
TR95-156/1 1A Linear Time Algorithm to Find Modules of FaultTreesYves Dutuit, Antoine RauzyAbstrat| A module of a fault tree is a subtree whoseterminal events do not our elsewhere in the tree. Modules,whih are independant subtrees, an be used to redue theomputational ost of basi operations on fault trees, suh asthe omputation of the probability of the root event or theomputation of the minimal ut sets. This paper presentsa linear time algorithm to detet modules of a fault tree,oherent or not, that is derived from the Tarjan's algorithmto �nd strongly onneted omponents of a graph. We show,on a benhmark of real life fault trees, that our methoddetets modules of trees with several hundreds gates andevents within few milliseonds on a personal omputer.Keywords|Fault Trees, Modules.I. IntrodutionAnalysis of large fault tree an be omputationally ex-pensive, despite of reent works on the use of Bryant's bi-nary deision diagrams (BDD's for short) [1℄, as proposedby J.C. Madre and O. Coudert [2℄ and one of the authors[3℄ (see also [4℄). Furthermore, it is sometimes diÆultto understand the physial importane of a large numberof minimal uts. A way to takle both diÆulties is todetet modules and to treat them separately. A moduleof a fault tree is a subtree whose terminal events do notour elsewhere in the tree. In a word, modules are inde-pendant subtrees. P. Chatterjee [5℄ and Z.W. Birnbaumand J.P. Esary [6℄ developed the properties of modules anddemonstrated their use in fault-tree analysis. M.O. Loks[7℄ expanded the onept to non-oherent fault trees andshowed its e�etiveness in obtaining ut sets.A number of methods have been proposed to modularizefault trees (see [8℄, [9℄, [10℄, [11℄ to ite a few). Thesemethods are based on the rewritting of the original formulainto an equivalent one, whih ontains more modules. Thealgorithm we propose here ahieves a less ambitious goalsine it only detets modules already existing in the treeunder study. However, its eÆieny makes it of a speialinterest as a subprogram of rewritting methods or to designheuristis for variable ordering in BDD's [2℄.Rigourous omplexity analyses of fault tree analysis al-gorithms beome more important as the size of the stud-ied trees inreases. Nowadays, fault trees with severalhundreds gates and events are not unommon, due thegeneralization of tools that automatially generate them.For suh trees, di�erenes of omplexity (say linear versusquadrati omplexity) are signi�ant in pratie, at leastfor operations that are often repeated. General tehniquesto ahieve a linear omplexity are thus of a great interest.Our algorithm is derived from the Tarjan's one to detetstrongly onneted omponents of a graph [12℄. We believethat this kind of graph tehniques an be useful to performother operations on fault trees or reliability networks.

The remaining of this paper is organized as follows: ba-sis about fault trees are realled setion III. The algorithmis presented setion IV. Finally, experimental results arereported setion V. II. NotationsBoolean formulae are terms indutively built over thetwo (Boolean) onstants 0 (False) and 1 (True), a denu-merable set of variables V = fe1; e2; : : :g, and the usuallogial onnetives ^ (and), _ (or), : (not).A graph is given by a set of nodes (also alled verties)U together with a set of edges E � U � U (edges are thuspairs of nodes). In what follows, we onsider only diretedgraphs whih means that pairs are ordered.Let (u; v) be an edge. u is a parent node of v. v is ahild node of u. A node without parent node is alled aroot node, while a node without hild node is alled a sinknode. Sink nodes are also alled leaves.A path in the graph is a sequene of nodes u1; : : : ; uksuh that (ui; ui+1) 2 E for i = 1; : : : ; k � 1. The length ofa path is the number of edges it traverses. A node v is saidto be reahable from a node u if there exists a path from uto v.A graph is said ayli if for every node u, u is not reah-able from itself through a positive length path.A strongly onneted omponent of a graph G = (U;E)is a set of nodes U 0 � U suh that for all u, v in U 0 thereexists a path from u to v and vie-versa.III. Fault TreesWe assume the reader is familiar with fault trees andtheir appliations (see [13℄ for reviews on that tehnique).For the purpose of this paper, fault trees are essentiallyonsidered as Boolean formulae.Fig. 1 depits a small fault tree, that will be usedthroughout this paper. r is the root event of the tree, thegi's are internal events, and the ei's are terminal events.The Boolean formula assoiated with r is the following.r = (((e1 ^ e2) _ (e3 ^ e4)) ^ ((e3 ^ e4) _ (e5 ^ e6))) _ e7The physial system whose failures are desribed by suha fault tree as well as eah of its parts (elementary or not)are assumed to be in one (and only one) of the two statesgood or failed. Moreover, terminal events that desribefailures of elementary omponents are assumed to be inde-pendent one another from a probabilisti point of view.Even small formulae, as the above one, an be quite hardto read. This is the reason why one prefers, in general, towrite fault trees as sets of boolean equations. Moreover
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Fig. 1. A Coherent Fault Treeequations reet the graphial nature of fault trees. Theset of equations desribing r is as follows.r = (g1 _ e7) g4 = (e1 ^ e2)g1 = (g2 ^ g3) g5 = (e3 ^ e4)g2 = (g4 _ g5) g6 = (e5 ^ e6)g3 = (g5 _ g6)A fault tree an be onsidered as a direted ayli graphwhose nodes are either events or logial gates. An edgelinks the vertex v to the vertex w if v takes w as input.We denote by Events(v) the set of events reahable fromthe vertex v. For instane, on the tree pitured Fig. 1,Events(g2) = fg4; e1; e2; g5; e3; e4g.A module of a fault tree is an internal event whose ter-minal events do not our elsewhere in the tree. Formally,an event v is a module if for any other event w, eitherw 2 Events(v) or Events(v) \ Events(w) = ;.It follows from the de�nition that the root event and theterminal events are always modules. In what follows, forthe sake of oniseness, we do not mention them.Modules of the tree pitured Fig. 1 are g1, g4, g5 and g6.IV. Deteting modules in linear timeA. Depth-�rst left-most traversalsOur algorithm works \in the spirit" of Tarjan's algorithmto ompute strongly onneted omponents of (direted)graphs [12℄ in that it performs two depth-�rst left-mosttraversals of the formula under study, updating ountersat eah traversal.A depth-�rst left-most traversal of the tree pituredFig. 1 visits the events in the order reported table I.Note that:� Eah internal event is visited at least twie: the �rsttime when desending from its �rst parent, the seondone when going bak from its right-most hild.� The graph under a vertex is never traversed twie. Forinstane, the graph under g5 is traversed when oming

from g2 but not the third time g5 is enountered (i.e.when oming from g3).From the two previous remarks it follows that eah edge(i.e. link between a node and one of its hildren) is tra-versed exatly twie and thus a depth-�rst left-most traver-sal of the graph is linear in the number of edges it ontains.B. AlgorithmThe priniple of the algorithm an be stated as follows.Let v be an internal event, and let t1 and t2 be respetivelythe dates of the �rst and seond visits of v in a depth-�rstleft-most traversal of the graph. Then v is a module if andonly if none of its desendants is visited before t1 or aftert2 during the traversal.For instane, g5 is a module beause both e3 and e4 arevisited after 8 (date of the �rst visit of g5) and before 11(date of the seond visit of g5). g2 is not a module beauseg5 is visited at 14, whih is later than the date of the seondvisit of g2 (here 12). Nor is g3 beause g5 is visited at 8whih is earlier than the date of the �rst visit of g3 (13).In order to implement the algorithm, one needs threeounters per node that will ontain respetively the datesof the �rst, seond and last visits.Then, the algorithm works in three steps:1. It initializes the ounters (this is performed bytraversing the list of nodes).2. It performs a �rst depth-�rst left-most traversal ofthe graph to set ounters (note that for leaves �rstand seond dates are idential).3. It performs a seond depth-�rst left-most traversal ofthe graph in whih it ollets, for eah internal eventv, the minimum of the �rst dates and the maximumof the last dates of its hildren. v is a module if andonly if the olleted minimum and maximum are re-spetively greater than the �rst date of v and less thanthe seond one.Indeed, the seond traversal has the same omplexitythan the �rst one. It follows that the overall algorithm islinear in the size of the tree, i.e. number of nodes plusnumber of edges.For our example, results are summarized table II.Note that onnetives do not inuene the algorithm thatworks onsequently on any kind of formulae (inluding o-herent and non oherent fault trees).V. Experimental results and onlusionThe results reported in the table III have been obtainedon a set of real-life fault trees from Dassault Aviation and�Eletriit�e de Frane. The �rst row gives the numbers ofinternal events of the tested trees, the seond one theirnumbers of terminal events, the third one the number ofmodules they ontain and the last one the running timesin milliseonds on a PC 486 66Mgz (note that our mahinedoes not provide a measure of time �ner than 16ms, whihexplains the regularity of reported times).As shown by the table III, the algorithm we propose inthis paper is very eÆient. It is integrated satisfatorily inseveral tools of the Aralia toolbox [14℄, to design heuristis
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