TR95-156/1

A Linear Time Algorithm to Find Modules of Fault
Trees

Yves Dutuit, Antoine Rauzy

Abstract— A module of a fault tree is a subtree whose
terminal events do not occur elsewhere in the tree. Modules,
which are independant subtrees, can be used to reduce the
computational cost of basic operations on fault trees, such as
the computation of the probability of the root event or the
computation of the minimal cut sets. This paper presents
a linear time algorithm to detect modules of a fault tree,
coherent or not, that is derived from the Tarjan’s algorithm
to find strongly connected components of a graph. We show,
on a benchmark of real life fault trees, that our method
detects modules of trees with several hundreds gates and
events within few milliseconds on a personal computer.

Keywords— Fault Trees, Modules.

I. INTRODUCTION

Analysis of large fault tree can be computationally ex-
pensive, despite of recent works on the use of Bryant’s bi-
nary decision diagrams (BDD’s for short) [1], as proposed
by J.C. Madre and O. Coudert [2] and one of the authors
[3] (see also [4]). Furthermore, it is sometimes difficult
to understand the physical importance of a large number
of minimal cuts. A way to tackle both difficulties is to
detect modules and to treat them separately. A module
of a fault tree is a subtree whose terminal events do not
occur elsewhere in the tree. In a word, modules are inde-
pendant subtrees. P. Chatterjee [5] and Z.W. Birnbaum
and J.P. Esary [6] developed the properties of modules and
demonstrated their use in fault-tree analysis. M.O. Locks
[7] expanded the concept to non-coherent fault trees and
showed its effectiveness in obtaining cut sets.

A number of methods have been proposed to modularize
fault trees (see [8], [9], [10], [11] to cite a few). These
methods are based on the rewritting of the original formula
into an equivalent one, which contains more modules. The
algorithm we propose here achieves a less ambitious goal
since it only detects modules already existing in the tree
under study. However, its efficiency makes it of a special
interest as a subprogram of rewritting methods or to design
heuristics for variable ordering in BDD’s [2].

Rigourous complexity analyses of fault tree analysis al-
gorithms become more important as the size of the stud-
ied trees increases. Nowadays, fault trees with several
hundreds gates and events are not uncommon, due the
generalization of tools that automatically generate them.
For such trees, differences of complexity (say linear versus
quadratic complexity) are significant in practice, at least
for operations that are often repeated. General techniques
to achieve a linear complexity are thus of a great interest.
Our algorithm is derived from the Tarjan’s one to detect
strongly connected components of a graph [12]. We believe
that this kind of graph techniques can be useful to perform
other operations on fault trees or reliability networks.

The remaining of this paper is organized as follows: ba-
sics about fault trees are recalled section III. The algorithm
is presented section IV. Finally, experimental results are
reported section V.

II. NOTATIONS

Boolean formulae are terms inductively built over the
two (Boolean) constants 0 (False) and 1 (True), a denu-
merable set of variables V = {ej,es,...}, and the usual
logical connectives A (and), V (or), = (not).

A graph is given by a set of nodes (also called vertices)
U together with a set of edges E C U x U (edges are thus
pairs of nodes). In what follows, we consider only directed
graphs which means that pairs are ordered.

Let (u,v) be an edge. w is a parent node of v. v is a
child node of u. A node without parent node is called a
root node, while a node without child node is called a sink
node. Sink nodes are also called leaves.

A path in the graph is a sequence of nodes ug, ..., us
such that (u;,u;+1) € Efori=1,...,k — 1. The length of
a path is the number of edges it traverses. A node v is said
to be reachable from a node u if there exists a path from u
to v.

A graph is said acyclic if for every node u, u is not reach-
able from itself through a positive length path.

A strongly connected component of a graph G = (U, E)
is a set of nodes U’ C U such that for all u, v in U’ there
exists a path from u to v and vice-versa.

III. FauLT TREES

We assume the reader is familiar with fault trees and
their applications (see [13] for reviews on that technique).
For the purpose of this paper, fault trees are essentially
considered as Boolean formulae.

Fig. 1 depicts a small fault tree, that will be used
throughout this paper. r is the root event of the tree, the
g;’s are internal events, and the e;’s are terminal events.
The Boolean formula associated with r is the following.

r = (((ex1 Ae2)V(esAes)) A((esNes)V (esNeg))) Ver

The physical system whose failures are described by such
a fault tree as well as each of its parts (elementary or not)
are assumed to be in one (and only one) of the two states
good or failed. Moreover, terminal events that describe
failures of elementary components are assumed to be inde-
pendent one another from a probabilistic point of view.

Even small formulae, as the above one, can be quite hard
to read. This is the reason why one prefers, in general, to
write fault trees as sets of boolean equations. Moreover

TR95-156/1

a

Fig. 1. A Coherent Fault Tree

equations reflect the graphical nature of fault trees. The
set of equations describing r is as follows.

r = (q1Ver) g1 = (e1/hez)
g1 = (92/Ag3) gs = (esAes)
g2 = (94Vgs) g6 = (esNeg)
g3 = (95Vgs)

A fault tree can be considered as a directed acyclic graph
whose nodes are either events or logical gates. An edge
links the vertex v to the vertex w if v takes w as input.

We denote by Events(v) the set of events reachable from
the vertex v. For instance, on the tree pictured Fig. 1,
Events(g2) = {g4,€1,€2, 95, €3,€4}.

A module of a fault tree is an internal event whose ter-
minal events do not occur elsewhere in the tree. Formally,
an event v is a module if for any other event w, either
w € Events(v) or Events(v) N Events(w) = 0.

It follows from the definition that the root event and the
terminal events are always modules. In what follows, for
the sake of conciseness, we do not mention them.

Modules of the tree pictured Fig. 1 are g1, g4, g5 and gg.

IV. DETECTING MODULES IN LINEAR TIME
A. Depth-first left-most traversals

Our algorithm works “in the spirit” of Tarjan’s algorithm
to compute strongly connected components of (directed)
graphs [12] in that it performs two depth-first left-most
traversals of the formula under study, updating counters
at each traversal.

A depth-first left-most traversal of the tree pictured
Fig. 1 visits the events in the order reported table I.

Note that:

o Each internal event is visited at least twice: the first
time when descending from its first parent, the second
one when going back from its right-most child.

o The graph under a vertex is never traversed twice. For
instance, the graph under g5 is traversed when coming

from g, but not the third time g5 is encountered (i.e.
when coming from g3).

From the two previous remarks it follows that each edge
(i.e. link between a node and one of its children) is tra-
versed exactly twice and thus a depth-first left-most traver-
sal of the graph is linear in the number of edges it contains.

B. Algorithm

The principle of the algorithm can be stated as follows.
Let v be an internal event, and let ¢; and ¢ be respectively
the dates of the first and second visits of v in a depth-first
left-most traversal of the graph. Then v is a module if and
only if none of its descendants is visited before ¢; or after
t, during the traversal.

For instance, g5 is a module because both ez and e4 are
visited after 8 (date of the first visit of g5) and before 11
(date of the second visit of g5). g2 is not a module because
gs is visited at 14, which is later than the date of the second
visit of go (here 12). Nor is g3 because g5 is visited at 8
which is earlier than the date of the first visit of g3 (13).

In order to implement the algorithm, one needs three
counters per node that will contain respectively the dates
of the first, second and last visits.

Then, the algorithm works in three steps:

1. It initializes the counters (this is performed by

traversing the list of nodes).

2. It performs a first depth-first left-most traversal of
the graph to set counters (note that for leaves first
and second dates are identical).

3. It performs a second depth-first left-most traversal of
the graph in which it collects, for each internal event
v, the minimum of the first dates and the maximum
of the last dates of its children. v is a module if and
only if the collected minimum and maximum are re-
spectively greater than the first date of v and less than
the second one.

Indeed, the second traversal has the same complexity
than the first one. It follows that the overall algorithm is
linear in the size of the tree, i.e. number of nodes plus
number of edges.

For our example, results are summarized table II.

Note that connectives do not influence the algorithm that
works consequently on any kind of formulae (including co-
herent and non coherent fault trees).

V. EXPERIMENTAL RESULTS AND CONCLUSION

The results reported in the table III have been obtained
on a set of real-life fault trees from Dassault Aviation and
Electricité de France. The first row gives the numbers of
internal events of the tested trees, the second one their
numbers of terminal events, the third one the number of
modules they contain and the last one the running times
in milliseconds on a PC 486 66Mgz (note that our machine
does not provide a measure of time finer than 16ms, which
explains the regularity of reported times).

As shown by the table III, the algorithm we propose in
this paper is very efficient. It is integrated satisfactorily in
several tools of the Aralia toolbox [14], to design heuristics

TR95-156/1

step 1 2 3 4

5 6 7 8 9 10 11

visited node r g1 92 g4

€1 €2 gs (gs €3 €4 (G5

step 12 13 14 15 16 17 18 19 20 21 22
visited node ¢» g3 95 95 e € gs g3 g1 er T
TABLE I

DEPTH-FIRST LEFT-MOST TRAVERSAL OF THE FAULT TREE PICTURED FIG. 1.

T g1 92 g3 ga 95 ge €1 €2 €3 €4 €5 €5 €7

first 1 2 3 13 4 8 15 5 6 9 10 16 17 21

second 22 20 12 19 7 11 18 5 6 9 10 16 17 21

last 22 20 12 19 7 14 18 5 6 9 10 16 17 21

minimum 2 3 4 8) 9 16 - - - - - _ _

maximum 21 19 14 18 6 10 17 _ _ _ _ _ _ _

module yes yes no no yes yes yes _ _ _ _ _ _ _

TABLE II
RESULTS FOR THE TREE OF FIG. 1.
1 2 3 4 5 6 7 8
#gates 248 254 323 337 289 439 484 1050
#Dbasic events 283 278 276 306 311 530 548 362
#modules 25 25 70 32 32 30 29 70
#gates largest module 224 230 230 306 258 410 456 981
#basic events largest module 251 246 216 276 272 490 509 240
Running times for :
module detection 16ms 25ms 33ms 33ms 16ms 16ms 33ms 50ms
tree processing without m.d. 9516 11593 1s38 95528 39545 1s35 2s53 69525
tree processing with m.d. 8s67 10s45 1s06 88595 37sl4 1s27 2547 44s70
TABLE III

EXPERIMENTAL RESULTS

for variable ordering (for BDD’s) and as a part of formula
simplifiers. Table IIT also reports running times to compute
BDD’s encoding fault trees under study with and without
module detection. They are not very different because all
of the trees but the last one are decomposed into a large
module just under the root event and a number of modules
grouping only very few terminal events. Despite of that,
running times are always improved by module detection.
The largest module of the last tree is significantly smaller
than the tree itself. As a consequence, module detection
improves running times significantly as well.

REFERENCES

K. Brace, R. Rudell, and R. Bryant, “Efficient Implementation
of a BDD Package”, in Proceedings of the 27th ACM/IEEE
Design Automation Conference. 1990, pp. 40—45, IEEE 0738.
O. Coudert and J.-C. Madre, “MetaPrime: an Iteractive Fault
Tree Analyser”, IEEE Transactions on Reliability, vol. 43, no.
1, pp. 121-127, March 1994.

A. Rauzy, “New Algorithms for Fault Trees Analysis”, Reliabil-
ity Engineering € System Safety, vol. 05, no. 59, pp. 203-211,
1993.

S.A. Doyle, J.B. Dugan, and M. Boyd, “Combinatorial-Models
and Coverage: A Binary Decision Diagram (BDD) Approach”,

in Proceedings of the IEEE Annual Reliability and Maintain-

ability Symposium, ARMS’95. 1996, pp. 82-89, IEEE.

P. Chatterjee, “Modularization of fault trees: A method to to

reduce the cost of analysis”, Reliability and Fault Tree Analysis,

SIAM, pp. 101-137, 1975.

7Z.W. Birnbaum and J.P. Esary, “Modules of coherent binary

systems”, SIAM J. of Applied Mathematics, vol. 13, pp. 442—

462, 1965.

M.O. Locks, “Modularizing, minimizing and interpreting the K

& H fault tree”, IEEE Transactions on Reliability, vol. R-30,

pp. 411-415, December 1981.

A. Rosenthal, “Decomposition methods for fault tree analysis”,

IEEE Transactions on Reliability, vol. R-29, pp. 136—-138, 1980.

L. Camarinopoulos and J. Yllera, “An Improved Top-down

Algorithm Combined with Modularization as Highly Efficient

Method for Fault Tree Analysis”, Reliability Engineering and

System Safety, vol. 11, pp. 93-108, 1985.

J. Yllera, “Modularization methods for evaluating fault trees

of complex technical systems”, in Engineering Risk and Hazard

Assessment, A. Kandel and E. Avni, Eds., vol. 2, chapter 5.

CRC Press, 1988, ISBN 0-8493-4655-X.

T. Kohda, E.J. Henley, and K. Inoue, “Finding Modules in

Fault Trees”, IEEFE Transactions on Reliability, vol. 38, no. 2,

pp. 165-176, June 1989.

R.E. Tarjan, “Depth First Search and Linear Graph Algo-

rithms”, STAM J. Comput., vol. 1, pp. 146—-160, 1972.

[13] W.S. Lee, D.L. Grosh, F.A. Tillman, and C.H. Lie, “Fault tree
analysis, methods and applications : a review”, IEFEE Transac-
tions on Reliability, vol. 34, pp. 194-303, 1985.

(1]

(12]

TR95-156/1

[14] Groupe Aralia, “Computation of Prime Implicants of a Fault
Tree within Aralia”, in Proceedings of the European Safety and
Reliability Association Conference, ESRFEL’95, Bournemouth —
England, June 1995, pp. 190-202, European Safety and Relia-
bility Association.

Pr. Yves Dutuit

Dept. Hygiéne et Sécurité / LADS,

I.U.T. A, Université Bordeaux I,

33405 Talence Cedex, FRANCE, < AIR Mail >
Work phone: [33] 56845834, Fax: [33] 56845829
Internet (e-mail): dutuit@minuit.iuta.u-bordeaux.fr.

Yves Dutuit was born in 1943 in Morocco. After having re-
ceived his doctorat-es-sciences in time domain spectroscopy
from Bordeaux university, he devoted himself to teaching
of safety and reliability at the Bordeaux institute of tech-
nology. His research interests lie in qualitative and quan-
titative assessements methods in reliability. He belongs to
the editorial board of the Reliability Engineering & System
Safety and he is a referee for this journal and Performance
Evaluation Journal.

Antoine Rauzy

LaBRI, Université Bordeaux I,

351, cours de la Libération,

33405 Talence Cedex, FRANCE, < AIR Mail >
Work phone: [33] 56845834, Fax: [33] 56846669
Internet (e-mail): rauzy@labri.u-bordeaux.fr.

Antoine Rauzy has got his P.H.D. in computer science in
1989 from the university of Marseilles. He joined the com-
puter science laboratory of the university of Bordeaux by
the end of 1989 and the French National Center for Scien-
tific Research in 1991. His topics of research are constraint
logic programming, automated deduction, validation of dis-
tributed system and since 1993 reliability analyses. His
activity is focused on Boolean reasoning and he leads the
french group RESSAC working on practical resolution of
NP-complete problems.

