
Toupie: the �-alulus over Finite Domains as a ConstraintLanguageMar-Mihel Corsini and Antoine RauzyLaBRI, URA CNRS 1304 { Universit�e Bordeaux I351, ours de la Lib�eration,33405 Talene Cedex FRANCEe-mail: forsini, rauzyg�labri.u-bordeaux.frAbstrat. In this paper, we report experiments we did with the onstraint language Toupie.Toupie is a �nite domain �-alulus interpreter. In addition to lassial funtionalities of a�nite domain onstraint solver, it provides a full universal quanti�ation and relations (predi-ates/onstraints) an be de�ned as least or greatest �xpoints of equations. This expressivenessis oupled with a pratial eÆieny that omes from the management of relations via DeisionDiagrams. We advoate the use of this paradigm to model and solve eÆiently diÆult onstraintproblems suh as the omputation of properties of �nite state mahines and the implementationof abstrat interpretation algorithms for logi languages.Key words: Automati Dedution, Constraint Languages, �-alulus1. IntrodutionConstraint Logi Programming (CLP) has shown to be a very attrative �eld ofresearh over reent years, and languages suh as CLP(R) [40℄, CHIP [54℄ andPrologIII [21℄ have proved that this approah opens Logi Programming to a widerange of real life problems. Advantages of CLP are well known: delarativity, ver-satility, fast prototyping and last but not least, eÆieny. A large part of theCLP suess is due to �nite domain onstraint solvers. Languages of the familyCLP(FD) rely on the paradigm enumeration/propagation. It follows that they aremainly designed to �nd one solution to a given problem, eventually an optimalone aording to a given riterion (objetive funtion). Problems handled withCLP(FD) ome mainly from operation researh (see [48℄ where several applia-tions are presented).In this paper, we are interested in problems whose solutions are not individualassignments of variables, but sets of suh assignments. These problems ome typ-ially from model heking where one is interested in determining sets of statesof a given transition system that verify a given property. In general, they annotbe handled diretly within available CLP(FD) systems beause their resolutionrequires universal quanti�ations and omputations of �xpoints. The motivationof our work was to study whether the CLP approah an be applied to this kindof problems. In other words, we wanted to investigate the ways onstraint logiprogramming and model heking an be ross-fertilized.



2 Mar-Mihel Corsini and Antoine RauzyTo this aim, we designed the onstraint system Toupie. In addition to lassialfuntionalities of �nite domain onstraint solvers, it provides a full universal quan-ti�ation and de�nitions of relations as least or greatest �xpoints of equations.These de�nitions an be seen as a kind of quanti�ation over relations or, in otherwords, as seond order onstraints. Namely, Toupie is a �nite domain �-alulusinterpreter.The propositional �-alulus is a logi that permits the desription of propertiesof �nite state mahines and that an be seen as an assembly language for temporallogis (see for instane [50, 13℄). From this point of view, Toupie is lose to modelhekers suh as the Conurreny Workbenh [18℄ or SMV [45℄, or to programsomputing the �xpoint of the Loyd's TP operator [43℄ of Datalog programs. How-ever, Toupie has been designed with the will to obtain a language, i.e. a versatiletool, onversely to model-hekers that are spei� purpose tools.In this paper, we advoate the use of the �-alulus over �nite domain variablesto model and to solve eÆiently interesting and diÆult problems suh as theanalysis of two players games [24℄, the implementation of abstrat interpretationalgorithms for logi languages [22℄ and the omputation of properties of �nite statemahines [23, 24, 7℄.We show that this expressiveness an be oupled with a pratial eÆienythanks to the management of relations via Deision Diagrams, an extension to�nite domain of Bryant's Binary Deision Diagrams (BDD's) [8, 6, 9℄. We reportexperiments showing that Toupie performanes are omparable to those of lassialmodel-hekers.A tool suh as Toupie an be onsidered from di�erent points of view:As a new solver for CLP(FD) allowing a kind of relational alulus within thisframework. This solver ould ome in addition to the already embedded ones.As a new paradigm for onstraint logi languages. In this ase, the �-alulusshould be extended in order to be a full programming language. We give someindiations on this question in the onlusion.As a versatile model heker that an be used for prototyping and pedagogialpurposes and from whih an be derived ustomized tools.The remaining of the paper is organized as follows: Setion 2 is devoted to apresentation of the Toupie language. A formal semantis of Toupie program is giv-en setion 3. In Setion 4, we give a short presentation of the Deision Diagrams.Setions 5, 6 and 7 are devoted to appliations: problem solving, abstrat interpre-tation of logi programs and omputation of �nite states mahines properties.2. Informal Presentation of ToupieIn order to present syntax and semantis of Toupie in an informal way, we deal,through this setion, with the well-known two players Nim's game.
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Toupie = �-alulus(Finite Domains) 3Nim's game: The game starts with N lines numbered from 1 to N and on-taining 2 � i � 1 mathes (where i is the number of the line). At eah step, theplayer who has the turn takes as many mathes as he wants in one of the lines.Then the turn hanges. The winner is the player who takes the last mathes.Variables, Constants, Domains, Variable Tuples: A position in the Nim's gameis haraterized by the player who has the turn and the number of mathes ineah line. In Toupie, suh a position is desribed by means of a variable tuple thatgroups several individual variables. Before using a variable tuple, one must delareits type. For the Nim's game with three lines of mathes, this is done as follows.let position = tuple (P:{a,b}, L1:0..1, L2:0..3, L3:0..5)A variable of type position groups four individual variables: P (for Player)that takes its value in the set of symboli onstants {a,b} and L1, L2 and L3 (forLine 1, 2 and 3) that take there values in ranges of integers. {a,b}, 0..1, 0..3and 0..5 are the domains of the variables P, L1, L2 and L3. As in Prolog, variableand onstant identi�ers begin respetively with upper and lower ase letters.Formulae, Prediates: Assume delared a variable Pos of type position. In orderto onstrain Pos to desribe the initial state of the game, one uses a formula:((Pos.P=a) & {Pos.L1=1, Pos.L2=3, Pos.L3=5})The above formula is a onjuntion | & stands for ^ | of two atomi on-straints: an equality and a system of linear inequations. The \�eld" F of a variabletuple T is denoted by T.F. When a variable tuple is manipulated per se its identi�eris pre�xed with a aret: ^T. All of the usual onnetives are available, inluding:, _, ^, ), . . . (denoted respetively by ~, |, &, =>), as well as all of the linearinequation relations =, 6=, �, . . . (denoted respetively by =, #, <=).A move is desribed by means of binary prediate, i.e. a relation, whose �rstmember (^S for Soure) is the position before the move and the seond member(^T for Target) is the position after the move. move is thus de�ned as a onjuntionof the di�erene S.P#T.P { meaning that the turn hanges { and the disjuntionof three systems of linear inequations { representing the di�erent ways the playerwho has the turn an take mathes in a line:move(^S:position,^T:position) += ((S.P#T.P)& ( {S.L1>T.L1, S.L2=T.L2, S.L3=T.L3}| {S.L1=T.L1, S.L2>T.L2, S.L3=T.L3}| {S.L1=T.L1, S.L2=T.L2, S.L3>T.L3}))A Toupie program is a set of n-ary prediate de�nitions.
main.tex; 13/08/2001; 11:39; no v.; p.4



4 Mar-Mihel Corsini and Antoine RauzyQuanti�ers, Queries: Toupie is an interpreter. One entered the de�nition ofposition and move, it is possible to ask queries. For instane, positions where nomove is playable are obtained by means of the following query.lambda (^S:position) forall ^T:position ~move(^S,^T) ?The form lambda is just a way to delare the type of the variable(s) of thequery. The quanti�er forall has its intuitive meaning. In response to the abovequery, one obtains:{S.P=a,S.L1=0,S.L2=0,S.L3=0}{S.P=b,S.L1=0,S.L2=0,S.L3=0}This enodes the two �nal positions (player a wins or player b wins). Toupie isa deterministi language. In response to a query, it omputes the deision diagramassoiated with this query and then goes through this data struture to displaytuples belonging to the relation. The result of a omputation is thus an uniquerelation eventually ontaining several tuples as it ould be obtained in Prolog bymeans of the meta-prediate bagof.Fixpoints: All of the possible positions are not reahable from the initial one (forinstane, <a,0,3,5> is not). A position ^T is reahable either if it is the initial oneor if there exists a reahable position ^S and a move from ^S to ^T. This naturalharaterization of reahable positions is reursive. It is a typial least �xpointde�nition. Atually, it is not possible to remove reursivity sine reahability isnot �rst order expressible (see for instane [49℄).Toupie prediates are always de�ned as least or greatest �xpoints of equationsfor the inlusion in the powerset 2D of the artesian produt D = D1 � : : : �Dnof the domains Di's of their formal parameters. Syntatially, least and greatest�xpoint de�nitions are denoted by equations respetively in the form p += f andp -= f.The prediate move is thus de�ned as a least �xpoint, but, sine there is noreursive all in its equation, it ould be de�ned as a greatest �xpoint as well.The prediate enoding reahable positions is as follows.reahable(^T:position) += (initial(^T)| exist ^S:position (reahable(^S) & move(^S,^T)))Winning Positions: A position is winning if there exists a move leading to alosing position and onversely a position is losing if any playable move leads to awinning position. This is simply what express the two following prediates.winning(^S:position) += exist ^T:position (move(^S,^T) & losing(^T))losing(^S:state) += forall ^T:position (move(^S,^T) => winning(^T))
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Toupie = �-alulus(Finite Domains) 5At this point, we have presented almost all of the fundamental onstrutionsof the �-alulus over �nite domain variables (as it is implemented in Toupie):onstraints, universal and existential quanti�ations, systems of �xpoint equations.It should be point out that in order to �nd winning positions of the Nim game,we maked an extensive use of universal quanti�ation and �xpoint de�nitions.Indeed, both an be programmed in lassial theorem provers suh as Prolog byusing auxiliary lists in whih already enountered positions are stored. However,suh a meta-programmation introdues proedural aspets in the desription of theproblem, breaking in this way the delarivity of the language. In addition, it wouldbe very ineÆient as soon as the number of positions beomes large. The table Igives some running times neessary to ompute reahable and winning positionson a SUN IPX Spark Station with 48 MgB memory.TABLE IRunning times for the Nim's game.Number of lines 4 5 6 7 8Number of reahable positions 763 7,674 92,153 1,290,232 20,643,831Times reahable positions 0s21 0s43 0s75 1s25 1s93Times winning positions 0s50 1s73 6s23 25s18 141s60
3. The �-alulus over �nite domain variablesThis setion is devoted to the denotational semantis of Toupie programs andformulae, i.e. the �-alulus over �nite domain variables. For sake of larity, wepresent it for an abstrat syntax (the translation from the onrete syntax, skethedin the previous setion, to this abstrat one is straightforward). In addition, weonsider atomi onstraints in a very abstrat way. Taking into aount atualatomi onstraints, espeially systems of linear inequations, is easy but tedious andadds nothing to our purpose. Finally, we onsider a restrited version of programin whih there is only loal �xpoint de�nition. A full denotational semantis ofToupie would be too ompliate to be interesting here.3.1. Abstrat SyntaxFormulae are built over four denumerable (distint) alphabets: a set X = fX1; : : :gof individual variables, a set K = fk1; k2; : : :g of onstants, a set C = f1; 2; : : :g
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6 Mar-Mihel Corsini and Antoine Rauzyof atomi onstraints, and a set P = fp1; p2; : : :g of prediate variables. Eah indi-vidual variable Xi is assoiated with its domain, i.e. a �nite subset of K. In thesequel, the domain of Xi is denoted by dom(Xi) or by Di when i is lear from theontext. An arity, i.e. a positive integer, is assoiated with eah atomi onstraintand eah prediate variable.The set of formulae is smallest set suh that:� If X1; : : : ;Xn are individual variables or onstants and r is an atomi on-straint or a prediate variable of arity n then r(X1; : : : ;Xn) is a formula.� If f and g are two formulae then so are :f , f ^ g, f _ g, f ) g . . .� If f is a formula and X is an individual variable then 9Xf and 8Xf areformulae.� If X1; : : : ;Xn are individual variables, p is a prediate variable and f is aformula monotone in p (i.e. in whih p does not our under an odd numberof negation) then �p(X1; : : : ;Xn):f and �p(X1; : : : ;Xn):f are formulae.Note that onrete equations do not appear in this abstrat syntax. It meansthat some work must be performed to handle not only individual �xpoints butsystems of �xpoint equations. This has been already done in the literature, (seefor instane [17℄). Intuitively, a system of �xpoint equations is translated into atuple of �-alulus formulae, one for eah equation. Then, the semanti funtionis applied pointwisely.Note also that usual duality rules apply here too.:(f _ g) = (:f ^ :g):9Xf = 8X:f�p:f = :�p::f [p :p℄Where f [p g℄ denotes the formula f in whih g has been substituted simultane-oulsy for all of the ourrenes of p.Finally, we onsider in what follows only losed formulae, i.e. formulae in whiheah individual variable appear within the sope of a quanti�er or as the parameterof a �xpoint formula and eah prediate variable appear within the sope of a�xpoint formula.3.2. Denotational SemantisAs said in the previous setion, a formula in whih our the variables X1; : : : ;Xnwhose domains are respetively D1; : : : ;Dn is interpreted into the powerset 2D ofthe artesian produt D = D1 � : : : �Dn, with respet to an environment �. Anenvironment is a funtion that maps eah atomi onstraint and prediate variableof arity n into a subset of the artesian produt Kn.We denote by V ar(f) the set of individual variables ourring in a formula f .
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Toupie = �-alulus(Finite Domains) 7We denote by �[p 7! R℄ the environment that results by updating the bindingof the prediate variable p to R in �.Let X1; : : : ;Xn be variables whose domains are respetively D1; : : : ;Dn.Let R be a relation over theX1; : : : ;Xn andXi1 ; : : : ;Xik be a subset ofX1; : : : ;Xn.We denote by �fXi1 ;:::;Xikg(R) the projetion of R on the indies i1; : : : ; ik.Now, let P be a relation over Xi1 ; : : : ;Xik , i.e. a subset of Di1 � : : : � Dik .We denote by �fX1;:::;Xng(P ) the maximal subset Q of D1 � : : : � Dn suh that�fXi1 ;:::;Xikg(Q) = P .By abuse, we denote by 1 the full relation, when the underlying powerset islear from the ontext.Finally, we denote by n the set di�erene.Semantis of formulae is as follows. Let X1; : : : ;Xn be individual variables oronstants andD1; : : : ;Dn be their domains (by extension, the domain of a onstantk is fkg). Let f and g be formulae, and let  and p be respetively an atomionstraint and a prediate variable of arity n.[[(X1; : : : ;Xn)℄℄� def= �() \D1 � : : :�Dn[[:f ℄℄� def= 1n[[f ℄℄�[[f _ g℄℄� def= �V ar(f_g)([[f ℄℄�) [ �V ar(f_g)([[g℄℄�)[[f ^ g℄℄� def= �V ar(f^g)([[f ℄℄�) \ �V ar(f^g)([[g℄℄�)[[9Xf ℄℄� def= [k2dom(X)[[f [X  k℄℄℄�[[8Xf ℄℄� def= \k2dom(X)[[f [X  k℄℄℄�[[p(X1; : : : ;Xn)℄℄� def= �(p) \D1 � : : : �Dn[[�p(X1; : : : ;Xn):f ℄℄� def= \fR � D1 � : : :�DnjR � [[f ℄℄�[p 7! R℄g[[�p(X1; : : : ;Xn):f ℄℄� def= [fR � D1 � : : :�DnjR � [[f ℄℄�[p 7! R℄gThe syntati restrition on the ourrenes of p in formulae of the form �p:fand �p:f ensures that semantially, the bodies (f) rise to monotone funtions inthe powerset Kn. In addition, the semantis of a formula is always a �nite subsetof Kn. Let D = D1 � : : : �Dn be a �nite subset of Kn. 2D equipped with the setinlusion forms a omplete lattie. The Knaster-Tarksi's theorem [53℄ asserts thatgiven a monotone funtion f from 2D to 2D,1. f is ontinuous.2. The equation R = f(R) (R 2 2D) admits a least and a greatest solutions,denoted with �R:f(R) and �R:f(R), that are respetively equal to TfRjf(R) �Rg and SfRjf(R) � Rg.
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8 Mar-Mihel Corsini and Antoine Rauzy3. There exist two integers m and n suh that �R:f(R) = fm(;) and �R:f(R) =fn(D) where fk(R) denotes the k-nth appliation of f to R.Finally, the following lemma holds, that asserts that the semantis of a formuladoes not depend of its environment.LEMMA 1. Let f be a formula and � and �0 be two environments that interpret inthe same way atomi onstraints. Then [[f ℄℄� = [[f ℄℄�0.3.3. Toupie versus propositional �-alulus:There exist several di�erent presentations of the �-alulus in the literature. Thisformalism allows the expression of state properties of automata. The di�erenesbetween the presentations stand mainly in the type of the onsidered automata.The key point being to know whether transitions are labeled or not. Authorsworking with labeled transitions add to the formalism onnetives allowing toharaterize transition labels and oming typially from the Henessy & Milner'slogi [36℄. Toupie is loser to the Park's original presentation [50℄ (used for instanein [13℄). We prefer this version beause it is as expressive as the former but doesnot impose interpretations in terms of automata and thus is far more versatile.Toupie is di�erent from this theoretial formalism for essentially two reasons.{ Atoms of the propositional �-alulus are in the form X = Y , where X and Yare individual variables. If individual variables are interpreted in a �nite domain,there is no substantial di�erene with Toupie. In general, the authors onsider onlyindividual variables belonging to f0; 1g. The extension to �nite domain variablesimproves the eÆieny, espeially when dealing with arithmetial onstraints (ofourse, it does not provide any improvement for what onerns expressiveness).In�nite interpretation domains would raise some e�etiveness problems . . .{ The �-alulus does not allow to name relations and thus it does not onsidersystems of �xpoint equations. However, this extension is easy and useful [17℄.In our informal presentation, we omit nested �xpoints. In the literature, nested�xpoint de�nitions are used mainly to express in�nite path properties on graphs.For instane, states of a graph g that are soure of paths going in�nitely oftenthrough states having a property p are haraterized by means of a �� term, i.e.a greatest �xpoint of a least �xpoint, as follows.tau(U:vertex) -=let aux(V:vertex) += ( /* loal definition */exist W:vertex (g(V,W) & aux(W))| exist W:vertex (g(V,W) & p(W) & tau(W)))in aux(U) /* body of the definition */Nested �xpoints are not stritly neessary (exept for sake of eÆieny) sineany expression with nested �xpoint an be rewritten into a expression that is just
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Toupie = �-alulus(Finite Domains) 9a �xpoint hierarhy. This result is due to Immerman [38℄. For instane, statesharaterized above an be omputed in two steps. First, one omputes the tran-sitive losure of the automaton, seond one selets states s suh that there existsa path from s to a state t verifying p and onversely a path from t to s. Indeed,this requires to ompute a binary relation whih is more ostly than the presentedprogram. Moreover, we don't know any \natural" property requiring more thantwo nested �xpoints. 4. Deision DiagramsThe interest of a CLP(X ) language is not only a matter of expressiveness: it standsalso in the pratial eÆieny of the embedded solver for X . CLP(FD) systemssolves �rst order onstraints, i.e. deision or optimization problems that are ingeneral NP-omplete. The resolution of seond order onstraints, suh as thoseexpressible within the �-alulus over �nite domain variables, is far more diÆultbeause the size of solutions (that are sets of tuples) an be exponential w.r.t.the number of variables. Therefore, the design an eÆient method to solve suhonstraints onsists mainly in hosing a data struture as ompat as possible tostore relations. Fortunately, Bryant's Binary Deision Diagrams (BDD for short)[8, 6, 9℄ provide suh a data struture. The BDD assoiated with a Boolean formulais a ompat enoding of the deision tree desribing the set of solutions of thisformula. This enoding is anonial up to a variable ordering. Even if the worst asesize of a BDD is exponential w.r.t. the number of variables, in many pratial asesthis size is quite small. Classial Boolean operations an be performed diretly onBDD's. One of the most interesting features of BDD's is that, one built the BDD'sassoiated with formulae, testing whether a formula is satis�able or is a tautology,testing the equivalene of two formulae beomes trivial.In Toupie, we extend BDD's tehniques to Deision Diagrams, i.e. to the asewhere variables are not Boolean but take their values into �nite domains. The aimof this paper is not to present BDD's and DD's, so we limit ourselves to what isneessary to disuss innovations introdued in Toupie. For a omprehensive surveyon BDD's, the interested reader should see the paper by Bryant [9℄.Redued Ordered Deision Diagrams: The main di�erene between BDD's andDD's is that nodes of DD's are of various arities (and not always binary).Let X1, . . . , Xn be variables whose domains are D1, . . . , Dn and let D =D1 � : : : �Dn. A Deision Diagram � for X1; : : : ;Xn is a direted ayli graphwith an unique root node and veri�ying onditions (i) and (ii).(i) � has two sink nodes labeled respetively with 0 and 1.(ii) Eah internal node of � is labeled with a variable Xi whose domain is Di =fk1; : : : ; krg and has r outedges labeled respetively with k1,. . . ,kr.
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10 Mar-Mihel Corsini and Antoine RauzyThe denotation [[�℄℄ of the root node � of a DD is a formula de�ned as follows.If � is a leaf labeled with 0 or 1 then [[�℄℄ is the orresponding Boolean onstant.If � is an internal node labeled with Xi and whose outedges point respetively to�1, . . . , �r, then: [[�℄℄ def= ase(Xi; [[�1℄℄; : : : ; [[�r℄℄)Where, the ase onnetive is de�ned as follows. LetX be a variable and fk1; : : : ; krgbe its domain, let f1; : : : ; fr be formulae. Then,ase(X; f1; : : : ; fr) def= ((X = k1) ^ f1) _ : : : _ ((X = kr) ^ fr)Let < be a total order on the variables X1; : : : ;Xn. A DD is said ordered ifondition (iii) holds.(iii) For any pair of nodes (�,�) labeled respetively with the variables Xi and Xj ,if � is reahable from � then Xi < Xj .A DD is said redued if onditions (iv) and (v) hold.(iv) It ontains no internal node whose outedges are all pointing to the same sub-graph.(v) It ontains no isomorphi sub-graphs.Condition (iv) follows from the equivalene: ase(X; f; : : : ; f) � f .It is lear that for any relation R in 2D it exists at least one redued ordereddeision diagram (RODD) whose denotation is a formula enoding R. Moreover,the following property holds.LEMMA 2 (Canoniity of redued ordered deision diagrams). For given a vari-able order, the RODD assoiated R is unique up to an isomorphism.In the sequel, we will write simply DD for RODD.Negation: The ase onnetive keeps another interesting property of BDD's: itis orthogonal with the negation::ase(X; f1; : : : ; fr) = ase(X;:f1; : : : ;:fr)The DD enoding the omplementary of a relation R is thus obtained from theDD enoding R by exhanging its leaves. This makes a negation in onstant timepossible by putting ags on edges that indiate whether the pointed DD's mustbe onsidered positively or negatively. In order to preserve the anoniity of therepresentation, one uses orthogonality to enode only nodes with a positive leftmostoutedge. As a side e�et, only one leaf remains neessary (the other one being itsnegation).
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Toupie = �-alulus(Finite Domains) 11(a) ?XmYmYm 1m
'0 t1 ��t2�&0"t1 ��t2�
0 t1 �	t2

(b) ?1mXm�
0..4 �	t5..10
Fig. 1. The DD assoiated with X + Y � 1; X; Y 2 0::2 (a), and the ompated DD assoiatedwith X < 5; X 2 0::10 (b) (omplemented edges are marked with a blak dot).Let X and Y be two variables and 0..2 be their domain. The DD enoding theonstraint (X + Y <=1) is pitured Fig. 1(a).Memory Management for DD's: DD's are a very ompat representation thanksto the sharing of isomorphi subtrees. This sharing is automatially performed bykeeping nodes into a hashtable: eah time a node ase(X;�1; : : : ; �r) is required,one �rst looks up the table and the node is reated only if it is not already in thetable (as we will see DD's are always reated in a bottom-up way, whih makesthe above priniple possible).Logial Operations on DD's: In order to ompute the DD assoiated witha formula f = g � h, where � is any usual onnetive, one �rst omputes theDD's assoiated with g and h, then one performs � on these DD's. Usual logialoperations (_, ^, 
, . . . ) are performed by means of a single onnetive, so-alledite for If-Then-Else. ite is de�ned as follows:ite(f; g; h) def= (f ^ g) _ (:f ^ h)Usual onnetives an be rewritten using an ite and possibly a negation:f _ g = ite(f; 1; g) f ^ g = ite(f; g; 0)f , g = ite(f; g;:g) f 
 g = ite(f;:g; g)Let �; �;  be three DD's. The operation ite(�; �; ) is performed by means ofthe following indutive priniple:ite(�; �; ) = ase(X; ite(�X k1 ; �X k1 ; X k1); : : : ; ite(�X kr ; �X kr ; X kr))Where X is the least variable labeling the root of the DD's �, � and , fk1; : : : ; krgis its domain and �X k denotes the son of the DD � pointed by the outedge labeledby k if the root node of � is labeled by X, and � itself otherwise.It is easy to indue an e�etive proedure from this priniple.
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12 Mar-Mihel Corsini and Antoine RauzyAnother very important point that makes BDD's and DD's eÆient in pratieis that the omputation proedure uses a learning mehanism: a seond hast-tableis used to store 4-tuples < �; �; ; � > suh that � = ite(�; �; ). Eah time a om-putation ite(�; �; ) must be performed, one �rst looks up this table to see whetherthe result has not been already omputed. If it not the ase, the omputation isatually performed and its result stored. This ensures that a omputation is almotsnever performed twie whih ahieves a substantial improvement of eÆieny.Table II summarizes the main omputational osts of operations on DD's.TABLE IIComputational osts of operations on DD'sCreation of a new node O(1)ite(�; �; ) O(j�j � j�j � jj)9X�, 8X� O(j�jjdom(X)j)Compated representation: When dealing with variables having rather largedomains (it ould be the ase espeially for numerial variables) many onseutiveoutedges of a node may point to the same son. In this ase, one an ompatthe representation by labeling outedges with ranges of onstants rather than withindividual onstant (suh a DD is pitured Fig. 1(b)).\Good" properties of DD's are preserved by this new ompation. The repre-sentation is anonial if any two adjaent ranges that point to the same DD aremerged. Logial operations may be even aelerated sine one may treat severalvalues at one.Note �nally that suh a representation ould be used to enode approximationsof relations between variables taking their values in dense domains.Constraint solving: In order to solve systems of linear equations, we use thelassial impliit enumeration/propagation tehnique (similar, for instane, to oneembedded in CHIP [54℄). Note that solving a system means here omputing a DDthat enodes all the solutions of the system.The priniple is to enumerate variables domains in the order of their indies,and to build the DD in a bottom-up way. The propagation we adopt | the Waltz's�ltering [55℄ | onsists in maintaining, for eah variable a minimum and maximumvalue. Eah time a variable domain is modi�ed, this modi�ation is propagateduntil a �xpoint is reahed (see [42℄ for a disussion about these tehniques).Note that the ompated representation of DD's shown above is well adaptedto this kind of propagation.
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Toupie = �-alulus(Finite Domains) 13Variable ordering: Sine the seminal paper by R. Bryant [8℄, it is well knownthat the size of a (binary) deision diagram depends dramatially on the ho-sen order over variables. By default, Toupie orders variables with a very simpleheuristi, known for its rather good auray. It onsists in traversing the formulaonsidered as a syntati tree in a depth-�rst left-most way and to number vari-ables in the indued order. Nevertheless, this heuristi sometimes produes verypoor performanes. The user is thus allowed to de�ne its own indies.What's new ? The idea that the ase onnetive allows a anonial enodingof disrete funtions is rather old and due, as far as we know, to J.P. Billon [4℄.Buettner, in [10℄, used this enoding for multivaluated funtions. However, noneof these works fully implements BDD's tehniques as they are desribed in [6℄.The extension from BDD's to DD's has been proposed in [52℄. We proposed itindependently in 1992. The ompated representation proposed here is original (atleast in our knowledge). The integration of onstraint solving tehniques and DD'sis also new. 5. Problem SolvingAs shown at setion 2, one an model mathematial games within Toupie thanksto universal quanti�ation and �xpoints. In this setion, we examine several verysimple problems that permit a omparison of performanes of the various waysonstraint solving tehniques and deision diagrams an be integrated.Classial Arti�ial Intelligene Puzzles: We start with lassial arti�ial intelli-gene puzzles that an be found in [41, 54℄. These problems do not require seondorder onstraints but they are of a speial interest for our omparison purpose.Let us �rst onsider the pigeon-hole problem (reall that the problem is to putM pigeons into N holes in suh way that there is at most one pigeon per hole).The table III and IV give running times obtained with:1. Toupie using N -ary DD's, the outedges being labeled with onstants.2. Toupie using N -ary DD's, the outedges being labeled with ranges.3. Toupie using binary DD's. In order to enode that a variable takes its valuein a domains of size N , one uses dlog2(N)e Boolean variables. These variablesbeing ordered onseutively.4. Same as 3, but with an interleaved order on variables.5. Toupie using binary DD's. In order to enode that a variable takes its valuein a domains of size N , one uses N Boolean variables. These variables beingordered onseutively.
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14 Mar-Mihel Corsini and Antoine RauzyTABLE IIIRunning times for the Pigeon-Hole problem N=NN 6 7 8 9 10 11 12 13 14 151 0s10 0s18 0s43 1s03 2s56 6s56 16s91 46s00 127s35 336s002 0s11 0s26 0s65 1s63 4s21 10s65 27s16 69s45 174s58 449s153 0s23 0s53 1s53 6s51 29s40 114s28 ? ? ? ?4 0s20 1s13 2s16 38s58 265s83 ? ? ? ? ?5 0s91 5s16 41s25 325s98 ? ? ? ? ? ?6 0s11 0s25 0s63 2s18 5s80 15s11 39s28 102s33 279s03 ?7 82s96 848s80 ? ? ? ? ?6. Same as 3, using the BDD pakage Aulne [51℄. Aulne is implemented followingthe Bryant's paper [6℄ whih makes it a good omparison tool.7. The onstraint logi language CHIP [54℄ using �nite domain onstraints1.Running times for instanes with N pigeons and N holes (N ! solutions) arepresented Table III. Those for instanes with N + 1 pigeons and N holes (nosolution) are presented Table IV.As one an see, DD's are slightly more eÆient than BDD's one the Pigeon-Hole problem (moreover, Aulne is more optmized than Toupie as it appears learlywhen omparing binary DD's with BDD's. The ompated representation has nointerest on this example. However, it is not too bad too. The logarithmi odingof �nite domains is more eÆient than the linear one. Notie that is not truefor enumerative methods suh as the Davis and Putnam's proedure [28℄. Finally,DD's give better results than enumerative methods on this problem as shown bythe omparison with CHIP running times. However, this is not true in general sineDD's are eÆient only for problems having many regularities (symmetries).Cryptogram: Let us onsider now the following ryptogram.D O N A L D+ G E R A L D-------------= R O B E R T1 Daniel Diaz ommuniated us these times, we would like to thanks him here.
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Toupie = �-alulus(Finite Domains) 15TABLE IVRunning times for the Pigeon-Hole problem N + 1=NN 5 6 7 8 9 10 11 12 13 141 0s06 0s11 0s25 0s51 1s21 2s98 7s56 20s25 50s58 138s502 0s08 0s16 0s35 0s80 1s98 4s96 12s33 32s15 78s93 197s603 0s11 0s21 0s50 1s51 6s56 29s40 111s55 ? ? ?4 0s15 0s28 1s33 2s70 39s98 ? ? ? ? ?5 0s28 1s28 7s95 61s86 467s56 ? ? ? ? ?6 0s06 0s25 0s31 0s75 2s61 6s76 17s38 44s00 115s46 ?7 92s80 ? ? ? ? ?The problem is to assign a number in 0::9 to eah letter in suh a way that nonumber is assigned to more than one letter and that the addition is veri�ed. Thisproblem an be solved in several ways within Toupie, thanks to onstraints andlogial formulae.The �rst way to solve the problem is to write a set of �nite domain onstraints(the R0is take their values in f0; 1g).donald(D,O,N,A,L,G,E,R,B,T) +=exist R1, R2, R3, R4, R5, R6 {2*D=10*R1+T,R1+2*L=10*R2+R,R2+2*A=10*R3+E,R3+N+R=10*R4+B,R4+O+E=10*R5+O,R5+D+G=10*R6+R,R6=0,D#O, D#N, D#A, D#L, D#G, D#E, D#R, D#B, D#T,O#N, O#A, O#L, O#G, O#E, O#R, O#B, O#T,N#A, N#L, N#G, N#E, N#R, N#B, N#T,A#L, A#G, A#E, A#R, A#B, A#T,L#G, L#E, L#R, L#B, L#T,G#E, G#R, G#B, G#T,E#R, E#B, E#T,R#B, R#T,B#T,D#0, G#0, R#0}
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16 Mar-Mihel Corsini and Antoine RauzyA general heuristi in onstraint problems is that variables with smallest domainsmust be assigned �rst. This is alled the �rst fail priniple in the literature. In theabove formulation, with the a variable ordering that follows this priniple, theunique solution omputed in 1s75.An alternative to the previous formulation is to use as few onstraints as possi-ble, leaving to deision diagram mehanisms the main part of the omputation.The equality is modeled by means of the following prediates:equality(D,O,N,A,L,G,E,R,B,T) +=exist R1, R2, R3, R4, R5 (add(0, D,D,T,R1)& add(R1,L,L,R,R2)& add(R2,A,A,E,R3)& add(R3,N,R,B,R4)& add(R4,O,E,O,R5)& add(R5,D,G,R,0))add(R1,I1,I2,O,R2) += (((R1+I1+I2 < 10) & (R2=0) & (O=R1+I1+I2))| ((R1+I1+I2+C >= 10) & (R2=1) & (O=R1+I1+I2-10)))The solutions of equality are omputed in 2s35. The mutual exlusion is justa pigeon-hole problem with ten pigeons (the letters) and ten holes (in 0..9). Byombining both, one obtains the unique solution of donald in 4s95.This example shows that even on typial CLP(FD) examples Toupie has goodperformanes and that performanes of DD's, if well used, an often be omparedwith performanes of forward-heking algorithms.Advantages of the Compated Representation: The ompated representationould be far more eÆient than the standard one. The following example, omingfrom data base literature, gives an illustration. The problem is to ompute therelation \ousin" in a omplete binary tree of height H (two verties are ousinsif they are at the same deep in the tree).father(P,F) += ((F=2*P) | (F=2*P+1))ousin(C1,C2) += (exist P (father(P,C1) & father(P,C2))| exist P1, P2 (father(P1,C1) & father(P2,C2) & ousin(P1,P2)))The table V gives running times following the same numbering than in tablesof results for the pigeon-hole problem.Conlusion: This small set of problems is suÆient to show that from pure on-straint solving to pure DD solving (with exhaustive or ompated representations)
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Toupie = �-alulus(Finite Domains) 17TABLE VRunning times for CousinH 5 6 7 8 9 101 0s65 4s10 28s58 219s06 ? ?2 0s10 0s35 1s28 5s38 27s86 173s263 0s20 0s53 1s91 9s86 105s31 ?eah mehanism has its advantages and its drawbaks. This is a strong argumentin favour of embedding and integrating these mehanisms into a versatile tool.6. Abstrat Interpretation of Logi ProgramsIn this setion, we give some arguments to show that the �-alulus over �nitedomain variables is a natural framework to de�ne abstrat semantis of program-ming languages. We examplify that by using Toupie to perform abstrat interpre-tations of logi programs. Abstrat Interpretation of logi languages (and Prologin partiular) has been very ative in the last few years. The motivation of theseresearhes is the need of optimizations in ompilers. Roughly speaking an abstratinterpretation onsists in exeuting a program over a �nite abstrat domain |whih is a partition of the onrete Herbrand domain | in order to get informa-tion about the onrete exeutions of the program. The idea of using onstraintlanguages for this purpose has been proposed in [20, 34℄ (but only from a theo-retial point of view). Here we translate almost diretly abstrations of de�nitelogi programs into Toupie programs whose variables take their values in the ho-sen abstrat domains. We only give an informal presentation of the method, for adetailed disussion see [22℄. This approah an be related to works on abstrat om-pilation, e.g. [37℄, but here we abstrat the syntax of the programs as in [33, 34℄.Semantis of de�nite logi programs: A de�nite lause is a lause of the formH  B1; : : : ; Bn, where H, B1, . . . , Bn are �rst order atoms. A de�nite programis a set of de�nite lauses. Lloyd in [43℄ showed that the semantis of a de�niteprogram P an be de�ned as the least �xpoint in the lattie 2BP , where BP is theHerbrand's base of P , of the mapping TP : 2BP ! 2BP , de�ned as follows. Let Ibe an Herbrand interpretation. ThenTP (I) def= fH 2 BP : H  B1; : : : ; Bn is a ground instane of a lause in P and
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18 Mar-Mihel Corsini and Antoine Rauzyqsort(X1 , X2 ) :-X3 = [℄, qsort( X1 , X2 , X3 ).partition(X1 , X2 , X3 , X4 ) :-X1 = [℄, X3 = [℄, X4 = [℄.partition(X1 , X2 , X3 , X4 ) :-X1 = [ X5 | X6 ℄ , X3 = [ X5 | X7 ℄ , X5 <= X2,partition( X6 , X2 , X7 , X4 ).partition(X1 , X2 , X3 , X4 ) :-X1 = [ X5 | X6 ℄ , X4 = [ X5 | X7 ℄ , X5 > X2,partition( X6 , X2 , X3 , X7 ).qsort(X1 , X2 , X3 ) :-X1 = [℄, X3 = X2.qsort(X1 , X2 , X3 ) :-X1 = [ X4 | X5 ℄ ,partition( X5 , X4 , X6 , X7 ),qsort( X6 , X2 , X8 ),X8 = [ X4 | X9 ℄ ,qsort( X7 , X9 , X3 ).Fig. 2. Flat version of Quiksort in PrologfB1; : : : ; Bng � Ig (1)Abstrat Domains: A typial example of abstrat domains is Prop [44, 25℄. Thisdomain uses two onstants g (for ground) and ng (for nonground). The intuitionbehind this is that a substitution � is abstrated by a funtion f suh that f(xi) = gif and only if for all instanes �0 of �, �0 grounds xi.Flat Programs: For tehnial reasons, Toupie works on at version of logiprograms. Any pure logi programs an be translated into at forms in a straight-forward manner, thus it is not a restrition to only onsider at programs. Thebasi idea is to write expliitely all the uni�ations with two builtinsX = Y whereX and Y are variables or X = t where X is a variable and t a at term i:e: a termwith a funtor and only variables as arguments. As an example, the at version ofthe quiksort program using di�erene lists is given �gure 2.The Toupie translation: The translation of a (at) Prolog program into aToupie program is rather simple. To eah Prolog literal orresponds a Toupie least�xpoint equation. Eah sequene of Prolog literals is translated into a onjun-tion of prediate alls. Finally eah set of lauses with same head is viewed as adisjuntion of onjuntion of relations. The �gure 3 will enlight the proess. It is
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Toupie = �-alulus(Finite Domains) 19set domain {g, ng}qsort(X1,X2) += (nil(X3) & qsort(X1,X2,X3))partition(X1,X2,X3,X4) += ((nil(X1) & nil(X3) & nil(X4))| (ons(X1,X5,X6) & ons(X3,X5,X7) & ari(X5,X2) & partition(X6,X2,X7,X4))| (ons(X1,X5,X6) & ons(X4,X5,X7) & ari(X5,X2) & partition(X6,X2,X3,X7)))qsort(X1,X2,X3) += ((nil(X1) & (X3=X2))| ( ons(X1,X4,X5) & partition(X5,X4,X6,X7)& qsort(X6,X2,X8) & ons(X8,X4,X9) & qsort(X7,X9,X3)))nil(X1) += (X1=g)ari(X1,X2) += ((X1=g) & (X2=g))ons(X1,X2,X3) += ((X1=g) & (X2=g) & (X3=g)| (X1=ng & ((X2=ng) | (X3=ng)))) Fig. 3. Toupie translation of Quiksortrather lear, even without entering into tehnial details, that abstrat semantis\�a la Lloyd" of de�nite logi programs and denotational semantis of the translatedToupie programs oinide. We proved formally the orretness of the translationin in [22℄.The remaining diÆulty is to deal with the expliit uni�ation of the formX = Y and X = t where X;Y are variables and t is any (at) prolog term. Thetranslation of the builtin X = Y is straightforward, whereas the translation of thebuiltinX = t heavily depends on the domain under interest, as an example �gure 3depits the automated translation of the quiksort program for the domain Propwherein nil, ons and ari are domain-dependent translation of built-ins.As a response to the query qsort(L1,L2), one obtains {{L1=g, L2=g}, {L1=ng,L2=ng}}, whih means that L1=L2 in the interpretation domain Prop.Performanes: We use the benhmark programs proposed by B. Le Charlierand P. Van Hentenryk in [14℄. In the table VI, the running times (in seonds)for the domain Prop are presented as well as those for the domain Types. Types
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20 Mar-Mihel Corsini and Antoine RauzyTABLE VIRunning times for abstrat interpretationsname s disj gabriel kalah peep pg plan press1 press2 readProp 0s53 0s48 0s18 0s50 0s83 0s11 0s10 0s76 0s75 0s83Types 0s20 0s30 0s18 0s35 0s55 0s11 0s06 0s68 0s70 2s40ontains four elements: int for integer, lst for lists, st for symboli onstantsand ft for the other terms. Note that only the de�nitions of the built-ins have tobe hanged aording to the domain.The results show that Toupie is extremely fast on the benhmark programsand muh faster that any system we are aware of. Similar experiments for theProp domain and the same programs have been reported in [15℄ for the generiabstrat interpretation algorithm GAIA. Toupie is at least �ve time faster thanGAIA, on the average. Interestingly, the implementation of [15℄ also uses deisiondiagrams for the domain and ahing tehniques. However, ahing is used to alesser extent. Finally, it is fair notiing that GAIA performs a top-down analysisimplying that input patterns have to be reorded, not only suess patterns. Thisalso ompliates the �xpoint algorithm. In [19℄, M. Codish & al use a similarapproah to abstrat interpretation over the domain Prop. Instead of translatinglogi programs to Toupie, Codish et al transform them to Datalog, and apply asimple Tp evaluation. Their approah is simpler sine they do not use a onstraintlanguage. But, we believe that our approah is more powerful, sine Extended DDsenoding permit larger interpretation domains without loss of eÆieny, see thebenhmarks in [22℄.It is lear that the same kind of tehniques ould be applied to any languageswith a well de�ned �xpoint semantis.7. Symboli Model ChekingIn this setion we show, by means of an example, how the �-alulus over �nitedomain variables an be used to perform analyses of systems of onurrent proess-es. As an illustration, we detail the implementation in Toupie of a very simple andpowerful model of onurreny that was proposed by A. Arnold and M. Nivat in [3℄(see [2℄ for a omprehensive survey). This model onsists in desribing individualproesses by means of labeled transition systems and in ombining these transitionsystems in a onvenient way to desribe interations between proesses.
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Toupie = �-alulus(Finite Domains) 21Formally, a labeled transition system is a tuple A =< S;L; T >, where S is aset of states, L, is as set of labels, and T is a set of transitions, i.e. a subset of theartesian produt S�L�S. In a transition < s; l; t >, s is alled the soure state,l the label and t the target state.A proess is thus onsidered as a set of states. An ation or an event hangesthe urrent state of the proess. It is represented by a transition whose label is thename of the ation or the event.A system P of n ommuniating proesses P1, . . . , Pn is also desribed by meansof a transition system A, alled the synhronized produt of the transition systemsA1, . . . , An desribing P1, . . . , Pn. States (resp. labels) of A are n-tuples of states(resp. labels) of the Ai's. Some onstraints are put on the tuples of labels in orderto desribe the way proesses ommuniate. The allowed tuples of labels are alledsynhronization vetors.Formally, the synhronized produt of n labeled transition systems A1 =<S1; L1; T1 >, . . . , An =< Sn; Ln; Tn > for the set V of synhronization vetors(V � L1 � : : :� Ln), is a labeled transition system A =< S;L; T > suh that:S = S1 � : : :� SnL = VT = f< ~s;~l;~t >2 S � L� S j 8i = 1::n;< ~si;~li;~ti >2 TigWhere ~x denotes a n-tuple and ~xi denotes its i-th omponent.One the labeled transition system desribing the behavior of the system obtained,one an test whether the system verify some desired properties (suh as deadlokfreeness, safety, fairness and so on) by omputing graph properties.Note that labeled transition systems are atually the underlying model of mostof other formalisms used to desribe proesses. This is the ase, for instane, of thetratable restritions of proess algebrae suh as CCS [46℄, as shown in [2℄. In somesense, the way proesses are desribed is just a matter of interfae, and eah toolhas its own one: proess algebrae for CWB [18℄, small languages to enter automatafor Me [1℄, Auto [29℄ or Ald�ebaran [32℄, or even a small imperative language forSMV [45℄. Another di�erene between model hekers, is the way properties areexpressed. A number of temporal logis are proposed in the literature, suh as CTL[16℄ that is used in a several tools. As shown in [2℄, these logis are less expressivethan the propositional �-alulus (and for some of them stritly less expressive,see [30℄ for a survey on that question). The hoie of the interfae language is thusessentially a matter of taste. The advantage of an open tool suh as a CLP systemis preisely that th user is able to design its own interfae.Muh more important is the way in whih transition systems are enoded. Themain drawbak of the model is that their sizes beome quikly huge, even forvery simple systems. With an expliit representation transition systems with morethan say 100,000 states annot be handled (suh sizes are not unommon at all). Insetion 2, we showed how transition systems an be represented in a symboli way
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22 Mar-Mihel Corsini and Antoine Rauzyby means of DD's. This idea is due to Madre and Coudert [27℄ and Clarke & als[13℄. As exampli�ed by the Nim's game, it allows to enode very large systems.Example: In order to illustrate the approah, let us onsider the problem ofdesigning a protool between a dispather of resoures and a number of bu�ers.At the beginning, the dispather owns a given number of resoures and the bu�ersare empty. During the proess, eah bu�er tries to get one by one a number ofresoures from the dispather. When it has obtained them, it performs an ation(no matter what this ation atually is), then it starts to give them bak to thedispather (still one by one). When it is empty, it performs another ation and itstarts to get resoures again. And so on in�nitely.Let us examine �rst a very simple version in whih the dispather non deter-ministially gives a resoure to a bu�er or get a resoure from a bu�er withoutany additional ontrol. In order to make the Toupie ode suÆiently small to beeasily readable we onsider the ase where there are only two bu�ers.Individual Proesses: The behavior is thus modeled by means of labeled tran-sition system. For the dispather the states are the possible numbers of resouresthe dispather has, and the transitions model its ations, i.e. get (a resoure froma bu�er), put (a resoure in a bu�er) and e (when it remains idle). This transitionsystem is desribed by using a ternary prediate dispather(S,L,T), where thevariables S, L, T are respetively the soures, labels and targets of transitions.let resoures = 5 /* number of resoures */let dispather_state = domain 0..resoureslet dispather_label = domain {e,get,put}dispather(S:dispather_state,L:dispather_label,T:dispather_state) += (((L=e) & (T=S))| ((L=get) & (T=S+1))| ((L=put) & (T=S-1)) )The behavior of the two bu�ers is modeled in the same way. Here, states arepairs (setion, urrent number of resoures), where setion is a Boolean variableindiating whether the bu�er tries to get (up) or to put bak (down) a resoure.The ations performed by the bu�er when it is full or empty are modeled by meansof the same transition label tau.let maxsize = 5 /* maximum size of buffers */let buffer_size = domain 0..maxsizelet buffer_setion = domain {up,down}let buffer_label = domain {e,get,put,tau}let buffer_state = tuple (Size:buffer_size, Setion:buffer_setion)buffer(^S:buffer_state,L:buffer_label,^T:buffer_state) += (((L=e) & (T.Size=S.Size) & (T.Setion=S.Setion))
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Toupie = �-alulus(Finite Domains) 23| ((L=get) & (S.Setion=up) & (T.Setion=up) &{S.Size<maxsize, T.Size=S.Size+1})| ((L=put) & (S.Setion=down) & (T.Setion=down) &{S.Size>0, T.Size=S.Size-1})| ((L=tau) & ((T.Setion=down) & (S.Setion=up) &{S.Size=maxsize,T.Size=S.Size})| ((T.Setion=up) & (S.Setion=down) & {S.Size=0, T.Size=S.Size}))))For sake of simpliity, we do not disuss here the problem of the hoie of agood order over the variables. Suh a disussion an be found in [31, 5, 24℄.Synhronized Produt: Now, one must synhronize the three proesses, that isto onstrain, for instane, the dispather to give a resoure (put) when the �rstbu�er gets it (get) while the seond one remains idle (e) :let label = tuple (D:dispather_label, B1:buffer_label, B2:buffer_label)synhronizator(^L:label) += (((L.D=e) & (L.B1=tau) & (L.B2=e))| ((L.D=e) & (L.B1=e) & (L.B2=tau))| ((L.D=get) & (L.B1=put) & (L.B2=e))| ((L.D=get) & (L.B1=e) & (L.B2=put))| ((L.D=put) & (L.B1=get) & (L.B2=e))| ((L.D=put) & (L.B1=e) & (L.B2=get)))Initial state and edges of the synhronized produt are desribed as follows:let state = tuple (D:dispather_state, ^B1:buffer_state, ^B2:buffer_state)initial(^S:state) += ((S.D=resoures) & (S.B1.Size=0) & (S.B2.Size=0))edge(^S:state, ^T:state) +=exist ^L:label (dispather(S.D,L.D,T.D)& buffer(S.^B1, L.B1, T.^B1)& buffer(S.^B2, L.B2, T.^B2)& synhronizator(^L))The Arnold-Nivat model is basially synhronous, sine all of the proesses areassumed to perform an ation at time. The trik of adding idle transitions e oneah state allows, as shown above, to handle asynhronous phenomena.There are tuples of individual states that do not orrespond to reahable statesof the synhronized produt. The set of reahable states is omputed by means ofa least �xpoint, starting from the initial state and traversing the automaton:reahable(^T:state) += (initial(^T)| exist ^S: state (reahable(^S) & edge(^S,^T)))
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24 Mar-Mihel Corsini and Antoine RauzySafety Properties: The prediates above (reahable and edge) allow the veri-�ation of properties of the system. For instane, one may want to hek whetherit ful�ls safety properties suh as deadlok freeness. Let us reall that a deadlok(in a weak sense) is a reahable state from whih no transition is possible or onlya transition leading in a deadlok state. The Toupie program to detet deadloksis as follows:deadlok(^S:state) += (reahable(^S)& forall ^T:state (transition(^S,^T) => deadlok(^T)))There are 10 deadlok states (in this toy example). A quik analysis shows thatthe problem arises when both bu�ers try to get (up) resoures while the dispatherhas not enough resoures to satisfy at least one of them.The protool must be modi�ed to avoid this situation. A simple way to do thisis to add the onstraint that the dispather never gives a resoure to a bu�er ifit has not enough resoures to satisfy its request. This is done by modifying thesynhronization onstraints in the following way:synhronizator(^S:state, ^L:label) += (((L.D=e) & (L.B1=tau) & (L.B2=e))| ((L.D=e) & (L.B1=e) & (L.B2=tau))| ((L.D=get) & (L.B1=put) & (L.B2=e))| ((L.D=get) & (L.B1=e) & (L.B2=put))| ((L.D=put) & (L.B1=get) & (L.B2=e) & (S.D>=maxsize-S.B1.Size))| ((L.D=put) & (L.B1=e) & (L.B2=get) & (S.D>=maxsize-S.B2.Size)) )The protool shows now to be deadlok free. Note that the same kind of syn-hronizator ould be used in order to break the symmetries between proesses. Forinstane, by foring if all of the bu�ers are in their up setions, the bu�er 1 tohave more resoures than the bu�er 2 that must have itself more resoures thanbu�er 3 and so on.Fairness Properties: An important property to be veri�ed by the protool isthat a bu�er that asks resoures will always obtain these resoures. Suh a fairnessproperty an be expressed as the greatest �xpoint of a least �xpoint. With theleast one, we ompute the set of states S suh that every path leaving S goes toa state in whih the �rst bu�er is full (from symmetry arguments it suÆes toonsider only the �rst bu�er). With the greatest one, we remove from the set thestates that are not on in�nite loops omposed by states of the set.transition(^S:state,^T:state) += (reahable(^S) & edge(^S,^T))live(^S:state) += (reahable(^S) & ~deadlok(^S))to_full_buffer1(^S:state) += (
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Toupie = �-alulus(Finite Domains) 25TABLE VIIRunning times for the exhasutive representation5/5/5 5/5/10 5/5/15 5/5/25states 832 58944 189696 248832reahable 0s85 10s63 22s28 28s26fairness 3s93 17s23 23s06 30s05
TABLE VIIIRunning times for the ompated representation5/5/5 5/5/10 5/5/15 5/5/25states 832 58944 189696 248832reahable 0s70 10s28 20s01 20s55fairness 2s88 12s00 11s01 11s03live(^S)& forall ^T:state(transition(^S,^T) => ((T.B1.Size=maxsize) | to_full_buffer1(^T))))fair_state(^S:state) -= (to_full_buffer1(^S)& forall ^T:state (transition(^S,^T) => fair(^T)))The omputation reveals that the protool is not fair. Atually, it is possible tomake it fair, but it would be too long to present the new protool here. Anyhow,the fairness property is interesting both from pratial and theoretial points ofview sine it requires a greatest �xpoint omputation.Performanes: The tables VII and VIII indiate running times for variousnumber of bu�ers, bu�er sizes and initial number of resoures respetively for thenon-ompated representation and the ompated one.These examples show that Toupie an handle rather large examples. It is notsurprising that limitations are due to lak of memory and not to exessive runningtimes: it is in general the ase with BDDs. It is also interesting to point out thatthe ompated representation really improves the performanes.
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26 Mar-Mihel Corsini and Antoine RauzyTABLE IXRunning times to solve onstraints X1 � : : : � Xnnumbers of variablessizes of domains 5 6 7 8 9 105 0s01 0s02 0s04 0s08 0s14 0s2110 0s11 0s36 1s02 2s64 6s22 13s63Constraints: In the previous example, onstraints have been used in rather poorway, i.e. just to model resoure transfers. However, one ould use them in a farmore powerfull way. For instane, on ould remark that bu�ers play a symmetrialrole. Thus, in order to limit the ombinatorial explosion we may onstrain the �rstbu�er to ontain more resoures than seond one that itself must ontain moreresoures than third one and so on (suh approah has been proposed in [39℄).This kind of onstraints is expressed by a system in the form X1 � : : : � Xn. Intools suh as SMV [45℄, tuples verifying this system are obtained by exploring thewhole artesian produt of variable domains, whih beomes quikly intratable.On the onverse, onstraint resolution permits to ompute the DD assoiated withsuh a system rather eÆiently as shown by the table IX.CTL?: It is interesting to show how formulae of temporal logis ould be trans-lated into Toupie formulae. As an example, let us onsider the main onnetives ofthe well known CTL? [30℄: Ep, Ap and pUq where p and q are path formulae.Ep haraterizes the states s of the underlying graph suh that there exists ain�nite path, starting from s, on whih the property p is always veri�ed. If thegraph is enoded by the prediate g, E is translated as follows.ep(^S:state) -= (p(^S) & exist ^T:state (g(^S,^T) & ep(^T)))Ap is the same than Ep exepted that all of the in�nite paths starting from smust verify the property p.ap(^S:state) -= (p(^S) & forall ^T:state (g(^S,^T) => ap(^T)))Finally, pUq haraterizes the states from whih starts a path on whih theproperty p is veri�ed until a state verifying the property q is enountered.pUq(^S:state) -= (q(^S) | (p(^S) & exist ^T:state (g(^S,^T) & pUq(^T))))Bisimulations: The redution by bisimulation is a very important tool for modelheking [47℄. A bisimulation is an equivalene relation between transition systemsor di�erent states of the same transition system (see the literature for a formal
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Toupie = �-alulus(Finite Domains) 27de�nition). The generi pattern of prediates that ompute suh bisimulations isas follows.equivalent(^S:state,^T:state) -= (reahable(^S) & reahable(^T)& forall ^L:label (forall ^U:state(tau_path(^S,^L,^U)=> exist ^V:state(tau_path(^T,^L,^V) & equivalent(^U,^V)))& forall ^V:state(tau_path(^T,^L,^V)=> exist ^U:state(tau_path(^S,^L,^U) & equivalent(^U,^V)))))The reader familiar with bisimulations an easily see that the prediate equivalentmimis exatly the formal de�nition of bisimulations. In order to obtain di�erentbismulations, it suÆes to modify the de�nition of the prediate tau_path. Forinstane, the well known \observational equivalene" is obtained by enoding pathsin the form �?t�? in tau_path.In [24℄, we have reported performanes of two BDD based model-hekers [5, 31℄and Toupie on the Milner's sheduler | whih is a very ommon benhmark. Theseomparative results show that Toupie is at least as eÆient as these tools.8. Conlusion and Future WorksIn this paper, we have presented several nontrivial appliations of Toupie. Theseappliations show that �-alulus over �nite domain variables has a great expres-sive power and that this expressiveness an be oupled with a good pratialeÆieny thanks to the use of Deision Diagrams.The �-alulus over �nite domain variables is not however a omplete language.As mentioned in the introdution, it an be onsidered from di�erent points ofview:{ As a new domain for CLP systems. Binary Deision Diagrams have been usedin order to implement the Boolean solver of CHIP [12℄. Buettner in [11℄ used anextension of BDD's to enode omplex domain onstraints. Toupie an be seen asan extension of this work in several ways: extension of BDD's to �nite domains,smooth integration of �nite domain onstraints solving and DD's, and �nally exten-sion of the onstraint expressiveness to the �-alulus. There are strong motivations(thanks to appliations) to introdue a Toupie-like solver in a CLP(FD) languagein omplement to to urrently embedded ones. The introdution of universal quan-ti�ation is rather simple. The introdution of a least �xpoint mehanism should
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28 Mar-Mihel Corsini and Antoine Rauzynot be too diÆult by using tabulation mehanism, while the introdution of great-est �xpoints is more tedious.{ As a new paradigm for onstraint logi languages. In this ase, it should beadapted in order to be a full programming language. This ould be done in twoways: �rst restrit the language (for the onstraint on the Herbrand universe) inorder to make the relations omputable by means of a tabulation mehanism. Thisimplies to forbid general universal quanti�ation and greatest �xpoints on thisdomain. Seond, by using widening operators as proposed by the Cousot in [26℄.This approah ould be of a partiular interest to analyze higher order funtionallanguages. A very interesting way to extend Toupie is to handle onstraints overdense domains (real or rational) in order to model real time systems. The union oftwo relations being approximated, as proposed by Halbwahs [35℄, by omputingthe onvex hull of the union of eah relation.At this point, we think Toupie as a versatile model heker that an be usedfor prototyping and pedagogial purposes and from whih an be derived tailoredtools. In our experiene, the �-alulus, as most of temporal logis, seems too hardto be manipulated by non speialists. However, this drawbak ould be removedby providing the user with a set of prede�ned funtions. On the other side, severaltranslators from automata desription languages to Toupie are already available,making writing of programs easier.Referenes1. A. Arnold. MEC: a System for Construting and Analysing Transition Systems. In J. Sifakis,editor, Proeedings of the International Workshop on Automati Veri�ation Methods forFinite State Systems, volume 407 of LNCS. Springer Verlag, June 1989.2. A. Arnold. Finite Transition Systems. C.A.R Hoare. Prentie Hall, 1994. ISBN 0-13-092990-5.3. A. Arnold and M. Nivat. Comportements de proessus. In Colloque AFCET \LesMath�ematiques de l'informatique", 1982.4. J.P. Billon. Perfet Normal Forms for Disrete Funtions. Tehnial ReportDSG/CRG/87014, Centre de Reherhe, BULL, 1987.5. A. Bouali. �Etudes et mises en �uvre d'outils de v�eri�ation bas�ee sur la bisimulation. PhDthesis, Universit�e Paris VII, 03 1993. in frenh.6. K. Brae, R. Rudell, and R. Bryant. EÆient Implementation of a BDD Pakage. InProeedings of the 27th ACM/IEEE Design Automation Conferene, pages 40{45. IEEE0738, 1990.7. S. Brlek and A. Rauzy. Synhronization of Constrained Transition Systems. In H. Hong,editor, Proeedings of the First International Symposium on Parallel Symboli Computation(PASCO'94), pages 54{62, Linz, Ostreih, 1994. World Sienti� Publishing.8. R. Bryant. Graph Based Algorithms for Boolean Fontion Manipulation. IEEE Transationson Computers, 35(8):677{691, August 1986.9. R. Bryant. Symboli Boolean Manipulation with Ordered Binary Deision Diagrams. ACMComputing Surveys, 24:293{318, September 1992.10. W. Buettner. Uni�ation in Finite Algebras is Unitary (?). In Proeedings of 9th Interna-tional Conferene on Automated Dedution, CADE'9, volume 310, pages 368{377. LNCS,1988.
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