
TR95-156/1 1A Linear Time Algorithm to Find Modules of FaultTreesYves Dutuit, Antoine RauzyAbstra
t| A module of a fault tree is a subtree whoseterminal events do not o

ur elsewhere in the tree. Modules,whi
h are independant subtrees, 
an be used to redu
e the
omputational 
ost of basi
 operations on fault trees, su
h asthe 
omputation of the probability of the root event or the
omputation of the minimal 
ut sets. This paper presentsa linear time algorithm to dete
t modules of a fault tree,
oherent or not, that is derived from the Tarjan's algorithmto �nd strongly 
onne
ted 
omponents of a graph. We show,on a ben
hmark of real life fault trees, that our methoddete
ts modules of trees with several hundreds gates andevents within few millise
onds on a personal 
omputer.Keywords|Fault Trees, Modules.I. Introdu
tionAnalysis of large fault tree 
an be 
omputationally ex-pensive, despite of re
ent works on the use of Bryant's bi-nary de
ision diagrams (BDD's for short) [1℄, as proposedby J.C. Madre and O. Coudert [2℄ and one of the authors[3℄ (see also [4℄). Furthermore, it is sometimes diÆ
ultto understand the physi
al importan
e of a large numberof minimal 
uts. A way to ta
kle both diÆ
ulties is todete
t modules and to treat them separately. A moduleof a fault tree is a subtree whose terminal events do noto

ur elsewhere in the tree. In a word, modules are inde-pendant subtrees. P. Chatterjee [5℄ and Z.W. Birnbaumand J.P. Esary [6℄ developed the properties of modules anddemonstrated their use in fault-tree analysis. M.O. Lo
ks[7℄ expanded the 
on
ept to non-
oherent fault trees andshowed its e�e
tiveness in obtaining 
ut sets.A number of methods have been proposed to modularizefault trees (see [8℄, [9℄, [10℄, [11℄ to 
ite a few). Thesemethods are based on the rewritting of the original formulainto an equivalent one, whi
h 
ontains more modules. Thealgorithm we propose here a
hieves a less ambitious goalsin
e it only dete
ts modules already existing in the treeunder study. However, its eÆ
ien
y makes it of a spe
ialinterest as a subprogram of rewritting methods or to designheuristi
s for variable ordering in BDD's [2℄.Rigourous 
omplexity analyses of fault tree analysis al-gorithms be
ome more important as the size of the stud-ied trees in
reases. Nowadays, fault trees with severalhundreds gates and events are not un
ommon, due thegeneralization of tools that automati
ally generate them.For su
h trees, di�eren
es of 
omplexity (say linear versusquadrati
 
omplexity) are signi�
ant in pra
ti
e, at leastfor operations that are often repeated. General te
hniquesto a
hieve a linear 
omplexity are thus of a great interest.Our algorithm is derived from the Tarjan's one to dete
tstrongly 
onne
ted 
omponents of a graph [12℄. We believethat this kind of graph te
hniques 
an be useful to performother operations on fault trees or reliability networks.

The remaining of this paper is organized as follows: ba-si
s about fault trees are re
alled se
tion III. The algorithmis presented se
tion IV. Finally, experimental results arereported se
tion V. II. NotationsBoolean formulae are terms indu
tively built over thetwo (Boolean) 
onstants 0 (False) and 1 (True), a denu-merable set of variables V = fe1; e2; : : :g, and the usuallogi
al 
onne
tives ^ (and), _ (or), : (not).A graph is given by a set of nodes (also 
alled verti
es)U together with a set of edges E � U � U (edges are thuspairs of nodes). In what follows, we 
onsider only dire
tedgraphs whi
h means that pairs are ordered.Let (u; v) be an edge. u is a parent node of v. v is a
hild node of u. A node without parent node is 
alled aroot node, while a node without 
hild node is 
alled a sinknode. Sink nodes are also 
alled leaves.A path in the graph is a sequen
e of nodes u1; : : : ; uksu
h that (ui; ui+1) 2 E for i = 1; : : : ; k � 1. The length ofa path is the number of edges it traverses. A node v is saidto be rea
hable from a node u if there exists a path from uto v.A graph is said a
y
li
 if for every node u, u is not rea
h-able from itself through a positive length path.A strongly 
onne
ted 
omponent of a graph G = (U;E)is a set of nodes U 0 � U su
h that for all u, v in U 0 thereexists a path from u to v and vi
e-versa.III. Fault TreesWe assume the reader is familiar with fault trees andtheir appli
ations (see [13℄ for reviews on that te
hnique).For the purpose of this paper, fault trees are essentially
onsidered as Boolean formulae.Fig. 1 depi
ts a small fault tree, that will be usedthroughout this paper. r is the root event of the tree, thegi's are internal events, and the ei's are terminal events.The Boolean formula asso
iated with r is the following.r = (((e1 ^ e2) _ (e3 ^ e4)) ^ ((e3 ^ e4) _ (e5 ^ e6))) _ e7The physi
al system whose failures are des
ribed by su
ha fault tree as well as ea
h of its parts (elementary or not)are assumed to be in one (and only one) of the two statesgood or failed. Moreover, terminal events that des
ribefailures of elementary 
omponents are assumed to be inde-pendent one another from a probabilisti
 point of view.Even small formulae, as the above one, 
an be quite hardto read. This is the reason why one prefers, in general, towrite fault trees as sets of boolean equations. Moreover



TR95-156/1 2

le1 le2 le3 le4 le5 le6��: ��: ��:g4 g5 g6��� �+ ��� �+g2 g3��:g1 le7��� �+r

Fig. 1. A Coherent Fault Treeequations re
e
t the graphi
al nature of fault trees. Theset of equations des
ribing r is as follows.r = (g1 _ e7) g4 = (e1 ^ e2)g1 = (g2 ^ g3) g5 = (e3 ^ e4)g2 = (g4 _ g5) g6 = (e5 ^ e6)g3 = (g5 _ g6)A fault tree 
an be 
onsidered as a dire
ted a
y
li
 graphwhose nodes are either events or logi
al gates. An edgelinks the vertex v to the vertex w if v takes w as input.We denote by Events(v) the set of events rea
hable fromthe vertex v. For instan
e, on the tree pi
tured Fig. 1,Events(g2) = fg4; e1; e2; g5; e3; e4g.A module of a fault tree is an internal event whose ter-minal events do not o

ur elsewhere in the tree. Formally,an event v is a module if for any other event w, eitherw 2 Events(v) or Events(v) \ Events(w) = ;.It follows from the de�nition that the root event and theterminal events are always modules. In what follows, forthe sake of 
on
iseness, we do not mention them.Modules of the tree pi
tured Fig. 1 are g1, g4, g5 and g6.IV. Dete
ting modules in linear timeA. Depth-�rst left-most traversalsOur algorithm works \in the spirit" of Tarjan's algorithmto 
ompute strongly 
onne
ted 
omponents of (dire
ted)graphs [12℄ in that it performs two depth-�rst left-mosttraversals of the formula under study, updating 
ountersat ea
h traversal.A depth-�rst left-most traversal of the tree pi
turedFig. 1 visits the events in the order reported table I.Note that:� Ea
h internal event is visited at least twi
e: the �rsttime when des
ending from its �rst parent, the se
ondone when going ba
k from its right-most 
hild.� The graph under a vertex is never traversed twi
e. Forinstan
e, the graph under g5 is traversed when 
oming

from g2 but not the third time g5 is en
ountered (i.e.when 
oming from g3).From the two previous remarks it follows that ea
h edge(i.e. link between a node and one of its 
hildren) is tra-versed exa
tly twi
e and thus a depth-�rst left-most traver-sal of the graph is linear in the number of edges it 
ontains.B. AlgorithmThe prin
iple of the algorithm 
an be stated as follows.Let v be an internal event, and let t1 and t2 be respe
tivelythe dates of the �rst and se
ond visits of v in a depth-�rstleft-most traversal of the graph. Then v is a module if andonly if none of its des
endants is visited before t1 or aftert2 during the traversal.For instan
e, g5 is a module be
ause both e3 and e4 arevisited after 8 (date of the �rst visit of g5) and before 11(date of the se
ond visit of g5). g2 is not a module be
auseg5 is visited at 14, whi
h is later than the date of the se
ondvisit of g2 (here 12). Nor is g3 be
ause g5 is visited at 8whi
h is earlier than the date of the �rst visit of g3 (13).In order to implement the algorithm, one needs three
ounters per node that will 
ontain respe
tively the datesof the �rst, se
ond and last visits.Then, the algorithm works in three steps:1. It initializes the 
ounters (this is performed bytraversing the list of nodes).2. It performs a �rst depth-�rst left-most traversal ofthe graph to set 
ounters (note that for leaves �rstand se
ond dates are identi
al).3. It performs a se
ond depth-�rst left-most traversal ofthe graph in whi
h it 
olle
ts, for ea
h internal eventv, the minimum of the �rst dates and the maximumof the last dates of its 
hildren. v is a module if andonly if the 
olle
ted minimum and maximum are re-spe
tively greater than the �rst date of v and less thanthe se
ond one.Indeed, the se
ond traversal has the same 
omplexitythan the �rst one. It follows that the overall algorithm islinear in the size of the tree, i.e. number of nodes plusnumber of edges.For our example, results are summarized table II.Note that 
onne
tives do not in
uen
e the algorithm thatworks 
onsequently on any kind of formulae (in
luding 
o-herent and non 
oherent fault trees).V. Experimental results and 
on
lusionThe results reported in the table III have been obtainedon a set of real-life fault trees from Dassault Aviation and�Ele
tri
it�e de Fran
e. The �rst row gives the numbers ofinternal events of the tested trees, the se
ond one theirnumbers of terminal events, the third one the number ofmodules they 
ontain and the last one the running timesin millise
onds on a PC 486 66Mgz (note that our ma
hinedoes not provide a measure of time �ner than 16ms, whi
hexplains the regularity of reported times).As shown by the table III, the algorithm we propose inthis paper is very eÆ
ient. It is integrated satisfa
torily inseveral tools of the Aralia toolbox [14℄, to design heuristi
s



TR95-156/1 3step 1 2 3 4 5 6 7 8 9 10 11visited node r g1 g2 g4 e1 e2 g4 g5 e3 e4 g5step 12 13 14 15 16 17 18 19 20 21 22visited node g2 g3 g5 g6 e5 e6 g6 g3 g1 e7 rTABLE IDepth-first left-most traversal of the fault tree pi
tured Fig. 1.r g1 g2 g3 g4 g5 g6 e1 e2 e3 e4 e5 e6 e7�rst 1 2 3 13 4 8 15 5 6 9 10 16 17 21se
ond 22 20 12 19 7 11 18 5 6 9 10 16 17 21last 22 20 12 19 7 14 18 5 6 9 10 16 17 21minimum 2 3 4 8 5 9 16maximum 21 19 14 18 6 10 17module yes yes no no yes yes yesTABLE IIResults for the tree of Fig. 1.1 2 3 4 5 6 7 8#gates 248 254 323 337 289 439 484 1050#basi
 events 283 278 276 306 311 530 548 362#modules 25 25 70 32 32 30 29 70#gates largest module 224 230 230 306 258 410 456 981#basi
 events largest module 251 246 216 276 272 490 509 240Running times for :module dete
tion 16ms 25ms 33ms 33ms 16ms 16ms 33ms 50mstree pro
essing without m:d: 9s16 11s93 1s38 95s28 39s45 1s35 2s53 69s25tree pro
essing with m:d: 8s67 10s45 1s06 88s95 37s14 1s27 2s47 44s70TABLE IIIExperimental resultsfor variable ordering (for BDD's) and as a part of formulasimpli�ers. Table III also reports running times to 
omputeBDD's en
oding fault trees under study with and withoutmodule dete
tion. They are not very di�erent be
ause allof the trees but the last one are de
omposed into a largemodule just under the root event and a number of modulesgrouping only very few terminal events. Despite of that,running times are always improved by module dete
tion.The largest module of the last tree is signi�
antly smallerthan the tree itself. As a 
onsequen
e, module dete
tionimproves running times signi�
antly as well.Referen
es[1℄ K. Bra
e, R. Rudell, and R. Bryant, \EÆ
ient Implementationof a BDD Pa
kage", in Pro
eedings of the 27th ACM/IEEEDesign Automation Conferen
e. 1990, pp. 40{45, IEEE 0738.[2℄ O. Coudert and J.-C. Madre, \MetaPrime: an Itera
tive FaultTree Analyser", IEEE Transa
tions on Reliability, vol. 43, no.1, pp. 121{127, Mar
h 1994.[3℄ A. Rauzy, \New Algorithms for Fault Trees Analysis", Reliabil-ity Engineering & System Safety, vol. 05, no. 59, pp. 203{211,1993.[4℄ S.A. Doyle, J.B. Dugan, and M. Boyd, \Combinatorial-Modelsand Coverage: A Binary De
ision Diagram (BDD) Approa
h",

in Pro
eedings of the IEEE Annual Reliability and Maintain-ability Symposium, ARMS'95. 1996, pp. 82{89, IEEE.[5℄ P. Chatterjee, \Modularization of fault trees: A method to toredu
e the 
ost of analysis", Reliability and Fault Tree Analysis,SIAM, pp. 101{137, 1975.[6℄ Z.W. Birnbaum and J.P. Esary, \Modules of 
oherent binarysystems", SIAM J. of Applied Mathemati
s, vol. 13, pp. 442{462, 1965.[7℄ M.O. Lo
ks, \Modularizing, minimizing and interpreting the K& H fault tree", IEEE Transa
tions on Reliability, vol. R-30,pp. 411{415, De
ember 1981.[8℄ A. Rosenthal, \De
omposition methods for fault tree analysis",IEEE Transa
tions on Reliability, vol. R-29, pp. 136{138, 1980.[9℄ L. Camarinopoulos and J. Yllera, \An Improved Top-downAlgorithm Combined with Modularization as Highly EÆ
ientMethod for Fault Tree Analysis", Reliability Engineering andSystem Safety, vol. 11, pp. 93{108, 1985.[10℄ J. Yllera, \Modularization methods for evaluating fault treesof 
omplex te
hni
al systems", in Engineering Risk and HazardAssessment, A. Kandel and E. Avni, Eds., vol. 2, 
hapter 5.CRC Press, 1988, ISBN 0-8493-4655-X.[11℄ T. Kohda, E.J. Henley, and K. Inoue, \Finding Modules inFault Trees", IEEE Transa
tions on Reliability, vol. 38, no. 2,pp. 165{176, June 1989.[12℄ R.E. Tarjan, \Depth First Sear
h and Linear Graph Algo-rithms", SIAM J. Comput., vol. 1, pp. 146{160, 1972.[13℄ W.S. Lee, D.L. Grosh, F.A. Tillman, and C.H. Lie, \Fault treeanalysis, methods and appli
ations : a review", IEEE Transa
-tions on Reliability, vol. 34, pp. 194{303, 1985.



TR95-156/1 4[14℄ Groupe Aralia, \Computation of Prime Impli
ants of a FaultTree within Aralia", in Pro
eedings of the European Safety andReliability Asso
iation Conferen
e, ESREL'95, Bournemouth {England, June 1995, pp. 190{202, European Safety and Relia-bility Asso
iation.Pr. Yves DutuitDept. Hygi�ene et S�e
urit�e / LADS,I.U.T. A, Universit�e Bordeaux I,33405 Talen
e Cedex, FRANCE, < AIR Mail >Work phone: [33℄ 56845834, Fax: [33℄ 56845829Internet (e-mail): dutuit�minuit.iuta.u-bordeaux.fr.Yves Dutuit was born in 1943 in Moro

o. After having re-
eived his do
torat-�es-s
ien
es in time domain spe
tros
opyfrom Bordeaux university, he devoted himself to tea
hingof safety and reliability at the Bordeaux institute of te
h-nology. His resear
h interests lie in qualitative and quan-titative assessements methods in reliability. He belongs tothe editorial board of the Reliability Engineering & SystemSafety and he is a referee for this journal and Performan
eEvaluation Journal.Antoine RauzyLaBRI, Universit�e Bordeaux I,351, 
ours de la Lib�eration,33405 Talen
e Cedex, FRANCE, < AIR Mail >Work phone: [33℄ 56845834, Fax: [33℄ 56846669Internet (e-mail): rauzy�labri.u-bordeaux.fr.Antoine Rauzy has got his P.H.D. in 
omputer s
ien
e in1989 from the university of Marseilles. He joined the 
om-puter s
ien
e laboratory of the university of Bordeaux bythe end of 1989 and the Fren
h National Center for S
ien-ti�
 Resear
h in 1991. His topi
s of resear
h are 
onstraintlogi
 programming, automated dedu
tion, validation of dis-tributed system and sin
e 1993 reliability analyses. Hisa
tivity is fo
used on Boolean reasoning and he leads thefren
h group RESSAC working on pra
ti
al resolution ofNP-
omplete problems.


