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t. In this paper, we report experiments we did with the 
onstraint language Toupie.Toupie is a �nite domain �-
al
ulus interpreter. In addition to 
lassi
al fun
tionalities of a�nite domain 
onstraint solver, it provides a full universal quanti�
ation and relations (predi-
ates/
onstraints) 
an be de�ned as least or greatest �xpoints of equations. This expressivenessis 
oupled with a pra
ti
al eÆ
ien
y that 
omes from the management of relations via De
isionDiagrams. We advo
ate the use of this paradigm to model and solve eÆ
iently diÆ
ult 
onstraintproblems su
h as the 
omputation of properties of �nite state ma
hines and the implementationof abstra
t interpretation algorithms for logi
 languages.Key words: Automati
 Dedu
tion, Constraint Languages, �-
al
ulus1. Introdu
tionConstraint Logi
 Programming (CLP) has shown to be a very attra
tive �eld ofresear
h over re
ent years, and languages su
h as CLP(R) [40℄, CHIP [54℄ andPrologIII [21℄ have proved that this approa
h opens Logi
 Programming to a widerange of real life problems. Advantages of CLP are well known: de
larativity, ver-satility, fast prototyping and last but not least, eÆ
ien
y. A large part of theCLP su

ess is due to �nite domain 
onstraint solvers. Languages of the familyCLP(FD) rely on the paradigm enumeration/propagation. It follows that they aremainly designed to �nd one solution to a given problem, eventually an optimalone a

ording to a given 
riterion (obje
tive fun
tion). Problems handled withCLP(FD) 
ome mainly from operation resear
h (see [48℄ where several appli
a-tions are presented).In this paper, we are interested in problems whose solutions are not individualassignments of variables, but sets of su
h assignments. These problems 
ome typ-i
ally from model 
he
king where one is interested in determining sets of statesof a given transition system that verify a given property. In general, they 
annotbe handled dire
tly within available CLP(FD) systems be
ause their resolutionrequires universal quanti�
ations and 
omputations of �xpoints. The motivationof our work was to study whether the CLP approa
h 
an be applied to this kindof problems. In other words, we wanted to investigate the ways 
onstraint logi
programming and model 
he
king 
an be 
ross-fertilized.



2 Mar
-Mi
hel Corsini and Antoine RauzyTo this aim, we designed the 
onstraint system Toupie. In addition to 
lassi
alfun
tionalities of �nite domain 
onstraint solvers, it provides a full universal quan-ti�
ation and de�nitions of relations as least or greatest �xpoints of equations.These de�nitions 
an be seen as a kind of quanti�
ation over relations or, in otherwords, as se
ond order 
onstraints. Namely, Toupie is a �nite domain �-
al
ulusinterpreter.The propositional �-
al
ulus is a logi
 that permits the des
ription of propertiesof �nite state ma
hines and that 
an be seen as an assembly language for temporallogi
s (see for instan
e [50, 13℄). From this point of view, Toupie is 
lose to model
he
kers su
h as the Con
urren
y Workben
h [18℄ or SMV [45℄, or to programs
omputing the �xpoint of the Loyd's TP operator [43℄ of Datalog programs. How-ever, Toupie has been designed with the will to obtain a language, i.e. a versatiletool, 
onversely to model-
he
kers that are spe
i�
 purpose tools.In this paper, we advo
ate the use of the �-
al
ulus over �nite domain variablesto model and to solve eÆ
iently interesting and diÆ
ult problems su
h as theanalysis of two players games [24℄, the implementation of abstra
t interpretationalgorithms for logi
 languages [22℄ and the 
omputation of properties of �nite statema
hines [23, 24, 7℄.We show that this expressiveness 
an be 
oupled with a pra
ti
al eÆ
ien
ythanks to the management of relations via De
ision Diagrams, an extension to�nite domain of Bryant's Binary De
ision Diagrams (BDD's) [8, 6, 9℄. We reportexperiments showing that Toupie performan
es are 
omparable to those of 
lassi
almodel-
he
kers.A tool su
h as Toupie 
an be 
onsidered from di�erent points of view:As a new solver for CLP(FD) allowing a kind of relational 
al
ulus within thisframework. This solver 
ould 
ome in addition to the already embedded ones.As a new paradigm for 
onstraint logi
 languages. In this 
ase, the �-
al
ulusshould be extended in order to be a full programming language. We give someindi
ations on this question in the 
on
lusion.As a versatile model 
he
ker that 
an be used for prototyping and pedagogi
alpurposes and from whi
h 
an be derived 
ustomized tools.The remaining of the paper is organized as follows: Se
tion 2 is devoted to apresentation of the Toupie language. A formal semanti
s of Toupie program is giv-en se
tion 3. In Se
tion 4, we give a short presentation of the De
ision Diagrams.Se
tions 5, 6 and 7 are devoted to appli
ations: problem solving, abstra
t interpre-tation of logi
 programs and 
omputation of �nite states ma
hines properties.2. Informal Presentation of ToupieIn order to present syntax and semanti
s of Toupie in an informal way, we deal,through this se
tion, with the well-known two players Nim's game.
main.tex; 13/08/2001; 11:39; no v.; p.3



Toupie = �-
al
ulus(Finite Domains) 3Nim's game: The game starts with N lines numbered from 1 to N and 
on-taining 2 � i � 1 mat
hes (where i is the number of the line). At ea
h step, theplayer who has the turn takes as many mat
hes as he wants in one of the lines.Then the turn 
hanges. The winner is the player who takes the last mat
hes.Variables, Constants, Domains, Variable Tuples: A position in the Nim's gameis 
hara
terized by the player who has the turn and the number of mat
hes inea
h line. In Toupie, su
h a position is des
ribed by means of a variable tuple thatgroups several individual variables. Before using a variable tuple, one must de
lareits type. For the Nim's game with three lines of mat
hes, this is done as follows.let position = tuple (P:{a,b}, L1:0..1, L2:0..3, L3:0..5)A variable of type position groups four individual variables: P (for Player)that takes its value in the set of symboli
 
onstants {a,b} and L1, L2 and L3 (forLine 1, 2 and 3) that take there values in ranges of integers. {a,b}, 0..1, 0..3and 0..5 are the domains of the variables P, L1, L2 and L3. As in Prolog, variableand 
onstant identi�ers begin respe
tively with upper and lower 
ase letters.Formulae, Predi
ates: Assume de
lared a variable Pos of type position. In orderto 
onstrain Pos to des
ribe the initial state of the game, one uses a formula:((Pos.P=a) & {Pos.L1=1, Pos.L2=3, Pos.L3=5})The above formula is a 
onjun
tion | & stands for ^ | of two atomi
 
on-straints: an equality and a system of linear inequations. The \�eld" F of a variabletuple T is denoted by T.F. When a variable tuple is manipulated per se its identi�eris pre�xed with a 
aret: ^T. All of the usual 
onne
tives are available, in
luding:, _, ^, ), . . . (denoted respe
tively by ~, |, &, =>), as well as all of the linearinequation relations =, 6=, �, . . . (denoted respe
tively by =, #, <=).A move is des
ribed by means of binary predi
ate, i.e. a relation, whose �rstmember (^S for Sour
e) is the position before the move and the se
ond member(^T for Target) is the position after the move. move is thus de�ned as a 
onjun
tionof the di�eren
e S.P#T.P { meaning that the turn 
hanges { and the disjun
tionof three systems of linear inequations { representing the di�erent ways the playerwho has the turn 
an take mat
hes in a line:move(^S:position,^T:position) += ((S.P#T.P)& ( {S.L1>T.L1, S.L2=T.L2, S.L3=T.L3}| {S.L1=T.L1, S.L2>T.L2, S.L3=T.L3}| {S.L1=T.L1, S.L2=T.L2, S.L3>T.L3}))A Toupie program is a set of n-ary predi
ate de�nitions.
main.tex; 13/08/2001; 11:39; no v.; p.4



4 Mar
-Mi
hel Corsini and Antoine RauzyQuanti�ers, Queries: Toupie is an interpreter. On
e entered the de�nition ofposition and move, it is possible to ask queries. For instan
e, positions where nomove is playable are obtained by means of the following query.lambda (^S:position) forall ^T:position ~move(^S,^T) ?The form lambda is just a way to de
lare the type of the variable(s) of thequery. The quanti�er forall has its intuitive meaning. In response to the abovequery, one obtains:{S.P=a,S.L1=0,S.L2=0,S.L3=0}{S.P=b,S.L1=0,S.L2=0,S.L3=0}This en
odes the two �nal positions (player a wins or player b wins). Toupie isa deterministi
 language. In response to a query, it 
omputes the de
ision diagramasso
iated with this query and then goes through this data stru
ture to displaytuples belonging to the relation. The result of a 
omputation is thus an uniquerelation eventually 
ontaining several tuples as it 
ould be obtained in Prolog bymeans of the meta-predi
ate bagof.Fixpoints: All of the possible positions are not rea
hable from the initial one (forinstan
e, <a,0,3,5> is not). A position ^T is rea
hable either if it is the initial oneor if there exists a rea
hable position ^S and a move from ^S to ^T. This natural
hara
terization of rea
hable positions is re
ursive. It is a typi
al least �xpointde�nition. A
tually, it is not possible to remove re
ursivity sin
e rea
hability isnot �rst order expressible (see for instan
e [49℄).Toupie predi
ates are always de�ned as least or greatest �xpoints of equationsfor the in
lusion in the powerset 2D of the 
artesian produ
t D = D1 � : : : �Dnof the domains Di's of their formal parameters. Synta
ti
ally, least and greatest�xpoint de�nitions are denoted by equations respe
tively in the form p += f andp -= f.The predi
ate move is thus de�ned as a least �xpoint, but, sin
e there is nore
ursive 
all in its equation, it 
ould be de�ned as a greatest �xpoint as well.The predi
ate en
oding rea
hable positions is as follows.rea
hable(^T:position) += (initial(^T)| exist ^S:position (rea
hable(^S) & move(^S,^T)))Winning Positions: A position is winning if there exists a move leading to alosing position and 
onversely a position is losing if any playable move leads to awinning position. This is simply what express the two following predi
ates.winning(^S:position) += exist ^T:position (move(^S,^T) & losing(^T))losing(^S:state) += forall ^T:position (move(^S,^T) => winning(^T))
main.tex; 13/08/2001; 11:39; no v.; p.5



Toupie = �-
al
ulus(Finite Domains) 5At this point, we have presented almost all of the fundamental 
onstru
tionsof the �-
al
ulus over �nite domain variables (as it is implemented in Toupie):
onstraints, universal and existential quanti�
ations, systems of �xpoint equations.It should be point out that in order to �nd winning positions of the Nim game,we maked an extensive use of universal quanti�
ation and �xpoint de�nitions.Indeed, both 
an be programmed in 
lassi
al theorem provers su
h as Prolog byusing auxiliary lists in whi
h already en
ountered positions are stored. However,su
h a meta-programmation introdu
es pro
edural aspe
ts in the des
ription of theproblem, breaking in this way the de
larivity of the language. In addition, it wouldbe very ineÆ
ient as soon as the number of positions be
omes large. The table Igives some running times ne
essary to 
ompute rea
hable and winning positionson a SUN IPX Spark Station with 48 MgB memory.TABLE IRunning times for the Nim's game.Number of lines 4 5 6 7 8Number of rea
hable positions 763 7,674 92,153 1,290,232 20,643,831Times rea
hable positions 0s21 0s43 0s75 1s25 1s93Times winning positions 0s50 1s73 6s23 25s18 141s60
3. The �-
al
ulus over �nite domain variablesThis se
tion is devoted to the denotational semanti
s of Toupie programs andformulae, i.e. the �-
al
ulus over �nite domain variables. For sake of 
larity, wepresent it for an abstra
t syntax (the translation from the 
on
rete syntax, sket
hedin the previous se
tion, to this abstra
t one is straightforward). In addition, we
onsider atomi
 
onstraints in a very abstra
t way. Taking into a

ount a
tualatomi
 
onstraints, espe
ially systems of linear inequations, is easy but tedious andadds nothing to our purpose. Finally, we 
onsider a restri
ted version of programin whi
h there is only lo
al �xpoint de�nition. A full denotational semanti
s ofToupie would be too 
ompli
ate to be interesting here.3.1. Abstra
t SyntaxFormulae are built over four denumerable (distin
t) alphabets: a set X = fX1; : : :gof individual variables, a set K = fk1; k2; : : :g of 
onstants, a set C = f
1; 
2; : : :g

main.tex; 13/08/2001; 11:39; no v.; p.6



6 Mar
-Mi
hel Corsini and Antoine Rauzyof atomi
 
onstraints, and a set P = fp1; p2; : : :g of predi
ate variables. Ea
h indi-vidual variable Xi is asso
iated with its domain, i.e. a �nite subset of K. In thesequel, the domain of Xi is denoted by dom(Xi) or by Di when i is 
lear from the
ontext. An arity, i.e. a positive integer, is asso
iated with ea
h atomi
 
onstraintand ea
h predi
ate variable.The set of formulae is smallest set su
h that:� If X1; : : : ;Xn are individual variables or 
onstants and r is an atomi
 
on-straint or a predi
ate variable of arity n then r(X1; : : : ;Xn) is a formula.� If f and g are two formulae then so are :f , f ^ g, f _ g, f ) g . . .� If f is a formula and X is an individual variable then 9Xf and 8Xf areformulae.� If X1; : : : ;Xn are individual variables, p is a predi
ate variable and f is aformula monotone in p (i.e. in whi
h p does not o

ur under an odd numberof negation) then �p(X1; : : : ;Xn):f and �p(X1; : : : ;Xn):f are formulae.Note that 
on
rete equations do not appear in this abstra
t syntax. It meansthat some work must be performed to handle not only individual �xpoints butsystems of �xpoint equations. This has been already done in the literature, (seefor instan
e [17℄). Intuitively, a system of �xpoint equations is translated into atuple of �-
al
ulus formulae, one for ea
h equation. Then, the semanti
 fun
tionis applied pointwisely.Note also that usual duality rules apply here too.:(f _ g) = (:f ^ :g):9Xf = 8X:f�p:f = :�p::f [p :p℄Where f [p g℄ denotes the formula f in whi
h g has been substituted simultane-oulsy for all of the o

urren
es of p.Finally, we 
onsider in what follows only 
losed formulae, i.e. formulae in whi
hea
h individual variable appear within the s
ope of a quanti�er or as the parameterof a �xpoint formula and ea
h predi
ate variable appear within the s
ope of a�xpoint formula.3.2. Denotational Semanti
sAs said in the previous se
tion, a formula in whi
h o

ur the variables X1; : : : ;Xnwhose domains are respe
tively D1; : : : ;Dn is interpreted into the powerset 2D ofthe 
artesian produ
t D = D1 � : : : �Dn, with respe
t to an environment �. Anenvironment is a fun
tion that maps ea
h atomi
 
onstraint and predi
ate variableof arity n into a subset of the 
artesian produ
t Kn.We denote by V ar(f) the set of individual variables o

urring in a formula f .
main.tex; 13/08/2001; 11:39; no v.; p.7



Toupie = �-
al
ulus(Finite Domains) 7We denote by �[p 7! R℄ the environment that results by updating the bindingof the predi
ate variable p to R in �.Let X1; : : : ;Xn be variables whose domains are respe
tively D1; : : : ;Dn.Let R be a relation over theX1; : : : ;Xn andXi1 ; : : : ;Xik be a subset ofX1; : : : ;Xn.We denote by �fXi1 ;:::;Xikg(R) the proje
tion of R on the indi
es i1; : : : ; ik.Now, let P be a relation over Xi1 ; : : : ;Xik , i.e. a subset of Di1 � : : : � Dik .We denote by �fX1;:::;Xng(P ) the maximal subset Q of D1 � : : : � Dn su
h that�fXi1 ;:::;Xikg(Q) = P .By abuse, we denote by 1 the full relation, when the underlying powerset is
lear from the 
ontext.Finally, we denote by n the set di�eren
e.Semanti
s of formulae is as follows. Let X1; : : : ;Xn be individual variables or
onstants andD1; : : : ;Dn be their domains (by extension, the domain of a 
onstantk is fkg). Let f and g be formulae, and let 
 and p be respe
tively an atomi

onstraint and a predi
ate variable of arity n.[[
(X1; : : : ;Xn)℄℄� def= �(
) \D1 � : : :�Dn[[:f ℄℄� def= 1n[[f ℄℄�[[f _ g℄℄� def= �V ar(f_g)([[f ℄℄�) [ �V ar(f_g)([[g℄℄�)[[f ^ g℄℄� def= �V ar(f^g)([[f ℄℄�) \ �V ar(f^g)([[g℄℄�)[[9Xf ℄℄� def= [k2dom(X)[[f [X  k℄℄℄�[[8Xf ℄℄� def= \k2dom(X)[[f [X  k℄℄℄�[[p(X1; : : : ;Xn)℄℄� def= �(p) \D1 � : : : �Dn[[�p(X1; : : : ;Xn):f ℄℄� def= \fR � D1 � : : :�DnjR � [[f ℄℄�[p 7! R℄g[[�p(X1; : : : ;Xn):f ℄℄� def= [fR � D1 � : : :�DnjR � [[f ℄℄�[p 7! R℄gThe synta
ti
 restri
tion on the o

urren
es of p in formulae of the form �p:fand �p:f ensures that semanti
ally, the bodies (f) rise to monotone fun
tions inthe powerset Kn. In addition, the semanti
s of a formula is always a �nite subsetof Kn. Let D = D1 � : : : �Dn be a �nite subset of Kn. 2D equipped with the setin
lusion forms a 
omplete latti
e. The Knaster-Tarksi's theorem [53℄ asserts thatgiven a monotone fun
tion f from 2D to 2D,1. f is 
ontinuous.2. The equation R = f(R) (R 2 2D) admits a least and a greatest solutions,denoted with �R:f(R) and �R:f(R), that are respe
tively equal to TfRjf(R) �Rg and SfRjf(R) � Rg.
main.tex; 13/08/2001; 11:39; no v.; p.8



8 Mar
-Mi
hel Corsini and Antoine Rauzy3. There exist two integers m and n su
h that �R:f(R) = fm(;) and �R:f(R) =fn(D) where fk(R) denotes the k-nth appli
ation of f to R.Finally, the following lemma holds, that asserts that the semanti
s of a formuladoes not depend of its environment.LEMMA 1. Let f be a formula and � and �0 be two environments that interpret inthe same way atomi
 
onstraints. Then [[f ℄℄� = [[f ℄℄�0.3.3. Toupie versus propositional �-
al
ulus:There exist several di�erent presentations of the �-
al
ulus in the literature. Thisformalism allows the expression of state properties of automata. The di�eren
esbetween the presentations stand mainly in the type of the 
onsidered automata.The key point being to know whether transitions are labeled or not. Authorsworking with labeled transitions add to the formalism 
onne
tives allowing to
hara
terize transition labels and 
oming typi
ally from the Henessy & Milner'slogi
 [36℄. Toupie is 
loser to the Park's original presentation [50℄ (used for instan
ein [13℄). We prefer this version be
ause it is as expressive as the former but doesnot impose interpretations in terms of automata and thus is far more versatile.Toupie is di�erent from this theoreti
al formalism for essentially two reasons.{ Atoms of the propositional �-
al
ulus are in the form X = Y , where X and Yare individual variables. If individual variables are interpreted in a �nite domain,there is no substantial di�eren
e with Toupie. In general, the authors 
onsider onlyindividual variables belonging to f0; 1g. The extension to �nite domain variablesimproves the eÆ
ien
y, espe
ially when dealing with arithmeti
al 
onstraints (of
ourse, it does not provide any improvement for what 
on
erns expressiveness).In�nite interpretation domains would raise some e�e
tiveness problems . . .{ The �-
al
ulus does not allow to name relations and thus it does not 
onsidersystems of �xpoint equations. However, this extension is easy and useful [17℄.In our informal presentation, we omit nested �xpoints. In the literature, nested�xpoint de�nitions are used mainly to express in�nite path properties on graphs.For instan
e, states of a graph g that are sour
e of paths going in�nitely oftenthrough states having a property p are 
hara
terized by means of a �� term, i.e.a greatest �xpoint of a least �xpoint, as follows.tau(U:vertex) -=let aux(V:vertex) += ( /* lo
al definition */exist W:vertex (g(V,W) & aux(W))| exist W:vertex (g(V,W) & p(W) & tau(W)))in aux(U) /* body of the definition */Nested �xpoints are not stri
tly ne
essary (ex
ept for sake of eÆ
ien
y) sin
eany expression with nested �xpoint 
an be rewritten into a expression that is just
main.tex; 13/08/2001; 11:39; no v.; p.9



Toupie = �-
al
ulus(Finite Domains) 9a �xpoint hierar
hy. This result is due to Immerman [38℄. For instan
e, states
hara
terized above 
an be 
omputed in two steps. First, one 
omputes the tran-sitive 
losure of the automaton, se
ond one sele
ts states s su
h that there existsa path from s to a state t verifying p and 
onversely a path from t to s. Indeed,this requires to 
ompute a binary relation whi
h is more 
ostly than the presentedprogram. Moreover, we don't know any \natural" property requiring more thantwo nested �xpoints. 4. De
ision DiagramsThe interest of a CLP(X ) language is not only a matter of expressiveness: it standsalso in the pra
ti
al eÆ
ien
y of the embedded solver for X . CLP(FD) systemssolves �rst order 
onstraints, i.e. de
ision or optimization problems that are ingeneral NP-
omplete. The resolution of se
ond order 
onstraints, su
h as thoseexpressible within the �-
al
ulus over �nite domain variables, is far more diÆ
ultbe
ause the size of solutions (that are sets of tuples) 
an be exponential w.r.t.the number of variables. Therefore, the design an eÆ
ient method to solve su
h
onstraints 
onsists mainly in 
hosing a data stru
ture as 
ompa
t as possible tostore relations. Fortunately, Bryant's Binary De
ision Diagrams (BDD for short)[8, 6, 9℄ provide su
h a data stru
ture. The BDD asso
iated with a Boolean formulais a 
ompa
t en
oding of the de
ision tree des
ribing the set of solutions of thisformula. This en
oding is 
anoni
al up to a variable ordering. Even if the worst 
asesize of a BDD is exponential w.r.t. the number of variables, in many pra
ti
al 
asesthis size is quite small. Classi
al Boolean operations 
an be performed dire
tly onBDD's. One of the most interesting features of BDD's is that, on
e built the BDD'sasso
iated with formulae, testing whether a formula is satis�able or is a tautology,testing the equivalen
e of two formulae be
omes trivial.In Toupie, we extend BDD's te
hniques to De
ision Diagrams, i.e. to the 
asewhere variables are not Boolean but take their values into �nite domains. The aimof this paper is not to present BDD's and DD's, so we limit ourselves to what isne
essary to dis
uss innovations introdu
ed in Toupie. For a 
omprehensive surveyon BDD's, the interested reader should see the paper by Bryant [9℄.Redu
ed Ordered De
ision Diagrams: The main di�eren
e between BDD's andDD's is that nodes of DD's are of various arities (and not always binary).Let X1, . . . , Xn be variables whose domains are D1, . . . , Dn and let D =D1 � : : : �Dn. A De
ision Diagram � for X1; : : : ;Xn is a dire
ted a
y
li
 graphwith an unique root node and veri�ying 
onditions (i) and (ii).(i) � has two sink nodes labeled respe
tively with 0 and 1.(ii) Ea
h internal node of � is labeled with a variable Xi whose domain is Di =fk1; : : : ; krg and has r outedges labeled respe
tively with k1,. . . ,kr.
main.tex; 13/08/2001; 11:39; no v.; p.10



10 Mar
-Mi
hel Corsini and Antoine RauzyThe denotation [[�℄℄ of the root node � of a DD is a formula de�ned as follows.If � is a leaf labeled with 0 or 1 then [[�℄℄ is the 
orresponding Boolean 
onstant.If � is an internal node labeled with Xi and whose outedges point respe
tively to�1, . . . , �r, then: [[�℄℄ def= 
ase(Xi; [[�1℄℄; : : : ; [[�r℄℄)Where, the 
ase 
onne
tive is de�ned as follows. LetX be a variable and fk1; : : : ; krgbe its domain, let f1; : : : ; fr be formulae. Then,
ase(X; f1; : : : ; fr) def= ((X = k1) ^ f1) _ : : : _ ((X = kr) ^ fr)Let < be a total order on the variables X1; : : : ;Xn. A DD is said ordered if
ondition (iii) holds.(iii) For any pair of nodes (�,�) labeled respe
tively with the variables Xi and Xj ,if � is rea
hable from � then Xi < Xj .A DD is said redu
ed if 
onditions (iv) and (v) hold.(iv) It 
ontains no internal node whose outedges are all pointing to the same sub-graph.(v) It 
ontains no isomorphi
 sub-graphs.Condition (iv) follows from the equivalen
e: 
ase(X; f; : : : ; f) � f .It is 
lear that for any relation R in 2D it exists at least one redu
ed orderedde
ision diagram (RODD) whose denotation is a formula en
oding R. Moreover,the following property holds.LEMMA 2 (Canoni
ity of redu
ed ordered de
ision diagrams). For given a vari-able order, the RODD asso
iated R is unique up to an isomorphism.In the sequel, we will write simply DD for RODD.Negation: The 
ase 
onne
tive keeps another interesting property of BDD's: itis orthogonal with the negation::
ase(X; f1; : : : ; fr) = 
ase(X;:f1; : : : ;:fr)The DD en
oding the 
omplementary of a relation R is thus obtained from theDD en
oding R by ex
hanging its leaves. This makes a negation in 
onstant timepossible by putting 
ags on edges that indi
ate whether the pointed DD's mustbe 
onsidered positively or negatively. In order to preserve the 
anoni
ity of therepresentation, one uses orthogonality to en
ode only nodes with a positive leftmostoutedge. As a side e�e
t, only one leaf remains ne
essary (the other one being itsnegation).
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Toupie = �-
al
ulus(Finite Domains) 11(a) ?XmYmYm 1m
'0 t1 ��t2�&0"t1 ��t2�
0 t1 �	t2

(b) ?1mXm�
0..4 �	t5..10
Fig. 1. The DD asso
iated with X + Y � 1; X; Y 2 0::2 (a), and the 
ompa
ted DD asso
iatedwith X < 5; X 2 0::10 (b) (
omplemented edges are marked with a bla
k dot).Let X and Y be two variables and 0..2 be their domain. The DD en
oding the
onstraint (X + Y <=1) is pi
tured Fig. 1(a).Memory Management for DD's: DD's are a very 
ompa
t representation thanksto the sharing of isomorphi
 subtrees. This sharing is automati
ally performed bykeeping nodes into a hashtable: ea
h time a node 
ase(X;�1; : : : ; �r) is required,one �rst looks up the table and the node is 
reated only if it is not already in thetable (as we will see DD's are always 
reated in a bottom-up way, whi
h makesthe above prin
iple possible).Logi
al Operations on DD's: In order to 
ompute the DD asso
iated witha formula f = g � h, where � is any usual 
onne
tive, one �rst 
omputes theDD's asso
iated with g and h, then one performs � on these DD's. Usual logi
aloperations (_, ^, 
, . . . ) are performed by means of a single 
onne
tive, so-
alledite for If-Then-Else. ite is de�ned as follows:ite(f; g; h) def= (f ^ g) _ (:f ^ h)Usual 
onne
tives 
an be rewritten using an ite and possibly a negation:f _ g = ite(f; 1; g) f ^ g = ite(f; g; 0)f , g = ite(f; g;:g) f 
 g = ite(f;:g; g)Let �; �; 
 be three DD's. The operation ite(�; �; 
) is performed by means ofthe following indu
tive prin
iple:ite(�; �; 
) = 
ase(X; ite(�X k1 ; �X k1 ; 
X k1); : : : ; ite(�X kr ; �X kr ; 
X kr))Where X is the least variable labeling the root of the DD's �, � and 
, fk1; : : : ; krgis its domain and �X k denotes the son of the DD � pointed by the outedge labeledby k if the root node of � is labeled by X, and � itself otherwise.It is easy to indu
e an e�e
tive pro
edure from this prin
iple.
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12 Mar
-Mi
hel Corsini and Antoine RauzyAnother very important point that makes BDD's and DD's eÆ
ient in pra
ti
eis that the 
omputation pro
edure uses a learning me
hanism: a se
ond hast-tableis used to store 4-tuples < �; �; 
; � > su
h that � = ite(�; �; 
). Ea
h time a 
om-putation ite(�; �; 
) must be performed, one �rst looks up this table to see whetherthe result has not been already 
omputed. If it not the 
ase, the 
omputation isa
tually performed and its result stored. This ensures that a 
omputation is almotsnever performed twi
e whi
h a
hieves a substantial improvement of eÆ
ien
y.Table II summarizes the main 
omputational 
osts of operations on DD's.TABLE IIComputational 
osts of operations on DD'sCreation of a new node O(1)ite(�; �; 
) O(j�j � j�j � j
j)9X�, 8X� O(j�jjdom(X)j)Compa
ted representation: When dealing with variables having rather largedomains (it 
ould be the 
ase espe
ially for numeri
al variables) many 
onse
utiveoutedges of a node may point to the same son. In this 
ase, one 
an 
ompa
tthe representation by labeling outedges with ranges of 
onstants rather than withindividual 
onstant (su
h a DD is pi
tured Fig. 1(b)).\Good" properties of DD's are preserved by this new 
ompa
tion. The repre-sentation is 
anoni
al if any two adja
ent ranges that point to the same DD aremerged. Logi
al operations may be even a

elerated sin
e one may treat severalvalues at on
e.Note �nally that su
h a representation 
ould be used to en
ode approximationsof relations between variables taking their values in dense domains.Constraint solving: In order to solve systems of linear equations, we use the
lassi
al impli
it enumeration/propagation te
hnique (similar, for instan
e, to oneembedded in CHIP [54℄). Note that solving a system means here 
omputing a DDthat en
odes all the solutions of the system.The prin
iple is to enumerate variables domains in the order of their indi
es,and to build the DD in a bottom-up way. The propagation we adopt | the Waltz's�ltering [55℄ | 
onsists in maintaining, for ea
h variable a minimum and maximumvalue. Ea
h time a variable domain is modi�ed, this modi�
ation is propagateduntil a �xpoint is rea
hed (see [42℄ for a dis
ussion about these te
hniques).Note that the 
ompa
ted representation of DD's shown above is well adaptedto this kind of propagation.
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Toupie = �-
al
ulus(Finite Domains) 13Variable ordering: Sin
e the seminal paper by R. Bryant [8℄, it is well knownthat the size of a (binary) de
ision diagram depends dramati
ally on the 
ho-sen order over variables. By default, Toupie orders variables with a very simpleheuristi
, known for its rather good a

ura
y. It 
onsists in traversing the formula
onsidered as a synta
ti
 tree in a depth-�rst left-most way and to number vari-ables in the indu
ed order. Nevertheless, this heuristi
 sometimes produ
es verypoor performan
es. The user is thus allowed to de�ne its own indi
es.What's new ? The idea that the 
ase 
onne
tive allows a 
anoni
al en
odingof dis
rete fun
tions is rather old and due, as far as we know, to J.P. Billon [4℄.Buettner, in [10℄, used this en
oding for multivaluated fun
tions. However, noneof these works fully implements BDD's te
hniques as they are des
ribed in [6℄.The extension from BDD's to DD's has been proposed in [52℄. We proposed itindependently in 1992. The 
ompa
ted representation proposed here is original (atleast in our knowledge). The integration of 
onstraint solving te
hniques and DD'sis also new. 5. Problem SolvingAs shown at se
tion 2, one 
an model mathemati
al games within Toupie thanksto universal quanti�
ation and �xpoints. In this se
tion, we examine several verysimple problems that permit a 
omparison of performan
es of the various ways
onstraint solving te
hniques and de
ision diagrams 
an be integrated.Classi
al Arti�
ial Intelligen
e Puzzles: We start with 
lassi
al arti�
ial intelli-gen
e puzzles that 
an be found in [41, 54℄. These problems do not require se
ondorder 
onstraints but they are of a spe
ial interest for our 
omparison purpose.Let us �rst 
onsider the pigeon-hole problem (re
all that the problem is to putM pigeons into N holes in su
h way that there is at most one pigeon per hole).The table III and IV give running times obtained with:1. Toupie using N -ary DD's, the outedges being labeled with 
onstants.2. Toupie using N -ary DD's, the outedges being labeled with ranges.3. Toupie using binary DD's. In order to en
ode that a variable takes its valuein a domains of size N , one uses dlog2(N)e Boolean variables. These variablesbeing ordered 
onse
utively.4. Same as 3, but with an interleaved order on variables.5. Toupie using binary DD's. In order to en
ode that a variable takes its valuein a domains of size N , one uses N Boolean variables. These variables beingordered 
onse
utively.
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14 Mar
-Mi
hel Corsini and Antoine RauzyTABLE IIIRunning times for the Pigeon-Hole problem N=NN 6 7 8 9 10 11 12 13 14 151 0s10 0s18 0s43 1s03 2s56 6s56 16s91 46s00 127s35 336s002 0s11 0s26 0s65 1s63 4s21 10s65 27s16 69s45 174s58 449s153 0s23 0s53 1s53 6s51 29s40 114s28 ? ? ? ?4 0s20 1s13 2s16 38s58 265s83 ? ? ? ? ?5 0s91 5s16 41s25 325s98 ? ? ? ? ? ?6 0s11 0s25 0s63 2s18 5s80 15s11 39s28 102s33 279s03 ?7 82s96 848s80 ? ? ? ? ?6. Same as 3, using the BDD pa
kage Aulne [51℄. Aulne is implemented followingthe Bryant's paper [6℄ whi
h makes it a good 
omparison tool.7. The 
onstraint logi
 language CHIP [54℄ using �nite domain 
onstraints1.Running times for instan
es with N pigeons and N holes (N ! solutions) arepresented Table III. Those for instan
es with N + 1 pigeons and N holes (nosolution) are presented Table IV.As one 
an see, DD's are slightly more eÆ
ient than BDD's one the Pigeon-Hole problem (moreover, Aulne is more optmized than Toupie as it appears 
learlywhen 
omparing binary DD's with BDD's. The 
ompa
ted representation has nointerest on this example. However, it is not too bad too. The logarithmi
 
odingof �nite domains is more eÆ
ient than the linear one. Noti
e that is not truefor enumerative methods su
h as the Davis and Putnam's pro
edure [28℄. Finally,DD's give better results than enumerative methods on this problem as shown bythe 
omparison with CHIP running times. However, this is not true in general sin
eDD's are eÆ
ient only for problems having many regularities (symmetries).Cryptogram: Let us 
onsider now the following 
ryptogram.D O N A L D+ G E R A L D-------------= R O B E R T1 Daniel Diaz 
ommuni
ated us these times, we would like to thanks him here.
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Toupie = �-
al
ulus(Finite Domains) 15TABLE IVRunning times for the Pigeon-Hole problem N + 1=NN 5 6 7 8 9 10 11 12 13 141 0s06 0s11 0s25 0s51 1s21 2s98 7s56 20s25 50s58 138s502 0s08 0s16 0s35 0s80 1s98 4s96 12s33 32s15 78s93 197s603 0s11 0s21 0s50 1s51 6s56 29s40 111s55 ? ? ?4 0s15 0s28 1s33 2s70 39s98 ? ? ? ? ?5 0s28 1s28 7s95 61s86 467s56 ? ? ? ? ?6 0s06 0s25 0s31 0s75 2s61 6s76 17s38 44s00 115s46 ?7 92s80 ? ? ? ? ?The problem is to assign a number in 0::9 to ea
h letter in su
h a way that nonumber is assigned to more than one letter and that the addition is veri�ed. Thisproblem 
an be solved in several ways within Toupie, thanks to 
onstraints andlogi
al formulae.The �rst way to solve the problem is to write a set of �nite domain 
onstraints(the R0is take their values in f0; 1g).donald(D,O,N,A,L,G,E,R,B,T) +=exist R1, R2, R3, R4, R5, R6 {2*D=10*R1+T,R1+2*L=10*R2+R,R2+2*A=10*R3+E,R3+N+R=10*R4+B,R4+O+E=10*R5+O,R5+D+G=10*R6+R,R6=0,D#O, D#N, D#A, D#L, D#G, D#E, D#R, D#B, D#T,O#N, O#A, O#L, O#G, O#E, O#R, O#B, O#T,N#A, N#L, N#G, N#E, N#R, N#B, N#T,A#L, A#G, A#E, A#R, A#B, A#T,L#G, L#E, L#R, L#B, L#T,G#E, G#R, G#B, G#T,E#R, E#B, E#T,R#B, R#T,B#T,D#0, G#0, R#0}
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16 Mar
-Mi
hel Corsini and Antoine RauzyA general heuristi
 in 
onstraint problems is that variables with smallest domainsmust be assigned �rst. This is 
alled the �rst fail prin
iple in the literature. In theabove formulation, with the a variable ordering that follows this prin
iple, theunique solution 
omputed in 1s75.An alternative to the previous formulation is to use as few 
onstraints as possi-ble, leaving to de
ision diagram me
hanisms the main part of the 
omputation.The equality is modeled by means of the following predi
ates:equality(D,O,N,A,L,G,E,R,B,T) +=exist R1, R2, R3, R4, R5 (add(0, D,D,T,R1)& add(R1,L,L,R,R2)& add(R2,A,A,E,R3)& add(R3,N,R,B,R4)& add(R4,O,E,O,R5)& add(R5,D,G,R,0))add(R1,I1,I2,O,R2) += (((R1+I1+I2 < 10) & (R2=0) & (O=R1+I1+I2))| ((R1+I1+I2+C >= 10) & (R2=1) & (O=R1+I1+I2-10)))The solutions of equality are 
omputed in 2s35. The mutual ex
lusion is justa pigeon-hole problem with ten pigeons (the letters) and ten holes (in 0..9). By
ombining both, one obtains the unique solution of donald in 4s95.This example shows that even on typi
al CLP(FD) examples Toupie has goodperforman
es and that performan
es of DD's, if well used, 
an often be 
omparedwith performan
es of forward-
he
king algorithms.Advantages of the Compa
ted Representation: The 
ompa
ted representation
ould be far more eÆ
ient than the standard one. The following example, 
omingfrom data base literature, gives an illustration. The problem is to 
ompute therelation \
ousin" in a 
omplete binary tree of height H (two verti
es are 
ousinsif they are at the same deep in the tree).father(P,F) += ((F=2*P) | (F=2*P+1))
ousin(C1,C2) += (exist P (father(P,C1) & father(P,C2))| exist P1, P2 (father(P1,C1) & father(P2,C2) & 
ousin(P1,P2)))The table V gives running times following the same numbering than in tablesof results for the pigeon-hole problem.Con
lusion: This small set of problems is suÆ
ient to show that from pure 
on-straint solving to pure DD solving (with exhaustive or 
ompa
ted representations)
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Toupie = �-
al
ulus(Finite Domains) 17TABLE VRunning times for CousinH 5 6 7 8 9 101 0s65 4s10 28s58 219s06 ? ?2 0s10 0s35 1s28 5s38 27s86 173s263 0s20 0s53 1s91 9s86 105s31 ?ea
h me
hanism has its advantages and its drawba
ks. This is a strong argumentin favour of embedding and integrating these me
hanisms into a versatile tool.6. Abstra
t Interpretation of Logi
 ProgramsIn this se
tion, we give some arguments to show that the �-
al
ulus over �nitedomain variables is a natural framework to de�ne abstra
t semanti
s of program-ming languages. We examplify that by using Toupie to perform abstra
t interpre-tations of logi
 programs. Abstra
t Interpretation of logi
 languages (and Prologin parti
ular) has been very a
tive in the last few years. The motivation of theseresear
hes is the need of optimizations in 
ompilers. Roughly speaking an abstra
tinterpretation 
onsists in exe
uting a program over a �nite abstra
t domain |whi
h is a partition of the 
on
rete Herbrand domain | in order to get informa-tion about the 
on
rete exe
utions of the program. The idea of using 
onstraintlanguages for this purpose has been proposed in [20, 34℄ (but only from a theo-reti
al point of view). Here we translate almost dire
tly abstra
tions of de�nitelogi
 programs into Toupie programs whose variables take their values in the 
ho-sen abstra
t domains. We only give an informal presentation of the method, for adetailed dis
ussion see [22℄. This approa
h 
an be related to works on abstra
t 
om-pilation, e.g. [37℄, but here we abstra
t the syntax of the programs as in [33, 34℄.Semanti
s of de�nite logi
 programs: A de�nite 
lause is a 
lause of the formH  B1; : : : ; Bn, where H, B1, . . . , Bn are �rst order atoms. A de�nite programis a set of de�nite 
lauses. Lloyd in [43℄ showed that the semanti
s of a de�niteprogram P 
an be de�ned as the least �xpoint in the latti
e 2BP , where BP is theHerbrand's base of P , of the mapping TP : 2BP ! 2BP , de�ned as follows. Let Ibe an Herbrand interpretation. ThenTP (I) def= fH 2 BP : H  B1; : : : ; Bn is a ground instan
e of a 
lause in P and
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18 Mar
-Mi
hel Corsini and Antoine Rauzyqsort(X1 , X2 ) :-X3 = [℄, qsort( X1 , X2 , X3 ).partition(X1 , X2 , X3 , X4 ) :-X1 = [℄, X3 = [℄, X4 = [℄.partition(X1 , X2 , X3 , X4 ) :-X1 = [ X5 | X6 ℄ , X3 = [ X5 | X7 ℄ , X5 <= X2,partition( X6 , X2 , X7 , X4 ).partition(X1 , X2 , X3 , X4 ) :-X1 = [ X5 | X6 ℄ , X4 = [ X5 | X7 ℄ , X5 > X2,partition( X6 , X2 , X3 , X7 ).qsort(X1 , X2 , X3 ) :-X1 = [℄, X3 = X2.qsort(X1 , X2 , X3 ) :-X1 = [ X4 | X5 ℄ ,partition( X5 , X4 , X6 , X7 ),qsort( X6 , X2 , X8 ),X8 = [ X4 | X9 ℄ ,qsort( X7 , X9 , X3 ).Fig. 2. Flat version of Qui
ksort in PrologfB1; : : : ; Bng � Ig (1)Abstra
t Domains: A typi
al example of abstra
t domains is Prop [44, 25℄. Thisdomain uses two 
onstants g (for ground) and ng (for nonground). The intuitionbehind this is that a substitution � is abstra
ted by a fun
tion f su
h that f(xi) = gif and only if for all instan
es �0 of �, �0 grounds xi.Flat Programs: For te
hni
al reasons, Toupie works on 
at version of logi
programs. Any pure logi
 programs 
an be translated into 
at forms in a straight-forward manner, thus it is not a restri
tion to only 
onsider 
at programs. Thebasi
 idea is to write expli
itely all the uni�
ations with two builtinsX = Y whereX and Y are variables or X = t where X is a variable and t a 
at term i:e: a termwith a fun
tor and only variables as arguments. As an example, the 
at version ofthe qui
ksort program using di�eren
e lists is given �gure 2.The Toupie translation: The translation of a (
at) Prolog program into aToupie program is rather simple. To ea
h Prolog literal 
orresponds a Toupie least�xpoint equation. Ea
h sequen
e of Prolog literals is translated into a 
onjun
-tion of predi
ate 
alls. Finally ea
h set of 
lauses with same head is viewed as adisjun
tion of 
onjun
tion of relations. The �gure 3 will enlight the pro
ess. It is
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Toupie = �-
al
ulus(Finite Domains) 19set domain {g, ng}qsort(X1,X2) += (nil(X3) & qsort(X1,X2,X3))partition(X1,X2,X3,X4) += ((nil(X1) & nil(X3) & nil(X4))| (
ons(X1,X5,X6) & 
ons(X3,X5,X7) & ari(X5,X2) & partition(X6,X2,X7,X4))| (
ons(X1,X5,X6) & 
ons(X4,X5,X7) & ari(X5,X2) & partition(X6,X2,X3,X7)))qsort(X1,X2,X3) += ((nil(X1) & (X3=X2))| ( 
ons(X1,X4,X5) & partition(X5,X4,X6,X7)& qsort(X6,X2,X8) & 
ons(X8,X4,X9) & qsort(X7,X9,X3)))nil(X1) += (X1=g)ari(X1,X2) += ((X1=g) & (X2=g))
ons(X1,X2,X3) += ((X1=g) & (X2=g) & (X3=g)| (X1=ng & ((X2=ng) | (X3=ng)))) Fig. 3. Toupie translation of Qui
ksortrather 
lear, even without entering into te
hni
al details, that abstra
t semanti
s\�a la Lloyd" of de�nite logi
 programs and denotational semanti
s of the translatedToupie programs 
oin
ide. We proved formally the 
orre
tness of the translationin in [22℄.The remaining diÆ
ulty is to deal with the expli
it uni�
ation of the formX = Y and X = t where X;Y are variables and t is any (
at) prolog term. Thetranslation of the builtin X = Y is straightforward, whereas the translation of thebuiltinX = t heavily depends on the domain under interest, as an example �gure 3depi
ts the automated translation of the qui
ksort program for the domain Propwherein nil, 
ons and ari are domain-dependent translation of built-ins.As a response to the query qsort(L1,L2), one obtains {{L1=g, L2=g}, {L1=ng,L2=ng}}, whi
h means that L1=L2 in the interpretation domain Prop.Performan
es: We use the ben
hmark programs proposed by B. Le Charlierand P. Van Hentenry
k in [14℄. In the table VI, the running times (in se
onds)for the domain Prop are presented as well as those for the domain Types. Types
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20 Mar
-Mi
hel Corsini and Antoine RauzyTABLE VIRunning times for abstra
t interpretationsname 
s disj gabriel kalah peep pg plan press1 press2 readProp 0s53 0s48 0s18 0s50 0s83 0s11 0s10 0s76 0s75 0s83Types 0s20 0s30 0s18 0s35 0s55 0s11 0s06 0s68 0s70 2s40
ontains four elements: int for integer, lst for lists, 
st for symboli
 
onstantsand f
t for the other terms. Note that only the de�nitions of the built-ins have tobe 
hanged a

ording to the domain.The results show that Toupie is extremely fast on the ben
hmark programsand mu
h faster that any system we are aware of. Similar experiments for theProp domain and the same programs have been reported in [15℄ for the generi
abstra
t interpretation algorithm GAIA. Toupie is at least �ve time faster thanGAIA, on the average. Interestingly, the implementation of [15℄ also uses de
isiondiagrams for the domain and 
a
hing te
hniques. However, 
a
hing is used to alesser extent. Finally, it is fair noti
ing that GAIA performs a top-down analysisimplying that input patterns have to be re
orded, not only su

ess patterns. Thisalso 
ompli
ates the �xpoint algorithm. In [19℄, M. Codish & al use a similarapproa
h to abstra
t interpretation over the domain Prop. Instead of translatinglogi
 programs to Toupie, Codish et al transform them to Datalog, and apply asimple Tp evaluation. Their approa
h is simpler sin
e they do not use a 
onstraintlanguage. But, we believe that our approa
h is more powerful, sin
e Extended DDsen
oding permit larger interpretation domains without loss of eÆ
ien
y, see theben
hmarks in [22℄.It is 
lear that the same kind of te
hniques 
ould be applied to any languageswith a well de�ned �xpoint semanti
s.7. Symboli
 Model Che
kingIn this se
tion we show, by means of an example, how the �-
al
ulus over �nitedomain variables 
an be used to perform analyses of systems of 
on
urrent pro
ess-es. As an illustration, we detail the implementation in Toupie of a very simple andpowerful model of 
on
urren
y that was proposed by A. Arnold and M. Nivat in [3℄(see [2℄ for a 
omprehensive survey). This model 
onsists in des
ribing individualpro
esses by means of labeled transition systems and in 
ombining these transitionsystems in a 
onvenient way to des
ribe intera
tions between pro
esses.
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Toupie = �-
al
ulus(Finite Domains) 21Formally, a labeled transition system is a tuple A =< S;L; T >, where S is aset of states, L, is as set of labels, and T is a set of transitions, i.e. a subset of the
artesian produ
t S�L�S. In a transition < s; l; t >, s is 
alled the sour
e state,l the label and t the target state.A pro
ess is thus 
onsidered as a set of states. An a
tion or an event 
hangesthe 
urrent state of the pro
ess. It is represented by a transition whose label is thename of the a
tion or the event.A system P of n 
ommuni
ating pro
esses P1, . . . , Pn is also des
ribed by meansof a transition system A, 
alled the syn
hronized produ
t of the transition systemsA1, . . . , An des
ribing P1, . . . , Pn. States (resp. labels) of A are n-tuples of states(resp. labels) of the Ai's. Some 
onstraints are put on the tuples of labels in orderto des
ribe the way pro
esses 
ommuni
ate. The allowed tuples of labels are 
alledsyn
hronization ve
tors.Formally, the syn
hronized produ
t of n labeled transition systems A1 =<S1; L1; T1 >, . . . , An =< Sn; Ln; Tn > for the set V of syn
hronization ve
tors(V � L1 � : : :� Ln), is a labeled transition system A =< S;L; T > su
h that:S = S1 � : : :� SnL = VT = f< ~s;~l;~t >2 S � L� S j 8i = 1::n;< ~si;~li;~ti >2 TigWhere ~x denotes a n-tuple and ~xi denotes its i-th 
omponent.On
e the labeled transition system des
ribing the behavior of the system obtained,one 
an test whether the system verify some desired properties (su
h as deadlo
kfreeness, safety, fairness and so on) by 
omputing graph properties.Note that labeled transition systems are a
tually the underlying model of mostof other formalisms used to des
ribe pro
esses. This is the 
ase, for instan
e, of thetra
table restri
tions of pro
ess algebrae su
h as CCS [46℄, as shown in [2℄. In somesense, the way pro
esses are des
ribed is just a matter of interfa
e, and ea
h toolhas its own one: pro
ess algebrae for CWB [18℄, small languages to enter automatafor Me
 [1℄, Auto [29℄ or Ald�ebaran [32℄, or even a small imperative language forSMV [45℄. Another di�eren
e between model 
he
kers, is the way properties areexpressed. A number of temporal logi
s are proposed in the literature, su
h as CTL[16℄ that is used in a several tools. As shown in [2℄, these logi
s are less expressivethan the propositional �-
al
ulus (and for some of them stri
tly less expressive,see [30℄ for a survey on that question). The 
hoi
e of the interfa
e language is thusessentially a matter of taste. The advantage of an open tool su
h as a CLP systemis pre
isely that th user is able to design its own interfa
e.Mu
h more important is the way in whi
h transition systems are en
oded. Themain drawba
k of the model is that their sizes be
ome qui
kly huge, even forvery simple systems. With an expli
it representation transition systems with morethan say 100,000 states 
annot be handled (su
h sizes are not un
ommon at all). Inse
tion 2, we showed how transition systems 
an be represented in a symboli
 way
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22 Mar
-Mi
hel Corsini and Antoine Rauzyby means of DD's. This idea is due to Madre and Coudert [27℄ and Clarke & als[13℄. As exampli�ed by the Nim's game, it allows to en
ode very large systems.Example: In order to illustrate the approa
h, let us 
onsider the problem ofdesigning a proto
ol between a dispat
her of resour
es and a number of bu�ers.At the beginning, the dispat
her owns a given number of resour
es and the bu�ersare empty. During the pro
ess, ea
h bu�er tries to get one by one a number ofresour
es from the dispat
her. When it has obtained them, it performs an a
tion(no matter what this a
tion a
tually is), then it starts to give them ba
k to thedispat
her (still one by one). When it is empty, it performs another a
tion and itstarts to get resour
es again. And so on in�nitely.Let us examine �rst a very simple version in whi
h the dispat
her non deter-ministi
ally gives a resour
e to a bu�er or get a resour
e from a bu�er withoutany additional 
ontrol. In order to make the Toupie 
ode suÆ
iently small to beeasily readable we 
onsider the 
ase where there are only two bu�ers.Individual Pro
esses: The behavior is thus modeled by means of labeled tran-sition system. For the dispat
her the states are the possible numbers of resour
esthe dispat
her has, and the transitions model its a
tions, i.e. get (a resour
e froma bu�er), put (a resour
e in a bu�er) and e (when it remains idle). This transitionsystem is des
ribed by using a ternary predi
ate dispat
her(S,L,T), where thevariables S, L, T are respe
tively the sour
es, labels and targets of transitions.let resour
es = 5 /* number of resour
es */let dispat
her_state = domain 0..resour
eslet dispat
her_label = domain {e,get,put}dispat
her(S:dispat
her_state,L:dispat
her_label,T:dispat
her_state) += (((L=e) & (T=S))| ((L=get) & (T=S+1))| ((L=put) & (T=S-1)) )The behavior of the two bu�ers is modeled in the same way. Here, states arepairs (se
tion, 
urrent number of resour
es), where se
tion is a Boolean variableindi
ating whether the bu�er tries to get (up) or to put ba
k (down) a resour
e.The a
tions performed by the bu�er when it is full or empty are modeled by meansof the same transition label tau.let maxsize = 5 /* maximum size of buffers */let buffer_size = domain 0..maxsizelet buffer_se
tion = domain {up,down}let buffer_label = domain {e,get,put,tau}let buffer_state = tuple (Size:buffer_size, Se
tion:buffer_se
tion)buffer(^S:buffer_state,L:buffer_label,^T:buffer_state) += (((L=e) & (T.Size=S.Size) & (T.Se
tion=S.Se
tion))
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ulus(Finite Domains) 23| ((L=get) & (S.Se
tion=up) & (T.Se
tion=up) &{S.Size<maxsize, T.Size=S.Size+1})| ((L=put) & (S.Se
tion=down) & (T.Se
tion=down) &{S.Size>0, T.Size=S.Size-1})| ((L=tau) & ((T.Se
tion=down) & (S.Se
tion=up) &{S.Size=maxsize,T.Size=S.Size})| ((T.Se
tion=up) & (S.Se
tion=down) & {S.Size=0, T.Size=S.Size}))))For sake of simpli
ity, we do not dis
uss here the problem of the 
hoi
e of agood order over the variables. Su
h a dis
ussion 
an be found in [31, 5, 24℄.Syn
hronized Produ
t: Now, one must syn
hronize the three pro
esses, that isto 
onstrain, for instan
e, the dispat
her to give a resour
e (put) when the �rstbu�er gets it (get) while the se
ond one remains idle (e) :let label = tuple (D:dispat
her_label, B1:buffer_label, B2:buffer_label)syn
hronizator(^L:label) += (((L.D=e) & (L.B1=tau) & (L.B2=e))| ((L.D=e) & (L.B1=e) & (L.B2=tau))| ((L.D=get) & (L.B1=put) & (L.B2=e))| ((L.D=get) & (L.B1=e) & (L.B2=put))| ((L.D=put) & (L.B1=get) & (L.B2=e))| ((L.D=put) & (L.B1=e) & (L.B2=get)))Initial state and edges of the syn
hronized produ
t are des
ribed as follows:let state = tuple (D:dispat
her_state, ^B1:buffer_state, ^B2:buffer_state)initial(^S:state) += ((S.D=resour
es) & (S.B1.Size=0) & (S.B2.Size=0))edge(^S:state, ^T:state) +=exist ^L:label (dispat
her(S.D,L.D,T.D)& buffer(S.^B1, L.B1, T.^B1)& buffer(S.^B2, L.B2, T.^B2)& syn
hronizator(^L))The Arnold-Nivat model is basi
ally syn
hronous, sin
e all of the pro
esses areassumed to perform an a
tion at time. The tri
k of adding idle transitions e onea
h state allows, as shown above, to handle asyn
hronous phenomena.There are tuples of individual states that do not 
orrespond to rea
hable statesof the syn
hronized produ
t. The set of rea
hable states is 
omputed by means ofa least �xpoint, starting from the initial state and traversing the automaton:rea
hable(^T:state) += (initial(^T)| exist ^S: state (rea
hable(^S) & edge(^S,^T)))
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24 Mar
-Mi
hel Corsini and Antoine RauzySafety Properties: The predi
ates above (rea
hable and edge) allow the veri-�
ation of properties of the system. For instan
e, one may want to 
he
k whetherit ful�ls safety properties su
h as deadlo
k freeness. Let us re
all that a deadlo
k(in a weak sense) is a rea
hable state from whi
h no transition is possible or onlya transition leading in a deadlo
k state. The Toupie program to dete
t deadlo
ksis as follows:deadlo
k(^S:state) += (rea
hable(^S)& forall ^T:state (transition(^S,^T) => deadlo
k(^T)))There are 10 deadlo
k states (in this toy example). A qui
k analysis shows thatthe problem arises when both bu�ers try to get (up) resour
es while the dispat
herhas not enough resour
es to satisfy at least one of them.The proto
ol must be modi�ed to avoid this situation. A simple way to do thisis to add the 
onstraint that the dispat
her never gives a resour
e to a bu�er ifit has not enough resour
es to satisfy its request. This is done by modifying thesyn
hronization 
onstraints in the following way:syn
hronizator(^S:state, ^L:label) += (((L.D=e) & (L.B1=tau) & (L.B2=e))| ((L.D=e) & (L.B1=e) & (L.B2=tau))| ((L.D=get) & (L.B1=put) & (L.B2=e))| ((L.D=get) & (L.B1=e) & (L.B2=put))| ((L.D=put) & (L.B1=get) & (L.B2=e) & (S.D>=maxsize-S.B1.Size))| ((L.D=put) & (L.B1=e) & (L.B2=get) & (S.D>=maxsize-S.B2.Size)) )The proto
ol shows now to be deadlo
k free. Note that the same kind of syn-
hronizator 
ould be used in order to break the symmetries between pro
esses. Forinstan
e, by for
ing if all of the bu�ers are in their up se
tions, the bu�er 1 tohave more resour
es than the bu�er 2 that must have itself more resour
es thanbu�er 3 and so on.Fairness Properties: An important property to be veri�ed by the proto
ol isthat a bu�er that asks resour
es will always obtain these resour
es. Su
h a fairnessproperty 
an be expressed as the greatest �xpoint of a least �xpoint. With theleast one, we 
ompute the set of states S su
h that every path leaving S goes toa state in whi
h the �rst bu�er is full (from symmetry arguments it suÆ
es to
onsider only the �rst bu�er). With the greatest one, we remove from the set thestates that are not on in�nite loops 
omposed by states of the set.transition(^S:state,^T:state) += (rea
hable(^S) & edge(^S,^T))live(^S:state) += (rea
hable(^S) & ~deadlo
k(^S))to_full_buffer1(^S:state) += (
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ulus(Finite Domains) 25TABLE VIIRunning times for the exhasutive representation5/5/5 5/5/10 5/5/15 5/5/25states 832 58944 189696 248832rea
hable 0s85 10s63 22s28 28s26fairness 3s93 17s23 23s06 30s05
TABLE VIIIRunning times for the 
ompa
ted representation5/5/5 5/5/10 5/5/15 5/5/25states 832 58944 189696 248832rea
hable 0s70 10s28 20s01 20s55fairness 2s88 12s00 11s01 11s03live(^S)& forall ^T:state(transition(^S,^T) => ((T.B1.Size=maxsize) | to_full_buffer1(^T))))fair_state(^S:state) -= (to_full_buffer1(^S)& forall ^T:state (transition(^S,^T) => fair(^T)))The 
omputation reveals that the proto
ol is not fair. A
tually, it is possible tomake it fair, but it would be too long to present the new proto
ol here. Anyhow,the fairness property is interesting both from pra
ti
al and theoreti
al points ofview sin
e it requires a greatest �xpoint 
omputation.Performan
es: The tables VII and VIII indi
ate running times for variousnumber of bu�ers, bu�er sizes and initial number of resour
es respe
tively for thenon-
ompa
ted representation and the 
ompa
ted one.These examples show that Toupie 
an handle rather large examples. It is notsurprising that limitations are due to la
k of memory and not to ex
essive runningtimes: it is in general the 
ase with BDDs. It is also interesting to point out thatthe 
ompa
ted representation really improves the performan
es.
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26 Mar
-Mi
hel Corsini and Antoine RauzyTABLE IXRunning times to solve 
onstraints X1 � : : : � Xnnumbers of variablessizes of domains 5 6 7 8 9 105 0s01 0s02 0s04 0s08 0s14 0s2110 0s11 0s36 1s02 2s64 6s22 13s63Constraints: In the previous example, 
onstraints have been used in rather poorway, i.e. just to model resour
e transfers. However, one 
ould use them in a farmore powerfull way. For instan
e, on 
ould remark that bu�ers play a symmetri
alrole. Thus, in order to limit the 
ombinatorial explosion we may 
onstrain the �rstbu�er to 
ontain more resour
es than se
ond one that itself must 
ontain moreresour
es than third one and so on (su
h approa
h has been proposed in [39℄).This kind of 
onstraints is expressed by a system in the form X1 � : : : � Xn. Intools su
h as SMV [45℄, tuples verifying this system are obtained by exploring thewhole 
artesian produ
t of variable domains, whi
h be
omes qui
kly intra
table.On the 
onverse, 
onstraint resolution permits to 
ompute the DD asso
iated withsu
h a system rather eÆ
iently as shown by the table IX.CTL?: It is interesting to show how formulae of temporal logi
s 
ould be trans-lated into Toupie formulae. As an example, let us 
onsider the main 
onne
tives ofthe well known CTL? [30℄: Ep, Ap and pUq where p and q are path formulae.Ep 
hara
terizes the states s of the underlying graph su
h that there exists ain�nite path, starting from s, on whi
h the property p is always veri�ed. If thegraph is en
oded by the predi
ate g, E is translated as follows.ep(^S:state) -= (p(^S) & exist ^T:state (g(^S,^T) & ep(^T)))Ap is the same than Ep ex
epted that all of the in�nite paths starting from smust verify the property p.ap(^S:state) -= (p(^S) & forall ^T:state (g(^S,^T) => ap(^T)))Finally, pUq 
hara
terizes the states from whi
h starts a path on whi
h theproperty p is veri�ed until a state verifying the property q is en
ountered.pUq(^S:state) -= (q(^S) | (p(^S) & exist ^T:state (g(^S,^T) & pUq(^T))))Bisimulations: The redu
tion by bisimulation is a very important tool for model
he
king [47℄. A bisimulation is an equivalen
e relation between transition systemsor di�erent states of the same transition system (see the literature for a formal
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al
ulus(Finite Domains) 27de�nition). The generi
 pattern of predi
ates that 
ompute su
h bisimulations isas follows.equivalent(^S:state,^T:state) -= (rea
hable(^S) & rea
hable(^T)& forall ^L:label (forall ^U:state(tau_path(^S,^L,^U)=> exist ^V:state(tau_path(^T,^L,^V) & equivalent(^U,^V)))& forall ^V:state(tau_path(^T,^L,^V)=> exist ^U:state(tau_path(^S,^L,^U) & equivalent(^U,^V)))))The reader familiar with bisimulations 
an easily see that the predi
ate equivalentmimi
s exa
tly the formal de�nition of bisimulations. In order to obtain di�erentbismulations, it suÆ
es to modify the de�nition of the predi
ate tau_path. Forinstan
e, the well known \observational equivalen
e" is obtained by en
oding pathsin the form �?t�? in tau_path.In [24℄, we have reported performan
es of two BDD based model-
he
kers [5, 31℄and Toupie on the Milner's s
heduler | whi
h is a very 
ommon ben
hmark. These
omparative results show that Toupie is at least as eÆ
ient as these tools.8. Con
lusion and Future WorksIn this paper, we have presented several nontrivial appli
ations of Toupie. Theseappli
ations show that �-
al
ulus over �nite domain variables has a great expres-sive power and that this expressiveness 
an be 
oupled with a good pra
ti
aleÆ
ien
y thanks to the use of De
ision Diagrams.The �-
al
ulus over �nite domain variables is not however a 
omplete language.As mentioned in the introdu
tion, it 
an be 
onsidered from di�erent points ofview:{ As a new domain for CLP systems. Binary De
ision Diagrams have been usedin order to implement the Boolean solver of CHIP [12℄. Buettner in [11℄ used anextension of BDD's to en
ode 
omplex domain 
onstraints. Toupie 
an be seen asan extension of this work in several ways: extension of BDD's to �nite domains,smooth integration of �nite domain 
onstraints solving and DD's, and �nally exten-sion of the 
onstraint expressiveness to the �-
al
ulus. There are strong motivations(thanks to appli
ations) to introdu
e a Toupie-like solver in a CLP(FD) languagein 
omplement to to 
urrently embedded ones. The introdu
tion of universal quan-ti�
ation is rather simple. The introdu
tion of a least �xpoint me
hanism should
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-Mi
hel Corsini and Antoine Rauzynot be too diÆ
ult by using tabulation me
hanism, while the introdu
tion of great-est �xpoints is more tedious.{ As a new paradigm for 
onstraint logi
 languages. In this 
ase, it should beadapted in order to be a full programming language. This 
ould be done in twoways: �rst restri
t the language (for the 
onstraint on the Herbrand universe) inorder to make the relations 
omputable by means of a tabulation me
hanism. Thisimplies to forbid general universal quanti�
ation and greatest �xpoints on thisdomain. Se
ond, by using widening operators as proposed by the Cousot in [26℄.This approa
h 
ould be of a parti
ular interest to analyze higher order fun
tionallanguages. A very interesting way to extend Toupie is to handle 
onstraints overdense domains (real or rational) in order to model real time systems. The union oftwo relations being approximated, as proposed by Halbwa
hs [35℄, by 
omputingthe 
onvex hull of the union of ea
h relation.At this point, we think Toupie as a versatile model 
he
ker that 
an be usedfor prototyping and pedagogi
al purposes and from whi
h 
an be derived tailoredtools. In our experien
e, the �-
al
ulus, as most of temporal logi
s, seems too hardto be manipulated by non spe
ialists. However, this drawba
k 
ould be removedby providing the user with a set of prede�ned fun
tions. On the other side, severaltranslators from automata des
ription languages to Toupie are already available,making writing of programs easier.Referen
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