Contents

Handling very large event trees by means of Binary Decision Dia-
grams
F. Ducamp and S. Planchon and A. Rauzy and P. Thomas . . . . ..



— 1
|
Handling very large event trees by means
of Binary Decision Diagrams

F. Ducamp & S. Planchon

Institut de Protection et Sreté Nucléaire, DES/SERS B.P. 6, 92265
Fontenay-auz-Roses Cedex FRANCE

{ducamp,planchon} Quranie.ipsn. fr

A. Rauzy & P. Thomas

CNRS-LaBRI, Université Bordeaux I, 351, cours de la Libération F-
33405 Talence cedex FRANCE

{rauzy,thomas} @labri.u-bordeauz.fr

Abstract

This article is about the various pre-processing techniques, computation
algorithms and approximation schemes the authors develop to assess very large
event trees coming from nuclear PSA. As a core algorithm, we use Binary Decision
Diagrams.

1. Introduction

Since about twenty years and the WASH-1400 report, event trees and fault
trees techniques are widely used for nuclear risk assessment studies. The joint use
of these techniques is nowadays well understood by practitioners as a modelling
tool. However, problems still remain to exploit it fully because of the compu-
tational complexity of the underlying problems (minimal cutsets computation,
probabilistic assessments).

Most of the computer codes implement MOCUS like algorithms. Several
approximations are associated with this class of algorithms. On the one hand,
these approximations are necessary to reduce the exponential blow up. On the
other hand, no one is able to ensure that the results obtained in this way are
accurate.

As an alternative, Bryant’s Binary Decision Diagrams (BDDs) [1] have
been recently introduced in the reliability fields [2]. They have proved to be a very
powerful tool to assess Boolean models (see for instance [3]). Not only they make
it possible to compute efficiently minimal cutsets and top event probabilities, but
also the results are exact (no approximation is performed). However, problems

PSAMS5
(©2000 by Universal Academy Press, Inc.



initiating event | mission A | mission B consequences

C1
I Cc2

C3

Fa s

Fig. 1. An event tree

still remain to assess very large models because BDDs are subject to exponential
blow up as well. However, the specific nature of event trees coming from PSA
makes room for specific improvements of the method.

This work is a part of the Aralia/Hévéa project, a collaboration of several
institutions and companies, including the French nuclear regulatory institution
(IPSN) and the French center for scientific research (CNRS). It aims to develop
a BDD based computer code to assess event trees. Aralia is a BDD package
extended with many PSA features, while Hévéa is the event tree manager.

2. Event Trees

A sequence of an event tree starts from an initiating event, goes through a
number of fork and ends with a consequence. Each fork corresponds to a mission,
i.e. the response of a safety system. The failures of such a system are described
by means of a fault tree. In the nuclear PSA framework, the fault trees are in
general coherent, i.e. are monotone Boolean formulae. Moreover, basic event
probabilities are low. The success of the safety system mission is modelled by
the negation of the fault tree (its failure is modelled by the fault tree itself).
A sequence is compiled into the conjunct of the Boolean formulae (fault trees
or negation of fault trees) that model the branches it goes through. A set of
sequences is compiled into the disjunct of the formulae encoding its members.

As an illustration consider the event tree pictured on Fig. 1.. It made of
one initiating event I, two missions and the corresponding fault trees F)4 and Fg,
and three consequences C'1, C2 and C'3. Upper branches represent successes of
missions. The three sequences I —C'l, I —C2 and I — (3 are therefore encoded by
the following conjuncts. I —C1 =1.F4, I-C2=1.F4.Fgand I—C3 = I.F,.Fp.

The sequences of event trees we are dealing with are typically made of
about 10 fault trees, 500 up to 1000 basic events and 500 up to 1500 gates. The



corresponding formulae are very specific. This makes it possible to develop specific
mathematical frameworks, algorithm schemes and heuristics to handle them.

3. Conventional approximation schemes

Most of the computer codes implement MOCUS like algorithms to assess
event trees. Each sequence is considered in turn. First, minimal cutsets of the
sequence are computed (the MOCUS algorithm works in a top-down way, but
bottom-up algorithms are sometimes used as well). Then, probabilistic quantities
are assessed by means of the Sylvester-Poincare development: let 7, ..., m, be
the minimal cutsets obtained during the first step. Then, the probability p(top)
of the top-event is as follows:

p(top) = Z p(m) — Z p(mimi) + ... (1)

i=1,n i=1,n—1,7=1+1,n

This algorithmic scheme induces three kinds of approximations.
— In case of non-monotone logic, a function is not equivalent to the disjunction of
its minimals cutsets. Consider for instance, the function F' = ab 4 ac. Minimal
cutsets of F' are ab and ¢, and therefore F' # ab+ c (see [4] for detailed discussion
on this topics). Event tree sequences are non-monotone for they include negations.
— Since it is too costly to determine all of the minimal cutsets only the most
important ones (from a probabilistic point of view) are considered. This may
induce significant deviations.
— Since it is too costly to apply the full Poincare development, only the very first
terms are taken into account.

These three approximation schemes are in general safe for probabilities of
basic events are low. However, there is no way to ensure that the error is under a
given bound. Efficient methods to compute exact results do exist, as examplified
by Binary Decision Diagrams.

4. Binary Decision Diagrams

Bryant’s Binary Decision Diagrams (BDDs) [5, 1] are the state-of-the-
art data structure to encode and to manipulate Boolean functions. Since their
introduction in the reliability analysis framework (by one of the author among
others [2]), BDDs have proved to be the most efficient technique to assess fault
trees.

The BDD associated with a formulae is a compact encoding of the truth
table of this formula. This representation is based on the Shannon decomposition.
Let F' be a Boolean formula that depends on the variable v, then there exists



Shannon tree BDD

e Reduction rules

) (a)

g e
1] [2] [o] [o] [1] [o] [2] [O] [0]

Fig. 2. From the Shannon tree to the BDD encoding ab + ac.

two formulae F; and Fj not depending on v such that F' = v.F} 4+ v.F,. By
choosing a total order over the variables and applying recursively the Shannon
decomposition, the truth table of any formula can be graphically represented as
a binary tree. The nodes are labeled with variables and have two outedges (a
then-outedge, pointing to the node that encodes F}, and a else-outedge, pointing
to the node that encodes Fyy). The leaves are labeled with either 0 or 1. The value
of the formula for a given variable assignment is obtained by descending along the
corresponding branch of the tree. The Shannon tree for the formula ab + @ac and
the lexicographic order is pictured Fig. 2. (dashed lines represent else-outedges).

Indeed such a representation is very expensive. It is however possible to
shrink it by means of the following two reduction rules.

— Isomorphic subtrees merging. Since two isomorphic subtrees encode the same
formula, at least one is useless.

— Useless nodes deletion. A node with two equal sons is useless since it is equiv-
alent to its son (v.F +9.F = F).

By applying these two rules as far as possible, one get the BDD associated
with the formula. A BDD is therefore a directed acyclic graph. It is unique, up
to an isomorphism. This process is illustrated on Fig. 2..

The full binary tree is never built: logical operations (and, or, xor, ...)
can be directly performed on BDDs. They are polynomial in the sizes of their
operands. Therefore, the BDD encoding a formula is obtained from the BDDs
that encode its subformulae. A complete implementation of a BDD package is
described in [1]. The reader interested in details should thus refer to this article.

Given the BDD F' = (v, F}, F) encoding a fault tree (or a event tree), the
probability of the top event can be assessed in linear time (w.r.t. the size of the
BDD) by applying the Shannon decomposition p(F') = p(v).p(F1)+[1—p(v)].p(Fp)
(see [2] for more details).

Minimal cutsets can be computed as well. The principle is to compute a



probability
importance factors
A
assess
build N cutsets | ZBDD
formula =1 BDD "1 (minimal cutsets)
preprocessing dynamic reordering
ordering heuristics selection of most important products

Fig. 3. Road map

second BDD that encodes the cutsets (see [2, 6]). This process is illustrated by
the upper part of Fig. 3..

5. Algorithms and heuristics

As the other methods, the efficiency of BDDs is sensitive to a number
of factors such as the way the formula is written, the order chosen among and
variables. Below, we list a number of techniques we use in order to improve the
efficiency of the method on the particular class of formulae we are dealing with.
Pre-processing of the formulae: the formula encoding a set of sequences is a
disjunction of conjunctions of literals, where each literal is either of fault tree
or its negation. It is possible to factorise the formula in order to reduce the
number of auxiliary computations, and therefore to achieve substantial memory
and time savings. It appears also that substantial improvements can be achieved
by permuting the arguments of associative/commutative connectives (see [7] for
a discussion on that topics).

Variable ordering heuristics: BDDs require to chose an order among the variables
of the formula under study. Here again, the specific nature of the formulae makes
it possible to develop specific variable ordering heuristics.

Dynamic variable reordering: it is sometimes of interest to change dynamically
the variable ordering. This technique has proved to be very powerful in the case
of circuit analyses [8]. In our case, this technique seems to too time consuming
to be used. However, as noted in [7], a good strategy consists in drawing more or
less at random a number of rewritings (and therefore variable orderings) of the
formula and to restart the computations from scratch until a good rewriting is
found.

Approzimations: in [4], we showed how the concept of Boolean sub-algebrae could
be used to perform approximated computations. We show that this technique is
of a special interest in the case of nuclear PSA event tree. We show that it makes



6

it possible to tune the approximations.

The combination of the above techniques makes it possible to improve by

orders of magnitude the efficiency of BDD assessments and, in some cases, to

handle event trees that would be not tractable otherwise.

References

1]

[5]

(6]

K. Brace, R. Rudell, and R. Bryant. Efficient Implementation of a BDD Pack-
age. In Proceedings of the 27th ACM/IEEE Design Automation Conference.
IEEE 0738, 1990.

A. Rauzy. New Algorithms for Fault Trees Analysis. Reliability Engineering
€4 System Safety, 05(59):203-211, 1993.

S. Combacon, Y. Dutuit, A. Laviron, and A. Rauzy. Comparison between two
tools (Aralia and ESCAF) applied to the Study of the Emergency Shutdown
System of a Nuclear Reactor. In A. Mosleh and R.A. Bari, editors, Proceed-
ings of the International Conference of Probabilistic Safety Assessment and
Management, PSAM’/, volume 2, pages 1019-1024, New-York, 1998. Springer
Verlag.

Y. Dutuit and A. Rauzy. A guided tour of minimal cutsets handling by means
of binary decision diagrams. In Proceedings of Probabilistic Safety Assessment
conference, PSA’99, volume 2, pages 55—62. American Nuclear Society, 1999.
ISBN 0-89448-640-3.

R. Bryant. Graph Based Algorithms for Boolean Fonction Manipulation.
IEEE Transactions on Computers, 35(8):677-691, August 1986.

Y. Dutuit and A. Rauzy. Exact and Truncated Computations of Prime Im-
plicants of Coherent and non-Coherent Fault Trees within Aralia. Reliability
Engineering and System Safety, 58:127-144, 1997.

M. Bouissou, F. Bruyere, and A. Rauzy. BDD based Fault-Tree Processing:
A Comparison of Variable Ordering Heuristics. In C. Guedes Soares, editor,
Proceedings of Furopean Safety and Reliability Association Conference, ES-
REL’97, volume 3, pages 2045-2052. Pergamon, 1997. ISBN 0-08-042835-5.

R. Rudell. Dynamic Variable Ordering for Ordered Binary Decision Diagrams.
In Proceedings of IEEFE International Conference on Computer Aided Design,
ICCAD’93, pages 42-47, November 1993.



