Note that labeled transition systems are actually the underlying model of most
of other formalisms used to describe processes. This is the case, for instance, of the
tractable restrictions of process algebrae such as CCS [46], as shown in [2]. In some
sense, the way processes are described is just a matter of interface, and each tool
has its own one: process algebrae for CWB [18], small languages to enter automata
for Mec [1], Auto [29] or Aldébaran [32], or even a small imperative language for
SMV [45]. Another difference between model checkers, is the way properties are
expressed. A number of temporal logics are proposed in the literature, such as CTL
[16] that is used in a several tools. As shown in [2], these logics are less expressive
than the propositional u-calculus (and for some of them strictly less expressive,
see [30] for a survey on that question). The choice of the interface language is thus
essentially a matter of taste. The advantage of an open tool such as a CLP system
is precisely that th user is able to design its own interface.

Much more important is the way in which transition systems are encoded. The
main drawback of the model is that their sizes become quickly huge, even for
very simple systems. With an explicit representation transition systems with more
than say 100,000 states cannot be handled (such sizes are not uncommon at all). In
section 2, we showed how transition systems can be represented in a symbolic way
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by means of DD’s. This idea is due to Madre and Coudert [27] and Clarke & als
[13]. As examplified by the Nim’s game, it allows to encode very large systems.

Ezxzample: In order to illustrate the approach, let us consider the problem of
designing a protocol between a dispatcher of resources and a number of buffers.
At the beginning, the dispatcher owns a given number of resources and the buffers
are empty. During the process, each buffer tries to get one by one a number of
resources from the dispatcher. When it has obtained them, it performs an action
(no matter what this action actually is), then it starts to give them back to the
dispatcher (still one by one). When it is empty, it performs another action and it
starts to get resources again. And so on infinitely.

Let us examine first a very simple version in which the dispatcher non deter-
ministically gives a resource to a buffer or get a resource from a buffer without
any additional control. In order to make the Toupie code sufficiently small to be
easily readable we consider the case where there are only two buffers.

Individual Processes: The behavior is thus modeled by means of labeled tran-
sition system. For the dispatcher the states are the possible numbers of resources
the dispatcher has, and the transitions model its actions, i.e. get (a resource from
a buffer), put (a resource in a buffer) and e (when it remains idle). This transition
system is described by using a ternary predicate dispatcher(S,L,T), where the
variables S, L, T are respectively the sources, labels and targets of transitions.

let resources = 5 /* number of resources */
let dispatcher_state = domain 0..resources
let dispatcher_label = domain {e,get,put}

dispatcher(S:dispatcher_state,L:dispatcher_label,T:dispatcher_state) += (
((L=e) & (T=S))
| ((L=get) & (T=S+1))
| ((L=put) & (T=5-1)) )

The behavior of the two buffers is modeled in the same way. Here, states are
pairs (section, current number of resources), where section is a Boolean variable
indicating whether the buffer tries to get (up) or to put back (down) a resource.
The actions performed by the buffer when it is full or empty are modeled by means
of the same transition label tau.

let maxsize = 5 /* maximum size of buffers */

let buffer_size domain O..maxsize

let buffer_section = domain {up,down}

let buffer_label domain {e,get,put,tau}

let buffer_state tuple (Size:buffer_size, Section:buffer_section)

buffer("S:buffer_state,L:buffer_label, T:buffer_state) += (
((L=e) & (T.Size=S.Size) & (T.Section=S.Section))
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| ((L=get) & (S.Section=up) & (T.Section=up) &
{S.Size<maxsize, T.Size=S.Size+1})

| ((L=put) & (S.Section=down) & (T.Section=down) &
{S.Size>0, T.Size=S.Size-1})

| ((L=tau) & ((T.Section=down) & (S.Section=up) &
{S.Size=maxsize,T.Size=S.Size})

| ((T.Section=up) & (S.Section=down) & {S.Size=0, T.Size=S.Size}))))

For sake of simplicity, we do not discuss here the problem of the choice of a
good order over the variables. Such a discussion can be found in [31, 5, 24].

Synchronized Product: Now, one must synchronize the three processes, that is
to constrain, for instance, the dispatcher to give a resource (put) when the first
buffer gets it (get) while the second one remains idle (e) :

let label = tuple (D:dispatcher_label, Bil:buffer_label, B2:buffer_label)

synchronizator ("L:label) += (

((L.D=e) & (L.Bl=tau) & (L.B2=e))
| ((L.D=e) & (L.Bl=e) & (L.B2=tau))
| ((L.D=get) & (L.Bl=put) & (L.B2=e))
| ((L.D=get) & (L.Bl=e) & (L.B2=put))
| ((L.D=put) & (L.Bl=get) & (L.B2=e))
| ((L.D=put) & (L.Bl=e) & (L.B2=get)))

Initial state and edges of the synchronized product are described as follows:

let state = tuple (
D:dispatcher_state, “Bl:buffer_state, "B2:buffer_state)

initial("S:state) += ((S.D=resources) & (S.B1.Size=0) & (S.B2.Size=0))

edge("S:state, "T:state) +=
exist “L:label (
dispatcher(S.D,L.D,T.D)
& buffer(S."B1, L.B1, T."B1)
& buffer(S."B2, L.B2, T."B2)
& synchronizator ("L)

)

The Arnold-Nivat model is basically synchronous, since all of the processes are
assumed to perform an action at time. The trick of adding idle transitions e on
each state allows, as shown above, to handle asynchronous phenomena.

There are tuples of individual states that do not correspond to reachable states
of the synchronized product. The set of reachable states is computed by means of
a least fixpoint, starting from the initial state and traversing the automaton:

reachable("T:state) += (
initial("T)
| exist "S: state (reachable("S) & edge(~S,"T)))
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Safety Properties: The predicates above (reachable and edge) allow the veri-
fication of properties of the system. For instance, one may want to check whether
it fulfils safety properties such as deadlock freeness. Let us recall that a deadlock
(in a weak sense) is a reachable state from which no transition is possible or only
a transition leading in a deadlock state. The Toupie program to detect deadlocks
is as follows:

deadlock(~S:state) += (
reachable(”S)
& forall "T:state (transition(~S,"T) => deadlock("T)))

There are 10 deadlock states (in this toy example). A quick analysis shows that
the problem arises when both buffers try to get (up) resources while the dispatcher
has not enough resources to satisfy at least one of them.

The protocol must be modified to avoid this situation. A simple way to do this
is to add the constraint that the dispatcher never gives a resource to a buffer if
it has not enough resources to satisfy its request. This is done by modifying the
synchronization constraints in the following way:

synchronizator(~S:state, “L:label) += (

((L.D=e) & (L.Bl=tau) & (L.B2=e))
| ((L.D=e) & (L.Bl=e) & (L.B2=tau))
| ((L.D=get) & (L.Bl=put) & (L.B2=e))
| ((L.D=get) & (L.Bl=e) & (L.B2=put))
| ((L.D=put) & (L.Bl=get) & (L.B2=e) & (S.D>=maxsize-S.B1.Size))
| ((L.D=put) & (L.Bl=e) & (L.B2=get) & (S.D>=maxsize-S.B2.Size)) )

The protocol shows now to be deadlock free. Note that the same kind of syn-
chronizator could be used in order to break the symmetries between processes. For
instance, by forcing if all of the buffers are in their up sections, the buffer 1 to
have more resources than the buffer 2 that must have itself more resources than
buffer 3 and so on.

Fairness Properties: An important property to be verified by the protocol is
that a buffer that asks resources will always obtain these resources. Such a fairness
property can be expressed as the greatest fixpoint of a least fixpoint. With the
least one, we compute the set of states S such that every path leaving S goes to
a state in which the first buffer is full (from symmetry arguments it suffices to
consider only the first buffer). With the greatest one, we remove from the set the
states that are not on infinite loops composed by states of the set.

transition(~S:state, T:state) += (reachable("S) & edge(”S,"T))
live(~S:state) += (reachable("S) & ~deadlock("S))

to_full_bufferl(~S:state) += (
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TABLE VII

Running times for the exhasutive representation

| | 5/5/5 | 5/5/10 | 5/5/15 | 5/5/25 |
| states | 832 | 58944 | 189696 | 248832 |

|reachable| 0s85 | 10s63 | 22528 | 28326 |

| fairness | 3s93 | 17s23 | 23506 | 30s05 |

TABLE VIII

Running times for the compacted representation

| | 5/5/5 | 5/5/10 | 5/5/15 | 5/5/25 |
| states | 832 | 58944 | 189696 | 248832 |

|reachable| 0s70 | 10s28 | 20s01 | 20855 |

| fairness | 2588 | 12500 | 11s01 | 11s03 |

live(”S)
& forall “T:state
(transition("S,"T) => ((T.Bl1.Size=maxsize) | to_full_bufferi(°T))))

fair_state("S:state) -= (
to_full_buffer1(”S)
& forall "“T:state (tramsition(~S,"T) => fair(°T)))

The computation reveals that the protocol is not fair. Actually, it is possible to
make it fair, but it would be too long to present the new protocol here. Anyhow,
the fairness property is interesting both from practical and theoretical points of
view since it requires a greatest fixpoint computation.

Performances: The tables VII and VIII indicate running times for various
number of buffers, buffer sizes and initial number of resources respectively for the
non-compacted representation and the compacted one.

These examples show that Toupie can handle rather large examples. It is not
surprising that limitations are due to lack of memory and not to excessive running
times: it is in general the case with BDDs. It is also interesting to point out that
the compacted representation really improves the performances.
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TABLE IX

Running times to solve constraints X; < ... < X,

| numbers of variables

|
sizes of domains | 5 | 6 | 7 [ 8 | 9 | 10 |
| 5 | 0s01 | 0s02 | 0s04 | 0s08 | 0s14 | 0s21 |
| 10 | 0s11 | 0s36 | 1s02 | 2564 | 6522 | 13563 |
Constraints: In the previous example, constraints have been used in rather poor

way, i.e. just to model resource transfers. However, one could use them in a far
more powerfull way. For instance, on could remark that buffers play a symmetrical
role. Thus, in order to limit the combinatorial explosion we may constrain the first
buffer to contain more resources than second one that itself must contain more
resources than third one and so on (such approach has been proposed in [39]).
This kind of constraints is expressed by a system in the form X; < ... < X,,. In
tools such as SMV [45], tuples verifying this system are obtained by exploring the
whole cartesian product of variable domains, which becomes quickly intractable.
On the converse, constraint resolution permits to compute the DD associated with
such a system rather efficiently as shown by the table IX.

CTL*: It is interesting to show how formulae of temporal logics could be trans-
lated into Toupie formulae. As an example, let us consider the main connectives of

the well known CTL* [30]: Ep, Ap and pUg where p and ¢ are path formulae.

Ep characterizes the states s of the underlying graph such that there exists a
infinite path, starting from s, on which the property p is always verified. If the
graph is encoded by the predicate g, E is translated as follows.

ep(~S:state) —-= (p("S) & exist "T:state (g(°S,"T) & ep(°T)))

Ap is the same than Ep excepted that all of the infinite paths starting from s
must verify the property p.

ap(~S:state) -= (p("S) & forall "T:state (g(°S,"T) => ap(°T)))

Finally, pUgq characterizes the states from which starts a path on which the
property p is verified until a state verifying the property ¢ is encountered.

pUq(~S:state) -= (q(°S) | (p(~S) & exist "T:state (g(°S,"T) & pUq("T))))

Bisimulations: The reduction by bisimulation is a very important tool for model
checking [47]. A bisimulation is an equivalence relation between transition systems
or different states of the same transition system (see the literature for a formal
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definition). The generic pattern of predicates that compute such bisimulations is
as follows.

equivalent(~S:state, T:state) -= (
reachable("S) & reachable("T)
& forall “L:label (
forall “U:state
(tau_path(~S,"L,"U)
=> exist “V:state
(tau_path(°T,"L,"V) & equivalent("U,"V)))
& forall “V:state
(tau_path("T,"L,"V)
=> exist “U:state
(tau_path("S, L, U) & equivalent(“U,"V)))

)

The reader familiar with bisimulations can easily see that the predicate equivalent
mimics exactly the formal definition of bisimulations. In order to obtain different
bismulations, it suffices to modify the definition of the predicate tau_path. For
instance, the well known “observational equivalence” is obtained by encoding paths
in the form 7*¢7* in tau_path.

In [24], we have reported performances of two BDD based model-checkers [5, 31]
and Toupie on the Milner’s scheduler — which is a very common benchmark. These
comparative results show that Toupie is at least as efficient as these tools.

8. Conclusion and Future Works

In this paper, we have presented several nontrivial applications of Toupie. These
applications show that p-calculus over finite domain variables has a great expres-
sive power and that this expressiveness can be coupled with a good practical
efficiency thanks to the use of Decision Diagrams.

The p-calculus over finite domain variables is not however a complete language.
As mentioned in the introduction, it can be considered from different points of
view:

— As a new domain for CLP systems. Binary Decision Diagrams have been used
in order to implement the Boolean solver of CHIP [12]. Buettner in [11] used an
extension of BDD’s to encode complex domain constraints. Toupie can be seen as
an extension of this work in several ways: extension of BDD’s to finite domains,
smooth integration of finite domain constraints solving and DD’s, and finally exten-
sion of the constraint expressiveness to the py-calculus. There are strong motivations
(thanks to applications) to introduce a Toupie-like solver in a CLP(FD) language
in complement to to currently embedded ones. The introduction of universal quan-
tification is rather simple. The introduction of a least fixpoint mechanism should
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not be too difficult by using tabulation mechanism, while the introduction of great-
est fixpoints is more tedious.

— As a new paradigm for constraint logic languages. In this case, it should be
adapted in order to be a full programming language. This could be done in two
ways: first restrict the language (for the constraint on the Herbrand universe) in
order to make the relations computable by means of a tabulation mechanism. This
implies to forbid general universal quantification and greatest fixpoints on this
domain. Second, by using widening operators as proposed by the Cousot in [26].
This approach could be of a particular interest to analyze higher order functional
languages. A very interesting way to extend Toupie is to handle constraints over
dense domains (real or rational) in order to model real time systems. The union of
two relations being approximated, as proposed by Halbwachs [35], by computing
the convex hull of the union of each relation.

At this point, we think Toupie as a versatile model checker that can be used
for prototyping and pedagogical purposes and from which can be derived tailored
tools. In our experience, the p-calculus, as most of temporal logics, seems too hard
to be manipulated by non specialists. However, this drawback could be removed
by providing the user with a set of predefined functions. On the other side, several
translators from automata description languages to Toupie are already available,
making writing of programs easier.
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