Exact and Truncated Computations of Prime Implicants
of Coherent and Non-Coherent Fault Trees within Aralia,

Yves Dutuit and Antoine Rauzy !

LADS and LaBRI
Université Bordeauz I, 351, cours de la Libération
33405 Talence cedex, France
dutuit@iuta.u-bordeauz.fr and rauzy@labri.u-bordeauz.fr

Aralia is a Binary Decision Diagram (BDD) package extended to handle
fault trees. It is currently developed at the University of Bordeaux as a
part of a partnership between university laboratories and several french
companies.

BDD’s are the state of the art data structure to handle boolean functions.
They have been recently used with success in the framework of safety and
reliability analysis.

The aim of this paper is to present how prime implicants (minimal cuts)
of coherent and non-coherent fault trees are computed within Aralia. The
used algorithms are mainly those proposed by J.C. Madre and O. Coudert
one the one hand and A. Rauzy on the other hand. We introduce the
notion of minimal p-cuts that is a sound extension of the notion of minimal
cuts to the case of non-coherent fault trees. We propose two BDD based
algorithms to compute them.

We show how to modify these algorithms in order to compute only prime
implicants (or minimal p-cuts) whose orders are less than a given con-
stant or whose probabilities are greater than a given threshold. We report
experiments showing that this improves significantly the methodology for
this allows fast, accurate and incremental approximations of the desired
result.

Key words: Coherent and non-coherent Fault Trees, Prime Implicants, Minimal
(p-)Cuts, Binary Decision Diagrams.

I This works has been partly supported by the Aralia project that is a partner-
ship between our two laboratories — the Laboratoire d’Analyse de Défaillances
des Systemes (LADS) and the Laboratoire Bordelais de Recherche en Informatique
(LaBRI) — and the following compagnies: Commissariat 3 L’Energie Atomique
(LETI), Dassault Aviation, Electricité de France, EIf Aquitaine, Institut de Protec-
tion et de Stureté Nucléaire, Renault, Schneider Electric, Société Générale pour les
techniques Nouvelles (COGEMA) and Technicatome.

Preprint submitted to Elsevier Preprint 12 August 2001

1 Introduction

The fault tree method is a well known engineering techniques that is widely
used to perform safety analyses of embedded systems [VGRH81,LGTLS85].
It is nowadays well understood by most practitioners. However, problems still
remain to exploit it fully because of the computational complexity of the basic
operations it requires. These difficulties appear both for qualitative treatment
(computation of sets of failures of elementary components that induce a failure
of the whole system) and for quantitative treatment (determination of the
probability of failure of the whole system given the probabilities of failure
of its elementary components). Classical techniques — described in the cited
books — fail to handle large size non-decomposable fault trees because they
cannot, avoid combinatorial explosions in both time and space.

Since fault trees are essentially boolean formulae, a way to limit combina-
torial explosion is to encode them by means of Binary Decision Diagrams
(BDD’s). BDD’s are the state-of-the-art data structure to encode and ma-
nipulate boolean functions. They have been introduced by Akers [Ake78] and
improved by Bryant [Bry86,BRB90]. They are nowadays used in a wide range
of areas, including hardware design and verification, protocol validation and
automated deduction (see [Bry92] for a survey of BDD’s and their applica-
tions).

This paper presents BDD based algorithms that perform qualitative and quan-
titative analyses of fault trees. We focus on the computation of prime im-
plicants of non-coherent fault trees. Prime implicants, that are often called
minimal cuts in the reliability engineering literature, are of a great interest for
qualitative analyses: they can be seen as minimal sets of failures of elementary
components that induce a failure of the whole system. Even medium size fault
trees may have a very large number of prime implicants. Following Madre and
Coudert’s [CM92a], Minato’s [Min93] and Rauzy’s [Rau93] ideas, it is possible
to encode them by means of BDD’s. The point is that the size of the BDD
encoding a set of prime implicants is not directly related to the number of
elements of the set. Very large sets can be encoded by means of small BDD’s.
This is a major difference with the classical sum-of-products representation.
Two algorithms have been proposed to compute a BDD encoding prime im-
plicants of a function from the BDD encoding this function. The first one by
J.C. Madre and O. Coudert in [CM92b], the second one by one of the au-
thors in [Rau93]. Both use the same inductive decomposition principle. The
latter works only for monotone functions (coherent fault trees) but it is more
efficient than the former [Ara94]. Both outperform by orders of magnitude
already proposed methods. Both are implemented in the BDD package Aralia
[Ara94,Ara95]. This tool has been realized as a part of a collaboration between

two laboratories of the Université Bordeaux I and several French companies 2
grouped in a research team of the French institute for system dependability
(ISAF3).

In this paper, we present Madre and Coudert’s algorithm as well as two algo-
rithms to compute minimal p-cuts. Minimal p-cuts are a new kind of impli-
cants we introduce here. They can be seen as a sound extension of the notion
of minimal cuts to the case of non-coherent fault trees. Intuitively, they con-
sists of minimal positive parts of prime implicants. They are of interest for two
reasons: first, practitioners are often more interested in positive information
(what is failed) than in negative information (what works correctly). Second,
more accurate approximations can be obtained by computing truncated min-
imal p-cuts than by computing truncated prime implicants. We shall develop
this point later.

We performed with Aralia a number experiments on real-life fault trees. These
fault trees are almost impossible to handle by means of classical techniques
because they are not only very large (several hundred of gates and primary
events) but also non decomposable (without modules). Thanks to some pre-
processing of the trees, we always succeeded in computing the BDD encoding
them. This allowed us to get the exact probability of their top events. For
some of them however, we did not succeed in computing the BDD’s encod-
ing their prime implicants and minimal p-cuts, even with computer memo-
ries allowing the allocation of several millions of BDD nodes. To tackle this
problem, we propose here a modification of the inductive decomposition prin-
ciple that allows the computation of only prime implicants and minimal p-
cuts whose orders are less than a given constant or whose probabilities are
greater than a given threshold. The new algorithms are complete in this sense
that all of the prime implicants and minimal p-cuts verifying the property
are actually obtained. This makes a major difference with classical decom-
position/modularization techniques for fault trees, such as those proposed in
[CY85]. These techniques, despite of their interest, cannot be made complete
in the above sense (excepted of course by computing all of the prime impli-
cants or minimal p-cuts). Moreover, it is possible to compute a BDD encoding
a function whose prime implicants (or minimal p-cuts) are exactly those ob-
tained by the truncated computation. This BDD is used to compute the exact
probability of this function, which makes it possible to evaluate how accurate
the approximation is.

We show by means of examples that the algorithms we propose improve sig-
nificantly the methodology for they allow fast, accurate, and incremental ap-
proximations of the desired results.

2 See first page.
3 Institut de Sureté de Fonctionnement.

The remainder of this paper is organized as follows. In the next section, we first
briefly recall basics on fault trees and prime implicants. We present BDD’s in
section 3. We present Madre and Coudert’s algorithm as well as the ones to
compute minimal p-cuts in section 4. We propose the algorithms computing
truncated prime implicants and minimal p-cuts in section 5. Finally, we report
experimental results in section 6.

2 Fault Trees and Prime Implicants

In this section, we recall basic definitions about fault trees and boolean ex-
pressions.

2.1 Faoult Trees

For the purpose of this paper, fault trees are essentially considered as boolean
formulae, i.e. terms inductively built over the two constants 0 and 1, a set of
variables X', and usual logical connectives A (and), V (or), = (not),

Fig. 1 depicts a small fault tree that will be used throughout this paper. g,
is the root event of the tree, go and g3 are internal events, and a, b and ¢ are
primary events. Primary events are also called terminal events. The boolean
formula associated with gy is ((a Ab)V (=aAc)). This fault tree is not coherent
because of the negation, or in other words because the boolean formula it
describes is not monotone. In what follows we simply say g; for “the boolean
formula associated with ¢;”.

. ™~
& b o
Fig. 1. A non coherent fault tree

2.2 Prime Implicants and Minimal P-Cuts

In order to introduce formally the notion of prime implicants, we need the
following definitions.

A literal is either a boolean variable x or its negation —z. and —x are said
opposite.

A product is a set of literals that does not contain both a literal and its
opposite. A product is assimilated with the conjunction of its elements.

An assignment over X is any mapping from X to {0,1}. Assignments are ex-
tended inductively into mappings from boolean formulae into {0, 1} according
to the usual rules: let o be an assignment and let f and g be two formulae, then
olf Vgl = max(olf],olgl), olf A g] = min(o[f],olg]) and o[~f] = 1 - o[f].
An assignment o satisfies a formula f if o[f] = 1, otherwise it falsifies f. For
instance [a < 1,b « 1,¢ + 1] is an assignment over {a, b, ¢} that satisfies go
and ¢; and that falsifies gs.

Let f and g be two formulae. If any assignment satisfying f satisfies g as well,
f implies g, which is denoted by f = ¢g. If both f implies ¢ and g implies f,
f and ¢ are said equivalent, which is denoted by f = g¢.

Let f(xy,...,2,) be a boolean function and let o be any assignment that
satisfies f. Then, f is monotone if for any variable z; such that o[z;] = 0, the
assignment ¢, such that o'[z;] = 1 and o'[z;] = o[z;] for j # i, satisfies f as
well. If the property holds only for some variable x;, we say that f is monotone
n T;.

The notion of monotone formulae is the mathematical basis of coherent fault
trees. It is clear that a formula made only of variables and connectives A, V
and k-out-of-n is monotone.

Let f be a boolean formula and 7 be a product. 7 is an implicant of f if 7 = f,
i.e. if any assignment satisfying 7 satisfies f.

Let f be a boolean formula and 7 be an implicant of f. 7 is prime if there is
no implicant p of f strictly included in 7. We denote by PI|[f] the set of all
the prime implicants of the formula f.

For instance the formula g; of the Fig. 1 admits 7 implicants {a, b}, {a,b, c},
{a,b,—c}, {—a,b,c}, {—a,c}, {—a,—b,c} and {b,c} and 3 prime ones {a,b}
and {—a, c}, {b, c}.

Prime implicants of coherent fault trees are often called minimal cuts in the
reliability engineering literature.

The order of a product (an implicant, a prime implicant) is the number of
literals it contains.

As said in the introduction, there may exist an exponential number of prime

implicants with respect to the number of variables occurring in the formula
under study [Qui59,CM78]. In practice, even though this worst case is seldom
reached, the actual number of prime implicants is often very large (several
thousands) and classical approaches [VGRH81,LGTLS85] fail to handle large
size non-decomposable fault trees because they cannot avoid combinatorial
explosions in both time and space.

In practice, one is often only interested in positive parts of prime implicants.
This is because only positive literals represent failures*. In order to formalize
this, we introduce here the notion of p-cut.

Let f be a boolean function and let m be a product containing only positive
literals.

We denote by 7% the product obtained by adding to 7 the negative literals
formed over all of the variables occurring in f but not in 7. In the sequel,
we will omit the subscript f when the referenced formula in clear from the
context. For instance, {a}; = {a, b, =c}, where g; is the formula of the Fig. 1.

Now, 7 is a p-cut of f if it fulfils the first of the two following requirements,
it is menimal if it fulfils the second one.

(i) 7¢ is a implicant of f.
(ii) There is no product p C 7 such that p© is a implicant of f.

The formula g; of Fig. 1 admits two minimal p-cuts, {a, b} and {c}. Note, that
the prime implicant (and p-cut) {b, ¢}, which is made only of positive literals,
does not lead to a minimal p-cut because the other prime implicant {—a, ¢}
has a shorter positive part.

We denote by PC|[f] the set of all the minimal p-cuts of the formula f.

The following property holds that is deduced directly from the definition of
monotone functions.

Proposition 1 (Prime implicants of monotone functions) Let f be mo-
notone function and let m be a prime implicant of f. Then, m™ contains only
positive literals.

The following proposition comes from the previous one.

Proposition 2 (Prime implicants vs. p-cuts of monotone functions)
Let f be a monotone function. Then, PI[f] = PC[f].

4 We would like to thank J. Gauthier, from Dassault Aviation, that showed us the
interest of this notion.

3 Binary Decision Diagrams

In this section, we first introduce basic definitions and properties of Binary
Decision Diagrams (for a comprehensive survey on that technique, see [BRB90]
and [Bry92]). Then, we present the way the algorithm described in the previous
section is implemented by means of operations on BDD'’s.

3.1 Shannon Decomposition

As we will see, the Binary Decision Diagram representation of boolean func-
tions uses mainly the connective ite (for If-Then-Else) defined as follows.

Definition 3 (ite connective) Let f, g and h three boolean functions, then

ite(f,g,h) & (f Ag)V (—f A)

Any binary connective can be expressed by means of an ite and possibly a
negation. For instance, f V g = ite(f, 1, g) and f & g = ite(f, —g, g). It is pos-
sible to express the negation by means of an ite connective (—f = ite(f,0,1)),
however, as we will see, binary decision diagrams manage the negation in a
more specific way.

Moreover, given boolean function f(z1,...,x,), the following equivalence holds,
so-called Shannon decomposition.

Theorem 4 (Shannon decomposition)

flzr, o)= (e A f(Lxg, ..o x0)) V (mxy A (O, 29, ..., 2y))
=ite(xq, f(1,29,...,2,), [(0,29,...,2,))

By applying this principle recursively, one can rewrite any function as an
equivalent one that is built only with variables, connectives ite and boolean
constants 0 and 1.

For instance, the formula g; of Fig. 1 is equivalent to ite(a, ite(b, 1,0), ite(c, 1, 0)).

Another interesting property of the connective ite is that it is orthogonal with
the usual connectives.

Definition 5 (Orthogonality) Let Op be an n-ary operation. Let f' ..., f"

1 0

© © © ©
1] 00) O O [

Fig. 2. The decision tree encoding g; for the order a < b < ¢

be n formulae and let x be a variable, Op is said to be orthogonal with ite if
the following equivalence holds.

Op(fl, S fn) = ite(x, Op(f;;:p) fg?:1)a Op(f;;:m R ;L:[)))

where f,—, denotes the formula f in which the constant v has been substituted
for all occurrences of x.

Proposition 6 (Orthogonality) — (not), V (or), A (and), < (imply), <
(if and only if) and & (exclusive or) are orthogonal with ite.

3.2 Informal Presentation of Binary Decision Diagrams

In order to provide the reader with an intuition of what binary decision dia-
grams are, let us consider again the function g; of the Fig. 1. Thank to the
theorem 4, it is possible to build a decision tree encoding the truth table g;.
Given a total order over the variables of the function under study, a decision
tree is a complete binary tree whose leaves are labeled with the constant 0 or
1 and whose iternal nodes are labeled with variables. The nodes at level 7 in
the tree are labeled with the variable of rank 7 in the considered order. Each
node has two outedges, labeled respectively with 0 and 1, that correspond to
the two possible valuations of the variable it is labeled with. The tree asso-
ciated with g; for the order a < b < c is pictured Fig. 2. The value of the
function for a given variable assignment is obtained by descending along the
corresponding branch of the tree. Intuitively, each node of the tree encodes a
formula in the form ite(z, f1, fy), where x is the variable it is labeled with and
fi1 and f;, are the formulae encoded respectively by the trees pointed by its 1-
and 0-outedges.

Now, it is clear that such an encoding for the truth table of a function is very
expensive: if the function depends on n variables, the associated decision tree
has 2" — 1 internal nodes and 2" leaves. However, it is possible to make the
representation far more compact by applying the two following operations.

Fig. 3. The BDD encoding g; (for the order a < b < ¢)

(i) Isomorphic subtrees merging. Since two isomorphic subtrees have the
same semantics, at least one is useless. This is especially the case for
leaves: two leaves suffice, one labeled with 0, the other one by 1.

(ii) Useless nodes deletion. If a node encodes a formula in the form ite(x, f, f)
it is useless since ite(z, f, f) = f. So pointers to that node can be replaced
by pointers to the node encoding f.

By applying these two rules as far as possible, one gets the binary decision
diagram associated with the formula. As we will see, it is unique (up to an
isomorphism). The binary decision diagram associated with g; (for the order
a < b < ¢) is pictured Fig 3. The point is that it is possible to get the BDD
associated with a formula directly, i.e. without constructing the whole binary
decision tree and then reducing it.

3.8 Formal Definition

Let 1, ..., x, be n boolean variables. A binary decision diagram over xi,. ..z,
is a directed acyclic graph G verifying conditions (i) and (ii).

(i) G has two sink nodes labeled respectively with 0 and 1.
(ii) Each internal node of G is labeled with a variable x; and has 2 outedges
labeled respectively with 0 and 1.

Let < be a total order over X'. A binary decision diagram G is said to be
ordered if condition (iii) holds.

(iii) For any pair of nodes («,f) labeled respectively with the variables x; and
xj, if one of the two out-edges of o points to 3 then z; < z;.

An ordered BDD is said reduced if conditions (iv) and (v) hold.

(iv) It contains no internal node whose outedges are both pointing to the same
sub-graph.
(v) It contains no two isomorphic sub-graphs.

Shannon[1] %

Shannon[A(z, oy,)] = ite(x;, Shannon[ai], Shannon[ay])

Shannon[0] '
1

Q.
N

Fig. 4. The standard semantics for BDD’s

In what follows, we will abbreviate reduced ordered binary decision diagram
in ROBDD, or even BDD. Moreover, we will say the BDD « for the BDD
whose nodes are those reachable from the node «a. Finally, we will denotes
by A(z,aq,ap) the node « labeled with the variable z and whose 1- and 0-
outedges point respectively to the nodes a; and «aq (since, by definition, there
is no two isomorphic sub-graphs this node is unique).

3.4 Shannon Semantics for ROBDD’s

BDD'’s, as we defined them in the previous section, are a data structure, just a
data structure. As such, they have no intrinsic semantics. So, we have to define
function that associates a mathematical objet, namely a boolean function, to
each BDD. An usual way to describe such a function and more generally to
define operations on BDD’s is to write a set of recursive equations. The set of
recursive equations defining the standard, or Shannon, semantics for BDD’s
is given Fig. 4 (there are actually other semantics for BDD’s [Rau96]).

Thanks to the Shannon decomposition (theorem 4), it is clear that for any
function f there exists at least one ROBDD encoding a function equivalent to
f. Moreover, the following property holds.

Proposition 7 (Canonicity of ROBDD’s) Let f be a boolean formula. For
given a variable order, the ROBDD associated with f is unique up to an iso-
morphism [Bry86].

3.5 Management of BDD’s

As a consequence of their canonicity, BDD’s can be managed in such way that
there is never two distinct nodes encoding the same function. The principe is
as follows. BDD’s are always created in a bottom-up way, i.e. that the node
A(x, a1, ap) is always created after the creation of the nodes «y and ay. Nodes
are kept in a table and are created only through the function find_or_add_bdd.
This function looks up the table and creates new nodes only when necessary,

10

build(1) &1
build(0) % o1
build(z;) & A(z;, 1, 1)
build(—f) % ebuild(f)
build(f; * fo) & apply(*, build(f;), build(fs))

Fig. 5. Equations defining the build function.

i.e. when the table does not already contain the wanted node. Technically,
find_or_add_bdd is implemented by means of hashing techniques [BRB90].

In order to compute the negation of a BDD one has just to exchange its 0 and
1 leaves. This comes from the fact that = and ite are orthogonal (property 6).
This requires a priori a BDD traversal, which is at least linear in the size of the
considered BDD. However, a programming trick makes possible a negation in
constant time and reduces memory consumption. It consists in putting a flag
on each edge. This flag indicates whether the pointed BDD is to be considered
positively or negatively. As a consequence, only one leaf remains necessary,
say for instance the leaf 1, since 0 = —1. The canonicity of the representation
is maintained by storing only nodes with a positive 1-edge. The orthogonality
of ite and — is used to manipulate only such nodes. The following equations
describe the replacement rules. Negated edges are denoted with a e.

Az, ey, p) —> oA(x, 1, 8rp)
A(z, a1, 00p) — oA(x, oy,)
oAz, 0y, p) — A(x,q,)
oA(z, 001, 00p5) — Az, aq,)

3.6 Computation of the BDD Associated with a Formula

Let f be a formula over the variable x4, ..., x,. The computation of the BDD
a encoding f (for the variable order x; < ... < x,) is performed by means of
the function build that can be described through recursive equations to be
applied on f and its subformulae. These equations are given Fig. 5. Their left
members are formulae — x is a variable, f, f; and f; denote any formulae,
* stands for any binary connective V (or), A (and), & (exclusive or), ...—,
while right members are BDD’s. When f is of the form f;x f5 the computation
of the BDD « encoding f is performed in two steps:

11

Q.
N

e

apply (x, A(z;, a1, ao), Alz;, B1, Bo)) = Alwi, apply(*, o, B1), apply(x, ao, /
apply (x, A(zi, a1, o), Az, B, Bo)
apply(V, 1,3

apply(V,0, 3

(6

apply(V,a,

Q.
N

e

)

) = A(x;, apply(x, o, B), apply(x, o, 3
) =1
)<= 8
) «

o
L

o
L

Q.
N

e

Fig. 6. The equations defining the apply function.

(i) The BDD’s «; and ay encoding respectively f; and f, are computed,
(ii) oy and ay are composed by means of the apply function.

The recursive equations describing apply are given Fig. 6. There are mainly
three cases:

— The main case, in which apply is called on two BDD’s whose root nodes
are labeled with the same variables.

— A degenerated case, in which the function is called on two BDD’s whose
root nodes are not labeled with the same variables (on Fig. 6, it is assumed
that ¢ < j and 8 = A(zj, 51, fo))-

— The terminal case, that is the only one that depends on the connective x.
In this case, the truth table of x allows an immediate decision of the value
of the function (On Fig. 6, we just give some examples for V).

Such a decomposition in three cases — the main one, a degenerated one and

a terminal one — appear in most of the equations describing operations on
BDD’s.

A second table, so-called the computed_table, is used. In this table, 4-tuples
{*, a, 8,7} are kept, where «, 8 and are BDD’s such that v = ax 3. Before
any computation of a3, one checks if the result is not already in the table. If
it is, the result v is returned, otherwise it is actually computed and then stored
in the table. In order to allow a fast access to stored tuples, the computed_table
is also managed by means of hashing techniques [BRB90).

The use of a table in which intermediate results are stored plays a central
role in the efficiency of BDD’s. From a theoretical point of view, it ensures
bounds on complexities of operations (these bounds are given table 1). From
a practical point of view, it dramatically decreases running times. As a matter
of fact, none of the fault trees presented section 6 could be processed without
this memorization.

In table 1, |a| denotes the size, i.e. the number of nodes, of the BDD a.

12

(=}

find_or_add_bdd O(1)
apply(x, @, f) | O(la] x|B])
pr(a) O(lal)

Table 1
Computational costs of operations on BDD’s

3.7 Variable Ordering

The size of the BDD encoding a function strongly depends on the chosen
variable ordering. Finding the best variable ordering is untractable (the best
known algorithm is in O(3")), so heuristics are used to determine good ones.
This is a complicated matter which is outside of the scope of this paper. The
interested reader should see for instance [Rau96] for a discussion as well as on
a quite complete bibliography on that topics.

3.8 Computation of the Probability of the Root Event

As a first illustration of the use of BDD’s in the reliability analysis framework,
let us show briefly how to compute the ezact probability of the top event of
a fault tree given the probabilities of its primary events. This is performed by
means of a BDD traversal, the Shannon decomposition being applied on each
node of the BDD.

Theorem 8 (Shannon’s Decomposition) Let f = ite(z, fi, fo) be a for-
mula, where x is a variable and fi and fy are formulae in which x does not
occur. Then the following equality holds.

p(f) = p(z).p(fi) + (1 = p(x)).p(fo)
where p(x) denotes the probability that x = 1 and p(f) the probability that
F=1.

It is easy to induce an effective algorithm from the above theorem (see [Rau93]
for more details). Recursive equations that describe this algorithm are given
Fig. 7. Thanks to the memorization of intermediate results, the complexity
of the algorithm is linear in the size of the BDD, as mentioned in table 1.

For instance, the probability of the formula g; of the Fig. 1, is computed as
follows.

p(g1) =plite(a,ite(b,1,0),ite(c, 1,0))

13

pr(1) |

pr(ea) © 1 - pr(a)
pr(A(z, o1, a0)) © pl).pr(an) + (1 = p(x)).pr(ao)

Fig. 7. The equations defining the function computing the probability of a BDD.

=p(a).p(ite(b,1,0)) + (1 — p(a)).p(ite(c, 1,0))
=p(a).p(b) + (1 — p(a)).p(c)

4 Exact Computations Prime Implicants and Minimal P-Cuts

4.1 Decomposition Theorems for Prime Implicants and Minimal P-Cuts

The first idea of algorithms computing prime implicants and minimal p-cuts
from BDD’s is as follows.

Theorem 9 (Decomposition Theorem for Prime Implicants) Let f(z1, ..

be a boolean function. Then, the set of prime implicants of f(x1,...,x,) can
be obtained as the union of three sets.

PI[f(IL'l,,In)]zpll()UPIlUPIO

where, Plyy, PI, and Ply are defined as follows.

PLo¥ PI[f(1, 3, ..., 30) A £(0, 22, ..., 2,)]
PI, déf{{xl} Umme PI[f(1,2s,...,2,)] \ Plo}
PLY {{-z,} Um;m € PI[f(0,29,...,7,)] \ Plo}

where \ stands for the set difference.

A formal proof of the theorem 9 is given in appendix. Intuitively, it is justified
as follows. A prime implicant 7 of f(zy,...,2,) may contain either z; or
—x1 or none of these two literals. In this latter case, 7 must still be a prime
implicant of f whatever constant is substituted for x;. Thus, 7 is a prime
implicant of f(z1,...,x,) that does not contain z; nor —x; if and only if it is a
prime implicant of Vq f (21, ..., 2,) = f(1, 2o, ..., 25) A f(0, 29, ..., 2,). Now,
a product {x; }Ur is a prime implicant of f(x1,...,z,) if it is a prime implicant
of f(1,z9,...,2,) and 7 is not already a prime implicant of f(zy,...,z,), i.e.
if 7 does not belong to PI[f(1,z9,...,2,) A f(0,22,...,2,)].

14

7'7/.71)

The decomposition gives an inductive principle to compute prime implicants.
Note that this principle is different from the Quine’s consensus method [Qui52].

In our example g;(a,b,c) = (a A b) V (—a A ¢) = ite(a, ite(b, 1,0),ite(c, 1,0)),

g1(1,b,¢) = ite(b,1,0) = b,
91(0,b,¢) = ite(c, 1,0) = ¢,
g1(1,b,¢) A g1(0,b, ¢) = ite(b, ite(c,1,0),0) =bAc

It is clear that PI[b] = {{b}}, PI[c] = {{c}} and PI[bAc] = {{b,c}}.
Thus, PlI[ite(a,ite(b,1,0),ite(c,1,0))] = Pl U PI; U PI,, where,

— Pl is PI[bAc] = {{b,c}}.

— PI; is the set of products {a} U7 where 7 is in {{b}} and not in {{b,c}}.
Thus, PI, = {{a,b}}.

— PI, is the set of products {—a} Ur where 7 is in {{c}} and not in {{b, c}}.
Thus, PIy = {{—a,c}}.

Finally, we get PI[gi] = {{a,b}, {—a,c},{b,c}}.

Similarly, the following theorem holds that gives an inductive principle to
compute minimal p-cuts.

Theorem 10 (Decomposition Theorem for Minimal P-Cuts) Let f(xy, ...

be a boolean function. Then, the set of minimal p-cuts of f(z1,...,x,) can be
obtained as the union of two sets.

PC[f(IL'I,,In)]:PC()U.Pol

where, PCy and PCy are defined as follows.

PCy ™ PC[f(0, 24, ...,)]
PC, Yz} Umm € PCIf(1, 3, ..., 20) V f(0,20,...,2,)] \ PCo}

A formal proof of the theorem 10 is given in appendix.

In our example gi(a,b,c) = (a Ab) V (ma A ¢) = ite(a, ite(b, 1,0),ite(c, 1,0)),
and thus g;(1,b,¢)V ¢1(0,b,¢) = bV c. Clearly, we have PC[bV c] = {{b}, {c}}.

15

Thus, PClite(a, ite(b, 1,0),ite(c,1,0))] = PCy U PCy, where,

— PCy is PC[c] = {{c}}.
— PC, is the set of products {a} Um where 7 is in PC[bV ¢] = {{b}, {c}} and
not in PCy = {{c}}. Thus, PC, = {{b}}.

Finally, we get PC[g1] = {{a, b}, {c}}.

Notice that for the special case of monotone functions (coherent fault trees),
the two decomposition theorems can be simplified and, once simplified, become
actually identical. Let f(xq,...,2,) be a monotone function. Then, it is easy
to verify that the two following equalities hold.

f(ze, .o zn) A f(O, 29, ...y 20) = f(0,29,. .., 2y) (1)
f(e, . xn) V (0,29, ..., 2) = f(1, 29, ..., 2y) (2)

Now by simplifying decomposition theorems according to equations 1 and 2,
we get exactly the same decomposition principle (excepted that the identifier
PI is used in the first case and the identifier PC' is used in the second one).

4.2 Meta-Products

A second key idea is to represent sets of products by means of boolean formu-
lae. More precisely, a function M P(Y) is associated with each set of products
Y in such a way that there is a one-to-one correspondence between products of
Y. and variable assignments that satisfy M P(X). Functions M P(X) are called
meta-products by Madre and Coudert in [CM92a]. Note that meta-products
are not the only way to encode set of products by means of boolean functions.
Minato in [Min93] and Rauzy in [Rau93] proposed an alternative way to do
so. For the sake of conciseness, we only consider here Madre and Coudert’s
representation.

4.2.1 Definition

Let x be a variable and 7 be a product. Then three cases are possible: either
x € ™ or nx € m or neither z nor —z belong to .

The idea is to associate two variables p, and s, with each variable = of the
original formula. p, is used to encode the presence of the variable x in the
product. s, is used to encode the sign of x in the product, if it is actually
present.

16

The meta-product encoding 7, denoted by M P(r), is the conjunction, over the
variables 2 occurring in the formula, of mp(r, x), where mp(7,) is defined as
follows:

(pe A 8z) if €,
mp(m,) o (pe A —8p) if —x € T,

—p, if neither x nor —x belongs to .

For instance, the meta-product associated with the prime implicant 7 =
{=a,c} of g1 is MP(m) = (ps A =Sa A =Pp A De A S¢). a occurs negatively
in 7, thus the variable p, encoding the presence of a must be true and s, the
variable encoding the sign of ¢ must be false. b does not occur in 7 thus py
the variable encoding the presence of b must be false and s, may take any
value (and thus is not present at all in the meta-product). Finally, ¢ occurs
positively in 7, thus the variable p. encoding the presence of ¢ must be true
and s. the variable encoding the sign of ¢ must be true.

4.2.2 Operations on Sets of Products
A set of products is encoded by the disjunction of the meta-products encoding
its elements. The formula encoding a set of products ¥ is also denoted by

MP(%).

For instance P1|[g;], of prime implicants of the function g; of Fig. 1 is encoded
by means of the following function.

MP(PI[QI]):MP({{aa b}v{_'aa C}a{bv C}})

(Pa A Sa AP A S5 N —pe) [x=MP({a,b})*/
=V (pa A =80 APy Ape A S) /*=MP({~a,c})x/
\/(_'pa/\pb/\sb/\pc/\sc) /*:MP({bac})*/

More generally, operations on sets of products can be performed through log-
ical operations on the corresponding meta-products.

Proposition 11 (Operations on meta-products) Let Xy and Xy be two

sets of products built over the variables x,. .., x,. Let MP(X;) and M P(X,)
be the two meta-products built over the variables py,, Syyy- - - Ps, s Sz, , encoding

17

MP[1, L] = {{}}
MP[ecv, L] & 27 \ MP[a]
MP[A (py, a1, o), 2.L] %€ MP[vy, 2. L] U MP[ovg, 2. L]
{{z}Um;m € MP[ayy, L]}

MP[A(s,, o1,), 2. L] & U
{{—z} Um;m € MPJawy, L]}

Fig. 8. The equations defining the semantics of BDD’s encoding metaproducts.

respectively 1 and .

— The empty set of products is encoded by 0 (false).

— The set of all of the possible products is encoded by the 1 (true).

— The empty product is encoded by the function (mpy, A ... N\ —pg.).

— 3 UZXy is encoded by the function MP(X,)V MP(X,).

- Y1 N Xy is encoded by the function MP(31) AN MP(Xs).

— The complement ¥, to Xy in the set of all of the possible products is encoded
by the function =M P(3y).

These properties are demonstrated very easily by considering the one-to-one
correspondence between satisfying variable assignments and encoded products
[CM92a).

Note that the set of products that belong to ¥; but not to X, i.e. the set
Y1 N Xy, is encoded by the function MP(¥) A =M P(3,).

4.8 Computation of the BDD Encoding Prime Implicants

The third idea is to use BDD’s to encode meta-products. The recursive equa-
tions defining the semantics of such a BDD are given Fig. 8. In these equations,
the ordered list of the variables the products are built over is given as an ar-
gument. While not strictly necessary, this simplifies the definition for negated
BDD’s. Moreover, it will be usefull to set equations defining the algorithm
itself. 2F denotes the set of all of the products that can be built over the vari-
ables of the list L. This implementation assumes, as suggested in [CM92a],
that the variables p, and s, are consecutive in the BDD order.

The recursive equations defining the algorithm that computes the BDD encod-
ing the prime implicants of a function from the BDD encoding this function is
sketched Fig. 9. This is basically an implementation of the recursive principle
described section 4.1. In these equations, [| denotes the empty list (of vari-

18

[N
]
._.,

MPPI(el,)%
MPPI(1 ,[])défl
MPPI(1,z.L) % A(p,,e1,MPPI(1, L))
MPPI(eA(z, ov1, cvg), L) & MPPI(A(x, ecvy, ecy), L)
def

MPPI(A(y, a1, o), @
MPPI(A(z, oy, ap), 2.

A(p;, ®1, MPPI(A(y, a1,), L))
A(pfm (Smﬁlaﬁﬂ) 510)

D.
._.,

L)
L)<=
P10 = MPPI(apply(A, aq,ap), L)

where, ¢ 8, = apply(A,MPPI(ay, L), e531)
Bo = apply(A,MPPI(ay, L), ®31p)

Fig. 9. The equations defining the algorithm MPPI.

Fig. 10. The BDD encoding M P(PI[g1]) (negated edges are flagged with a black
dot). For the sake of clarity, the leaf is duplicated and negated pointers to the leaf

are replaced by pointers to a leaf 0.

ables) and the variable x is assumed to be before the variable y in the chosen

order.

Note that intermediate results are memorized in this procedure as well. Despite
of this memorization, the worst case computational cost of MPPI is exponential

with respect to the number of variables.

The BDD encoding M P(PI]g]) is pictured Fig. 10.

19

[N
]
._,’

MPPC (o1,)
MPPC(1 ,[])défl
MPPC(1,z.L) ¥ A(p,, o1, MPPC(1, L))
MPPC(eA(z, ov1, cvg), L) & MPPC(A(, @cvy, ecy), L)
MPPC(A(y, a1, ag), 7.L) & A(p,, o1, MPPC(A(y, a1, o), L))
MPPC(A(z, oy, ap), x.L) (ng(pm,ﬁl,ﬁo)

50 = MPPC(OZO, L)
1 = apply (A, MPPC(apply(V, a1, ag), L), e /)

where,

Fig. 11. The equations defining the algorithm MPPC.
4.4 Computation of the BDD Encoding Minimal P-Cuts

In a similar way, the recursive equations that defined the algorithm MPPC that
computes the BDD encoding the minimal p-cuts of a function from the BDD
encoding this function are given Fig.11. They encode the decomposition prin-
ciple given by the theorem 10. There is however one difference: since variable
occur always positively in p-cuts, the variables s,’s are useless. They can be
safely removed, i.e. all of the properties of proposition 11 still hold in this
simplified representation.

4.5 Another Way to Compute the BDD Encoding Minimal P-Cuts

There is a subtle difference between MPPI and MPPC. In MPPI, the computation
of ar; Ao is mandatory. In MPPC, the computation of a; V ay is performed only
to remove from PC/[a4] the products that are included in products of PCay).
The point is that this operation can be performed directly on meta-product
BDD’s (we call it without in the sequel), which is in some cases more efficient,
especially when the number of minimal p-cuts is small. This leads to a second
algorithm to compute minimal p-cuts, so called MPQC, which is almost the
same than MPPC excepted that 3, is computed as follows :

3 = without (MPQC(cv), Bo)

Equations defining without are given on Fig.12 (in these equations, it is as-
sumed that x < y). This algorithm is very similar to the one given by Rauzy
in [Rau93].

20

without(el,)
without(a, 1)
without(a, o)
without(a, el)
without (1, A(z, 81, fy)) &€ A(w, o1, without(L, 3y))
B)
)
)
)
)

without (eA(z, ay, ap), B) ¥ without(A(z, ey, eay), B)

without(a, eA(z, A1, Bo)) ¥ without(cv, A(z, 81, ¢))
without (A(y, a1, ap), Az, B1, Bo)) & Az, o1, without(a, By))
without (A(z, ay,), Ay, B1, Bo)) & A(z,without(ay, 3), without(ayp, 3))
without(A(z, ay, ag), Az, B, Bo) def A(x,v1,%)

Yo = without(ayg,Yo)

Y= without(al, app:LY(va ﬂla BU))

where,

Fig. 12. The equations defining the algorithm without.

Indeed, the following property holds for any BDD a.

MPPC () = MPQC(a)

5 Truncated Computations of Prime Implicants and Minimal P-
Cuts

5.1 Algorithms

As mentioned at the section 2.2, a function may have an exponential number
of prime implicants with respect to its number of variables. As an illustration,
consider the function #(n,n, [z, ..., xs,]) that is true if and only if exactly n
of the z;’s are true. In practice, large real-life fault trees we dealt with have
actually many prime implicants (say several millions). Up to some prepro-
cessing, we succedded almost always in computing the BDDs encoding these
fault trees within reasonable running times and amounts of memory. There
are some case however where we did not succedded in computing the BDDs
encoding their prime implicants (or minimal p-cuts). In order to tackle this
difficulty, we designed variations on MPPI, MPPC and MPQC that compute only
prime implicants whose order is less than a given constant or whose proba-

21

bility is greater than a given threshold. From a practical point of view, these
implicants are interesting because they concentrate in general the most prob-
able failures. Good assessments on reliability (and other measures of the risk)
can be obtained by considering them only.

From a technical point of view, variations we designed are based on the ob-
servation that, at any step of the algorithms, we know a lower bound on the
order and a upper bound on the probability of prime implicants (or minimal
p-cuts) to be built. Namely, assume that at the given step the formula under
study is f = ite(z, fi1, fo) and that we know that prime implicants to be built
are at least of order £ and at most of probability p, then according to the
decomposition theorem (theorem 9):

— The prime implicants of f containing x are at least of order k + 1 and at
most of probability p.p(z).

— The prime implicants of f containing —x are at least of order £+ 1 and at
most of probability p.(1 — p(x)).

— The prime implicants of f containing neither x or —x are at least of order
k and at most of probability p.

Similarly, according to theorem 10:

— The minimal p-cuts of f containing x are at least of order £+ 1 and at most
of probability p.p(z).

— The minimal p-cuts of f that do not contain z are at least of order £ and
at most of probability p.

The idea is thus simply to stop the computation when the current order k£ or
the current probability p reach the predefined bounds. Let us call T'MPPI(f, k, p),
TrMPPC(f, k, p) and TrMPQC(f, k, p) (the prefix Tr stands for truncated) the al-
gorithms computing respectively the prime implicants and the minimal p-cuts
of f whose order is less than k£ and whose probability is greater than p. Equa-
tions defining TrMPPI are given Fig. 13. k.. and p,,;, denote respectively the
predefined upper bound on the order and lower bound on the probability of
the considered products. TrMPPI should be called with initial values of k£ and
p set respectively to 0 and 1.

Equations defining TrMPPC and TrMPQC can be stated in a very similar way, as
shown Fig. 14 for TrMPQC.

The following properties hold.
Proposition 12 (Completeness of TrMPPI) TrMPPI produces all of the prime

implicants of the function under study whose order is less than the given lower
bound and whose probability is greater than the given upper bound.

22

o
n

e

TrMPPI(«, L, k,p) = o1 if k > kyap OF p < Diin

Q.
N

e

TrMPPI(el, L, k,p

Q.
N

e

TrMPPI(1,[], &k, p

o

TrMPPI(1,z.L, k,p

[N
[¢]
h

1
X A(py, o1, TcMPPI(1, L))
TrMPPI(eA(x, oy, o), L, kyp Tr

MPPI(A(z, ey, 8v), L, k, p)

[N
[¢]
h

)
)
)
)
)
)

TrMPPI(A(y, aq,ap), z.L, k, p A(pg,e1, TtMPPI(A(y, oy, ap), L, k, p))
TI'MPPI(A(IL',O[I,O[[)),{L'.L,k,p) : A(pxaA(SZ'aBlaBO)aBIO)
f10 = TrMPPI(apply(A, a1, ap), L, k,p)

where, ¢ 3, = apply(A, TrtMPPI(ay, L,k + 1, p.p(x)), ®S310)
Bo = apply(A, TtMPPI(av, L,k + 1,p.(1 — p(x))), ®510)

Fig. 13. The equations defining the algorithm TrMPPI.

o
=

e

TrMPQC(«, L, k,p) = o1 if k > kyap OF P < Diin

(oW
—h

€

TrMPQC(e1, L, k., p

(oW
—h

TrMPQC(L, [, k,p) = 1

o
=

e

)
)
)
TrMPQC(1, z.L, k,p) = A(ps, o1, TtMPQC(1, L, k,p))
)
)
)

o
=

e

TrMPQC(eA(x, o, o), L, k,p) = TrMPQC(A(z, ey, ®v), L, k,)

(oW
—h

€

= A(px,01,TrMPQC(A(y,a1,ag),L,k,p))
= A(pxaﬁlaﬁo)
Bo = TrMPQC(«ay, L, k, p)

TrMPQC(A(y, oy, ap), x. L, k,p

o
=

TrMPQC(A(x, aq, o), x. L, k, p

where,
B, = without(TrMPQC(ay, L, k + 1, p.p(x)), fBo)

Fig. 14. The equations defining the algorithm TrMPQC.

Proposition 13 (Completeness of TrMPPC and TrMPQC) TrMPPC and TrMPQC

produce all of the minimal p-cuts of the function under study whose order is
less than the given lower bound and whose probability is greater than the given
upper bound (and indeed they give the same result).

The proof of both properties is done by induction of the structure of the
formula encoded by the BDD associated with the function under study.

It is also easy to establish a maximum bound on the number of calls to the

23

algorithms.

Proposition 14 (Complexity of TrMPPI) The number of recursive calls to
the algorithm is in O(2kn¥) (when k is small with respect to n).

Proof by structural induction as well.

Proposition 15 (Complexity of TrMPPC and TrMPQC) The number of re-
cursive calls to the algorithm is in O(n*) (when k is small with respect to

Proof by structural induction as well.

This means that running times spent in the search for prime implicants can
be arbitrarily bound by fixing k& accordingly.

5.2 Computation of Probability of Truncated Prime Implicants and Minimal
P-Cuts

As shown in section 3.8, it is easy to compute the probability of the root event
of a fault tree f once the BDD « encoding f has been computed. On the
other hand, the computation of truncated prime implicants and minimal p-cuts
raises a question: is the approximation we get by considering only truncated
prime implicants or minimal p-cuts good enough 7 To answer this question,
it would be ideal to design an algorithm that computes the probability that
at least one of these prime implicants is true from the BDD /3 encoding them.
Unfortunately, it is not possible to compute this probability directly. The
solution consists in computing a BDD v that encodes a function whose prime
implicants are exactly those encoded by . Once v has been computed, the
desired probability is easily obtained (see section 3.8).

To come back to a standard BDD from a BDD encoding a meta-product, we
will use an algorithm that is almost directly induced by the recursive equations
given Fig. 8 that define the semantics of meta-product BDD’s. The equations
defining this algorithm are given Fig. 15.

If the considered BDD encodes a simplified meta-product for minimal p-cuts
(as discussed section 4.4), the third rule should be applied on every internal

node).

It is easy to verify from equations of Fig.15, that the BDD ReverseMP(/3)
encodes the disjunction of the products encoded by (. Formally, the following

24

ReverseMP(1) ey

ReverseMP(e1) & o
ReverseMP(eA(z, ay, o)) X ReverseMP(A(z, ey, eay))
ReverseMP(A(p,, a1, o)) dof apply(V,ReverseMP(ay), ReverseMP(«y))
ReverseMP(A(s,, ar, ap)) & A(x, ReverseMP(q;), ReverseMP(ay))

Fig. 15. The equations defining ReverseMP.
property holds.

Proposition 16 (Semantics of ReverseMP) Let (8 be a meta-product BDD
and let o = ReverseMP([3), then the following equality holds.

Shannonfo]= \/ N1

TeMP(B) lem

The following property asserts the soundness of this backward computation.

Proposition 17 (Soundness of ReverseMP) Let« be a BDD, k be an order
and p a probability, then the following equalities hold.

ReverseMP(MPPI(a)) =« (3)
MPPI(ReverseMP(TrMPPI(«,k,p))) = TrMPPI(«, k,p) (4)
TrMPPI(ReverseMP(TrMPPI(a, k,p)), k,p) = TPMPPI(«, k, p) (5)
MPPC(ReverseMP(TrMPPC(«, k, p))) = TrMPPC(«, k, p) (6)
TrMPPC(ReverseMP(TrMPPC(«a, k, p)), k, p) = TrMPPC(c, k, p) (7)
MPQC(ReverseMP(TrMPQC(«, k, p))) = TrMPQC(c, k, p) (8)
TrMPQC(ReverseMP(TrMPQC(a, k, p)), k, p) = TrMPQC(c, k, p) 9)

Equality 3 means that by computing prime implicants of a BDD « and then
applying ReverseMP on the obtained BDD, we get o again. Equalities 4-
5 extend this result to computations with truncation. Indeed, such a nice
property does not hold for minimal p-cuts, since the function encoded by
ReverseMP(MPPC(«)) is always monotone, even if the one encoded by « is not,
for p-cuts contain only positive literals. However, equalities 6-9 indicate that
the combination 7 of one of the algorithms computing minimal p-cuts with
ReverseMP works as a projection, in the mathematical meaning of this term,
from the space of Boolean functions to the space of monotone Boolean func-
tions whose prime implicants obey constraints on their order and probability.
Namely, for any function encoded by a BDD «, we have 7(7(«)) = 7(«).

25

Moreover, it is easy to verify the following property.

Proposition 18 (Complexity of ReverseMP) Let 5 be a BDD, then the
number of recursive calls to the algorithm when calling ReverseMP on 3 is

in O(|8|), where || denotes the number of nodes of the BDD |3].

6 Experimental Results and Conclusion

In order to test the algorithms presented in this paper, we considered a number
of real-life fault trees that were provided by our industrial partners. We report
here results obtained of two of them coming from “Electricité de France” and
“Dassault Aviation”. The tests reported in the tables below were performed
on a SUN workstation ultra spark 1 with a 512 megabytes of memory. It is
clear that such a computer is not on every desk ! On the other hand, since
most of the research centers are now equiped with such machines, it makes
sense to study what can be done at the limits of the current technology.

6.1 A Coherent Fault Tree from Electricité de France

The first tree we consider is a coherent one from Electricité de France. It
is referenced under the name edfpa0l in our benchmark and it is a good
representative for a very large class of fault trees. It has 337 gates (A and V
gates), 306 primary events and only 31 small modules. The computation of
the BDD encoding it takes 13.1 seconds on average. This BDD is made of
17836 nodes. The computation of the exact probability of its top event from
this BDD takes 0.55 seconds. The following table reports the probability of
the top event for different values of the probabilities of the primary events (for
this test, we assume that all primary events have the same probability).

Probabilities

Primary events | 0.5 | 0.1 | 0.01 0.001 0.0001

Top event 1 1 10.5360480.0386668|0.0033621

Note that the two first probabilities of the top event are 1, which simply means
that they are too close to 1 to be distinguished from this value with the double
precision floating point numbers of our computer.

edfpa01 admits 7,520,142 prime implicants (or minimal cuts or minimal p-
cuts since these notions are equivalent for monotone functions). The table 2

26

Contributions
Orders | #PI ||ReverseMP|| Times | 0.5 0.1 0.01 0.001 0.0001
1 33 34 0.02 1 0.969097 0.526574 0.83993 0.979962
2 6801 1474 0.02 1 0.999984 0.949656 0.996757 0.999958
3 148780 19532 0.12 1 1 0.998515 0.999987 1
4 647556 68890 0.39 1 1 0.999991 1 1
) 507572 185849 1.01 1 1 1 1 1
6 977192 475242 2.54 1 1 1 1 1
7 1575616, 583036 3.12 1 1 1 1 1
8 1745584 564808 3.05 1 1 1 1 1
9 1323120 310649 1.68 1 1 1 1 1
10 812520 152699 0.83 1 1 1 1 1
11 166968 106832 0.58 1 1 1 1 1
12 8400 100921 0.55 1 1 1 1 1
Table 2

Numbers of Prime Implicants and their contributions to the probability of the top
event of edfpa01l.

gives, for each order k:

— The numbers of prime implicants of order k.

— The size of the BDD encoding the function whose prime implicants are those
of edfpa01 of order less than k.

— The running times to get the probability of this function from the previous
BDD (these times are independant of the probability of primary events).

— The contribution of this function to the probability of edfpa01 for the
different values of the probabilities of the primary events mentioned above
(this contribution is defined as the probability of the function divided by
the probability of edfpa01).

A number of remarks can be made about this table.

Remark 19 The number of prime implicants is very large and it is doubtful
that classical methods based on inclusion/exclusion techniques could proceed
this tree.

Remark 20 Most of the probability of the function edfpall is concentrated
into prime implicants of low orders, which is in general the case for the co-
herent fault trees of our benchmark.

27

140

120 -

100 -

80 -

60

40 -

20 -

0 I ! !
0 2 4 6 8 10 12 14

Fig. 16. Running times in seconds (y-axis) of TrMPMC, TrMPPI and TrMPPC on
edfpa01 for different truncation orders (x-axis).

Remark 21 FEven for large BDD’s, the computation of the probability of the
function encoded by the BDD 1is achieved very quickly.

In order to compute prime implicants of edfpa01, we tested four algorithms:
MPMC, the version with truncation of the algorithm one of us proposed in
[Rau93|, and the versions with truncation of the three algorithms MPPI, MPPC
and MPQC presented in this paper. The running times of these algorithms are
compared on Fig. 16 and Fig. 17. Horizontal lines give running times for
algorithms without truncation.

A number of remarks can be made about these two figures.

Remark 22 Running times for MPPI and MPPC (and the versions with trun-
cation of these two algorithms) are almost the same. MPMC is faster, while MPQC
s far slower. It is hard to find convincing arguments to explain that. Clearly,
MPMC takes advantage it knows that the function is monotone. On the other
side, performances of MPQC are bad as soon as the number of implicants is
large.

Remark 23 For all of these four algorithms, there is an order k beyond which
it 1s more costly to compute prime implicants whose order is less than k than
to compute all prime implicants. The same remark holds also for the num-
ber of nodes of the obtained BDD’s and the total number of nodes required to
computed them. This can be explained in two ways: first, the memorization of
intermediate results is less efficient when a truncation is performed (since the
truncation order must be taken into account), and second, there are probably
more reqularities that can be captured by BDD’s when no truncation is per-

28

1800

1600 ~
1400 -
1200 -
1000
800
600
400 |

200

0 b - ||| l
0 2 4 6 g 0 -)

Fig. 17. Running times in seconds (y-axis) of TrMPPC and TrMPQC on edfpa01 for
different truncation orders (x-axis).

formed. The later argument is enforced by the observation that, at least for
MPMC and MPQC in the edfpaOl case, the computations times decrease as the
truncation order increases beyond a certain order.

6.2 A Non Coherent Fault Tree from Dassault Aviation

The second tree we consider is a non-coherent one from Dassault Aviation. It
is referenced under the name das9605 in our benchmark. It has 287 gates (-,
A, V and k-out-of-n gates), 122 primary events and only 28 small modules.
The computation of the BDD encoding it takes 3.55 seconds on average. This
BDD is made of 34913 nodes.

Since this tree is non-coherent, the notions of prime implicants and minimal
p-cuts do not coincide. das9605 admits 1.30977 10'! prime implicants. The
BDD encoding them is computed in 173 seconds by MPPI and has 897253
nodes. The Fig.18 reports the evolution of the number of prime implicants as
a function of the order. A number of remarks should be done about this figure.

— The prime implicants of lowest order contain already 22 literals.

— The did not succeed in computing truncated prime implicants whose orders
are greater than 65. To give an idea, for the truncation order 60, TrMPPI
takes 38 minutes and builds a BDD of 1,189, 426 nodes.

The number of prime implicants of das9605 (1.30977 10!!) should be compared
with its number of minimal p-cuts: 4259. The table 3 gives the number of

29

le+11

le+10 -
le+09 -
le+08 -
1le4-07 |
le+06 -
100000 |-
10000 |-

1000 -

100 -

10 ! ! ! ! ! ! ! !
20 25 30 35 40 45 50 55 60 65

Fig. 18. Number of prime implicants (y-axis) as a function of the order (x-axis) for
das9605.

Order 112 3 4 Y 6 7 8 9 All

#p—cuts | 0 | 47| 80 | 319 | 342 | 571 | 580 | 1168 |1152| 4259

TrMPPC 0.89(5.24|25.20194.03|288.72|924.34|5006|13,914| 7 47,109
TrMPQC 0.01/0.06| 0.30 | 0.91 | 2.03 | 3.56 |5.41| 7.28 |8.86| 2.06

Table 3
Number of minimal p-cuts and running times in seconds of TrMPPC and TrMPQC on
das9605 for different truncation orders.

minimal p-cuts for each order and the running times in seconds to get the
BDD encoding them with TrMPPC and TrMPQC. MPPC and MPQC take respectively
47,109 and 2.06 seconds to compute the BDD encoding all minimal p-cuts.

These results lead to the two following remarks.

Remark 24 Both orders and numbers of minimal p-cuts are reasonnable while
those of prime implicants are not. This means that qualitative treatments can
be achieved by means of the minimal p-cuts but not by means of prime impli-
cants.

Remark 25 Since the number of minimal p-cuts remains small, MPQC is far
more efficient than MPPC (which takes about 13 hours to achieve the computa-
tion).

The computation of the exact probability of the top event of das9605 (from
the BDD encoding this function) takes 0.30 seconds. The table 4 reports the

30

Probabilities
Primary events 0.5 0.1 0.01 0.001 0.0001
Top event 5.56868 10°|0.125066|0.00423444.6525 105(4.69524 10—’
Truncation order Contributions of minimal p — cuts
2 17942.8 2.56175 | 1.08091 1.00768 1.00076
3 17955.3 2.81484 | 1.09866 1.00939 1.00093
4 17957.1 2.89925 | 1.09936 1.0094 1.00093
5 17957.1 2.90572 | 1.09937 1.0094 1.00093
6 17957.1 2.90659 | 1.09937 1.0094 1.00093
7 17957.1 2.90665 | 1.09937 1.0094 1.00093
8 17957.1 2.90666 | 1.09937 1.0094 1.00093
9 17957.1 2.90667 | 1.09937 1.0094 1.00093
Table 4

Numbers of minimal p-cuts and their contributions to the probability of the top
event of das9605.

probability of the top event for different values of the probabilities of the
primary events (for this test, we assume that all primary events have the same
probability). Beyond the third row, it reports the contribution of minimal p-
cuts to the probability of the top event.

Here, the term contribution should be taken with care: it means the quotient
of the probability of the top event by the probability of the function encoded
by the BDD ReverseMP(TrMPPC(das9605,k)). The prime implicants of this
function are the minimal p-cuts of das9605 whose orders are less than k. The
important point is the following.

Remark 26 None of the functions encoded by the BDD’s ReverseMP(TrMPPC(das9605, k))
is equivalent to das9605, even the one encoded by the BDD ReverseMP(MPPC(das9605))

is not. These functions are monotone (since p-cuts contain only positive liter-

als) while das9605 is certainly not. This has two consequences:

— The contributions we get are approximations of the contributions of prime
implicants, which explains that the table 4 reports contributions greater than
1.

— These approrimations are sound only when the probabilities of primary
events are low (and thus that the probabilities of the corresponding negative
literals can be assimilated to 1), which explains that for high probabilities of
primary events (0.5, 0.1) the obtained results have strictly no meaning.

31

Remark 27 Note however that for low probabilities of primary events (1073,107%),
approximations are rather good, which makes minimal p-cuts an useful tool
both for qualitative and quantitative analysis of non coherent fault trees.

7 Conclusion

In this paper, we introduced a new notion of implicants of Boolean functions,
the minimal p-cuts, that formalizes the idea to keep only positive parts of
prime implicants.

We proposed two BDD based algorithms to compute minimal p-cuts. We also
proposed variations on these algorithms as well as on known algorithms to
compute prime implicants that compute only prime implicants or minimal p-
cuts whose order is less than a given value and whose probability is greater
than a given threshold.

We provide experimental evidence that these algorithms allow fast, accurate
and incremental qualitative and quantitative analyses of very large coherent
and non-coherent real-life fault trees. These experiments show that the BDD
based technology outperforms by orders of magnitude all previously proposed
methods to assess the probability of a Boolean model.

References

[Ake78] B. Akers. Binary Decision Diagrams. IEEE Transactions on Computers,
27(6):509-516, 1978.

[Ara94] Groupe Aralia. Arbres de Défaillances et diagrammes binaires de
décision. In Actes du 1°" congrés interdisciplinaire sur la Qualité et
la Stireté de Fonctionnement, pages 47-56. Université Technologique de
Compiegne, 1994. The “Groupe Aralia” is constitued by A. Rauzy
(LaBRI — Université Bordeaux I), Y. Dutuit (LADS — Université
Bordeaux I), J.P. Signoret (Elf-Aquitaine — Pau), M. Chevalier
(Schneider Electric — Grenoble), I. Morlaes (SGN - Saint Quentin
en Yvelines), A.M. Lapassat (CEA-LETI - Saclay), S. Combacon
(CEA-IPSN - Valduc), F. Brugere (Technicatome — Aix-Les Milles),
M. Bouissou (EDF-DER — Clamart).

[Ara95] Groupe Aralia. Computation of Prime Implicants of a Fault Tree within
Aralia. In Proceedings of the European Safety and Reliability Association
Conference, ESREL’95, pages 190-202, Bournemouth — England, June
1995. European Safety and Reliability Association.

32

[BRBI0] K. Brace, R. Rudell, and R. Bryant. Efficient Implementation of a BDD
Package. In Proceedings of the 27th ACM/IEEE Design Automation
Conference. IEEE 0738, 1990.

[Bry86] R. Bryant. Graph Based Algorithms for Boolean Fonction Manipulation.
IEEE Transactions on Computers, 35(8):677-691, August 1986.

[Bry92] R. Bryant. Symbolic Boolean Manipulation with Ordered Binary
Decision Diagrams. ACM Computing Surveys, 24:293-318, September
1992.

[CMT78] A.K. Chandra and G. Markowsky. On the number of prime implicants.
Discrete Mathemathics, 24:7-11, 1978.

[CM92a] O. Coudert and J.-C. Madre. A New Method to Compute Prime and
Essential Prime Implicants of Boolean Functions. In T. Knight and
J. Savage, editors, Advanced Research in VLSI and Parallel Systems,
pages 113128, March 1992.

[CM92b] O. Coudert and J.-C. Madre. Implicit and Incremental Computation of
Primes and Essential Primes of Boolean Functions. In Proceedings of the
29th ACM/IEEE Design Automation Conference, DAC’92, June 1992.

[CY85] L. Camarinopoulos and J. Yllera. An Improved Top-down Algorithm
Combined with Modularization as Highly Efficient Method for Fault
Tree Analysis. Reliability Engineering and System Safety, 11:93-108,
1985.

[LGTL85] W.S. Lee, D.L. Grosh, F.A. Tillman, and C.H. Lie. Fault tree analysis,
methods and applications : a review. IEEE Transcations on Reliability,
34:194-303, 1985.

[Min93] S. Minato. Zero-Suppressed BDDs for Set Manipulation in
Combinatorial Problems. In Proceedings of the 30th ACM/IEEE Design
Automation Conference, DAC’93, pages 272-277, 1993.

[Qui52] W.V.0O. Quine. The problem of simplifying truth functions. American
Mathematics Monthly, 59:521-531, 1952.

[Quib9] W.V.O. Quine. On cores and prime implicants of truth functions.
American Mathematics Monthly, 66:755-760, 1959.

[Rau93] A. Rauzy. New Algorithms for Fault Trees Analysis. Reliability
Engineering € System Safety, 05(59):203-211, 1993.

[Rau96] A. Rauzy. An Introduction to Binary Decision Diagrams and some
of their Applications to Risk Assessment. In O. Roux, editor, Actes
de école d’été, Modélisation et Vérification de Processus Paralléles,
MOVEP’96, 1996. Also Technical Report LaBRI number 1121-96.

[VGRH81] W.E. Vesely, F.F. Goldberg, N.H. Robert, and D.F. Haas. Fault Tree
Handbook. Technical Report NUREG 0492, U.S. Nuclear Regulatory
Commission, 1981.

33

A Proof of the Decomposition Theorem for Prime Implicants

Let us first recall the theorem to be proved.

Theorem 9 (Decomposition Theorem) Let f(xy,...,x,) be a boolean func-
tion. Then, the set of prime implicants of f(x1,...,x,) can be obtained as the
union of the sets.

PI[f(IL'l,,In)]zpll()UPIlUPIO

where, Plyy, PI, and Ply are defined as follows.

P[lodéfpf[f(l,xg,...,xn)/\f(O;:LIQ;"'7xTL)]
p[ldéf{{xl} Umme PI[f(1,2,...,7,) \ Plio}
Plodéf{{_hl‘l}uﬂ-;ﬂ- S PI[f(O,l'Q,,l‘n)\PIIO}

where \ stands for the set difference.
In order to prove the above theorem, we first demonstrate the following lemma.

Lemma 28 Let f(x1,...,2,) be a Boolean function and let © be a product
built over xy, ..., x, such that vv ¢ m and -z, & 7. Then, m is a prime
implicant of f(xy,...,x,) iff it is a prime implicant of f(1,xs,...,2,) A
f(0,29,. .., 2y)

Proof: if part: Let m a prime implicant of f(z1,...,z,) such that z; & 7 and
-z € m. Then, 7 is an implicant of f(1,xzs,...,2,) and of f(0,xs,...,z,).
Thus, 7 is an implicant of f(1,zs,...,2,)Af(0,22,...,z,). Now, assume there

exists a prime implicant p of f(1, 2z, ...,2,)Af(0,29,...,x,) such that p C .
Clearly, p is an implicant of ite(z, f(1,z2,...,2y,), f(0,22,...,2,)) and thus
of f(xy,...,x,). But 7 is prime: a contradiction.

only if part: Now, let m a prime implicant of f(1,xa,...,2,) A f(0, 2, ..., z,)
and assume that there is a prime implicant p of f(z1,...,x,) such that p C .
p cannot contain x and thus, by the above reasonning, it is an implicant of
f(1,ze, ..., z0) A f(O,29,...,2,). A contradiction. O

In order to complete the proof of the theorem 9, it suffices to remark that to
be a prime implicant of f(xq,...,x,), a product {1} U should fulfil the two
following requirements:

(i) 7 is a prime implicant of f(1,xs,...,2,).
(ii) 7 is not a prime implicant of f(zy,...,x,), i.e. since 1 € 7, © &
PI[f(1,z9,...,2,) A f(0,29,...,2,)]

34

Similarly for prime implicants containing —x;. O

B Proof of the Decomposition Theorem for Minimal P-Cuts

Let us first recall the theorem to be proved.

Theorem 10 (Decomposition Theorem for Minimal P-Cuts) Let f(xy, ...

be a boolean function. Then, the set of minimal p-cuts of f(x1,...,x,) can be
obtained as the union of two sets.

PC[f(.CL'l,,IL'n)]:PclLJPCU

where, PC7 and PCy are defined as follows.

Pcldéf{{xl}Uﬂ';ﬂ' € PC[f(l,.CL'Q,,xn)Vf(O,l'Q,,xn)]\PCO}
pC’OdéfPC’[f(O,xQ,...,xn)]

Let us first remark that for any function f(z,...,z,), the function g(z1,...,x,)
defined as follows:

g(x1,. .., xy) =ite(xy, f(1, 29, ..., 2,) V f(0,29,...,2,), f(0,20,...,2,))
is monotone in x;. Moreover, it is easy to see that

PClg(z1,...,2,)]=PC[f(x1,...,2,)]

It is clear that they have the same minimal p-cuts that do not contain x;. Let
{z1} Um be a minimal p-cut of g(z1,...,2,). 7 should be an implicant of
g(1,x9,...,2,) but not of ¢g(0,z,,...,x,), that is 7¢ should be an implicant
of f(1,zq,...,2,).

The reader will easily complete in a way very similar to the one we used to
demonstrate theorem 9. O

Notice that it is mandatory to consider minimal p-cuts of f(1,zs,...,z,) V
f(0,29,...,2,) in order to get minimal p-cuts of f(z1, ..., x,) that contain x;.
The reason is that one should eliminate from minimal p-cuts of f(1,xs, ..., 2,)
those that contain strictly a minimal p-cut of f(0,zs,...,x,). For instance,
let f(a,b,c) = (a AbAc)V (—aAb). We have PC[f(1,b,¢)] = {{b,c}} and

35

7xn)

PC[f(0,b,¢)] = {{b}}, and thus PC[f(1,b,¢)]\ PC[f(0,b,c)] = PC[f(1,b,c)],
but PC[f(1,b,¢) V f(0,b,¢)] = PC[f(0,b,¢)]. Thus, by considering minimal
p-cuts of f(1,b,¢)V f(0,b,c), we eliminate the product {b,c} which does not
belong to PC[f(0,b, c)] but that contains strictly a product of this set, namely

{c}.

36

