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Abstract

In this article, we extend the topics of two previous articles which were
devoted respectively to the computation of the most frequently used importance
factors and to the definition of an additive contribution factor. We revisit all of
these factors from the Binary Decision Diagram (BDD) viewpoint. We propose a
new computational method to get the Birnbaum importance factor. This method
works for non-coherent systems and any macro-event. We discuss the Fussel-
Vesely importance factor. Finally, we present a new additive contribution factor.

1. Introduction

To assess the contributions of components to system failure is of a major
interest in system design, failure diagnosis and improvement of system reliability.
This contribution reveals components that are critical to system performance. In
the fault tree framework, this contribution is captured by the so-called importance
factors (IF). Many such factors have been proposed in the literature [1]. Most of
the developments devoted to IF are based on classical methods to assess the top
event probability of a fault tree, i.e. methods that works with minimal cutsets.
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However, it is now known these methods are outperformed by the so-called Binary
Decision Diagrams (BDD) technique [2]. With BDDs, not only the assessment
of the top event probability is more efficient than with conventional approaches
(it is linear in the size of the BDD that encodes the structure function), but also
the result is exact (for no approximation is performed). It is therefore of a great
interest to revisit IF from the BDD viewpoint.

The remainder of this article is organized as follows. In the next section, a
BDD based approach to compute both gates gates reliability and joint-reliability
importances is presented. The section 3. is devoted to the extension of the Birn-
baum IF. The section 4. discusses the 'ussel-Vesely IF. In section 5., an additive
importance factor is presented.

2. Gates Reliability and Joint-Reliability Importances

The Birnbaum or marginal IF (MIF) plays a central role in the definition
of importance measures. It is defined as follows [3].

MIF(S,e) = ‘37;((5)) (1)

where S is the structure function under study, e is a basic event and p(S) and

p(e) denote the probabilities of occurrence of respectively S and e. Tt is easy to
verify that the following equalities hold.

p(Sle) — p(S)
1 — pe)

where p(S|e) denotes the probability that S occurs given that e has occurred.

MIF(S, e) = p(Sle) — p(S|e) =

In reference [4], it is shown that all of the most frequently used IF, such
as marginal IF (MIF), critical IF (CIF), Risk Achievement Worth (RAW) and
Risk Reduction Worth (RRW), can be computed from elementary probabilities
related to the fault tree. Namely, probabilities of basic events, top event and
gates. These quantities will be used to compute the gate reliability importance
(GRI) and gate joint-reliability importance (JRI).

Gate Reliability Importance. The concept of GRI was introduced in reference [5]
to extend the notion of MIF to gates (and not only basic events). The reference [6]
showed that the definition that was proposed in [5] was incorrect because the
involved partial derivative cannot be used in the case where basic events are
shared among gates. In this case, the following definition should be used instead.

GRI(S,G) = p(SIG) - p(SIG) (2)
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where GG denotes any function (gate) built over the basic event of S. The equality

GRI(S,e) = ’M still holds in that extended case.

Using thepl(S’G])DD approach, a very simple way to assess p(S|G) is to sub-
stitute the rate % for it. This formulation is correct for any functions S and
G. The method to assess GRI(S, G) consists of two main steps: first, BDDs that
encode functions S, G and S.G are computed. Second, probabilities p(S), p(G)
and p(S.G) are assessed from these BDDs. This algorithm is simpler than the one
presented in reference [6]. It runs very quickly, even applied to large fault trees,

thanks to the efficiency of BDDs.

Joint Reliability Importance The JRI of two components was introduced in the
framework of reliability networks [7]. It is defined as the measure of how two
components interact to contribute to the system reliability. The notion of JRI
was extended on the one hand to deal with statistical dependencies [8] and on the
other hand to be used in the framework of fault trees [9]. In this latter case, the
JRI of two gates G; and G is defined as follows.

TRI(S, Gi, G;) = p(S|Gi, G;) +p(S|Gi, Gj) — p(SIGi, Gj) = p(S|Gi, G;) (3)

As previously, a BDD based algorithm can be easily defined to compute such a
quantity.

3. Extended Birnbaum IF

If the structure function S is not coherent (non monotone), the MIF related
to a basic event cannot be computed by using any of the previous definitions.
However, in reference [4] we suggest the use of what we called exclusive cofactor
to do so. The exclusive cofactor S# of the function S and a basic event e is
defined as follows.

Se# - Se~S_é (4)

where S, denotes the cofactor of S and e, i.e. the function S in which the constant
1 has been substituted for the variable e. The MIF is then (re)defined as follows.
MIFxc(S,e) = p(S%) (5)

e

Consider for instance the function S = abe + abé + abc. With the conven-
tional definition, we have: MIF(S,a) = p(S|a) — p(S|a) = p(bé) — p(be). Using
exclusive cofactor instead, we have S = (bc + be).bc = be + be. Therefore,
MIF(S,a) = p(be) — p(bc) # p(bé + bc) = MIFxc(S, €).



It worth mentioning that the latter formula differs from that given in
reference [10]. By examining the expanded expression of S, it appears that
p(S¥) corresponds exactly to the probability of the critical states of the system.
Moreover, it is easy to verify that, in the case where S is a monotone function,
MIF(S, e) = MIFxc(S, e). A BDD algorithm to compute S¥ is proposed in refer-
ence [4].

4. The Vesely-Fussel IF

The Fussel-Vesely measure represents the fraction of the risk measure to
which a considered basic event e contributes. It is defined by means of minimal
cutsets C1, Cy, ..., of S:

Zciae p(CZ)

EVi(S,€) >, p(Cy)

(6)
FV is twofold. On the one hand, it is a ratio. Roughly speaking, it compares the
weight of a given number of scenarii (those that contain e) with the weight of all
of the scenarii under consideration. On the other hand, the sum of the probability
of minimal cutsets is often used as a convenient approximation of the top event
probability. From this latter point of view, the above definition can be seen as an
approximation of the following ratio, which is easily assessed by means of BDDs.

p(Sle)
p(5)

Still with the notion of scenarii in mind, a third definition can be given for

FVy(S,e) = (7)

FV, that compares probabilities of disjunctions of scenarii:

p(VCiBe Ci) _ p(\/ciae Oz')
p(V i) p(S)

This third quantity can be also assessed by means of BDDs.

FV3(S,e) = (8)

It would be interesting to have a complete picture of the cases where
definitions 6, 7 and 8 converge or/and diverge and to determine which one (if
any) better corresponds to the physical notion FV is supposed to capture.

5. An Additive Importance Factor

The additivity is one the desirable features of a “good” IF, because it
makes easy to compare the contributions of the different components to a global
quantity. Unfortunately, none of the usual IF exhibits this property. This is the
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reason why one of us proposed a new IF, AIF(S, G), in [11]. This IF extends the
critical TF, CIF(S, e), first proposed in [12].

CIF(S,e) = %xMIF(S,e) (9)
ATF(S,G) = S CIF(S,e) (10)

e occurs in GG

Again, both CIF(S, e) and AIF(S, G) can be easily assessed by means of BDDs.

6. Conclusion

To illustrate the efficiency of BDDs, let us mention the results obtained on
a medium size fault tree of our benchmark. This benchmark is made of industrial
examples. It is available on demand to the authors. The fault tree baobabl we
consider here comes from nuclear industry. It is made of 122 gates and 61 basic
events. It has 46188 minimal cutsets whose orders range from 1 to 11. The BDD
that encodes baobabl is built in 0.02s on a laptop computer. It is made of 7362
nodes. The top event probability is obtained in 0.02s. The MIF for all of the
basic events is computed in 0.87s. These running times are very illustrative of
the BDDs efficiency.

BDDs are not only efficient, but also they make it possible to compute
exactly values that are only approximated with classical fault tree assessment
methods. It is therefore of a great interest to revisit the notion of IF in order to
separate clearly three aspects that are too often mixed in the literature: first, the
physical notion one tries to capture. Second, the mathematical definition of the
quantity one tries to assess. Third, the algorithm used to assess this quantity.

This article, following two previous ones [4, 11], is a step in that direction.
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