
TR95-156/1 1A Linear Time Algorithm to Find Modules of FaultTreesYves Dutuit, Antoine RauzyAbstrat| A module of a fault tree is a subtree whoseterminal events do not our elsewhere in the tree. Modules,whih are independant subtrees, an be used to redue theomputational ost of basi operations on fault trees, suh asthe omputation of the probability of the root event or theomputation of the minimal ut sets. This paper presentsa linear time algorithm to detet modules of a fault tree,oherent or not, that is derived from the Tarjan's algorithmto �nd strongly onneted omponents of a graph. We show,on a benhmark of real life fault trees, that our methoddetets modules of trees with several hundreds gates andevents within few milliseonds on a personal omputer.Keywords|Fault Trees, Modules.I. IntrodutionAnalysis of large fault tree an be omputationally ex-pensive, despite of reent works on the use of Bryant's bi-nary deision diagrams (BDD's for short) [1℄, as proposedby J.C. Madre and O. Coudert [2℄ and one of the authors[3℄ (see also [4℄). Furthermore, it is sometimes diÆultto understand the physial importane of a large numberof minimal uts. A way to takle both diÆulties is todetet modules and to treat them separately. A moduleof a fault tree is a subtree whose terminal events do notour elsewhere in the tree. In a word, modules are inde-pendant subtrees. P. Chatterjee [5℄ and Z.W. Birnbaumand J.P. Esary [6℄ developed the properties of modules anddemonstrated their use in fault-tree analysis. M.O. Loks[7℄ expanded the onept to non-oherent fault trees andshowed its e�etiveness in obtaining ut sets.A number of methods have been proposed to modularizefault trees (see [8℄, [9℄, [10℄, [11℄ to ite a few). Thesemethods are based on the rewritting of the original formulainto an equivalent one, whih ontains more modules. Thealgorithm we propose here ahieves a less ambitious goalsine it only detets modules already existing in the treeunder study. However, its eÆieny makes it of a speialinterest as a subprogram of rewritting methods or to designheuristis for variable ordering in BDD's [2℄.Rigourous omplexity analyses of fault tree analysis al-gorithms beome more important as the size of the stud-ied trees inreases. Nowadays, fault trees with severalhundreds gates and events are not unommon, due thegeneralization of tools that automatially generate them.For suh trees, di�erenes of omplexity (say linear versusquadrati omplexity) are signi�ant in pratie, at leastfor operations that are often repeated. General tehniquesto ahieve a linear omplexity are thus of a great interest.Our algorithm is derived from the Tarjan's one to detetstrongly onneted omponents of a graph [12℄. We believethat this kind of graph tehniques an be useful to performother operations on fault trees or reliability networks.

The remaining of this paper is organized as follows: ba-sis about fault trees are realled setion III. The algorithmis presented setion IV. Finally, experimental results arereported setion V. II. NotationsBoolean formulae are terms indutively built over thetwo (Boolean) onstants 0 (False) and 1 (True), a denu-merable set of variables V = fe1; e2; : : :g, and the usuallogial onnetives ^ (and), _ (or), : (not).A graph is given by a set of nodes (also alled verties)U together with a set of edges E � U � U (edges are thuspairs of nodes). In what follows, we onsider only diretedgraphs whih means that pairs are ordered.Let (u; v) be an edge. u is a parent node of v. v is ahild node of u. A node without parent node is alled aroot node, while a node without hild node is alled a sinknode. Sink nodes are also alled leaves.A path in the graph is a sequene of nodes u1; : : : ; uksuh that (ui; ui+1) 2 E for i = 1; : : : ; k � 1. The length ofa path is the number of edges it traverses. A node v is saidto be reahable from a node u if there exists a path from uto v.A graph is said ayli if for every node u, u is not reah-able from itself through a positive length path.A strongly onneted omponent of a graph G = (U;E)is a set of nodes U 0 � U suh that for all u, v in U 0 thereexists a path from u to v and vie-versa.III. Fault TreesWe assume the reader is familiar with fault trees andtheir appliations (see [13℄ for reviews on that tehnique).For the purpose of this paper, fault trees are essentiallyonsidered as Boolean formulae.Fig. 1 depits a small fault tree, that will be usedthroughout this paper. r is the root event of the tree, thegi's are internal events, and the ei's are terminal events.The Boolean formula assoiated with r is the following.r = (((e1 ^ e2) _ (e3 ^ e4)) ^ ((e3 ^ e4) _ (e5 ^ e6))) _ e7The physial system whose failures are desribed by suha fault tree as well as eah of its parts (elementary or not)are assumed to be in one (and only one) of the two statesgood or failed. Moreover, terminal events that desribefailures of elementary omponents are assumed to be inde-pendent one another from a probabilisti point of view.Even small formulae, as the above one, an be quite hardto read. This is the reason why one prefers, in general, towrite fault trees as sets of boolean equations. Moreover

TR95-156/1 2

le1 le2 le3 le4 le5 le6��: ��: ��:g4 g5 g6��� �+ ��� �+g2 g3��:g1 le7��� �+r

Fig. 1. A Coherent Fault Treeequations reet the graphial nature of fault trees. Theset of equations desribing r is as follows.r = (g1 _ e7) g4 = (e1 ^ e2)g1 = (g2 ^ g3) g5 = (e3 ^ e4)g2 = (g4 _ g5) g6 = (e5 ^ e6)g3 = (g5 _ g6)A fault tree an be onsidered as a direted ayli graphwhose nodes are either events or logial gates. An edgelinks the vertex v to the vertex w if v takes w as input.We denote by Events(v) the set of events reahable fromthe vertex v. For instane, on the tree pitured Fig. 1,Events(g2) = fg4; e1; e2; g5; e3; e4g.A module of a fault tree is an internal event whose ter-minal events do not our elsewhere in the tree. Formally,an event v is a module if for any other event w, eitherw 2 Events(v) or Events(v) \ Events(w) = ;.It follows from the de�nition that the root event and theterminal events are always modules. In what follows, forthe sake of oniseness, we do not mention them.Modules of the tree pitured Fig. 1 are g1, g4, g5 and g6.IV. Deteting modules in linear timeA. Depth-�rst left-most traversalsOur algorithm works \in the spirit" of Tarjan's algorithmto ompute strongly onneted omponents of (direted)graphs [12℄ in that it performs two depth-�rst left-mosttraversals of the formula under study, updating ountersat eah traversal.A depth-�rst left-most traversal of the tree pituredFig. 1 visits the events in the order reported table I.Note that:� Eah internal event is visited at least twie: the �rsttime when desending from its �rst parent, the seondone when going bak from its right-most hild.� The graph under a vertex is never traversed twie. Forinstane, the graph under g5 is traversed when oming

from g2 but not the third time g5 is enountered (i.e.when oming from g3).From the two previous remarks it follows that eah edge(i.e. link between a node and one of its hildren) is tra-versed exatly twie and thus a depth-�rst left-most traver-sal of the graph is linear in the number of edges it ontains.B. AlgorithmThe priniple of the algorithm an be stated as follows.Let v be an internal event, and let t1 and t2 be respetivelythe dates of the �rst and seond visits of v in a depth-�rstleft-most traversal of the graph. Then v is a module if andonly if none of its desendants is visited before t1 or aftert2 during the traversal.For instane, g5 is a module beause both e3 and e4 arevisited after 8 (date of the �rst visit of g5) and before 11(date of the seond visit of g5). g2 is not a module beauseg5 is visited at 14, whih is later than the date of the seondvisit of g2 (here 12). Nor is g3 beause g5 is visited at 8whih is earlier than the date of the �rst visit of g3 (13).In order to implement the algorithm, one needs threeounters per node that will ontain respetively the datesof the �rst, seond and last visits.Then, the algorithm works in three steps:1. It initializes the ounters (this is performed bytraversing the list of nodes).2. It performs a �rst depth-�rst left-most traversal ofthe graph to set ounters (note that for leaves �rstand seond dates are idential).3. It performs a seond depth-�rst left-most traversal ofthe graph in whih it ollets, for eah internal eventv, the minimum of the �rst dates and the maximumof the last dates of its hildren. v is a module if andonly if the olleted minimum and maximum are re-spetively greater than the �rst date of v and less thanthe seond one.Indeed, the seond traversal has the same omplexitythan the �rst one. It follows that the overall algorithm islinear in the size of the tree, i.e. number of nodes plusnumber of edges.For our example, results are summarized table II.Note that onnetives do not inuene the algorithm thatworks onsequently on any kind of formulae (inluding o-herent and non oherent fault trees).V. Experimental results and onlusionThe results reported in the table III have been obtainedon a set of real-life fault trees from Dassault Aviation and�Eletriit�e de Frane. The �rst row gives the numbers ofinternal events of the tested trees, the seond one theirnumbers of terminal events, the third one the number ofmodules they ontain and the last one the running timesin milliseonds on a PC 486 66Mgz (note that our mahinedoes not provide a measure of time �ner than 16ms, whihexplains the regularity of reported times).As shown by the table III, the algorithm we propose inthis paper is very eÆient. It is integrated satisfatorily inseveral tools of the Aralia toolbox [14℄, to design heuristis

TR95-156/1 3step 1 2 3 4 5 6 7 8 9 10 11visited node r g1 g2 g4 e1 e2 g4 g5 e3 e4 g5step 12 13 14 15 16 17 18 19 20 21 22visited node g2 g3 g5 g6 e5 e6 g6 g3 g1 e7 rTABLE IDepth-first left-most traversal of the fault tree pitured Fig. 1.r g1 g2 g3 g4 g5 g6 e1 e2 e3 e4 e5 e6 e7�rst 1 2 3 13 4 8 15 5 6 9 10 16 17 21seond 22 20 12 19 7 11 18 5 6 9 10 16 17 21last 22 20 12 19 7 14 18 5 6 9 10 16 17 21minimum 2 3 4 8 5 9 16maximum 21 19 14 18 6 10 17module yes yes no no yes yes yesTABLE IIResults for the tree of Fig. 1.1 2 3 4 5 6 7 8#gates 248 254 323 337 289 439 484 1050#basi events 283 278 276 306 311 530 548 362#modules 25 25 70 32 32 30 29 70#gates largest module 224 230 230 306 258 410 456 981#basi events largest module 251 246 216 276 272 490 509 240Running times for :module detetion 16ms 25ms 33ms 33ms 16ms 16ms 33ms 50mstree proessing without m:d: 9s16 11s93 1s38 95s28 39s45 1s35 2s53 69s25tree proessing with m:d: 8s67 10s45 1s06 88s95 37s14 1s27 2s47 44s70TABLE IIIExperimental resultsfor variable ordering (for BDD's) and as a part of formulasimpli�ers. Table III also reports running times to omputeBDD's enoding fault trees under study with and withoutmodule detetion. They are not very di�erent beause allof the trees but the last one are deomposed into a largemodule just under the root event and a number of modulesgrouping only very few terminal events. Despite of that,running times are always improved by module detetion.The largest module of the last tree is signi�antly smallerthan the tree itself. As a onsequene, module detetionimproves running times signi�antly as well.Referenes[1℄ K. Brae, R. Rudell, and R. Bryant, \EÆient Implementationof a BDD Pakage", in Proeedings of the 27th ACM/IEEEDesign Automation Conferene. 1990, pp. 40{45, IEEE 0738.[2℄ O. Coudert and J.-C. Madre, \MetaPrime: an Iterative FaultTree Analyser", IEEE Transations on Reliability, vol. 43, no.1, pp. 121{127, Marh 1994.[3℄ A. Rauzy, \New Algorithms for Fault Trees Analysis", Reliabil-ity Engineering & System Safety, vol. 05, no. 59, pp. 203{211,1993.[4℄ S.A. Doyle, J.B. Dugan, and M. Boyd, \Combinatorial-Modelsand Coverage: A Binary Deision Diagram (BDD) Approah",

in Proeedings of the IEEE Annual Reliability and Maintain-ability Symposium, ARMS'95. 1996, pp. 82{89, IEEE.[5℄ P. Chatterjee, \Modularization of fault trees: A method to toredue the ost of analysis", Reliability and Fault Tree Analysis,SIAM, pp. 101{137, 1975.[6℄ Z.W. Birnbaum and J.P. Esary, \Modules of oherent binarysystems", SIAM J. of Applied Mathematis, vol. 13, pp. 442{462, 1965.[7℄ M.O. Loks, \Modularizing, minimizing and interpreting the K& H fault tree", IEEE Transations on Reliability, vol. R-30,pp. 411{415, Deember 1981.[8℄ A. Rosenthal, \Deomposition methods for fault tree analysis",IEEE Transations on Reliability, vol. R-29, pp. 136{138, 1980.[9℄ L. Camarinopoulos and J. Yllera, \An Improved Top-downAlgorithm Combined with Modularization as Highly EÆientMethod for Fault Tree Analysis", Reliability Engineering andSystem Safety, vol. 11, pp. 93{108, 1985.[10℄ J. Yllera, \Modularization methods for evaluating fault treesof omplex tehnial systems", in Engineering Risk and HazardAssessment, A. Kandel and E. Avni, Eds., vol. 2, hapter 5.CRC Press, 1988, ISBN 0-8493-4655-X.[11℄ T. Kohda, E.J. Henley, and K. Inoue, \Finding Modules inFault Trees", IEEE Transations on Reliability, vol. 38, no. 2,pp. 165{176, June 1989.[12℄ R.E. Tarjan, \Depth First Searh and Linear Graph Algo-rithms", SIAM J. Comput., vol. 1, pp. 146{160, 1972.[13℄ W.S. Lee, D.L. Grosh, F.A. Tillman, and C.H. Lie, \Fault treeanalysis, methods and appliations : a review", IEEE Transa-tions on Reliability, vol. 34, pp. 194{303, 1985.

TR95-156/1 4[14℄ Groupe Aralia, \Computation of Prime Impliants of a FaultTree within Aralia", in Proeedings of the European Safety andReliability Assoiation Conferene, ESREL'95, Bournemouth {England, June 1995, pp. 190{202, European Safety and Relia-bility Assoiation.Pr. Yves DutuitDept. Hygi�ene et S�eurit�e / LADS,I.U.T. A, Universit�e Bordeaux I,33405 Talene Cedex, FRANCE, < AIR Mail >Work phone: [33℄ 56845834, Fax: [33℄ 56845829Internet (e-mail): dutuit�minuit.iuta.u-bordeaux.fr.Yves Dutuit was born in 1943 in Moroo. After having re-eived his dotorat-�es-sienes in time domain spetrosopyfrom Bordeaux university, he devoted himself to teahingof safety and reliability at the Bordeaux institute of teh-nology. His researh interests lie in qualitative and quan-titative assessements methods in reliability. He belongs tothe editorial board of the Reliability Engineering & SystemSafety and he is a referee for this journal and PerformaneEvaluation Journal.Antoine RauzyLaBRI, Universit�e Bordeaux I,351, ours de la Lib�eration,33405 Talene Cedex, FRANCE, < AIR Mail >Work phone: [33℄ 56845834, Fax: [33℄ 56846669Internet (e-mail): rauzy�labri.u-bordeaux.fr.Antoine Rauzy has got his P.H.D. in omputer siene in1989 from the university of Marseilles. He joined the om-puter siene laboratory of the university of Bordeaux bythe end of 1989 and the Frenh National Center for Sien-ti� Researh in 1991. His topis of researh are onstraintlogi programming, automated dedution, validation of dis-tributed system and sine 1993 reliability analyses. Hisativity is foused on Boolean reasoning and he leads thefrenh group RESSAC working on pratial resolution ofNP-omplete problems.

