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Abstract: In this article, we study the assessment of Safetggrity Levels of Safety
Instrumented System by means of Fault Trees. Wigsfoa functions with a low demand rate.
For these functions, the appropriate measure dbmeance is the so-called probability of
failure on demande (PFD) or probability of not ftioning on demand. In order to calculate
accurately the average PFD as per IEC 61508 stndee introduce distributions for
periodically tested components into Fault Tree nwdé/e point out the specific problems
raised by the assessment of Safety Integrity Lewelsch restrict the use of the formulae
proposed in the standard. Among these problems ikethe fact that SIL should be assessed
by considering the time-dependent behavior of ty&esn unavailability in addition to its
average value. We check, on a simple pressuregbianiesystem, the results obtained by means
of the fault tree approach against those obtaingdnieans of stochastic Petri nets with

predicates.

Notations & Acronyms:

BDD: Binary Decision Diagrams

HIPPS: High Integrity Pressure Protection System
MCS: Minimal Cutsets

PFD: Probability of not Functioning on Demand
PN: Petri Nets

SIL: Safety Integrity Level



SIS: Safety Instrumented System

1. Introduction

The concept of safety integrity levels (SIL) wasraduced during the development of IEC
61508 [1]. This standard deals with instrumentestesys that have a safety function (SIS) to
perform. The concept of SIL is thus a measure efctbnfidence with which the system can be
expected to perform their safety function.

The standard points out that safety functions @reluired to operate in quite different ways.
Many such functions are only called upon at a legfiency / have a low demand rate. On the
other hand, there are functions which are of aukeet| or continuous use. This leads to the
definition of two kinds of SIL.

For functions with a low demand rate, the accidatd is the combination of two parameters:
first, the frequency of demands coming from the igaent under control, second the
probability of not functioning on demand (PFD) dfet SIS. The appropriate measure of
performance of the function is the latter (i.e. thean unavailability of the SIS).

For functions with a high demand rate or functitimst operate continuously, the accident rate
is the so-called probability of failure per hourhieh is not clearly defined in the standard.
This measure of performance is anyway out of tlepsof this article.

Note that we prefer the term "Probability of nohEtioning on Demand” to the one used in the
standard, namely "Probability of Failure on Demarm¥cause the latter can be confused with
(or to be restricted to) the probability of failustae to the demand itself which is usually noted
vy (gamma). The former has the advantage to invobth the failure due to the demand itself

and the failure in functioning occurred before tleenand [2]. The Safety Integrity Level L of a

system S at time t is derived straight from thevailability Qs(t) by means of the following

formula.

107+ < Qg (t) <10™

The standard IEC 61508 considers actually levete 4. In presence of periodically tested
components, @shows a saw tooth curve behavior. We advocaethet, if the mean value is
necessary to characterizg, @ is far from sufficient. We propose a modefaifure probability

distribution for periodically tested components. \Btgow by means of examples how the



unavailability of the system may vary with the was parameters of the model (non negligible
duration of tests, availability of components aablé during tests, failure rates during and
between tests, repair rates, probability of badares after tests, and so on). We propose an
algorithm to assess the unavailability throughouhiasion time (the problem is to select a
suitable number of dates at which this quantitpibe assessed). We also show how staggering
the test impacts the maximum PFD and how it deesetiee common cause failures impact.
Complex systems like SIS can be assessed accubgteigans of formalisms like Petri nets or
Markov graphs. However, the design of models chdormalisms is difficult and error prone.
Fault Trees are much easier to handle for the igoastr, but provide only approximated
results. Therefore, if the Fault Tree approach ioles results that are accurate enough, it
should be preferred. It remains that, in a reseplase, the former kind of models should be

used to check the accuracy of the latter. Thikesreason why we give here both.

The remainder of this article is organized as fe#io Section 2 proposes a parametric
distribution for the probability of failure of pedically tested components. Section 3 presents
a simple illustrative example. Section 4 sketch&setri net model for this example. Section 5
discusses the specific problems raised by the stssed of Safety Integrity Levels when using
fault trees models. Finally, section 6 presentaesexperimental results obtained with a Fault

Tree model against those obtained with the Petnmuoelel.

2. Periodically Tested Components

The main aim of this article is to show the abildlythe Fault Tree approach to model the
failure logic of any SIS and to compute its averd®feD. If it is well-known that the
computation of the top-event probability is eagigrformed by using Fault Tree when all basic
events have “classical” distributions (such as tiegative exponential distribution), some
problem can occur when these basic events corrdsfmperiodically inspected and tested
components. Unfortunately, safety instrumented esgyst involve generally many such
components. Therefore, a general model of peritiditasted component (see [3], [4]) must be
elaborated and implemented to make it possiblestiopm realistic computations of PFD and
SIL. We show hereafter how to deal with this probland present a generic and parametric

distribution for such components.



2.1.Phases

A periodically tested component goes through aermdttion of phases. It is successively in
operation, test and maintenance (when a test ieadallure). There are actually three types of
phases. The first one corresponds to the firstatioer period that spreads from time O to the
date of the first test. The second type correspdodtest periods. Finally, the last type
corresponds to operation periods (between tesht® fifst phase is distinguished from those of
the third type because in many real-life systenth sgveral components, the dates of first tests
of the components may be shifted, even if the comapts are otherwise identical and tested
with the same period.

In the sequel, we caB the date of the first test, the time between the beginning of two
consecutive tests amdthe duration of the test period. Figure 1 illustsathe meaning of the
parameter®, T and 1t Each test is performed at da#sn.t, where n is any non negative
integer operation periods spread from d&test+mto 6+(n+1)1.

Note that it is more convenient in practice to defihe time between two consecutive tests than
the duration of the operation period (which is,ading to our notatiort—11). Note also that,
tests are considered to be instantanewma8)(by numerous authors. This is in fact relevamy o
when the component remains available for its safatyction or if the installation under
protection is shut down during the tests. The refpaie is also considered very often as to be
negligible. Again, this is a safe approximationyoifi the installation under protection is shut
down during repair. Therefore in most of the caBeand repair rate have to be modeled
properly. It is worth to note that, in practiceettest duration is often the top contributor to the

unavailability of a periodically tested component.

2.2.Multi phase Markov Graphs approach

In order to design a probability distribution foerpdically tested components, we made the
following assumptions.
* Periods of test and operation alternate as destciibthe previous section.
» Failures are detected (and therefore repair shaotdg after an inspection (test) period.
« Components show a Markovian behavior, i.e. theyehavconstant failure rate A
during operation periodd,* during test periods — and a constant repair patéfter a

repair, components are assumed to be as good as new



« Components may be available or not during tesbdekiVe use the Boolean indicator x
to tell whether the component is available (x @dhot (x = 0).

* There is a (possibly null) probability that thettésils the component (probability of
failure due to the test). As before, we cathis probability. It is a pure probability of
failure on demand (i.e. due to a demand)

» The coverage of the test may be imperfect, i.efdhere (if any) of the component is
detected with a probability.

* Finally, there is a probability w that the componisrbadly restarted after a test.

Table 1 summarizes the different parameters opthbability distribution. Other assumptions
could have been done but those we have chosen eassmmost of the problem encountered

and are far beyond what is commonly taken undesideration.

The multi-phase Markov graph for the probabilitgtdbution is given in Figure 2. Ai's, Fi’s,
Ri's states correspond respectively to states wtterecomponent is available, failed and in
repair. The index “i” does not refer to a considephase. As explained below, it enables us to
distinguish between states which can be succegsigetupied within a given phase.
Continuous arrows correspond to Markovian transgi@nd dashed arrows to immediate
transitions. States with only immediate outgoingnsitions are transient states (i.e. without
actual duration).

In the first phase, the distribution is a simpl@axential law of paramet@r. The component is
assumed to work at t = 0. We added states F1 arfdrRhe sake of uniformity. However, the
probability to be in these states is null at thgilwing of this phase, but the component can fail

during this first phase (transitidnbetween states Al and F2).

At the end of a given phase the component maytberen working, failed or repair states. In
order to simplify the presentation of the Markowagjns, similar states have been split. For
example, at the end of an operation phase, theimgdtate is split between Al and A3 (A2 is
a transient state) and failed state between FBne2F3. The states Al (respectively F1) and
A3 (respectively F2 and F3) are temporarily distisged because they are reached by
different ways. There are also three repair stResR2 and R3. The probabilities of these
states are used to calculate the initial probadsliof the following test phase. The probability
to be in Al (respectively F1) at the beginning ¢ést phase is then the sum of the probabilities
to be in Al or A3 (respectively F1, F2 and F3)het €nd of an operation phase. The probability
to be in R1 at the beginning of the test phasemgply the probability to be in repair at the end
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of the previous phase. Similarly, the probability he in R1 at the beginning of a given
operation phase is the sum of the probabilitiebeon states R1, R2 and R3 at the end of the
previous test period. This probability is indeedyew. In this case, the test is cancelled. The

same principle is applied when the phase changes drphase test to an operation phase.

If the component enters available into an operatuvase, the distribution follows an
exponential law of parametgr If the component enters failed into this phasesmains failed

up to the next test phase.

To illustrate the effect of the above parametershenbehavior of a single component, we give
in Figure 3 to Figure 9 the curves of its instar@ous unavailability Q(t) and its average value
according to the parameters taken into accountTBgse distributions make it possible to
calculate the probability of failure of periodicallested components. Combined through the
fault tree this makes it possible to calculate ghabability of occurrence of the top event (i.e.
the system unavailability). By performing this ad#tion for a sufficient number of dates over
a given period of time, we establish a curve ofitteantaneous unavailability of the system
under study. Its average value over the consideeeidd is obtained by integration. The saw
tooth curves are typical of systems with periodicédsted components. It should be noticed
that the instantaneous unavailability of the sysiemuite chaotic and goes through minimum
and maximum that are far from the mean value. W&l sliso observe in section 6 that it

spreads over several SIL zones.

3. Example: A simple Pressure Protection System

Pressure Protection Systems are a typical exanfpkafety instrumented systems. Such a
system is pictured in Figure 10. This SIS is a $eniqut typical HIPPS (High Integrity Pressure
Protection System) devoted to protect downstreamh @gfaa production system against an
overpressure due to its upstream part.

Three pressure sensors detect when the pressueases over a specified threshold. These
three sensors send the information to a logic sqlv8) implementing a 2003 voting logic.
Then, the logic solver sends a signal to solenaiges SVs. When receiving the signal, the
solenoid valves release the hydraulic pressure taining the shutdown valves SDVs open.
Strong springs close these valves. When the shutd@lves are closed, the pressure drops in

the downstream part of the system.



As usual, this HIPPS is made up of three subsysteseries.

The first one is the set of three pressure serisamsmitters. Their undetected dangerous
failures are revealed only by means of proof test$ormed every month (730 hours). Their
common failure rate is 4.4e-7-h During its proof test, sensors are unavailable.

The second subsystem consists of the 2003 loguesdlS. Its detected failure rate and its
repair rate are respectively 5e-6 &nd 0.125 1.

The third subsystem has a redundant architectuw&. Each channel is made up of a solenoid
valve SVi and a shutdown valve SDVi. The dangerondetected failure rate of the former
type is 8.8e-7 h. Each SVi is tested for the first time after onenth of operation and, after
that, every two months (1460 hours). They are ufebla during the test duration (1 hour).
SDVs exhibit two failure modes. The movement fakiare detected by partial stroking tests.
The valve movement failure rate is 2.66e76 Tihe first test is performed after respectivelg on
month for SDV1 and two months for SDV2. After thedch SDVi is tested every two months.
The production is stopped after failures detect®BV closure failures are detected only by
full stroking tests. The failure rate of this sedofailure mode is 8.9e-7"h The first full
stroking test occurs after three months (respdgtsi@ months) for SDV1 (respectively SDV2)
and the test intervals between the following tests the same for both SDV1 and SDV2,
namely six months. As previously, the productiostgpped after failures detection. Therefore,

the risk disappears during repair. These repagrsiafact, hidden.

All the reliability data and characteristics arspectively summarized in Tables 2 and 3.

4. A Stochastic Petri Nets model with predicates

The fault tree method is widely used because afirtyplicity and its efficiency. However, in
the case of SIS, it can be only an approximationm, this kind of systems involves often
components with mutually exclusive failure modesoider to validate the Fault Tree approach
we advocate in this article, we developed a stach®etri net model for the SIS presented in
the previous section.

This model is actually a combination of Petri ndepicted in Figure 11 t&igure 18 and
variables gathered in Table 4. This kind of Pewtsn so-called stochastic Petri nets with
predicates, look like the conventional ones, bwehan extended expression and computation
power. For example, new attributes are affectethéotransitions such as elaborated guards

(pre-condition messages) enabling them, affectat{post-condition messages) which update



the variables used in the model, and so on. An@teantage of these Petri nets is their ability
to perform modular models. Because they are otlie@&cope of this paper, the basic features
of Petri nets modeling are not described here they can be found in many articles already
published (see, for instance, references [6], [7]).

However, the Petri net model we give deserves sexptanations. Petri nets for sensors PSHi
(i=1,2,3) and shutdown valves SDVi (i=1,2) are ded respectively into three and four subsets.
Initially all the guards are false, all componentsk and since no test has been performed, i.e.,
places 1, 12, 13, 26, 46 ... are marked. A posstdution of the HIPPS components can be
described as follows.

A CCF which impacts the three sensors first ocawes, the transition between places 10 and
11 is fired when its delay “exp LPSH_CCF” is elaphs& his firing is enabled because at least
one of the guards of the considered transition H8Mi_KO == false) is true. The token
disappears from place 10 and a token appears¢e fith The assignment (!! CCF_PSH_DU =
true) is performed. This induces immediately thad of the transition between places 1 and 3.
The token leaves place 1 and a token marks pladaéeassignment (! PSH1 KO = true) is
performed. Now, the sensor PSH1 is failed. SsnB&H2 and PSH3 are failed as well, due
to CCF. The variable PSHs_PFD is set to 1, becaaseken remains in places 1, 4 and 7.
This common failure causes the whole system faitdrthe HIPPS (the value of the variable
HIPPS_PFD equals 1). It is inhibited, i.e., it isable to act if a demand occurs from the
equipment under control. This failure state remainsl the first proof-test related to the
sensors occurs (until now, no test has been peefdrithe variable | is null). This first test is
started after 730 hours of operation. The transibetween places 13 and 44 is then fired. The
token leaves place 13 and a token appears in giacafter 1 hour, the test duration is elapsed
and the transition between places 44 and 14 id.fifaus, place 44 has no token and place 14
is marked. The transition between places 3 andrive fired. A token marks place 2. That
means the repair of PSH1 is started. Simultangdhsltransition between places 14 and 13 is
triggered; this indicates that the first proof tedated to PSH1 is achieved. When the repair of
PSH1 ends, the transition between places 2 andifedsand token appears again in place 1.
The evolution will continue as previously described

We have performed £0Monte Carlo trials to simulate the behavior of tHHEPPS over a
mission time of 20000 hours to obtain an averagP B§ual to 1.636e-3 = 5.4e-6, which is
very close to the result previously obtained by mseaf Fault Tree model (1.639e-3, see

below).



The good agreement between the above results iasnobvious as it appears, as explained
hereafter. A first cause which could generate aiagnt difference between FT and PN
numerical results lies in the fact that FT computesexact top-event probability (if BDD
coding is used) from the probabilities allocateditsobasic events, when PN approach only
gives an estimation (with a confidence intervaletessary). A second cause concerns the used
probabilities of basic eevnts. To satisfy the dcaspndition which contraints the quantitative
exploitation of any FT, all its basic events aresidered as independent events. But it is not
the case, because some of concerned componentsnbtae binary behavior and then not
independent failure modes (DD and DU). Moreover,dach type of components (SV, SDV
and PSH) individual and common cause failures @ rautually exclusive events. Contrary to
FT, PN models, coupled with Monte Carlo simulatiare able to take into account the true
charachteristics of any type of components. Inespftthe above differences between FT and
PN models, their mumerical results related to thelied system are close. This is due in
particular to the pre-eminence of the CCF contrdng and, in general, to the low value of the

used failure rates.

5. Assessment by means of Fault Trees

As the reader can see, Petri net models, evenfgle systems, are quite complex to design
and to maintain. That is the reason why fault tresdels are preferable. The assessment of
Safety Integrity Level by means of fault trees eai©iowever a number of specific problems.
A common mistake consists in calculating the topnévprobability from average values of
components’ unavailability (with the latter's appimated asAt/2). The more the system is
redundant the system, the more the result is noseswative. Such a twist in calculation is
indeed unacceptable when dealing with safety system

The curves pictured in Figure 5 to Figure 9 illagdr another important issue. The
unavailability curves of periodically tested compats and of the whole system show a cyclic
behavior. These curves go through minima and masthmaa differ by orders of magnitude.
Therefore, their mean may be a very rough indicéwen if completed with first orders
moments). Similarly, the SIL of the system, if as®sl only based on mean unavailability’s,
may be questionable. This phenomenon is even acteudt if the system embeds periodically
tested components for which the test period cabhaatonsidered as instantaneous and that are
not available during the test (in this case the imar values may go to 1). The experiments

we performed on various systems convinced us thatrniecessary to look at whole curves of



unavailability to get relevant information. If tmetion of SIL as per IEC 61508 is indeed still
of interest, it seems to be insufficient to obtaigood picture of the actual undertaken risk.
Therefore, we suggest assessing the percentagaethe system spends in each SIL zone for
obtaining a more accurate indication. Such infdromais more concise than a full curve and is
an appropriate measure of the performance of tie¢ysnction.

Due to its saw tooth shape, the unavailabilityhef system must be calculated for a sufficient
number of instants spreading over the mission trmerder to get a good picture of its curve
and produce a good calculation of its average valmst of the fault tree assessment tools
calculate the unavailability of the top event tigbuhe minimal cut sets (MCS) approach.
When the system under study is large, the fault isdarge as well and admits many (often too
many) MCS. Therefore, cutoffs are applied to foonghe most important MCS. These cutoffs
discard MCS with too low probabilities. However, time case of a system with periodically
tested components, the probabilities of MCS evpleeodically through the time. So, the set
of relevant MCS at time tmay be completely different from the set of rel@vsICS at time 4

To overcome this problem the solution could be¢dcompute MCS at each considered instant.
However, this would be definitely too time consuguifrortunately this problem is solved by
the Binary Decision Diagram (BDD) approach (see Ep. With this approach, the BDD is
computed once for all. Then, the system unavaitghd assessed in linear time with respect to
the size of the BDD.

In order to get a curve precise enough to accyratdtulate its average, we need to assess the
system unavailability at many different times andluding all singularities. This is indeed
costly, even with the BDD approach. In order toesaomputation time, we developed a
heuristic to create an accurate sample. This heasrisonsists in looking for all singularity time
points (i.e. the beginnings and ends of test psjiadd to add more time points by means of a
dichotomized search between these singularitiesirfiarmediate point is added when the

values at the two points under study differ by edefined amount).

6. Numerical Results

The Fault Tree model related to the HIPPS is deg@iat Figure 19. This Fault Tree is very
small, but presents clearly the different kind$adures related to components, i.e. the intrinsic
or independent failures and the common cause &lQCCF). The two failure modes of the

shutdown valves (SDVs fail to move and fail to €lpalso appear.
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Figure 20 shows the curve of the instantaneousailadility of the HIPPS over a limited
period of time, but sufficient to highlight its pedical aspect. It must be noted that this curve
has been truncated in magnitude, because its magona 1.

The mean value of the unavailability, computed R@&00 hours, which measures the PFD of
the HIPPS, is 1.639e-3. Therefore, the systemea$g 61508 is considered as SIL 2. At first
glance, this may seem surprising because the airizggure 20 shows that the system spends
most of the time in SIL 3 zone and, more preciselyhe range of magnitude [1e-4, 5e-4]. This
is confirmed by reading Table 5 which gives thecpatage of time spent by the system in each
SIL zone.

In fact, there is no contradiction between the @&bmwmsults (average PFD value versus time
spent in SIL 3 zone). This apparent incoherencgpatiears if one keeps in mind the maximum
value periodically reached by the system unavditgbiThese peaks are due to the
unavailability of some components during their gréests. Their impact on system PFD is
deciding, even if the test duration is very shdrthour). This important point must be
emphasized because it is not taken into accouthenanalytical formulae proposed in IEC
61508-6 standard. Another tricky case must be densd which illustrates one of the problems
we highlighted in a previous section and in refeeef@]. Let us imagine a system which
spends most of the time in SIL 2 zone and more 14 of the mission time in SIL 1, which
is far from negligible and can be dangerous. MoeeoW this system also spends more than 3%
of its mission time in SIL3 zone, less risk at anement does not compensate more risk at
another one. With periodically tested system, whk®n threshold of a wrong SIL zone is
trespassed the system remains in this wrong zotiethum next test and this can be for a long
delay when components are tested every 5 yearsxémple.

In the previous section, we mention that the chaten accurate sample (of computation
dates) is an important issue. To illustrate thimpave assess the mean of the unavailability of
the system with samples of different sizes. Nameb/computed Qat 0, dt, 2dt, 3dt... and so
on until 20000 with 6 different values of the stdp with and without adding the singularity
points (in our case the test dates)tTable 6 gives the mean value of ®We obtained. Note
that the results are indicated with 4 significaigitd only for comparison purpose. These
results illustrate the importance of the choiceaojood sample. Without adding singularity
points, results may be definitely inaccurate if Hanple is not large enough (which means, in
this very simple case, several hundred of poinByj.adding the singularity points, we can get

accurate results even with relatively small samfiiesde on few dozens of points).
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Note that in the petroleum fields, SIL3 is at le@sjuired for High Integrity Pressure Protection
Systems and only very short excursions in SIL2 zoméh low magnitude are allowed.

Therefore, the simple system analyzed here as dgamguld not be acceptable as HIPPS.

7. Conclusion

In this article, we present the methodology that vewe developed to assess the so-called
PFDavg in relationship with Safety Integrity LevelsSafety Instrumented System by means
of Fault Trees. We focused on functions with a ld@mand rate, for which the appropriate
measure of performance is the unavailability orbpfwlity of not functioning o demand (i.e.
the so-called Probability of Failure on Demand as [EC 61508). We pointed out some
important issues raised by the assessment of systdwat embed periodically tested
components. We suggested ways to get rid of thessgms.

A very simple example has been analyzed under scomemon hypotheses adopted by
reliability engineers. This experiment shows tleaten in this extremely simplified case, the
saw tooth nature of the instantaneous unavailgbdénnot be handled properly by using
averaged values.

The solutions we proposed in this article reliegleBDD technology. We implemented new
algorithms dedicated to the assessment of SIL enAtalia Workshop software package, our
Fault Tree assessment tool. For the sake of vatific, we compared results provided by
Aralia with those obtained by means of Monte Cartaulations based on a Petri Net models.
These comparisons showed that results obtaineddaysnof Fault Trees are almost identical to

those obtained by the more elaborated methods.

Our future works will be performed in two direction

» Explore the case of systems with high demand Tdtes. involves the assessment of the
"failure rate" as required by the IEC61508 standartthe relevant parameter is, in fact,
the system unconditional failure intensity. Sevenathematical and technical problems
are expected.

* Analyze the impact on spurious failures of the masi standard requirements and
specially those in relationship with architecturanstraints and the so-called safe
failure fraction (SFF).
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Figure 1. The three phases of a periodically tested comgonen

A | Failure rate when the component is working.

A* | Failure rate when the component is tested.

i | Repair rate (once a test showed that the companéaited).

1 |Delay between two consecutive tests.

0 |Delay before the first test.

y | Probability of failure due to the (beginning of }hest.

mt | Duration of the test.

X | Indicator of the component availability duringettest (1 available, O unavailable).
o | Test coverage: probability that the test detectddilure, if any.

Probability that the component is badly restartiéer @ test or a repair.

Table 1. Parameters of the probability distribution of pdraally tested components.
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Unavailability

MTTE >>< Average = A1/2

—

‘ Instantaneous repair

Figure 3. Tested component simplest model)

Unavailability

Average ~ A1/2

Figure 4. Tested componenki.(t, 0)

Unavailability

Average ~ At/2 + A/

Non instantaneous repair

Figure 5. Tested componenk(y, t, 0)
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Unavailability

| Failure due to the test |

‘ Average ~ At/2 + A/pL + y/ut

Figure 6. Tested componeni(u, v, T, 0)

Unavailability

1 =l —
P
,
Average
A . . ~AT2 +Ap+y/pT + it
T m

Figure 9. Tested componeni(u, v, 1, 0, ©) unavailable during tests
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Solver p+—
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Solenoid sV
Valve :>

svz2

oo ] = @ED G

py

SDV1 SO V?

Shutdown Valve

Figure 10. A simple HIPPS architecture
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Parameters p
_ ) _ (CCF) %
) N N Test interval Time to First Test _
Failure Mode ADD (h™) | ADU (h™) |DC H H (applied to
Components " " failure
rate)
Fails to send a
PSH1 ) 0 4.4e-7 0| 730 730
signal
Fails to send a
PSH2 ) 0 4.4e-7 0| 730 730 5
signal
Fails to send a
PSH3 ) 0 4.4e-7 0 | 730 730
signal
SDhvi Failure to move 0 2.66e-6 0 1460 730 10
SDV2 Failure to move 2.66e-6 1460 1460
Failure to fully
SDV1 0 8.9e-7 0 | 4380 2190
close
10
Failure to fully
SDV2 0 8.9e-7 0 | 4380 4380
close
Sv1 Failure to move 0 8.8e-7 0 1460 730 10
Sv2 Failure to move 0 8.8e-7 0 1460 1460
Logic solver| Failure to act 5.0e-6

Table 2. Reliability parameters of components

Test ltem

Parameters Repair time . .

h ) Duration |available

&(hours
Components (hours) during test
PSHs 8 1 no
SDVs 8 0 yes
SVs 1 1 no
Logic

8
Solver

Table 3. Other component reliability characteristics
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PP COF_PSH_DU==tue,

-

1
REP_PSHA o
exp REF_PSH i
HPSHI_ KO =false  fetz =1
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#12==0
HPSHI_KO e
<z
PEHI_DU WD
exp LPSH Ou gy O SH_N0_OU
H PSR KO e fete =0

z

FPEH1_K0 00

fetz =0 diw 0

PP(TEST

(TEST_PTHZ == bue|TEST

|y

PEH1_TEST_OK

FEH1 == e )| {COF_PSH_ DU==tue &
FEHE == true])

Figure 11. Petri net describing the behavior of the sensorPSH

[ w10} .
o oo SR
PP ASHT MO ==falze | JEE = 77 PEHT_HO ==falze |
PISHZ KO ==f3lze| FEHE_NO ==falze|
PEHI_HO ==false PEHE KO ==false
# COF_PSH DU=false # COF_FEH DU = tue
COF_PSH
Jetz =0
1z B
GOEC 08 u'?('g"%PSH—D“
Jetz =0

PRASHT KO ==hwe L ALSRZ KO ==hue & PEHE KO ==ue

Figure 7. Petri net describing the CCF related to the seRSbt1

START FEST
dm 729
P70
TEST_PSHI_KO PRI TEST
fets =1 27 4=
=i
| oo
Flag
EAD TEST jetec 0
om0
27§ 3==0
H TEST_PSH1 =false
19
TEST

TEST_FPERT_OX
Jetz =10

dme
M TEST_FEHY =tue

Figure 8. Petri net describing the proof-tests of the seRsi 1
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etz =1

RERP LS L5 00
exp FEF L5 exo LS A0
HULS KO =false MES KO e

L& &0 00
Jetz =10

Figure 9. The Petri net describing the behavior of the I@gitver LS

|y S M
SOWA_FC_CCF DS]‘DLE)?_FM_CCF
dm i
PPFG GOF_ S0V =Se, ;; ;M_CCF_ S0li==tne,

#34==0
#EOVE_FO_HO e H SOVI_FM KO e

27 B I @ u w28
SOW_FC_DL D SOW_FM_ DU D
_FC 0L IMLEC FOWH_HO_FM
SDVi_HOLFL exp LDV FC_OU W SOVE_OK exp LEOW_FM_ DU i s =D
fetz =10 NSOV _FT_HO=te Jets =1 MEDQ_ A KO e
SOVY_TEST_OW REF SOV FC REP_SDIM REF_5DIH SDWY_TEST_OK
dre 0 Ao exp REP_SOI exp FEP. 50V REP_SDVLFM g o
22 TEST SOV FG == bue| 4 NEDWFG KO =false  wonyy B 40 =fage S50 27 TEST_SOUA_FIF == e |

(FC_COF_SOV==hue LTEST_S0VZ FC ==tue) (FAf_CCF_SDV=hue LTEST SOVI_FIM ==twe)

Figure 10. Petri net describing the behavior of the shutdealne SDV1
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ETART_TEET
o {.JEES
PR L=
=L
TEST_ S0 _Fi HO ;gs}riresrr
Jetz =1
Lt
MiS+]
END TEST I w115
drg ey
P #2E==0 Adadq
MTEST_S0U_FN =fzlze etz =0
és\s_
et TEST
TEST_ S0 O dm 0
Jete =0

4 TEST_SOVI_FN =tue

Figure 11. Petri net describing the proof-tests (FM) of thatdown valve SDV1
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COF_FG MO
dm 0

PR EDV_FC_KO==falze |S0K2_FC_KO==I3lz=
MFG GOF_EDV=false

COF_F_ KO
dm 0

# FM_GOF_SO0l=fztze

22 SOI_FIY_HO==false |S0V2_FI K0=Talze

COFE_HO
Jetz =1

COF_FM_ SOV

exp LEOT COF_FI
77 §26==7 | #59==1
HEM_COF_ SOV =

CCF_FIf
fete =0

CCF_Fif O
fete =0

@4}

COF_SOI_FIE 0%
de 0

27 5OVY_FIM_KO==tue & SOV2_FIM H{O==tue

y

COF_FC_SOV
exn LSOV COF_FG
77 #26==1 | #59==1

NFC_GCF_SDV=tue

COF_FC
fetz=0

COF_FG O
Jetz =0

|

COF_SON_FC_ O
a0

22 SOVY_FC_HO==Hwe & SOVZ FG_KO==me

Figure 12. Petri net describing the CCF related to the shwidealve SDV1
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. 3

START_TEET
am §.38E3

FFAED
'f'ﬁ—'il
T T
FEST_SOW_FO_HO ;ﬁi_;ﬁg
ik PP Mt
T

END_TEST L e
de L
PP AFT==0 F1ad
M FEST_SDWI_FC = falze fetz =0

{100
FEST_ SOW_OK
fetz =0

TEET
dem 0
M TEET _SDIH_FC e

Figure 18. Petri net describing the proof-tests (FC) of thetdbwn valve SDV1

Type Name Definition/ Initial value

Real BETA_PSH 0.05

Real BETA_SDV 0.1

Real BETA_SV 0.1

Integer ,LJ,K,L,M,N, O, P, Q 0

Real LAMBDA_PSH_DU 4.40E-07

Real LAMBDA _SDV_FC_DU 8.90E-07

Real LAMBDA_SDV_FM_DU 2.66E-06

Real LAMBDA_SV_DU 8.80E-07

Real LLS_DD 5.00E-06

Real LPSH_CCF (LAMBDA_PSH_DU)*BETA_PSH
Real LPSH_DU_IN (LAMBDA_PSH_DU)*(1.0-BETA_PSH)
Real LSDV_CCF_FC LAMBDA_SDV_FC_DU*BETA_SDV
Real LSDV_CCF_FM LAMBDA_SDV_FM_DU*BETA_SDV
Real LSDV_FC_DU_IN LAMBDA_SDV_FC_DU*(1.-BETA_SDV)
Real LSDV_FM_DU_IN LAMBDA_SDV_FM_DU*(1.-BETA_SDV)
Real LSV_CCF LAMBDA_SV_DU*BETA_SV

Real LSV_DU_IN LAMBDA_SV_DU*(1.-BETA_SV)
Real REP_LS 0.125

Real REP_PSH 0.125

Real REP_SDV 0.125

Real REP_SV 1

Boolean | PSHi_KO (i=1,2,3) false

Boolean | SDVi_FC_KO (i=1,2) false

Boolean | SDVi_FM_KO (i=1,2) false

Boolean | SVi KO (i=1,2) false

Boolean | LS KO false

Boolean | CCF_PSH DU false

Boolean | CCF_SV DU false

Boolean | FC_CCF_SDV false

Boolean |FM_CCF_SDV false

Boolean | TEST_PSHi (i=1,2,3) false

Boolean | TEST_SDVi_FC (i=1,2) false
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L),

Boolean | TEST_SDVi_FM (i=1,2) false
Boolean | TEST_SVi (i=1,2) false

ite(@2)((#1==0 |# 13==0),#4==0 | #39==0),(#71
Real PSHs_PFD 441==0)),1.0,0.0)
Real LS_PFD ite(#46==0,1.0,0.0)

ite(@(2)((#26==0|#212==0| #313==0),(#54==0|#261==0|
Real SDVs_SVs_PFD 345-=0)),1.0.0.0)
Real HIPS_PFD |toe§@(1)(PSHs_PFD==1.,LS_PFD==1.,SDVS_SVS_PFD=§;

Table 4. Variables used in Petri net model
HIPS inhibited
G1

n

LS fails to Sensors
act fail

55

SDV1 and
SDV2 remain
opened

G2

N

CCF_failure
S_CCF

Independant
failures

SVs fail to
operate

SDV Sbv
CCF_failures independant

SV_ccF

failures

SR
T

O

= 2

PSH1 PSH2 PSH3
failed failed failed SDVs fail to SDVs fail to _ .
move close SDV1 remains SDV2 remains
PSH1 PSH2 PSH3 fully or partially fully or partially
SDV_M.CCF SDV_C.CCF opened opened

O O O

PFD t)

Q Q G10 Gl11

P A

SDV1 fails SDV1 fails to SDV2 fails SDV1 fails to
to move fully close SV fails to move fully close SV2 fails
to operate to operate
SDV1_FM SDV1_FC SDV2_FM SDV2_FC

O O Ty O O =5

Figure 19. Fault Tree for the HIPPS
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Figure 20. System instantaneous unavailability
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Percentage of time spent in SIL z0
(%)
SILO 1.36e-1
SIL1 1.22e-4
SIL2 1.22e-5
SIL3 94.4
SIL4 5.48

SIL

Tableb5. Percentage of time spent in each SIL zone

dt |without singularity pointwith singularity points
0.51.6388e-3 1.6388e-3
1 |1.6388e-3 1.6388e-3
5 |2.8958e-4 1.6388e-3
10|2.9010e-4 1.6389e-3

Table 6. Average PFD with samples of different sizes
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