
Exa
t and Trun
ated Computations of Prime Impli
antsof Coherent and Non-Coherent Fault Trees within AraliaYves Dutuit and Antoine Rauzy 1LADS and LaBRIUniversit�e Bordeaux I, 351,
ours de la Lib�eration33405 Talen
e
edex, Fran
edutuit�iuta.u-bordeaux.fr and rauzy�labri.u-bordeaux.frAralia is a Binary De
ision Diagram (BDD) pa
kage extended to handlefault trees. It is
urrently developed at the University of Bordeaux as apart of a partnership between university laboratories and several fren
h
ompanies.BDD's are the state of the art data stru
ture to handle boolean fun
tions.They have been re
ently used with su

ess in the framework of safety andreliability analysis.The aim of this paper is to present how prime impli
ants (minimal
uts)of
oherent and non-
oherent fault trees are
omputed within Aralia. Theused algorithms are mainly those proposed by J.C. Madre and O. Coudertone the one hand and A. Rauzy on the other hand. We introdu
e thenotion of minimal p-
uts that is a sound extension of the notion of minimal
uts to the
ase of non-
oherent fault trees. We propose two BDD basedalgorithms to
ompute them.We show how to modify these algorithms in order to
ompute only primeimpli
ants (or minimal p-
uts) whose orders are less than a given
on-stant or whose probabilities are greater than a given threshold. We reportexperiments showing that this improves signi�
antly the methodology forthis allows fast, a

urate and in
remental approximations of the desiredresult.Key words: Coherent and non-
oherent Fault Trees, Prime Impli
ants, Minimal(p-)Cuts, Binary De
ision Diagrams.1 This works has been partly supported by the Aralia proje
t that is a partner-ship between our two laboratories | the Laboratoire d'Analyse de D�efaillan
esdes Syst�emes (LADS) and the Laboratoire Bordelais de Re
her
he en Informatique(LaBRI) | and the following
ompagnies: Commissariat �a L'�Energie Atomique(LETI), Dassault Aviation, �Ele
tri
it�e de Fran
e, Elf Aquitaine, Institut de Prote
-tion et de Sûret�e Nu
l�eaire, Renault, S
hneider Ele
tri
, So
i�et�e G�en�erale pour leste
hniques Nouvelles (COGEMA) and Te
hni
atome.Preprint submitted to Elsevier Preprint 12 August 2001

1 Introdu
tionThe fault tree method is a well known engineering te
hniques that is widelyused to perform safety analyses of embedded systems [VGRH81,LGTL85℄.It is nowadays well understood by most pra
titioners. However, problems stillremain to exploit it fully be
ause of the
omputational
omplexity of the basi
operations it requires. These diÆ
ulties appear both for qualitative treatment(
omputation of sets of failures of elementary
omponents that indu
e a failureof the whole system) and for quantitative treatment (determination of theprobability of failure of the whole system given the probabilities of failureof its elementary
omponents). Classi
al te
hniques | des
ribed in the
itedbooks | fail to handle large size non-de
omposable fault trees be
ause they
annot avoid
ombinatorial explosions in both time and spa
e.Sin
e fault trees are essentially boolean formulae, a way to limit
ombina-torial explosion is to en
ode them by means of Binary De
ision Diagrams(BDD's). BDD's are the state-of-the-art data stru
ture to en
ode and ma-nipulate boolean fun
tions. They have been introdu
ed by Akers [Ake78℄ andimproved by Bryant [Bry86,BRB90℄. They are nowadays used in a wide rangeof areas, in
luding hardware design and veri�
ation, proto
ol validation andautomated dedu
tion (see [Bry92℄ for a survey of BDD's and their appli
a-tions).This paper presents BDD based algorithms that perform qualitative and quan-titative analyses of fault trees. We fo
us on the
omputation of prime im-pli
ants of non-
oherent fault trees. Prime impli
ants, that are often
alledminimal
uts in the reliability engineering literature, are of a great interest forqualitative analyses: they
an be seen as minimal sets of failures of elementary
omponents that indu
e a failure of the whole system. Even medium size faulttrees may have a very large number of prime impli
ants. Following Madre andCoudert's [CM92a℄, Minato's [Min93℄ and Rauzy's [Rau93℄ ideas, it is possibleto en
ode them by means of BDD's. The point is that the size of the BDDen
oding a set of prime impli
ants is not dire
tly related to the number ofelements of the set. Very large sets
an be en
oded by means of small BDD's.This is a major di�eren
e with the
lassi
al sum-of-produ
ts representation.Two algorithms have been proposed to
ompute a BDD en
oding prime im-pli
ants of a fun
tion from the BDD en
oding this fun
tion. The �rst one byJ.C. Madre and O. Coudert in [CM92b℄, the se
ond one by one of the au-thors in [Rau93℄. Both use the same indu
tive de
omposition prin
iple. Thelatter works only for monotone fun
tions (
oherent fault trees) but it is moreeÆ
ient than the former [Ara94℄. Both outperform by orders of magnitudealready proposed methods. Both are implemented in the BDD pa
kage Aralia[Ara94,Ara95℄. This tool has been realized as a part of a
ollaboration between2

two laboratories of the Universit�e Bordeaux I and several Fren
h
ompanies 2grouped in a resear
h team of the Fren
h institute for system dependability(ISdF 3).In this paper, we present Madre and Coudert's algorithm as well as two algo-rithms to
ompute minimal p-
uts. Minimal p-
uts are a new kind of impli-
ants we introdu
e here. They
an be seen as a sound extension of the notionof minimal
uts to the
ase of non-
oherent fault trees. Intuitively, they
on-sists of minimal positive parts of prime impli
ants. They are of interest for tworeasons: �rst, pra
titioners are often more interested in positive information(what is failed) than in negative information (what works
orre
tly). Se
ond,more a

urate approximations
an be obtained by
omputing trun
ated min-imal p-
uts than by
omputing trun
ated prime impli
ants. We shall developthis point later.We performed with Aralia a number experiments on real-life fault trees. Thesefault trees are almost impossible to handle by means of
lassi
al te
hniquesbe
ause they are not only very large (several hundred of gates and primaryevents) but also non de
omposable (without modules). Thanks to some pre-pro
essing of the trees, we always su

eeded in
omputing the BDD en
odingthem. This allowed us to get the exa
t probability of their top events. Forsome of them however, we did not su

eed in
omputing the BDD's en
od-ing their prime impli
ants and minimal p-
uts, even with
omputer memo-ries allowing the allo
ation of several millions of BDD nodes. To ta
kle thisproblem, we propose here a modi�
ation of the indu
tive de
omposition prin-
iple that allows the
omputation of only prime impli
ants and minimal p-
uts whose orders are less than a given
onstant or whose probabilities aregreater than a given threshold. The new algorithms are
omplete in this sensethat all of the prime impli
ants and minimal p-
uts verifying the propertyare a
tually obtained. This makes a major di�eren
e with
lassi
al de
om-position/modularization te
hniques for fault trees, su
h as those proposed in[CY85℄. These te
hniques, despite of their interest,
annot be made
ompletein the above sense (ex
epted of
ourse by
omputing all of the prime impli-
ants or minimal p-
uts). Moreover, it is possible to
ompute a BDD en
odinga fun
tion whose prime impli
ants (or minimal p-
uts) are exa
tly those ob-tained by the trun
ated
omputation. This BDD is used to
ompute the exa
tprobability of this fun
tion, whi
h makes it possible to evaluate how a

uratethe approximation is.We show by means of examples that the algorithms we propose improve sig-ni�
antly the methodology for they allow fast, a

urate, and in
remental ap-proximations of the desired results.2 See �rst page.3 Institut de Sûret�e de Fon
tionnement.3

The remainder of this paper is organized as follows. In the next se
tion, we �rstbrie
y re
all basi
s on fault trees and prime impli
ants. We present BDD's inse
tion 3. We present Madre and Coudert's algorithm as well as the ones to
ompute minimal p-
uts in se
tion 4. We propose the algorithms
omputingtrun
ated prime impli
ants and minimal p-
uts in se
tion 5. Finally, we reportexperimental results in se
tion 6.2 Fault Trees and Prime Impli
antsIn this se
tion, we re
all basi
 de�nitions about fault trees and boolean ex-pressions.2.1 Fault TreesFor the purpose of this paper, fault trees are essentially
onsidered as booleanformulae, i.e. terms indu
tively built over the two
onstants 0 and 1, a set ofvariables X , and usual logi
al
onne
tives ^ (and), _ (or), : (not),Fig. 1 depi
ts a small fault tree that will be used throughout this paper. g1is the root event of the tree, g2 and g3 are internal events, and a, b and
 areprimary events. Primary events are also
alled terminal events. The booleanformula asso
iated with g1 is ((a^b)_(:a^
)). This fault tree is not
oherentbe
ause of the negation, or in other words be
ause the boolean formula itdes
ribes is not monotone. In what follows we simply say g1 for \the booleanformula asso
iated with g1".
ka kb k
��HH� �:g2 � �:g3� �� �+g1rFig. 1. A non
oherent fault tree2.2 Prime Impli
ants and Minimal P-CutsIn order to introdu
e formally the notion of prime impli
ants, we need thefollowing de�nitions. 4

A literal is either a boolean variable x or its negation :x. x and :x are saidopposite.A produ
t is a set of literals that does not
ontain both a literal and itsopposite. A produ
t is assimilated with the
onjun
tion of its elements.An assignment over X is any mapping from X to f0; 1g. Assignments are ex-tended indu
tively into mappings from boolean formulae into f0; 1g a

ordingto the usual rules: let � be an assignment and let f and g be two formulae, then�[f _ g℄ = max(�[f ℄; �[g℄), �[f ^ g℄ = min(�[f ℄; �[g℄) and �[:f ℄ = 1 � �[f ℄.An assignment � satis�es a formula f if �[f ℄ = 1, otherwise it falsi�es f . Forinstan
e [a 1; b 1;
 1℄ is an assignment over fa; b;
g that satis�es g2and g1 and that falsi�es g3.Let f and g be two formulae. If any assignment satisfying f satis�es g as well,f implies g, whi
h is denoted by f j= g. If both f implies g and g implies f ,f and g are said equivalent, whi
h is denoted by f � g.Let f(x1; : : : ; xn) be a boolean fun
tion and let � be any assignment thatsatis�es f . Then, f is monotone if for any variable xi su
h that �[xi℄ = 0, theassignment �0, su
h that �0[xi℄ = 1 and �0[xj℄ = �[xj℄ for j 6= i, satis�es f aswell. If the property holds only for some variable xi, we say that f is monotonein xi.The notion of monotone formulae is the mathemati
al basis of
oherent faulttrees. It is
lear that a formula made only of variables and
onne
tives ^, _and k-out-of-n is monotone.Let f be a boolean formula and � be a produ
t. � is an impli
ant of f if � j= f ,i.e. if any assignment satisfying � satis�es f .Let f be a boolean formula and � be an impli
ant of f . � is prime if there isno impli
ant � of f stri
tly in
luded in �. We denote by PI[f ℄ the set of allthe prime impli
ants of the formula f .For instan
e the formula g1 of the Fig. 1 admits 7 impli
ants fa; bg, fa; b;
g,fa; b;:
g, f:a; b;
g, f:a;
g, f:a;:b;
g and fb;
g and 3 prime ones fa; bgand f:a;
g; fb;
g.Prime impli
ants of
oherent fault trees are often
alled minimal
uts in thereliability engineering literature.The order of a produ
t (an impli
ant, a prime impli
ant) is the number ofliterals it
ontains.As said in the introdu
tion, there may exist an exponential number of prime5

impli
ants with respe
t to the number of variables o

urring in the formulaunder study [Qui59,CM78℄. In pra
ti
e, even though this worst
ase is seldomrea
hed, the a
tual number of prime impli
ants is often very large (severalthousands) and
lassi
al approa
hes [VGRH81,LGTL85℄ fail to handle largesize non-de
omposable fault trees be
ause they
annot avoid
ombinatorialexplosions in both time and spa
e.In pra
ti
e, one is often only interested in positive parts of prime impli
ants.This is be
ause only positive literals represent failures 4 . In order to formalizethis, we introdu
e here the notion of p-
ut.Let f be a boolean fun
tion and let � be a produ
t
ontaining only positiveliterals.We denote by �
f the produ
t obtained by adding to � the negative literalsformed over all of the variables o

urring in f but not in �. In the sequel,we will omit the subs
ript f when the referen
ed formula in
lear from the
ontext. For instan
e, fag
g1 = fa;:b;:
g, where g1 is the formula of the Fig. 1.Now, � is a p-
ut of f if it ful�ls the �rst of the two following requirements,it is minimal if it ful�ls the se
ond one.(i) �
 is a impli
ant of f .(ii) There is no produ
t � � � su
h that �
 is a impli
ant of f .The formula g1 of Fig. 1 admits two minimal p-
uts, fa; bg and f
g. Note, thatthe prime impli
ant (and p-
ut) fb;
g, whi
h is made only of positive literals,does not lead to a minimal p-
ut be
ause the other prime impli
ant f:a;
ghas a shorter positive part.We denote by PC[f ℄ the set of all the minimal p-
uts of the formula f .The following property holds that is dedu
ed dire
tly from the de�nition ofmonotone fun
tions.Proposition 1 (Prime impli
ants of monotone fun
tions) Let f be mo-notone fun
tion and let � be a prime impli
ant of f . Then, �
ontains onlypositive literals.The following proposition
omes from the previous one.Proposition 2 (Prime impli
ants vs. p-
uts of monotone fun
tions)Let f be a monotone fun
tion. Then, PI[f ℄ = PC[f ℄.4 We would like to thank J. Gauthier, from Dassault Aviation, that showed us theinterest of this notion. 6

3 Binary De
ision DiagramsIn this se
tion, we �rst introdu
e basi
 de�nitions and properties of BinaryDe
ision Diagrams (for a
omprehensive survey on that te
hnique, see [BRB90℄and [Bry92℄). Then, we present the way the algorithm des
ribed in the previousse
tion is implemented by means of operations on BDD's.3.1 Shannon De
ompositionAs we will see, the Binary De
ision Diagram representation of boolean fun
-tions uses mainly the
onne
tive ite (for If-Then-Else) de�ned as follows.De�nition 3 (ite
onne
tive) Let f , g and h three boolean fun
tions, thenite(f; g; h) def= (f ^ g) _ (:f ^ h)Any binary
onne
tive
an be expressed by means of an ite and possibly anegation. For instan
e, f _ g � ite(f; 1; g) and f � g � ite(f;:g; g). It is pos-sible to express the negation by means of an ite
onne
tive (:f � ite(f; 0; 1)),however, as we will see, binary de
ision diagrams manage the negation in amore spe
i�
 way.Moreover, given boolean fun
tion f(x1; : : : ; xn), the following equivalen
e holds,so-
alled Shannon de
omposition.Theorem 4 (Shannon de
omposition)f(x1; : : : ; xn)� (x1 ^ f(1; x2; : : : ; xn)) _ (:x1 ^ f(0; x2; : : : ; xn))� ite(x1; f(1; x2; : : : ; xn); f(0; x2; : : : ; xn))By applying this prin
iple re
ursively, one
an rewrite any fun
tion as anequivalent one that is built only with variables,
onne
tives ite and boolean
onstants 0 and 1.For instan
e, the formula g1 of Fig. 1 is equivalent to ite(a; ite(b; 1; 0); ite(
; 1; 0)).Another interesting property of the
onne
tive ite is that it is orthogonal withthe usual
onne
tives.De�nition 5 (Orthogonality) Let Op be an n-ary operation. Let f 1; : : : ; fn7

1 1 0 0 1 0 1 0? ? ? ? ? ? ? ?m
 m
 m
 m
mb mbma?1 01 0
Fig. 2. The de
ision tree en
oding g1 for the order a < b <
be n formulae and let x be a variable, Op is said to be orthogonal with ite ifthe following equivalen
e holds.Op(f 1; : : : ; fn) � ite(x;Op(f 1x=1; : : : ; fnx=1); Op(f 1x=0; : : : ; fnx=0))where fx=v denotes the formula f in whi
h the
onstant v has been substitutedfor all o

urren
es of x.Proposition 6 (Orthogonality) : (not), _ (or), ^ (and), ((imply), ,(if and only if) and � (ex
lusive or) are orthogonal with ite.3.2 Informal Presentation of Binary De
ision DiagramsIn order to provide the reader with an intuition of what binary de
ision dia-grams are, let us
onsider again the fun
tion g1 of the Fig. 1. Thank to thetheorem 4, it is possible to build a de
ision tree en
oding the truth table g1.Given a total order over the variables of the fun
tion under study, a de
isiontree is a
omplete binary tree whose leaves are labeled with the
onstant 0 or1 and whose iternal nodes are labeled with variables. The nodes at level i inthe tree are labeled with the variable of rank i in the
onsidered order. Ea
hnode has two outedges, labeled respe
tively with 0 and 1, that
orrespond tothe two possible valuations of the variable it is labeled with. The tree asso-
iated with g1 for the order a < b <
 is pi
tured Fig. 2. The value of thefun
tion for a given variable assignment is obtained by des
ending along the
orresponding bran
h of the tree. Intuitively, ea
h node of the tree en
odes aformula in the form ite(x; f1; f0), where x is the variable it is labeled with andf1 and f0 are the formulae en
oded respe
tively by the trees pointed by its 1-and 0-outedges.Now, it is
lear that su
h an en
oding for the truth table of a fun
tion is veryexpensive: if the fun
tion depends on n variables, the asso
iated de
ision treehas 2n � 1 internal nodes and 2n leaves. However, it is possible to make therepresentation far more
ompa
t by applying the two following operations.8

?ma? ?mb m
? ?? ?1 01 0
Fig. 3. The BDD en
oding g1 (for the order a < b <
)(i) Isomorphi
 subtrees merging. Sin
e two isomorphi
 subtrees have thesame semanti
s, at least one is useless. This is espe
ially the
ase forleaves: two leaves suÆ
e, one labeled with 0, the other one by 1.(ii) Useless nodes deletion. If a node en
odes a formula in the form ite(x; f; f)it is useless sin
e ite(x; f; f) � f . So pointers to that node
an be repla
edby pointers to the node en
oding f .By applying these two rules as far as possible, one gets the binary de
isiondiagram asso
iated with the formula. As we will see, it is unique (up to anisomorphism). The binary de
ision diagram asso
iated with g1 (for the ordera < b <
) is pi
tured Fig 3. The point is that it is possible to get the BDDasso
iated with a formula dire
tly, i.e. without
onstru
ting the whole binaryde
ision tree and then redu
ing it.3.3 Formal De�nitionLet x1; : : : ; xn be n boolean variables. A binary de
ision diagram over x1,. . . ,xnis a dire
ted a
y
li
 graph G verifying
onditions (i) and (ii).(i) G has two sink nodes labeled respe
tively with 0 and 1.(ii) Ea
h internal node of G is labeled with a variable xi and has 2 outedgeslabeled respe
tively with 0 and 1.Let < be a total order over X . A binary de
ision diagram G is said to beordered if
ondition (iii) holds.(iii) For any pair of nodes (�,�) labeled respe
tively with the variables xi andxj, if one of the two out-edges of � points to � then xi < xj.An ordered BDD is said redu
ed if
onditions (iv) and (v) hold.(iv) It
ontains no internal node whose outedges are both pointing to the samesub-graph.(v) It
ontains no two isomorphi
 sub-graphs.9

Shannon[[0℄℄ def= 0Shannon[[1℄℄ def= 1Shannon[[�(x; �1; �0)℄℄ def= ite(xi; Shannon[[�1℄℄; Shannon[[�0℄℄)Fig. 4. The standard semanti
s for BDD'sIn what follows, we will abbreviate redu
ed ordered binary de
ision diagramin ROBDD, or even BDD. Moreover, we will say the BDD � for the BDDwhose nodes are those rea
hable from the node �. Finally, we will denotesby �(x; �1; �0) the node � labeled with the variable x and whose 1- and 0-outedges point respe
tively to the nodes �1 and �0 (sin
e, by de�nition, thereis no two isomorphi
 sub-graphs this node is unique).3.4 Shannon Semanti
s for ROBDD'sBDD's, as we de�ned them in the previous se
tion, are a data stru
ture, just adata stru
ture. As su
h, they have no intrinsi
 semanti
s. So, we have to de�nefun
tion that asso
iates a mathemati
al objet, namely a boolean fun
tion, toea
h BDD. An usual way to des
ribe su
h a fun
tion and more generally tode�ne operations on BDD's is to write a set of re
ursive equations. The set ofre
ursive equations de�ning the standard, or Shannon, semanti
s for BDD'sis given Fig. 4 (there are a
tually other semanti
s for BDD's [Rau96℄).Thanks to the Shannon de
omposition (theorem 4), it is
lear that for anyfun
tion f there exists at least one ROBDD en
oding a fun
tion equivalent tof . Moreover, the following property holds.Proposition 7 (Canoni
ity of ROBDD's) Let f be a boolean formula. Forgiven a variable order, the ROBDD asso
iated with f is unique up to an iso-morphism [Bry86℄.3.5 Management of BDD'sAs a
onsequen
e of their
anoni
ity, BDD's
an be managed in su
h way thatthere is never two distin
t nodes en
oding the same fun
tion. The prin
ipe isas follows. BDD's are always
reated in a bottom-up way, i.e. that the node�(x; �1; �0) is always
reated after the
reation of the nodes �0 and �1. Nodesare kept in a table and are
reated only through the fun
tion find or add bdd.This fun
tion looks up the table and
reates new nodes only when ne
essary,10

build(1) def= 1build(0) def= �1build(xi) def= �(xi; 1; �1)build(:f) def= �build(f)build(f1 ? f2) def= apply(?; build(f1); build(f2))Fig. 5. Equations de�ning the build fun
tion.i.e. when the table does not already
ontain the wanted node. Te
hni
ally,find or add bdd is implemented by means of hashing te
hniques [BRB90℄.In order to
ompute the negation of a BDD one has just to ex
hange its 0 and1 leaves. This
omes from the fa
t that : and ite are orthogonal (property 6).This requires a priori a BDD traversal, whi
h is at least linear in the size of the
onsidered BDD. However, a programming tri
k makes possible a negation in
onstant time and redu
es memory
onsumption. It
onsists in putting a
agon ea
h edge. This
ag indi
ates whether the pointed BDD is to be
onsideredpositively or negatively. As a
onsequen
e, only one leaf remains ne
essary,say for instan
e the leaf 1, sin
e 0 � :1. The
anoni
ity of the representationis maintained by storing only nodes with a positive 1-edge. The orthogonalityof ite and : is used to manipulate only su
h nodes. The following equationsdes
ribe the repla
ement rules. Negated edges are denoted with a �.�(x; ��1; �0) �! ��(x; �1; ��0)�(x; ��1; ��0) �! ��(x; �1; �0)��(x; ��1; �0) �! �(x; �1; ��0)��(x; ��1; ��0) �! �(x; �1; �0)3.6 Computation of the BDD Asso
iated with a FormulaLet f be a formula over the variable x1, . . . , xn. The
omputation of the BDD� en
oding f (for the variable order x1 < : : : < xn) is performed by means ofthe fun
tion build that
an be des
ribed through re
ursive equations to beapplied on f and its subformulae. These equations are given Fig. 5. Their leftmembers are formulae | x is a variable, f , f1 and f2 denote any formulae,? stands for any binary
onne
tive _ (or), ^ (and), � (ex
lusive or), . . .|,while right members are BDD's. When f is of the form f1?f2 the
omputationof the BDD � en
oding f is performed in two steps:11

apply(?;�(xi; �1; �0);�(xi; �1; �0)) def= �(xi; apply(?; �1; �1); apply(?; �0; �0))apply(?;�(xi; �1; �0);�(xj; �1; �0)) def= �(xi; apply(?; �1; �); apply(?; �0; �))apply(_; 1; �) def= 1apply(_; 0; �) def= �apply(_; �; �) def= �...Fig. 6. The equations de�ning the apply fun
tion.(i) The BDD's �1 and �2 en
oding respe
tively f1 and f2 are
omputed,(ii) �1 and �2 are
omposed by means of the apply fun
tion.The re
ursive equations des
ribing apply are given Fig. 6. There are mainlythree
ases:{ The main
ase, in whi
h apply is
alled on two BDD's whose root nodesare labeled with the same variables.{ A degenerated
ase, in whi
h the fun
tion is
alled on two BDD's whoseroot nodes are not labeled with the same variables (on Fig. 6, it is assumedthat i < j and � = �(xj ; �1; �0)).{ The terminal
ase, that is the only one that depends on the
onne
tive ?.In this
ase, the truth table of ? allows an immediate de
ision of the valueof the fun
tion (On Fig. 6, we just give some examples for _).Su
h a de
omposition in three
ases | the main one, a degenerated one anda terminal one | appear in most of the equations des
ribing operations onBDD's.A se
ond table, so-
alled the
omputed table, is used. In this table, 4-tuplesf?; �; �;
g are kept, where �, � and
 are BDD's su
h that
 = � ? �. Beforeany
omputation of �?�, one
he
ks if the result is not already in the table. Ifit is, the result
 is returned, otherwise it is a
tually
omputed and then storedin the table. In order to allow a fast a

ess to stored tuples, the
omputed tableis also managed by means of hashing te
hniques [BRB90℄.The use of a table in whi
h intermediate results are stored plays a
entralrole in the eÆ
ien
y of BDD's. From a theoreti
al point of view, it ensuresbounds on
omplexities of operations (these bounds are given table 1). Froma pra
ti
al point of view, it dramati
ally de
reases running times. As a matterof fa
t, none of the fault trees presented se
tion 6
ould be pro
essed withoutthis memorization.In table 1, j�j denotes the size, i.e. the number of nodes, of the BDD �.12

find or add bdd O(1)apply(?; �; �) O(j�j � j�j)pr(�) O(j�j)Table 1Computational
osts of operations on BDD's3.7 Variable OrderingThe size of the BDD en
oding a fun
tion strongly depends on the
hosenvariable ordering. Finding the best variable ordering is untra
table (the bestknown algorithm is in O(3n)), so heuristi
s are used to determine good ones.This is a
ompli
ated matter whi
h is outside of the s
ope of this paper. Theinterested reader should see for instan
e [Rau96℄ for a dis
ussion as well as ona quite
omplete bibliography on that topi
s.3.8 Computation of the Probability of the Root EventAs a �rst illustration of the use of BDD's in the reliability analysis framework,let us show brie
y how to
ompute the exa
t probability of the top event ofa fault tree given the probabilities of its primary events. This is performed bymeans of a BDD traversal, the Shannon de
omposition being applied on ea
hnode of the BDD.Theorem 8 (Shannon's De
omposition) Let f = ite(x; f1; f0) be a for-mula, where x is a variable and f1 and f0 are formulae in whi
h x does noto

ur. Then the following equality holds.p(f) = p(x):p(f1) + (1� p(x)):p(f0)where p(x) denotes the probability that x = 1 and p(f) the probability thatf = 1.It is easy to indu
e an e�e
tive algorithm from the above theorem (see [Rau93℄for more details). Re
ursive equations that des
ribe this algorithm are givenFig. 7. Thanks to the memorization of intermediate results, the
omplexityof the algorithm is linear in the size of the BDD, as mentioned in table 1.For instan
e, the probability of the formula g1 of the Fig. 1, is
omputed asfollows.p(g1)= p(ite(a; ite(b; 1; 0); ite(
; 1; 0))13

pr(1) def= 1pr(��) def= 1� pr(�)pr(�(x; �1; �0)) def= p(x):pr(�1) + (1� p(x)):pr(�0)Fig. 7. The equations de�ning the fun
tion
omputing the probability of a BDD.= p(a):p(ite(b; 1; 0)) + (1� p(a)):p(ite(
; 1; 0))= p(a):p(b) + (1� p(a)):p(
)4 Exa
t Computations Prime Impli
ants and Minimal P-Cuts4.1 De
omposition Theorems for Prime Impli
ants and Minimal P-CutsThe �rst idea of algorithms
omputing prime impli
ants and minimal p-
utsfrom BDD's is as follows.Theorem 9 (De
omposition Theorem for Prime Impli
ants) Let f(x1; : : : ; xn)be a boolean fun
tion. Then, the set of prime impli
ants of f(x1; : : : ; xn)
anbe obtained as the union of three sets.PI[f(x1; : : : ; xn)℄ =PI10 [PI1 [PI0where, PI10, PI1 and PI0 are de�ned as follows.PI10 def= PI[f(1; x2; : : : ; xn) ^ f(0; x2; : : : ; xn)℄PI1 def= ffx1g [�; � 2 PI[f(1; x2; : : : ; xn)℄ n PI10gPI0 def= ff:x1g [�; � 2 PI[f(0; x2; : : : ; xn)℄ n PI10gwhere n stands for the set di�eren
e.A formal proof of the theorem 9 is given in appendix. Intuitively, it is justi�edas follows. A prime impli
ant � of f(x1; : : : ; xn) may
ontain either x1 or:x1 or none of these two literals. In this latter
ase, � must still be a primeimpli
ant of f whatever
onstant is substituted for x1. Thus, � is a primeimpli
ant of f(x1; : : : ; xn) that does not
ontain x1 nor :x1 if and only if it is aprime impli
ant of 8x1f(x1; : : : ; xn) = f(1; x2; : : : ; xn)^f(0; x2; : : : ; xn). Now,a produ
t fx1g[� is a prime impli
ant of f(x1; : : : ; xn) if it is a prime impli
antof f(1; x2; : : : ; xn) and � is not already a prime impli
ant of f(x1; : : : ; xn), i.e.if � does not belong to PI[f(1; x2; : : : ; xn) ^ f(0; x2; : : : ; xn)℄.14

The de
omposition gives an indu
tive prin
iple to
ompute prime impli
ants.Note that this prin
iple is di�erent from the Quine's
onsensus method [Qui52℄.In our example g1(a; b;
) = (a ^ b) _ (:a ^
) = ite(a; ite(b; 1; 0); ite(
; 1; 0)),g1(1; b;
) = ite(b; 1; 0) = b;g1(0; b;
) = ite(
; 1; 0) =
;g1(1; b;
) ^ g1(0; b;
) = ite(b; ite(
; 1; 0); 0) = b ^
It is
lear that PI[b℄ = ffbgg, PI[
℄ = ff
gg and PI[b ^
℄ = ffb;
gg.Thus, PI[ite(a; ite(b; 1; 0); ite(
; 1; 0))℄ = PI10 [PI1 [PI0, where,{ PI10 is PI[b ^
℄ = ffb;
gg.{ PI1 is the set of produ
ts fag [� where � is in ffbgg and not in ffb;
gg.Thus, PI1 = ffa; bgg.{ PI0 is the set of produ
ts f:ag [� where � is in ff
gg and not in ffb;
gg.Thus, PI0 = ff:a;
gg.Finally, we get PI[g1℄ = ffa; bg; f:a;
g; fb;
gg.Similarly, the following theorem holds that gives an indu
tive prin
iple to
ompute minimal p-
uts.Theorem 10 (De
omposition Theorem for Minimal P-Cuts) Let f(x1; : : : ; xn)be a boolean fun
tion. Then, the set of minimal p-
uts of f(x1; : : : ; xn)
an beobtained as the union of two sets.PC[f(x1; : : : ; xn)℄ =PC0 [PC1where, PC1 and PC0 are de�ned as follows.PC0 def= PC[f(0; x2; : : : ; xn)℄PC1 def= ffx1g [�; � 2 PC[f(1; x2; : : : ; xn) _ f(0; x2; : : : ; xn)℄ n PC0gA formal proof of the theorem 10 is given in appendix.In our example g1(a; b;
) = (a ^ b) _ (:a ^
) = ite(a; ite(b; 1; 0); ite(
; 1; 0)),and thus g1(1; b;
)_g1(0; b;
) = b_
. Clearly, we have PC[b_
℄ = ffbg; f
gg.15

Thus, PC[ite(a; ite(b; 1; 0); ite(
; 1; 0))℄ = PC1 [PC0, where,{ PC0 is PC[
℄ = ff
gg.{ PC1 is the set of produ
ts fag[� where � is in PC[b_
℄ = ffbg; f
gg andnot in PC0 = ff
gg. Thus, PC1 = ffbgg.Finally, we get PC[g1℄ = ffa; bg; f
gg.Noti
e that for the spe
ial
ase of monotone fun
tions (
oherent fault trees),the two de
omposition theorems
an be simpli�ed and, on
e simpli�ed, be
omea
tually identi
al. Let f(x1; : : : ; xn) be a monotone fun
tion. Then, it is easyto verify that the two following equalities hold.f(1; x2; : : : ; xn) ^ f(0; x2; : : : ; xn)= f(0; x2; : : : ; xn) (1)f(1; x2; : : : ; xn) _ f(0; x2; : : : ; xn)= f(1; x2; : : : ; xn) (2)Now by simplifying de
omposition theorems a

ording to equations 1 and 2,we get exa
tly the same de
omposition prin
iple (ex
epted that the identi�erPI is used in the �rst
ase and the identi�er PC is used in the se
ond one).4.2 Meta-Produ
tsA se
ond key idea is to represent sets of produ
ts by means of boolean formu-lae. More pre
isely, a fun
tion MP (�) is asso
iated with ea
h set of produ
ts� in su
h a way that there is a one-to-one
orresponden
e between produ
ts of� and variable assignments that satisfy MP (�). Fun
tions MP (�) are
alledmeta-produ
ts by Madre and Coudert in [CM92a℄. Note that meta-produ
tsare not the only way to en
ode set of produ
ts by means of boolean fun
tions.Minato in [Min93℄ and Rauzy in [Rau93℄ proposed an alternative way to doso. For the sake of
on
iseness, we only
onsider here Madre and Coudert'srepresentation.4.2.1 De�nitionLet x be a variable and � be a produ
t. Then three
ases are possible: eitherx 2 � or :x 2 � or neither x nor :x belong to �.The idea is to asso
iate two variables px and sx with ea
h variable x of theoriginal formula. px is used to en
ode the presen
e of the variable x in theprodu
t. sx is used to en
ode the sign of x in the produ
t, if it is a
tuallypresent. 16

The meta-produ
t en
oding �, denoted byMP (�), is the
onjun
tion, over thevariables x o

urring in the formula, of mp(�; x), where mp(�; x) is de�ned asfollows:
mp(�; x) def= 8>>>>><>>>>>: (px ^ sx) if x 2 �;(px ^ :sx) if :x 2 �;:px if neither x nor :x belongs to �:For instan
e, the meta-produ
t asso
iated with the prime impli
ant � =f:a;
g of g1 is MP (�) = (pa ^ :sa ^ :pb ^ p
 ^ :s
). a o

urs negativelyin �, thus the variable pa en
oding the presen
e of a must be true and sa thevariable en
oding the sign of a must be false. b does not o

ur in � thus pbthe variable en
oding the presen
e of b must be false and sb may take anyvalue (and thus is not present at all in the meta-produ
t). Finally,
 o

urspositively in �, thus the variable p
 en
oding the presen
e of
 must be trueand s
 the variable en
oding the sign of
 must be true.4.2.2 Operations on Sets of Produ
tsA set of produ
ts is en
oded by the disjun
tion of the meta-produ
ts en
odingits elements. The formula en
oding a set of produ
ts � is also denoted byMP (�).For instan
e PI[g1℄, of prime impli
ants of the fun
tion g1 of Fig. 1 is en
odedby means of the following fun
tion.MP (PI[g1℄)=MP (ffa; bg; f:a;
g; fb;
gg)= (pa ^ sa ^ pb ^ sb ^ :p
) =� = MP (fa; bg) � =_ (pa ^ :sa ^ :pb ^ p
 ^ s
) =� = MP (f:a;
g) � =_ (:pa ^ pb ^ sb ^ p
 ^ s
) =� = MP (fb;
g) � =More generally, operations on sets of produ
ts
an be performed through log-i
al operations on the
orresponding meta-produ
ts.Proposition 11 (Operations on meta-produ
ts) Let �1 and �2 be twosets of produ
ts built over the variables x1; : : : ; xn. Let MP (�1) and MP (�2)be the two meta-produ
ts built over the variables px1 ; sx1; : : : ; pxn; sxn, en
oding17

MP[[1; L℄℄ def= ffggMP[[��; L℄℄ def= 2L n MP[[�℄℄MP[[�(px; �1; �0); x:L℄℄ def= MP[[�1; x:L℄℄ [MP[[�0; x:L℄℄MP[[�(sx; �1; �0); x:L℄℄ def= [ffxg [�; � 2 MP[[�1; L℄℄gff:xg [�; � 2 MP[[�0; L℄℄gFig. 8. The equations de�ning the semanti
s of BDD's en
oding metaprodu
ts.respe
tively �1 and �2.{ The empty set of produ
ts is en
oded by 0 (false).{ The set of all of the possible produ
ts is en
oded by the 1 (true).{ The empty produ
t is en
oded by the fun
tion (:px1 ^ : : : ^ :pxn).{ �1 [�2 is en
oded by the fun
tion MP (�1) _MP (�2).{ �1 \ �2 is en
oded by the fun
tion MP (�1) ^MP (�2).{ The
omplement �1 to �1 in the set of all of the possible produ
ts is en
odedby the fun
tion :MP (�1).These properties are demonstrated very easily by
onsidering the one-to-one
orresponden
e between satisfying variable assignments and en
oded produ
ts[CM92a℄.Note that the set of produ
ts that belong to �1 but not to �2, i.e. the set�1 \ �2, is en
oded by the fun
tion MP (�1) ^ :MP (�2).4.3 Computation of the BDD En
oding Prime Impli
antsThe third idea is to use BDD's to en
ode meta-produ
ts. The re
ursive equa-tions de�ning the semanti
s of su
h a BDD are given Fig. 8. In these equations,the ordered list of the variables the produ
ts are built over is given as an ar-gument. While not stri
tly ne
essary, this simpli�es the de�nition for negatedBDD's. Moreover, it will be usefull to set equations de�ning the algorithmitself. 2L denotes the set of all of the produ
ts that
an be built over the vari-ables of the list L. This implementation assumes, as suggested in [CM92a℄,that the variables px and sx are
onse
utive in the BDD order.The re
ursive equations de�ning the algorithm that
omputes the BDD en
od-ing the prime impli
ants of a fun
tion from the BDD en
oding this fun
tion issket
hed Fig. 9. This is basi
ally an implementation of the re
ursive prin
ipledes
ribed se
tion 4.1. In these equations, [℄ denotes the empty list (of vari-18

MPPI(�1; L) def= �1MPPI(1; [℄) def= 1MPPI(1; x:L) def= �(px; �1; MPPI(1; L))MPPI(��(x; �1; �0); L) def= MPPI(�(x; ��1; ��0); L)MPPI(�(y; �1; �0); x:L) def= �(px; �1; MPPI(�(y; �1; �0); L))MPPI(�(x; �1; �0); x:L) def= �(px;�(sx; �1; �0); �10)where, 8>>>>><>>>>>: �10 = MPPI(apply(^; �1; �0); L)�1 = apply(^; MPPI(�1; L); ��10)�0 = apply(^; MPPI(�0; L); ��10)Fig. 9. The equations de�ning the algorithm MPPI.

1 mp
 0msb 1mpb 1
1msa ms

mpb
mpa

0mp
 0
msb 0mpb 0? ?? ?? ?? ?

? ?
? ?
? ?
? ?? ?? ?
v
v v?

Fig. 10. The BDD en
oding MP (PI[g1℄) (negated edges are
agged with a bla
kdot). For the sake of
larity, the leaf is dupli
ated and negated pointers to the leafare repla
ed by pointers to a leaf 0.ables) and the variable x is assumed to be before the variable y in the
hosenorder.Note that intermediate results are memorized in this pro
edure as well. Despiteof this memorization, the worst
ase
omputational
ost of MPPI is exponentialwith respe
t to the number of variables.The BDD en
oding MP (PI[g1℄) is pi
tured Fig. 10.19

MPPC(�1; L) def= �1MPPC(1; [℄) def= 1MPPC(1; x:L) def= �(px; �1; MPPC(1; L))MPPC(��(x; �1; �0); L) def= MPPC(�(x; ��1; ��0); L)MPPC(�(y; �1; �0); x:L) def= �(px; �1; MPPC(�(y; �1; �0); L))MPPC(�(x; �1; �0); x:L) def= �(px; �1; �0)where, 8><>:�0 = MPPC(�0; L)�1 = apply(^; MPPC(apply(_; �1; �0); L); ��0)Fig. 11. The equations de�ning the algorithm MPPC.4.4 Computation of the BDD En
oding Minimal P-CutsIn a similar way, the re
ursive equations that de�ned the algorithm MPPC that
omputes the BDD en
oding the minimal p-
uts of a fun
tion from the BDDen
oding this fun
tion are given Fig.11. They en
ode the de
omposition prin-
iple given by the theorem 10. There is however one di�eren
e: sin
e variableo

ur always positively in p-
uts, the variables sx's are useless. They
an besafely removed, i.e. all of the properties of proposition 11 still hold in thissimpli�ed representation.4.5 Another Way to Compute the BDD En
oding Minimal P-CutsThere is a subtle di�eren
e between MPPI and MPPC. In MPPI, the
omputationof �1^�0 is mandatory. In MPPC, the
omputation of �1_�0 is performed onlyto remove from PC[�1℄ the produ
ts that are in
luded in produ
ts of PC[�0℄.The point is that this operation
an be performed dire
tly on meta-produ
tBDD's (we
all it without in the sequel), whi
h is in some
ases more eÆ
ient,espe
ially when the number of minimal p-
uts is small. This leads to a se
ondalgorithm to
ompute minimal p-
uts, so
alled MPQC, whi
h is almost thesame than MPPC ex
epted that �1 is
omputed as follows :�1= without(MPQC(�1); �0)Equations de�ning without are given on Fig.12 (in these equations, it is as-sumed that x < y). This algorithm is very similar to the one given by Rauzyin [Rau93℄. 20

without(�1; �) def= �1without(�; 1) def= �1without(�; �) def= �1without(�; �1) def= �without(1;�(x; �1; �0)) def= �(x; �1; without(1; �0))without(��(x; �1; �0); �) def= without(�(x; ��1; ��0); �)without(�; ��(x; �1; �0)) def= without(�;�(x; ��1; ��0))without(�(y; �1; �0);�(x; �1; �0)) def= �(x; �1; without(�; �0))without(�(x; �1; �0);�(y; �1; �0)) def= �(x; without(�1; �); without(�0; �))without(�(x; �1; �0);�(x; �1; �0)) def= �(x;
1;
0)where, 8><>:
0 = without(�0;
0)
1 = without(�1; apply(_; �1; �0))Fig. 12. The equations de�ning the algorithm without.Indeed, the following property holds for any BDD �.MPPC(�)= MPQC(�)5 Trun
ated Computations of Prime Impli
ants and Minimal P-Cuts5.1 AlgorithmsAs mentioned at the se
tion 2.2, a fun
tion may have an exponential numberof prime impli
ants with respe
t to its number of variables. As an illustration,
onsider the fun
tion #(n; n; [x1; : : : ; x2n℄) that is true if and only if exa
tly nof the xi's are true. In pra
ti
e, large real-life fault trees we dealt with havea
tually many prime impli
ants (say several millions). Up to some prepro-
essing, we su

edded almost always in
omputing the BDDs en
oding thesefault trees within reasonable running times and amounts of memory. Thereare some
ase however where we did not su

edded in
omputing the BDDsen
oding their prime impli
ants (or minimal p-
uts). In order to ta
kle thisdiÆ
ulty, we designed variations on MPPI, MPPC and MPQC that
ompute onlyprime impli
ants whose order is less than a given
onstant or whose proba-21

bility is greater than a given threshold. From a pra
ti
al point of view, theseimpli
ants are interesting be
ause they
on
entrate in general the most prob-able failures. Good assessments on reliability (and other measures of the risk)
an be obtained by
onsidering them only.From a te
hni
al point of view, variations we designed are based on the ob-servation that, at any step of the algorithms, we know a lower bound on theorder and a upper bound on the probability of prime impli
ants (or minimalp-
uts) to be built. Namely, assume that at the given step the formula understudy is f = ite(x; f1; f0) and that we know that prime impli
ants to be builtare at least of order k and at most of probability p, then a

ording to thede
omposition theorem (theorem 9):{ The prime impli
ants of f
ontaining x are at least of order k + 1 and atmost of probability p:p(x).{ The prime impli
ants of f
ontaining :x are at least of order k + 1 and atmost of probability p:(1� p(x)).{ The prime impli
ants of f
ontaining neither x or :x are at least of orderk and at most of probability p.Similarly, a

ording to theorem 10:{ The minimal p-
uts of f
ontaining x are at least of order k+1 and at mostof probability p:p(x).{ The minimal p-
uts of f that do not
ontain x are at least of order k andat most of probability p.The idea is thus simply to stop the
omputation when the
urrent order k orthe
urrent probability p rea
h the prede�ned bounds. Let us
all TrMPPI(f; k; p),TrMPPC(f; k; p) and TrMPQC(f; k; p) (the pre�x Tr stands for trun
ated) the al-gorithms
omputing respe
tively the prime impli
ants and the minimal p-
utsof f whose order is less than k and whose probability is greater than p. Equa-tions de�ning TrMPPI are given Fig. 13. kmax and pmin denote respe
tively theprede�ned upper bound on the order and lower bound on the probability ofthe
onsidered produ
ts. TrMPPI should be
alled with initial values of k andp set respe
tively to 0 and 1.Equations de�ning TrMPPC and TrMPQC
an be stated in a very similar way, asshown Fig. 14 for TrMPQC.The following properties hold.Proposition 12 (Completeness of TrMPPI) TrMPPI produ
es all of the primeimpli
ants of the fun
tion under study whose order is less than the given lowerbound and whose probability is greater than the given upper bound.22

TrMPPI(�; L; k; p) def= �1 if k > kmax or p < pminTrMPPI(�1; L; k; p) def= �1TrMPPI(1; [℄; k; p) def= 1TrMPPI(1; x:L; k; p) def= �(px; �1; TrMPPI(1; L))TrMPPI(��(x; �1; �0); L; k; p) def= TrMPPI(�(x; ��1; ��0); L; k; p)TrMPPI(�(y; �1; �0); x:L; k; p) def= �(px; �1; TrMPPI(�(y; �1; �0); L; k; p))TrMPPI(�(x; �1; �0); x:L; k; p) def= �(px;�(sx; �1; �0); �10)where, 8>>>>><>>>>>:�10 = TrMPPI(apply(^; �1; �0); L; k; p)�1 = apply(^; TrMPPI(�1; L; k + 1; p:p(x)); ��10)�0 = apply(^; TrMPPI(�0; L; k + 1; p:(1� p(x))); ��10)Fig. 13. The equations de�ning the algorithm TrMPPI.TrMPQC(�; L; k; p) def= �1 if k > kmax or p < pminTrMPQC(�1; L; k; p) def= �1TrMPQC(1; [℄; k; p) def= 1TrMPQC(1; x:L; k; p) def= �(px; �1; TrMPQC(1; L; k; p))TrMPQC(��(x; �1; �0); L; k; p) def= TrMPQC(�(x; ��1; ��0); L; k; p)TrMPQC(�(y; �1; �0); x:L; k; p) def= �(px; �1; TrMPQC(�(y; �1; �0); L; k; p))TrMPQC(�(x; �1; �0); x:L; k; p) def= �(px; �1; �0)where, 8><>:�0 = TrMPQC(�0; L; k; p)�1 = without(TrMPQC(�1; L; k + 1; p:p(x)); �0)Fig. 14. The equations de�ning the algorithm TrMPQC.Proposition 13 (Completeness of TrMPPC and TrMPQC) TrMPPC and TrMPQCprodu
e all of the minimal p-
uts of the fun
tion under study whose order isless than the given lower bound and whose probability is greater than the givenupper bound (and indeed they give the same result).The proof of both properties is done by indu
tion of the stru
ture of theformula en
oded by the BDD asso
iated with the fun
tion under study.It is also easy to establish a maximum bound on the number of
alls to the23

algorithms.Proposition 14 (Complexity of TrMPPI) The number of re
ursive
alls tothe algorithm is in O(2knk) (when k is small with respe
t to n).Proof by stru
tural indu
tion as well.Proposition 15 (Complexity of TrMPPC and TrMPQC) The number of re-
ursive
alls to the algorithm is in O(nk) (when k is small with respe
t ton).Proof by stru
tural indu
tion as well.This means that running times spent in the sear
h for prime impli
ants
anbe arbitrarily bound by �xing k a

ordingly.5.2 Computation of Probability of Trun
ated Prime Impli
ants and MinimalP-CutsAs shown in se
tion 3.8, it is easy to
ompute the probability of the root eventof a fault tree f on
e the BDD � en
oding f has been
omputed. On theother hand, the
omputation of trun
ated prime impli
ants and minimal p-
utsraises a question: is the approximation we get by
onsidering only trun
atedprime impli
ants or minimal p-
uts good enough ? To answer this question,it would be ideal to design an algorithm that
omputes the probability thatat least one of these prime impli
ants is true from the BDD � en
oding them.Unfortunately, it is not possible to
ompute this probability dire
tly. Thesolution
onsists in
omputing a BDD
 that en
odes a fun
tion whose primeimpli
ants are exa
tly those en
oded by �. On
e
 has been
omputed, thedesired probability is easily obtained (see se
tion 3.8).To
ome ba
k to a standard BDD from a BDD en
oding a meta-produ
t, wewill use an algorithm that is almost dire
tly indu
ed by the re
ursive equationsgiven Fig. 8 that de�ne the semanti
s of meta-produ
t BDD's. The equationsde�ning this algorithm are given Fig. 15.If the
onsidered BDD en
odes a simpli�ed meta-produ
t for minimal p-
uts(as dis
ussed se
tion 4.4), the third rule should be applied on every internalnode).It is easy to verify from equations of Fig.15, that the BDD ReverseMP(�)en
odes the disjun
tion of the produ
ts en
oded by �. Formally, the following24

ReverseMP(1) def= 1ReverseMP(�1) def= �1ReverseMP(��(x; �1; �0)) def= ReverseMP(�(x; ��1; ��0))ReverseMP(�(px; �1; �0)) def= apply(_; ReverseMP(�1); ReverseMP(�0))ReverseMP(�(sx; �1; �0)) def= �(x; ReverseMP(�1); ReverseMP(�0))Fig. 15. The equations de�ning ReverseMP.property holds.Proposition 16 (Semanti
s of ReverseMP) Let � be a meta-produ
t BDDand let � = ReverseMP(�), then the following equality holds.Shannon[[�℄℄� _�2MP (�) l̂2� lThe following property asserts the soundness of this ba
kward
omputation.Proposition 17 (Soundness of ReverseMP) Let � be a BDD, k be an orderand p a probability, then the following equalities hold.ReverseMP(MPPI(�))=� (3)MPPI(ReverseMP(TrMPPI(�; k; p)))= TrMPPI(�; k; p) (4)TrMPPI(ReverseMP(TrMPPI(�; k; p)); k; p)= TrMPPI(�; k; p) (5)MPPC(ReverseMP(TrMPPC(�; k; p)))= TrMPPC(�; k; p) (6)TrMPPC(ReverseMP(TrMPPC(�; k; p)); k; p)= TrMPPC(�; k; p) (7)MPQC(ReverseMP(TrMPQC(�; k; p)))= TrMPQC(�; k; p) (8)TrMPQC(ReverseMP(TrMPQC(�; k; p)); k; p)= TrMPQC(�; k; p) (9)Equality 3 means that by
omputing prime impli
ants of a BDD � and thenapplying ReverseMP on the obtained BDD, we get � again. Equalities 4-5 extend this result to
omputations with trun
ation. Indeed, su
h a ni
eproperty does not hold for minimal p-
uts, sin
e the fun
tion en
oded byReverseMP(MPPC(�)) is always monotone, even if the one en
oded by � is not,for p-
uts
ontain only positive literals. However, equalities 6-9 indi
ate thatthe
ombination � of one of the algorithms
omputing minimal p-
uts withReverseMP works as a proje
tion, in the mathemati
al meaning of this term,from the spa
e of Boolean fun
tions to the spa
e of monotone Boolean fun
-tions whose prime impli
ants obey
onstraints on their order and probability.Namely, for any fun
tion en
oded by a BDD �, we have �(�(�)) = �(�).25

Moreover, it is easy to verify the following property.Proposition 18 (Complexity of ReverseMP) Let � be a BDD, then thenumber of re
ursive
alls to the algorithm when
alling ReverseMP on � isin O(j�j), where j�j denotes the number of nodes of the BDD j�j.6 Experimental Results and Con
lusionIn order to test the algorithms presented in this paper, we
onsidered a numberof real-life fault trees that were provided by our industrial partners. We reporthere results obtained of two of them
oming from \�Ele
tri
it�e de Fran
e" and\Dassault Aviation". The tests reported in the tables below were performedon a SUN workstation ultra spark 1 with a 512 megabytes of memory. It is
lear that su
h a
omputer is not on every desk ! On the other hand, sin
emost of the resear
h
enters are now equiped with su
h ma
hines, it makessense to study what
an be done at the limits of the
urrent te
hnology.6.1 A Coherent Fault Tree from �Ele
tri
it�e de Fran
eThe �rst tree we
onsider is a
oherent one from �Ele
tri
it�e de Fran
e. Itis referen
ed under the name edfpa01 in our ben
hmark and it is a goodrepresentative for a very large
lass of fault trees. It has 337 gates (^ and _gates), 306 primary events and only 31 small modules. The
omputation ofthe BDD en
oding it takes 13:1 se
onds on average. This BDD is made of17836 nodes. The
omputation of the exa
t probability of its top event fromthis BDD takes 0:55 se
onds. The following table reports the probability ofthe top event for di�erent values of the probabilities of the primary events (forthis test, we assume that all primary events have the same probability).ProbabilitiesPrimary events 0:5 0:1 0:01 0:001 0:0001Top event 1 1 0:536048 0:0386668 0:0033621Note that the two �rst probabilities of the top event are 1, whi
h simply meansthat they are too
lose to 1 to be distinguished from this value with the doublepre
ision
oating point numbers of our
omputer.edfpa01 admits 7; 520; 142 prime impli
ants (or minimal
uts or minimal p-
uts sin
e these notions are equivalent for monotone fun
tions). The table 226

ContributionsOrders #PI jReverseMPj Times 0:5 0:1 0:01 0:001 0:00011 33 34 0:02 1 0:969097 0:526574 0:83993 0:9799622 6801 1474 0:02 1 0:999984 0:949656 0:996757 0:9999583 148780 19532 0:12 1 1 0:998515 0:999987 14 647556 68890 0:39 1 1 0:999991 1 15 507572 185849 1:01 1 1 1 1 16 577192 475242 2:54 1 1 1 1 17 1575616 583036 3:12 1 1 1 1 18 1745584 564808 3:05 1 1 1 1 19 1323120 310649 1:68 1 1 1 1 110 812520 152699 0:83 1 1 1 1 111 166968 106832 0:58 1 1 1 1 112 8400 100921 0:55 1 1 1 1 1Table 2Numbers of Prime Impli
ants and their
ontributions to the probability of the topevent of edfpa01.gives, for ea
h order k:{ The numbers of prime impli
ants of order k.{ The size of the BDD en
oding the fun
tion whose prime impli
ants are thoseof edfpa01 of order less than k.{ The running times to get the probability of this fun
tion from the previousBDD (these times are independant of the probability of primary events).{ The
ontribution of this fun
tion to the probability of edfpa01 for thedi�erent values of the probabilities of the primary events mentioned above(this
ontribution is de�ned as the probability of the fun
tion divided bythe probability of edfpa01).A number of remarks
an be made about this table.Remark 19 The number of prime impli
ants is very large and it is doubtfulthat
lassi
al methods based on in
lusion/ex
lusion te
hniques
ould pro
eedthis tree.Remark 20 Most of the probability of the fun
tion edfpa01 is
on
entratedinto prime impli
ants of low orders, whi
h is in general the
ase for the
o-herent fault trees of our ben
hmark. 27

02040
6080100120140

0 2 4 6 8 10 12 14

TrMPMCTrMPPITrMPPC

Fig. 16. Running times in se
onds (y-axis) of TrMPMC, TrMPPI and TrMPPC onedfpa01 for di�erent trun
ation orders (x-axis).Remark 21 Even for large BDD's, the
omputation of the probability of thefun
tion en
oded by the BDD is a
hieved very qui
kly.In order to
ompute prime impli
ants of edfpa01, we tested four algorithms:MPMC, the version with trun
ation of the algorithm one of us proposed in[Rau93℄, and the versions with trun
ation of the three algorithms MPPI, MPPCand MPQC presented in this paper. The running times of these algorithms are
ompared on Fig. 16 and Fig. 17. Horizontal lines give running times foralgorithms without trun
ation.A number of remarks
an be made about these two �gures.Remark 22 Running times for MPPI and MPPC (and the versions with trun-
ation of these two algorithms) are almost the same. MPMC is faster, while MPQCis far slower. It is hard to �nd
onvin
ing arguments to explain that. Clearly,MPMC takes advantage it knows that the fun
tion is monotone. On the otherside, performan
es of MPQC are bad as soon as the number of impli
ants islarge.Remark 23 For all of these four algorithms, there is an order k beyond whi
hit is more
ostly to
ompute prime impli
ants whose order is less than k thanto
ompute all prime impli
ants. The same remark holds also for the num-ber of nodes of the obtained BDD's and the total number of nodes required to
omputed them. This
an be explained in two ways: �rst, the memorization ofintermediate results is less eÆ
ient when a trun
ation is performed (sin
e thetrun
ation order must be taken into a

ount), and se
ond, there are probablymore regularities that
an be
aptured by BDD's when no trun
ation is per-28

020040060080010001200140016001800

0 2 4 6 8 10 12 14

TrMPPCTrMPQC

Fig. 17. Running times in se
onds (y-axis) of TrMPPC and TrMPQC on edfpa01 fordi�erent trun
ation orders (x-axis).formed. The later argument is enfor
ed by the observation that, at least forMPMC and MPQC in the edfpa01
ase, the
omputations times de
rease as thetrun
ation order in
reases beyond a
ertain order.6.2 A Non Coherent Fault Tree from Dassault AviationThe se
ond tree we
onsider is a non-
oherent one from Dassault Aviation. Itis referen
ed under the name das9605 in our ben
hmark. It has 287 gates (:,^, _ and k-out-of-n gates), 122 primary events and only 28 small modules.The
omputation of the BDD en
oding it takes 3:55 se
onds on average. ThisBDD is made of 34913 nodes.Sin
e this tree is non-
oherent, the notions of prime impli
ants and minimalp-
uts do not
oin
ide. das9605 admits 1:30977 1011 prime impli
ants. TheBDD en
oding them is
omputed in 173 se
onds by MPPI and has 897253nodes. The Fig.18 reports the evolution of the number of prime impli
ants asa fun
tion of the order. A number of remarks should be done about this �gure.{ The prime impli
ants of lowest order
ontain already 22 literals.{ The did not su

eed in
omputing trun
ated prime impli
ants whose ordersare greater than 65. To give an idea, for the trun
ation order 60, TrMPPItakes 38 minutes and builds a BDD of 1; 189; 426 nodes.The number of prime impli
ants of das9605 (1:30977 1011) should be
omparedwith its number of minimal p-
uts: 4259. The table 3 gives the number of29

101001000100001000001e+061e+071e+081e+091e+101e+11

20 25 30 35 40 45 50 55 60 65

"#PI"

Fig. 18. Number of prime impli
ants (y-axis) as a fun
tion of the order (x-axis) fordas9605.Order 1 2 3 4 5 6 7 8 9 All#p�
uts 0 47 80 319 342 571 580 1168 1152 4259TrMPPC 0:89 5:24 25:20 94:03 288:72 924:34 5006 13; 914 ? 47; 109TrMPQC 0:01 0:06 0:30 0:91 2:03 3:56 5:41 7:28 8:86 2:06Table 3Number of minimal p-
uts and running times in se
onds of TrMPPC and TrMPQC ondas9605 for di�erent trun
ation orders.minimal p-
uts for ea
h order and the running times in se
onds to get theBDD en
oding them with TrMPPC and TrMPQC. MPPC and MPQC take respe
tively47; 109 and 2:06 se
onds to
ompute the BDD en
oding all minimal p-
uts.These results lead to the two following remarks.Remark 24 Both orders and numbers of minimal p-
uts are reasonnable whilethose of prime impli
ants are not. This means that qualitative treatments
anbe a
hieved by means of the minimal p-
uts but not by means of prime impli-
ants.Remark 25 Sin
e the number of minimal p-
uts remains small, MPQC is farmore eÆ
ient than MPPC (whi
h takes about 13 hours to a
hieve the
omputa-tion).The
omputation of the exa
t probability of the top event of das9605 (fromthe BDD en
oding this fun
tion) takes 0:30 se
onds. The table 4 reports the30

ProbabilitiesPrimary events 0:5 0:1 0:01 0:001 0:0001Top event 5:56868 10�5 0:125066 0:0042344 4:6525 10�5 4:69524 10�7Trun
ation order Contributions of minimal p�
uts2 17942:8 2:56175 1:08091 1:00768 1:000763 17955:3 2:81484 1:09866 1:00939 1:000934 17957:1 2:89925 1:09936 1:0094 1:000935 17957:1 2:90572 1:09937 1:0094 1:000936 17957:1 2:90659 1:09937 1:0094 1:000937 17957:1 2:90665 1:09937 1:0094 1:000938 17957:1 2:90666 1:09937 1:0094 1:000939 17957:1 2:90667 1:09937 1:0094 1:00093Table 4Numbers of minimal p-
uts and their
ontributions to the probability of the topevent of das9605.probability of the top event for di�erent values of the probabilities of theprimary events (for this test, we assume that all primary events have the sameprobability). Beyond the third row, it reports the
ontribution of minimal p-
uts to the probability of the top event.Here, the term
ontribution should be taken with
are: it means the quotientof the probability of the top event by the probability of the fun
tion en
odedby the BDD ReverseMP(TrMPPC(das9605; k)). The prime impli
ants of thisfun
tion are the minimal p-
uts of das9605 whose orders are less than k. Theimportant point is the following.Remark 26 None of the fun
tions en
oded by the BDD's ReverseMP(TrMPPC(das9605; k))is equivalent to das9605, even the one en
oded by the BDD ReverseMP(MPPC(das9605))is not. These fun
tions are monotone (sin
e p-
uts
ontain only positive liter-als) while das9605 is
ertainly not. This has two
onsequen
es:{ The
ontributions we get are approximations of the
ontributions of primeimpli
ants, whi
h explains that the table 4 reports
ontributions greater than1.{ These approximations are sound only when the probabilities of primaryevents are low (and thus that the probabilities of the
orresponding negativeliterals
an be assimilated to 1), whi
h explains that for high probabilities ofprimary events (0.5, 0.1) the obtained results have stri
tly no meaning.31

Remark 27 Note however that for low probabilities of primary events (10�3; 10�4),approximations are rather good, whi
h makes minimal p-
uts an useful toolboth for qualitative and quantitative analysis of non
oherent fault trees.7 Con
lusionIn this paper, we introdu
ed a new notion of impli
ants of Boolean fun
tions,the minimal p-
uts, that formalizes the idea to keep only positive parts ofprime impli
ants.We proposed two BDD based algorithms to
ompute minimal p-
uts. We alsoproposed variations on these algorithms as well as on known algorithms to
ompute prime impli
ants that
ompute only prime impli
ants or minimal p-
uts whose order is less than a given value and whose probability is greaterthan a given threshold.We provide experimental eviden
e that these algorithms allow fast, a

urateand in
remental qualitative and quantitative analyses of very large
oherentand non-
oherent real-life fault trees. These experiments show that the BDDbased te
hnology outperforms by orders of magnitude all previously proposedmethods to assess the probability of a Boolean model.Referen
es[Ake78℄ B. Akers. Binary De
ision Diagrams. IEEE Transa
tions on Computers,27(6):509{516, 1978.[Ara94℄ Groupe Aralia. Arbres de D�efaillan
es et diagrammes binaires ded�e
ision. In A
tes du 1er
ongr�es interdis
iplinaire sur la Qualit�e etla Sûret�e de Fon
tionnement, pages 47{56. Universit�e Te
hnologique deCompi�egne, 1994. The \Groupe Aralia" is
onstitued by A. Rauzy(LaBRI { Universit�e Bordeaux I), Y. Dutuit (LADS { Universit�eBordeaux I), J.P. Signoret (Elf-Aquitaine { Pau), M. Chevalier(S
hneider Ele
tri
 { Grenoble), I. Morlaes (SGN { Saint Quentinen Yvelines), A.M. Lapassat (CEA-LETI { Sa
lay), S. Comba
on(CEA-IPSN { Valdu
), F. Brug�ere (Te
hni
atome { Aix-Les Milles),M. Bouissou (EDF-DER { Clamart).[Ara95℄ Groupe Aralia. Computation of Prime Impli
ants of a Fault Tree withinAralia. In Pro
eedings of the European Safety and Reliability Asso
iationConferen
e, ESREL'95, pages 190{202, Bournemouth { England, June1995. European Safety and Reliability Asso
iation.32

[BRB90℄ K. Bra
e, R. Rudell, and R. Bryant. EÆ
ient Implementation of a BDDPa
kage. In Pro
eedings of the 27th ACM/IEEE Design AutomationConferen
e. IEEE 0738, 1990.[Bry86℄ R. Bryant. Graph Based Algorithms for Boolean Fon
tion Manipulation.IEEE Transa
tions on Computers, 35(8):677{691, August 1986.[Bry92℄ R. Bryant. Symboli
 Boolean Manipulation with Ordered BinaryDe
ision Diagrams. ACM Computing Surveys, 24:293{318, September1992.[CM78℄ A.K. Chandra and G. Markowsky. On the number of prime impli
ants.Dis
rete Mathemathi
s, 24:7{11, 1978.[CM92a℄ O. Coudert and J.-C. Madre. A New Method to Compute Prime andEssential Prime Impli
ants of Boolean Fun
tions. In T. Knight andJ. Savage, editors, Advan
ed Resear
h in VLSI and Parallel Systems,pages 113{128, Mar
h 1992.[CM92b℄ O. Coudert and J.-C. Madre. Impli
it and In
remental Computation ofPrimes and Essential Primes of Boolean Fun
tions. In Pro
eedings of the29th ACM/IEEE Design Automation Conferen
e, DAC'92, June 1992.[CY85℄ L. Camarinopoulos and J. Yllera. An Improved Top-down AlgorithmCombined with Modularization as Highly EÆ
ient Method for FaultTree Analysis. Reliability Engineering and System Safety, 11:93{108,1985.[LGTL85℄ W.S. Lee, D.L. Grosh, F.A. Tillman, and C.H. Lie. Fault tree analysis,methods and appli
ations : a review. IEEE Trans
ations on Reliability,34:194{303, 1985.[Min93℄ S. Minato. Zero-Suppressed BDDs for Set Manipulation inCombinatorial Problems. In Pro
eedings of the 30th ACM/IEEE DesignAutomation Conferen
e, DAC'93, pages 272{277, 1993.[Qui52℄ W.V.O. Quine. The problem of simplifying truth fun
tions. Ameri
anMathemati
s Monthly, 59:521{531, 1952.[Qui59℄ W.V.O. Quine. On
ores and prime impli
ants of truth fun
tions.Ameri
an Mathemati
s Monthly, 66:755{760, 1959.[Rau93℄ A. Rauzy. New Algorithms for Fault Trees Analysis. ReliabilityEngineering & System Safety, 05(59):203{211, 1993.[Rau96℄ A. Rauzy. An Introdu
tion to Binary De
ision Diagrams and someof their Appli
ations to Risk Assessment. In O. Roux, editor, A
tesde l'�e
ole d'�et�e, Mod�elisation et V�eri�
ation de Pro
essus Parall�eles,MOVEP'96, 1996. Also Te
hni
al Report LaBRI number 1121-96.[VGRH81℄ W.E. Vesely, F.F. Goldberg, N.H. Robert, and D.F. Haas. Fault TreeHandbook. Te
hni
al Report NUREG 0492, U.S. Nu
lear RegulatoryCommission, 1981. 33

A Proof of the De
omposition Theorem for Prime Impli
antsLet us �rst re
all the theorem to be proved.Theorem 9 (De
omposition Theorem) Let f(x1; : : : ; xn) be a boolean fun
-tion. Then, the set of prime impli
ants of f(x1; : : : ; xn)
an be obtained as theunion of the sets.PI[f(x1; : : : ; xn)℄ =PI10 [PI1 [PI0where, PI10, PI1 and PI0 are de�ned as follows.PI10 def= PI[f(1; x2; : : : ; xn) ^ f(0; x2; : : : ; xn)℄PI1 def= ffx1g [�; � 2 PI[f(1; x2; : : : ; xn) n PI10gPI0 def= ff:x1g [�; � 2 PI[f(0; x2; : : : ; xn) n PI10gwhere n stands for the set di�eren
e.In order to prove the above theorem, we �rst demonstrate the following lemma.Lemma 28 Let f(x1; : : : ; xn) be a Boolean fun
tion and let � be a produ
tbuilt over x1, . . . , xn su
h that x1 62 � and :x1 62 �. Then, � is a primeimpli
ant of f(x1; : : : ; xn) i� it is a prime impli
ant of f(1; x2; : : : ; xn) ^f(0; x2; : : : ; xn)Proof: if part: Let � a prime impli
ant of f(x1; : : : ; xn) su
h that x1 62 � and:x1 62 �. Then, � is an impli
ant of f(1; x2; : : : ; xn) and of f(0; x2; : : : ; xn).Thus, � is an impli
ant of f(1; x2; : : : ; xn)^f(0; x2; : : : ; xn). Now, assume thereexists a prime impli
ant � of f(1; x2; : : : ; xn)^f(0; x2; : : : ; xn) su
h that � � �.Clearly, � is an impli
ant of ite(x; f(1; x2; : : : ; xn); f(0; x2; : : : ; xn)) and thusof f(x1; : : : ; xn). But � is prime: a
ontradi
tion.only if part: Now, let � a prime impli
ant of f(1; x2; : : : ; xn)^ f(0; x2; : : : ; xn)and assume that there is a prime impli
ant � of f(x1; : : : ; xn) su
h that � � �.�
annot
ontain x and thus, by the above reasonning, it is an impli
ant off(1; x2; : : : ; xn) ^ f(0; x2; : : : ; xn). A
ontradi
tion. 2In order to
omplete the proof of the theorem 9, it suÆ
es to remark that tobe a prime impli
ant of f(x1; : : : ; xn), a produ
t fx1g[� should ful�l the twofollowing requirements:(i) � is a prime impli
ant of f(1; x2; : : : ; xn).(ii) � is not a prime impli
ant of f(x1; : : : ; xn), i.e. sin
e x1 62 �, � 62PI[f(1; x2; : : : ; xn) ^ f(0; x2; : : : ; xn)℄.34

Similarly for prime impli
ants
ontaining :x1. 2B Proof of the De
omposition Theorem for Minimal P-CutsLet us �rst re
all the theorem to be proved.Theorem 10 (De
omposition Theorem for Minimal P-Cuts) Let f(x1; : : : ; xn)be a boolean fun
tion. Then, the set of minimal p-
uts of f(x1; : : : ; xn)
an beobtained as the union of two sets.PC[f(x1; : : : ; xn)℄ =PC1 [PC0where, PC1 and PC0 are de�ned as follows.PC1 def= ffx1g [�; � 2 PC[f(1; x2; : : : ; xn) _ f(0; x2; : : : ; xn)℄ n PC0gPC0 def= PC[f(0; x2; : : : ; xn)℄Let us �rst remark that for any fun
tion f(x1; : : : ; xn), the fun
tion g(x1; : : : ; xn)de�ned as follows:g(x1; : : : ; xn)= ite(x1; f(1; x2; : : : ; xn) _ f(0; x2; : : : ; xn); f(0; x2; : : : ; xn))is monotone in x1. Moreover, it is easy to see thatPC[g(x1; : : : ; xn)℄=PC[f(x1; : : : ; xn)℄It is
lear that they have the same minimal p-
uts that do not
ontain x1. Letfx1g [� be a minimal p-
ut of g(x1; : : : ; xn). �
 should be an impli
ant ofg(1; x2; : : : ; xn) but not of g(0; x2; : : : ; xn), that is �
 should be an impli
antof f(1; x2; : : : ; xn).The reader will easily
omplete in a way very similar to the one we used todemonstrate theorem 9. 2Noti
e that it is mandatory to
onsider minimal p-
uts of f(1; x2; : : : ; xn) _f(0; x2; : : : ; xn) in order to get minimal p-
uts of f(x1; : : : ; xn) that
ontain x1.The reason is that one should eliminate from minimal p-
uts of f(1; x2; : : : ; xn)those that
ontain stri
tly a minimal p-
ut of f(0; x2; : : : ; xn). For instan
e,let f(a; b;
) = (a ^ b ^
) _ (:a ^ b). We have PC[f(1; b;
)℄ = ffb;
gg and35

PC[f(0; b;
)℄ = ffbgg, and thus PC[f(1; b;
)℄nPC[f(0; b;
)℄ = PC[f(1; b;
)℄,but PC[f(1; b;
) _ f(0; b;
)℄ = PC[f(0; b;
)℄. Thus, by
onsidering minimalp-
uts of f(1; b;
) _ f(0; b;
), we eliminate the produ
t fb;
g whi
h does notbelong to PC[f(0; b;
)℄ but that
ontains stri
tly a produ
t of this set, namelyf
g.

36

