
Exat and Trunated Computations of Prime Impliantsof Coherent and Non-Coherent Fault Trees within AraliaYves Dutuit and Antoine Rauzy 1LADS and LaBRIUniversit�e Bordeaux I, 351, ours de la Lib�eration33405 Talene edex, Franedutuit�iuta.u-bordeaux.fr and rauzy�labri.u-bordeaux.frAralia is a Binary Deision Diagram (BDD) pakage extended to handlefault trees. It is urrently developed at the University of Bordeaux as apart of a partnership between university laboratories and several frenhompanies.BDD's are the state of the art data struture to handle boolean funtions.They have been reently used with suess in the framework of safety andreliability analysis.The aim of this paper is to present how prime impliants (minimal uts)of oherent and non-oherent fault trees are omputed within Aralia. Theused algorithms are mainly those proposed by J.C. Madre and O. Coudertone the one hand and A. Rauzy on the other hand. We introdue thenotion of minimal p-uts that is a sound extension of the notion of minimaluts to the ase of non-oherent fault trees. We propose two BDD basedalgorithms to ompute them.We show how to modify these algorithms in order to ompute only primeimpliants (or minimal p-uts) whose orders are less than a given on-stant or whose probabilities are greater than a given threshold. We reportexperiments showing that this improves signi�antly the methodology forthis allows fast, aurate and inremental approximations of the desiredresult.Key words: Coherent and non-oherent Fault Trees, Prime Impliants, Minimal(p-)Cuts, Binary Deision Diagrams.1 This works has been partly supported by the Aralia projet that is a partner-ship between our two laboratories | the Laboratoire d'Analyse de D�efaillanesdes Syst�emes (LADS) and the Laboratoire Bordelais de Reherhe en Informatique(LaBRI) | and the following ompagnies: Commissariat �a L'�Energie Atomique(LETI), Dassault Aviation, �Eletriit�e de Frane, Elf Aquitaine, Institut de Prote-tion et de Sûret�e Nul�eaire, Renault, Shneider Eletri, Soi�et�e G�en�erale pour lestehniques Nouvelles (COGEMA) and Tehniatome.Preprint submitted to Elsevier Preprint 12 August 2001

1 IntrodutionThe fault tree method is a well known engineering tehniques that is widelyused to perform safety analyses of embedded systems [VGRH81,LGTL85℄.It is nowadays well understood by most pratitioners. However, problems stillremain to exploit it fully beause of the omputational omplexity of the basioperations it requires. These diÆulties appear both for qualitative treatment(omputation of sets of failures of elementary omponents that indue a failureof the whole system) and for quantitative treatment (determination of theprobability of failure of the whole system given the probabilities of failureof its elementary omponents). Classial tehniques | desribed in the itedbooks | fail to handle large size non-deomposable fault trees beause theyannot avoid ombinatorial explosions in both time and spae.Sine fault trees are essentially boolean formulae, a way to limit ombina-torial explosion is to enode them by means of Binary Deision Diagrams(BDD's). BDD's are the state-of-the-art data struture to enode and ma-nipulate boolean funtions. They have been introdued by Akers [Ake78℄ andimproved by Bryant [Bry86,BRB90℄. They are nowadays used in a wide rangeof areas, inluding hardware design and veri�ation, protool validation andautomated dedution (see [Bry92℄ for a survey of BDD's and their applia-tions).This paper presents BDD based algorithms that perform qualitative and quan-titative analyses of fault trees. We fous on the omputation of prime im-pliants of non-oherent fault trees. Prime impliants, that are often alledminimal uts in the reliability engineering literature, are of a great interest forqualitative analyses: they an be seen as minimal sets of failures of elementaryomponents that indue a failure of the whole system. Even medium size faulttrees may have a very large number of prime impliants. Following Madre andCoudert's [CM92a℄, Minato's [Min93℄ and Rauzy's [Rau93℄ ideas, it is possibleto enode them by means of BDD's. The point is that the size of the BDDenoding a set of prime impliants is not diretly related to the number ofelements of the set. Very large sets an be enoded by means of small BDD's.This is a major di�erene with the lassial sum-of-produts representation.Two algorithms have been proposed to ompute a BDD enoding prime im-pliants of a funtion from the BDD enoding this funtion. The �rst one byJ.C. Madre and O. Coudert in [CM92b℄, the seond one by one of the au-thors in [Rau93℄. Both use the same indutive deomposition priniple. Thelatter works only for monotone funtions (oherent fault trees) but it is moreeÆient than the former [Ara94℄. Both outperform by orders of magnitudealready proposed methods. Both are implemented in the BDD pakage Aralia[Ara94,Ara95℄. This tool has been realized as a part of a ollaboration between2

two laboratories of the Universit�e Bordeaux I and several Frenh ompanies 2grouped in a researh team of the Frenh institute for system dependability(ISdF 3).In this paper, we present Madre and Coudert's algorithm as well as two algo-rithms to ompute minimal p-uts. Minimal p-uts are a new kind of impli-ants we introdue here. They an be seen as a sound extension of the notionof minimal uts to the ase of non-oherent fault trees. Intuitively, they on-sists of minimal positive parts of prime impliants. They are of interest for tworeasons: �rst, pratitioners are often more interested in positive information(what is failed) than in negative information (what works orretly). Seond,more aurate approximations an be obtained by omputing trunated min-imal p-uts than by omputing trunated prime impliants. We shall developthis point later.We performed with Aralia a number experiments on real-life fault trees. Thesefault trees are almost impossible to handle by means of lassial tehniquesbeause they are not only very large (several hundred of gates and primaryevents) but also non deomposable (without modules). Thanks to some pre-proessing of the trees, we always sueeded in omputing the BDD enodingthem. This allowed us to get the exat probability of their top events. Forsome of them however, we did not sueed in omputing the BDD's enod-ing their prime impliants and minimal p-uts, even with omputer memo-ries allowing the alloation of several millions of BDD nodes. To takle thisproblem, we propose here a modi�ation of the indutive deomposition prin-iple that allows the omputation of only prime impliants and minimal p-uts whose orders are less than a given onstant or whose probabilities aregreater than a given threshold. The new algorithms are omplete in this sensethat all of the prime impliants and minimal p-uts verifying the propertyare atually obtained. This makes a major di�erene with lassial deom-position/modularization tehniques for fault trees, suh as those proposed in[CY85℄. These tehniques, despite of their interest, annot be made ompletein the above sense (exepted of ourse by omputing all of the prime impli-ants or minimal p-uts). Moreover, it is possible to ompute a BDD enodinga funtion whose prime impliants (or minimal p-uts) are exatly those ob-tained by the trunated omputation. This BDD is used to ompute the exatprobability of this funtion, whih makes it possible to evaluate how auratethe approximation is.We show by means of examples that the algorithms we propose improve sig-ni�antly the methodology for they allow fast, aurate, and inremental ap-proximations of the desired results.2 See �rst page.3 Institut de Sûret�e de Fontionnement.3

The remainder of this paper is organized as follows. In the next setion, we �rstbriey reall basis on fault trees and prime impliants. We present BDD's insetion 3. We present Madre and Coudert's algorithm as well as the ones toompute minimal p-uts in setion 4. We propose the algorithms omputingtrunated prime impliants and minimal p-uts in setion 5. Finally, we reportexperimental results in setion 6.2 Fault Trees and Prime ImpliantsIn this setion, we reall basi de�nitions about fault trees and boolean ex-pressions.2.1 Fault TreesFor the purpose of this paper, fault trees are essentially onsidered as booleanformulae, i.e. terms indutively built over the two onstants 0 and 1, a set ofvariables X , and usual logial onnetives ^ (and), _ (or), : (not),Fig. 1 depits a small fault tree that will be used throughout this paper. g1is the root event of the tree, g2 and g3 are internal events, and a, b and areprimary events. Primary events are also alled terminal events. The booleanformula assoiated with g1 is ((a^b)_(:a^)). This fault tree is not oherentbeause of the negation, or in other words beause the boolean formula itdesribes is not monotone. In what follows we simply say g1 for \the booleanformula assoiated with g1".
ka kb k��HH� �:g2 � �:g3� �� �+g1rFig. 1. A non oherent fault tree2.2 Prime Impliants and Minimal P-CutsIn order to introdue formally the notion of prime impliants, we need thefollowing de�nitions. 4

A literal is either a boolean variable x or its negation :x. x and :x are saidopposite.A produt is a set of literals that does not ontain both a literal and itsopposite. A produt is assimilated with the onjuntion of its elements.An assignment over X is any mapping from X to f0; 1g. Assignments are ex-tended indutively into mappings from boolean formulae into f0; 1g aordingto the usual rules: let � be an assignment and let f and g be two formulae, then�[f _ g℄ = max(�[f ℄; �[g℄), �[f ^ g℄ = min(�[f ℄; �[g℄) and �[:f ℄ = 1 � �[f ℄.An assignment � satis�es a formula f if �[f ℄ = 1, otherwise it falsi�es f . Forinstane [a 1; b 1; 1℄ is an assignment over fa; b; g that satis�es g2and g1 and that falsi�es g3.Let f and g be two formulae. If any assignment satisfying f satis�es g as well,f implies g, whih is denoted by f j= g. If both f implies g and g implies f ,f and g are said equivalent, whih is denoted by f � g.Let f(x1; : : : ; xn) be a boolean funtion and let � be any assignment thatsatis�es f . Then, f is monotone if for any variable xi suh that �[xi℄ = 0, theassignment �0, suh that �0[xi℄ = 1 and �0[xj℄ = �[xj℄ for j 6= i, satis�es f aswell. If the property holds only for some variable xi, we say that f is monotonein xi.The notion of monotone formulae is the mathematial basis of oherent faulttrees. It is lear that a formula made only of variables and onnetives ^, _and k-out-of-n is monotone.Let f be a boolean formula and � be a produt. � is an impliant of f if � j= f ,i.e. if any assignment satisfying � satis�es f .Let f be a boolean formula and � be an impliant of f . � is prime if there isno impliant � of f stritly inluded in �. We denote by PI[f ℄ the set of allthe prime impliants of the formula f .For instane the formula g1 of the Fig. 1 admits 7 impliants fa; bg, fa; b; g,fa; b;:g, f:a; b; g, f:a; g, f:a;:b; g and fb; g and 3 prime ones fa; bgand f:a; g; fb; g.Prime impliants of oherent fault trees are often alled minimal uts in thereliability engineering literature.The order of a produt (an impliant, a prime impliant) is the number ofliterals it ontains.As said in the introdution, there may exist an exponential number of prime5

impliants with respet to the number of variables ourring in the formulaunder study [Qui59,CM78℄. In pratie, even though this worst ase is seldomreahed, the atual number of prime impliants is often very large (severalthousands) and lassial approahes [VGRH81,LGTL85℄ fail to handle largesize non-deomposable fault trees beause they annot avoid ombinatorialexplosions in both time and spae.In pratie, one is often only interested in positive parts of prime impliants.This is beause only positive literals represent failures 4 . In order to formalizethis, we introdue here the notion of p-ut.Let f be a boolean funtion and let � be a produt ontaining only positiveliterals.We denote by �f the produt obtained by adding to � the negative literalsformed over all of the variables ourring in f but not in �. In the sequel,we will omit the subsript f when the referened formula in lear from theontext. For instane, fagg1 = fa;:b;:g, where g1 is the formula of the Fig. 1.Now, � is a p-ut of f if it ful�ls the �rst of the two following requirements,it is minimal if it ful�ls the seond one.(i) � is a impliant of f .(ii) There is no produt � � � suh that � is a impliant of f .The formula g1 of Fig. 1 admits two minimal p-uts, fa; bg and fg. Note, thatthe prime impliant (and p-ut) fb; g, whih is made only of positive literals,does not lead to a minimal p-ut beause the other prime impliant f:a; ghas a shorter positive part.We denote by PC[f ℄ the set of all the minimal p-uts of the formula f .The following property holds that is dedued diretly from the de�nition ofmonotone funtions.Proposition 1 (Prime impliants of monotone funtions) Let f be mo-notone funtion and let � be a prime impliant of f . Then, � ontains onlypositive literals.The following proposition omes from the previous one.Proposition 2 (Prime impliants vs. p-uts of monotone funtions)Let f be a monotone funtion. Then, PI[f ℄ = PC[f ℄.4 We would like to thank J. Gauthier, from Dassault Aviation, that showed us theinterest of this notion. 6

3 Binary Deision DiagramsIn this setion, we �rst introdue basi de�nitions and properties of BinaryDeision Diagrams (for a omprehensive survey on that tehnique, see [BRB90℄and [Bry92℄). Then, we present the way the algorithm desribed in the previoussetion is implemented by means of operations on BDD's.3.1 Shannon DeompositionAs we will see, the Binary Deision Diagram representation of boolean fun-tions uses mainly the onnetive ite (for If-Then-Else) de�ned as follows.De�nition 3 (ite onnetive) Let f , g and h three boolean funtions, thenite(f; g; h) def= (f ^ g) _ (:f ^ h)Any binary onnetive an be expressed by means of an ite and possibly anegation. For instane, f _ g � ite(f; 1; g) and f � g � ite(f;:g; g). It is pos-sible to express the negation by means of an ite onnetive (:f � ite(f; 0; 1)),however, as we will see, binary deision diagrams manage the negation in amore spei� way.Moreover, given boolean funtion f(x1; : : : ; xn), the following equivalene holds,so-alled Shannon deomposition.Theorem 4 (Shannon deomposition)f(x1; : : : ; xn)� (x1 ^ f(1; x2; : : : ; xn)) _ (:x1 ^ f(0; x2; : : : ; xn))� ite(x1; f(1; x2; : : : ; xn); f(0; x2; : : : ; xn))By applying this priniple reursively, one an rewrite any funtion as anequivalent one that is built only with variables, onnetives ite and booleanonstants 0 and 1.For instane, the formula g1 of Fig. 1 is equivalent to ite(a; ite(b; 1; 0); ite(; 1; 0)).Another interesting property of the onnetive ite is that it is orthogonal withthe usual onnetives.De�nition 5 (Orthogonality) Let Op be an n-ary operation. Let f 1; : : : ; fn7

1 1 0 0 1 0 1 0? ? ? ? ? ? ? ?m m m mmb mbma?1 01 0
Fig. 2. The deision tree enoding g1 for the order a < b < be n formulae and let x be a variable, Op is said to be orthogonal with ite ifthe following equivalene holds.Op(f 1; : : : ; fn) � ite(x;Op(f 1x=1; : : : ; fnx=1); Op(f 1x=0; : : : ; fnx=0))where fx=v denotes the formula f in whih the onstant v has been substitutedfor all ourrenes of x.Proposition 6 (Orthogonality) : (not), _ (or), ^ (and), ((imply), ,(if and only if) and � (exlusive or) are orthogonal with ite.3.2 Informal Presentation of Binary Deision DiagramsIn order to provide the reader with an intuition of what binary deision dia-grams are, let us onsider again the funtion g1 of the Fig. 1. Thank to thetheorem 4, it is possible to build a deision tree enoding the truth table g1.Given a total order over the variables of the funtion under study, a deisiontree is a omplete binary tree whose leaves are labeled with the onstant 0 or1 and whose iternal nodes are labeled with variables. The nodes at level i inthe tree are labeled with the variable of rank i in the onsidered order. Eahnode has two outedges, labeled respetively with 0 and 1, that orrespond tothe two possible valuations of the variable it is labeled with. The tree asso-iated with g1 for the order a < b < is pitured Fig. 2. The value of thefuntion for a given variable assignment is obtained by desending along theorresponding branh of the tree. Intuitively, eah node of the tree enodes aformula in the form ite(x; f1; f0), where x is the variable it is labeled with andf1 and f0 are the formulae enoded respetively by the trees pointed by its 1-and 0-outedges.Now, it is lear that suh an enoding for the truth table of a funtion is veryexpensive: if the funtion depends on n variables, the assoiated deision treehas 2n � 1 internal nodes and 2n leaves. However, it is possible to make therepresentation far more ompat by applying the two following operations.8

?ma? ?mb m? ?? ?1 01 0
Fig. 3. The BDD enoding g1 (for the order a < b <)(i) Isomorphi subtrees merging. Sine two isomorphi subtrees have thesame semantis, at least one is useless. This is espeially the ase forleaves: two leaves suÆe, one labeled with 0, the other one by 1.(ii) Useless nodes deletion. If a node enodes a formula in the form ite(x; f; f)it is useless sine ite(x; f; f) � f . So pointers to that node an be replaedby pointers to the node enoding f .By applying these two rules as far as possible, one gets the binary deisiondiagram assoiated with the formula. As we will see, it is unique (up to anisomorphism). The binary deision diagram assoiated with g1 (for the ordera < b <) is pitured Fig 3. The point is that it is possible to get the BDDassoiated with a formula diretly, i.e. without onstruting the whole binarydeision tree and then reduing it.3.3 Formal De�nitionLet x1; : : : ; xn be n boolean variables. A binary deision diagram over x1,. . . ,xnis a direted ayli graph G verifying onditions (i) and (ii).(i) G has two sink nodes labeled respetively with 0 and 1.(ii) Eah internal node of G is labeled with a variable xi and has 2 outedgeslabeled respetively with 0 and 1.Let < be a total order over X . A binary deision diagram G is said to beordered if ondition (iii) holds.(iii) For any pair of nodes (�,�) labeled respetively with the variables xi andxj, if one of the two out-edges of � points to � then xi < xj.An ordered BDD is said redued if onditions (iv) and (v) hold.(iv) It ontains no internal node whose outedges are both pointing to the samesub-graph.(v) It ontains no two isomorphi sub-graphs.9

Shannon[[0℄℄ def= 0Shannon[[1℄℄ def= 1Shannon[[�(x; �1; �0)℄℄ def= ite(xi; Shannon[[�1℄℄; Shannon[[�0℄℄)Fig. 4. The standard semantis for BDD'sIn what follows, we will abbreviate redued ordered binary deision diagramin ROBDD, or even BDD. Moreover, we will say the BDD � for the BDDwhose nodes are those reahable from the node �. Finally, we will denotesby �(x; �1; �0) the node � labeled with the variable x and whose 1- and 0-outedges point respetively to the nodes �1 and �0 (sine, by de�nition, thereis no two isomorphi sub-graphs this node is unique).3.4 Shannon Semantis for ROBDD'sBDD's, as we de�ned them in the previous setion, are a data struture, just adata struture. As suh, they have no intrinsi semantis. So, we have to de�nefuntion that assoiates a mathematial objet, namely a boolean funtion, toeah BDD. An usual way to desribe suh a funtion and more generally tode�ne operations on BDD's is to write a set of reursive equations. The set ofreursive equations de�ning the standard, or Shannon, semantis for BDD'sis given Fig. 4 (there are atually other semantis for BDD's [Rau96℄).Thanks to the Shannon deomposition (theorem 4), it is lear that for anyfuntion f there exists at least one ROBDD enoding a funtion equivalent tof . Moreover, the following property holds.Proposition 7 (Canoniity of ROBDD's) Let f be a boolean formula. Forgiven a variable order, the ROBDD assoiated with f is unique up to an iso-morphism [Bry86℄.3.5 Management of BDD'sAs a onsequene of their anoniity, BDD's an be managed in suh way thatthere is never two distint nodes enoding the same funtion. The prinipe isas follows. BDD's are always reated in a bottom-up way, i.e. that the node�(x; �1; �0) is always reated after the reation of the nodes �0 and �1. Nodesare kept in a table and are reated only through the funtion find or add bdd.This funtion looks up the table and reates new nodes only when neessary,10

build(1) def= 1build(0) def= �1build(xi) def= �(xi; 1; �1)build(:f) def= �build(f)build(f1 ? f2) def= apply(?; build(f1); build(f2))Fig. 5. Equations de�ning the build funtion.i.e. when the table does not already ontain the wanted node. Tehnially,find or add bdd is implemented by means of hashing tehniques [BRB90℄.In order to ompute the negation of a BDD one has just to exhange its 0 and1 leaves. This omes from the fat that : and ite are orthogonal (property 6).This requires a priori a BDD traversal, whih is at least linear in the size of theonsidered BDD. However, a programming trik makes possible a negation inonstant time and redues memory onsumption. It onsists in putting a agon eah edge. This ag indiates whether the pointed BDD is to be onsideredpositively or negatively. As a onsequene, only one leaf remains neessary,say for instane the leaf 1, sine 0 � :1. The anoniity of the representationis maintained by storing only nodes with a positive 1-edge. The orthogonalityof ite and : is used to manipulate only suh nodes. The following equationsdesribe the replaement rules. Negated edges are denoted with a �.�(x; ��1; �0) �! ��(x; �1; ��0)�(x; ��1; ��0) �! ��(x; �1; �0)��(x; ��1; �0) �! �(x; �1; ��0)��(x; ��1; ��0) �! �(x; �1; �0)3.6 Computation of the BDD Assoiated with a FormulaLet f be a formula over the variable x1, . . . , xn. The omputation of the BDD� enoding f (for the variable order x1 < : : : < xn) is performed by means ofthe funtion build that an be desribed through reursive equations to beapplied on f and its subformulae. These equations are given Fig. 5. Their leftmembers are formulae | x is a variable, f , f1 and f2 denote any formulae,? stands for any binary onnetive _ (or), ^ (and), � (exlusive or), . . .|,while right members are BDD's. When f is of the form f1?f2 the omputationof the BDD � enoding f is performed in two steps:11

apply(?;�(xi; �1; �0);�(xi; �1; �0)) def= �(xi; apply(?; �1; �1); apply(?; �0; �0))apply(?;�(xi; �1; �0);�(xj; �1; �0)) def= �(xi; apply(?; �1; �); apply(?; �0; �))apply(_; 1; �) def= 1apply(_; 0; �) def= �apply(_; �; �) def= �...Fig. 6. The equations de�ning the apply funtion.(i) The BDD's �1 and �2 enoding respetively f1 and f2 are omputed,(ii) �1 and �2 are omposed by means of the apply funtion.The reursive equations desribing apply are given Fig. 6. There are mainlythree ases:{ The main ase, in whih apply is alled on two BDD's whose root nodesare labeled with the same variables.{ A degenerated ase, in whih the funtion is alled on two BDD's whoseroot nodes are not labeled with the same variables (on Fig. 6, it is assumedthat i < j and � = �(xj ; �1; �0)).{ The terminal ase, that is the only one that depends on the onnetive ?.In this ase, the truth table of ? allows an immediate deision of the valueof the funtion (On Fig. 6, we just give some examples for _).Suh a deomposition in three ases | the main one, a degenerated one anda terminal one | appear in most of the equations desribing operations onBDD's.A seond table, so-alled the omputed table, is used. In this table, 4-tuplesf?; �; �; g are kept, where �, � and are BDD's suh that = � ? �. Beforeany omputation of �?�, one heks if the result is not already in the table. Ifit is, the result is returned, otherwise it is atually omputed and then storedin the table. In order to allow a fast aess to stored tuples, the omputed tableis also managed by means of hashing tehniques [BRB90℄.The use of a table in whih intermediate results are stored plays a entralrole in the eÆieny of BDD's. From a theoretial point of view, it ensuresbounds on omplexities of operations (these bounds are given table 1). Froma pratial point of view, it dramatially dereases running times. As a matterof fat, none of the fault trees presented setion 6 ould be proessed withoutthis memorization.In table 1, j�j denotes the size, i.e. the number of nodes, of the BDD �.12

find or add bdd O(1)apply(?; �; �) O(j�j � j�j)pr(�) O(j�j)Table 1Computational osts of operations on BDD's3.7 Variable OrderingThe size of the BDD enoding a funtion strongly depends on the hosenvariable ordering. Finding the best variable ordering is untratable (the bestknown algorithm is in O(3n)), so heuristis are used to determine good ones.This is a ompliated matter whih is outside of the sope of this paper. Theinterested reader should see for instane [Rau96℄ for a disussion as well as ona quite omplete bibliography on that topis.3.8 Computation of the Probability of the Root EventAs a �rst illustration of the use of BDD's in the reliability analysis framework,let us show briey how to ompute the exat probability of the top event ofa fault tree given the probabilities of its primary events. This is performed bymeans of a BDD traversal, the Shannon deomposition being applied on eahnode of the BDD.Theorem 8 (Shannon's Deomposition) Let f = ite(x; f1; f0) be a for-mula, where x is a variable and f1 and f0 are formulae in whih x does notour. Then the following equality holds.p(f) = p(x):p(f1) + (1� p(x)):p(f0)where p(x) denotes the probability that x = 1 and p(f) the probability thatf = 1.It is easy to indue an e�etive algorithm from the above theorem (see [Rau93℄for more details). Reursive equations that desribe this algorithm are givenFig. 7. Thanks to the memorization of intermediate results, the omplexityof the algorithm is linear in the size of the BDD, as mentioned in table 1.For instane, the probability of the formula g1 of the Fig. 1, is omputed asfollows.p(g1)= p(ite(a; ite(b; 1; 0); ite(; 1; 0))13

pr(1) def= 1pr(��) def= 1� pr(�)pr(�(x; �1; �0)) def= p(x):pr(�1) + (1� p(x)):pr(�0)Fig. 7. The equations de�ning the funtion omputing the probability of a BDD.= p(a):p(ite(b; 1; 0)) + (1� p(a)):p(ite(; 1; 0))= p(a):p(b) + (1� p(a)):p()4 Exat Computations Prime Impliants and Minimal P-Cuts4.1 Deomposition Theorems for Prime Impliants and Minimal P-CutsThe �rst idea of algorithms omputing prime impliants and minimal p-utsfrom BDD's is as follows.Theorem 9 (Deomposition Theorem for Prime Impliants) Let f(x1; : : : ; xn)be a boolean funtion. Then, the set of prime impliants of f(x1; : : : ; xn) anbe obtained as the union of three sets.PI[f(x1; : : : ; xn)℄ =PI10 [PI1 [PI0where, PI10, PI1 and PI0 are de�ned as follows.PI10 def= PI[f(1; x2; : : : ; xn) ^ f(0; x2; : : : ; xn)℄PI1 def= ffx1g [�; � 2 PI[f(1; x2; : : : ; xn)℄ n PI10gPI0 def= ff:x1g [�; � 2 PI[f(0; x2; : : : ; xn)℄ n PI10gwhere n stands for the set di�erene.A formal proof of the theorem 9 is given in appendix. Intuitively, it is justi�edas follows. A prime impliant � of f(x1; : : : ; xn) may ontain either x1 or:x1 or none of these two literals. In this latter ase, � must still be a primeimpliant of f whatever onstant is substituted for x1. Thus, � is a primeimpliant of f(x1; : : : ; xn) that does not ontain x1 nor :x1 if and only if it is aprime impliant of 8x1f(x1; : : : ; xn) = f(1; x2; : : : ; xn)^f(0; x2; : : : ; xn). Now,a produt fx1g[� is a prime impliant of f(x1; : : : ; xn) if it is a prime impliantof f(1; x2; : : : ; xn) and � is not already a prime impliant of f(x1; : : : ; xn), i.e.if � does not belong to PI[f(1; x2; : : : ; xn) ^ f(0; x2; : : : ; xn)℄.14

The deomposition gives an indutive priniple to ompute prime impliants.Note that this priniple is di�erent from the Quine's onsensus method [Qui52℄.In our example g1(a; b;) = (a ^ b) _ (:a ^) = ite(a; ite(b; 1; 0); ite(; 1; 0)),g1(1; b;) = ite(b; 1; 0) = b;g1(0; b;) = ite(; 1; 0) = ;g1(1; b;) ^ g1(0; b;) = ite(b; ite(; 1; 0); 0) = b ^ It is lear that PI[b℄ = ffbgg, PI[℄ = ffgg and PI[b ^ ℄ = ffb; gg.Thus, PI[ite(a; ite(b; 1; 0); ite(; 1; 0))℄ = PI10 [PI1 [PI0, where,{ PI10 is PI[b ^ ℄ = ffb; gg.{ PI1 is the set of produts fag [� where � is in ffbgg and not in ffb; gg.Thus, PI1 = ffa; bgg.{ PI0 is the set of produts f:ag [� where � is in ffgg and not in ffb; gg.Thus, PI0 = ff:a; gg.Finally, we get PI[g1℄ = ffa; bg; f:a; g; fb; gg.Similarly, the following theorem holds that gives an indutive priniple toompute minimal p-uts.Theorem 10 (Deomposition Theorem for Minimal P-Cuts) Let f(x1; : : : ; xn)be a boolean funtion. Then, the set of minimal p-uts of f(x1; : : : ; xn) an beobtained as the union of two sets.PC[f(x1; : : : ; xn)℄ =PC0 [PC1where, PC1 and PC0 are de�ned as follows.PC0 def= PC[f(0; x2; : : : ; xn)℄PC1 def= ffx1g [�; � 2 PC[f(1; x2; : : : ; xn) _ f(0; x2; : : : ; xn)℄ n PC0gA formal proof of the theorem 10 is given in appendix.In our example g1(a; b;) = (a ^ b) _ (:a ^) = ite(a; ite(b; 1; 0); ite(; 1; 0)),and thus g1(1; b;)_g1(0; b;) = b_. Clearly, we have PC[b_℄ = ffbg; fgg.15

Thus, PC[ite(a; ite(b; 1; 0); ite(; 1; 0))℄ = PC1 [PC0, where,{ PC0 is PC[℄ = ffgg.{ PC1 is the set of produts fag[� where � is in PC[b_ ℄ = ffbg; fgg andnot in PC0 = ffgg. Thus, PC1 = ffbgg.Finally, we get PC[g1℄ = ffa; bg; fgg.Notie that for the speial ase of monotone funtions (oherent fault trees),the two deomposition theorems an be simpli�ed and, one simpli�ed, beomeatually idential. Let f(x1; : : : ; xn) be a monotone funtion. Then, it is easyto verify that the two following equalities hold.f(1; x2; : : : ; xn) ^ f(0; x2; : : : ; xn)= f(0; x2; : : : ; xn) (1)f(1; x2; : : : ; xn) _ f(0; x2; : : : ; xn)= f(1; x2; : : : ; xn) (2)Now by simplifying deomposition theorems aording to equations 1 and 2,we get exatly the same deomposition priniple (exepted that the identi�erPI is used in the �rst ase and the identi�er PC is used in the seond one).4.2 Meta-ProdutsA seond key idea is to represent sets of produts by means of boolean formu-lae. More preisely, a funtion MP (�) is assoiated with eah set of produts� in suh a way that there is a one-to-one orrespondene between produts of� and variable assignments that satisfy MP (�). Funtions MP (�) are alledmeta-produts by Madre and Coudert in [CM92a℄. Note that meta-produtsare not the only way to enode set of produts by means of boolean funtions.Minato in [Min93℄ and Rauzy in [Rau93℄ proposed an alternative way to doso. For the sake of oniseness, we only onsider here Madre and Coudert'srepresentation.4.2.1 De�nitionLet x be a variable and � be a produt. Then three ases are possible: eitherx 2 � or :x 2 � or neither x nor :x belong to �.The idea is to assoiate two variables px and sx with eah variable x of theoriginal formula. px is used to enode the presene of the variable x in theprodut. sx is used to enode the sign of x in the produt, if it is atuallypresent. 16

The meta-produt enoding �, denoted byMP (�), is the onjuntion, over thevariables x ourring in the formula, of mp(�; x), where mp(�; x) is de�ned asfollows:
mp(�; x) def= 8>>>>><>>>>>: (px ^ sx) if x 2 �;(px ^ :sx) if :x 2 �;:px if neither x nor :x belongs to �:For instane, the meta-produt assoiated with the prime impliant � =f:a; g of g1 is MP (�) = (pa ^ :sa ^ :pb ^ p ^ :s). a ours negativelyin �, thus the variable pa enoding the presene of a must be true and sa thevariable enoding the sign of a must be false. b does not our in � thus pbthe variable enoding the presene of b must be false and sb may take anyvalue (and thus is not present at all in the meta-produt). Finally, ourspositively in �, thus the variable p enoding the presene of must be trueand s the variable enoding the sign of must be true.4.2.2 Operations on Sets of ProdutsA set of produts is enoded by the disjuntion of the meta-produts enodingits elements. The formula enoding a set of produts � is also denoted byMP (�).For instane PI[g1℄, of prime impliants of the funtion g1 of Fig. 1 is enodedby means of the following funtion.MP (PI[g1℄)=MP (ffa; bg; f:a; g; fb; gg)= (pa ^ sa ^ pb ^ sb ^ :p) =� = MP (fa; bg) � =_ (pa ^ :sa ^ :pb ^ p ^ s) =� = MP (f:a; g) � =_ (:pa ^ pb ^ sb ^ p ^ s) =� = MP (fb; g) � =More generally, operations on sets of produts an be performed through log-ial operations on the orresponding meta-produts.Proposition 11 (Operations on meta-produts) Let �1 and �2 be twosets of produts built over the variables x1; : : : ; xn. Let MP (�1) and MP (�2)be the two meta-produts built over the variables px1 ; sx1; : : : ; pxn; sxn, enoding17

MP[[1; L℄℄ def= ffggMP[[��; L℄℄ def= 2L n MP[[�℄℄MP[[�(px; �1; �0); x:L℄℄ def= MP[[�1; x:L℄℄ [MP[[�0; x:L℄℄MP[[�(sx; �1; �0); x:L℄℄ def= [ffxg [�; � 2 MP[[�1; L℄℄gff:xg [�; � 2 MP[[�0; L℄℄gFig. 8. The equations de�ning the semantis of BDD's enoding metaproduts.respetively �1 and �2.{ The empty set of produts is enoded by 0 (false).{ The set of all of the possible produts is enoded by the 1 (true).{ The empty produt is enoded by the funtion (:px1 ^ : : : ^ :pxn).{ �1 [�2 is enoded by the funtion MP (�1) _MP (�2).{ �1 \ �2 is enoded by the funtion MP (�1) ^MP (�2).{ The omplement �1 to �1 in the set of all of the possible produts is enodedby the funtion :MP (�1).These properties are demonstrated very easily by onsidering the one-to-oneorrespondene between satisfying variable assignments and enoded produts[CM92a℄.Note that the set of produts that belong to �1 but not to �2, i.e. the set�1 \ �2, is enoded by the funtion MP (�1) ^ :MP (�2).4.3 Computation of the BDD Enoding Prime ImpliantsThe third idea is to use BDD's to enode meta-produts. The reursive equa-tions de�ning the semantis of suh a BDD are given Fig. 8. In these equations,the ordered list of the variables the produts are built over is given as an ar-gument. While not stritly neessary, this simpli�es the de�nition for negatedBDD's. Moreover, it will be usefull to set equations de�ning the algorithmitself. 2L denotes the set of all of the produts that an be built over the vari-ables of the list L. This implementation assumes, as suggested in [CM92a℄,that the variables px and sx are onseutive in the BDD order.The reursive equations de�ning the algorithm that omputes the BDD enod-ing the prime impliants of a funtion from the BDD enoding this funtion isskethed Fig. 9. This is basially an implementation of the reursive prinipledesribed setion 4.1. In these equations, [℄ denotes the empty list (of vari-18

MPPI(�1; L) def= �1MPPI(1; [℄) def= 1MPPI(1; x:L) def= �(px; �1; MPPI(1; L))MPPI(��(x; �1; �0); L) def= MPPI(�(x; ��1; ��0); L)MPPI(�(y; �1; �0); x:L) def= �(px; �1; MPPI(�(y; �1; �0); L))MPPI(�(x; �1; �0); x:L) def= �(px;�(sx; �1; �0); �10)where, 8>>>>><>>>>>: �10 = MPPI(apply(^; �1; �0); L)�1 = apply(^; MPPI(�1; L); ��10)�0 = apply(^; MPPI(�0; L); ��10)Fig. 9. The equations de�ning the algorithm MPPI.

1 mp 0msb 1mpb 1
1msa ms

mpb
mpa

0mp 0
msb 0mpb 0? ?? ?? ?? ?

? ?
? ?
? ?
? ?? ?? ?
v
v v?

Fig. 10. The BDD enoding MP (PI[g1℄) (negated edges are agged with a blakdot). For the sake of larity, the leaf is dupliated and negated pointers to the leafare replaed by pointers to a leaf 0.ables) and the variable x is assumed to be before the variable y in the hosenorder.Note that intermediate results are memorized in this proedure as well. Despiteof this memorization, the worst ase omputational ost of MPPI is exponentialwith respet to the number of variables.The BDD enoding MP (PI[g1℄) is pitured Fig. 10.19

MPPC(�1; L) def= �1MPPC(1; [℄) def= 1MPPC(1; x:L) def= �(px; �1; MPPC(1; L))MPPC(��(x; �1; �0); L) def= MPPC(�(x; ��1; ��0); L)MPPC(�(y; �1; �0); x:L) def= �(px; �1; MPPC(�(y; �1; �0); L))MPPC(�(x; �1; �0); x:L) def= �(px; �1; �0)where, 8><>:�0 = MPPC(�0; L)�1 = apply(^; MPPC(apply(_; �1; �0); L); ��0)Fig. 11. The equations de�ning the algorithm MPPC.4.4 Computation of the BDD Enoding Minimal P-CutsIn a similar way, the reursive equations that de�ned the algorithm MPPC thatomputes the BDD enoding the minimal p-uts of a funtion from the BDDenoding this funtion are given Fig.11. They enode the deomposition prin-iple given by the theorem 10. There is however one di�erene: sine variableour always positively in p-uts, the variables sx's are useless. They an besafely removed, i.e. all of the properties of proposition 11 still hold in thissimpli�ed representation.4.5 Another Way to Compute the BDD Enoding Minimal P-CutsThere is a subtle di�erene between MPPI and MPPC. In MPPI, the omputationof �1^�0 is mandatory. In MPPC, the omputation of �1_�0 is performed onlyto remove from PC[�1℄ the produts that are inluded in produts of PC[�0℄.The point is that this operation an be performed diretly on meta-produtBDD's (we all it without in the sequel), whih is in some ases more eÆient,espeially when the number of minimal p-uts is small. This leads to a seondalgorithm to ompute minimal p-uts, so alled MPQC, whih is almost thesame than MPPC exepted that �1 is omputed as follows :�1= without(MPQC(�1); �0)Equations de�ning without are given on Fig.12 (in these equations, it is as-sumed that x < y). This algorithm is very similar to the one given by Rauzyin [Rau93℄. 20

without(�1; �) def= �1without(�; 1) def= �1without(�; �) def= �1without(�; �1) def= �without(1;�(x; �1; �0)) def= �(x; �1; without(1; �0))without(��(x; �1; �0); �) def= without(�(x; ��1; ��0); �)without(�; ��(x; �1; �0)) def= without(�;�(x; ��1; ��0))without(�(y; �1; �0);�(x; �1; �0)) def= �(x; �1; without(�; �0))without(�(x; �1; �0);�(y; �1; �0)) def= �(x; without(�1; �); without(�0; �))without(�(x; �1; �0);�(x; �1; �0)) def= �(x; 1; 0)where, 8><>: 0 = without(�0; 0)1 = without(�1; apply(_; �1; �0))Fig. 12. The equations de�ning the algorithm without.Indeed, the following property holds for any BDD �.MPPC(�)= MPQC(�)5 Trunated Computations of Prime Impliants and Minimal P-Cuts5.1 AlgorithmsAs mentioned at the setion 2.2, a funtion may have an exponential numberof prime impliants with respet to its number of variables. As an illustration,onsider the funtion #(n; n; [x1; : : : ; x2n℄) that is true if and only if exatly nof the xi's are true. In pratie, large real-life fault trees we dealt with haveatually many prime impliants (say several millions). Up to some prepro-essing, we suedded almost always in omputing the BDDs enoding thesefault trees within reasonable running times and amounts of memory. Thereare some ase however where we did not suedded in omputing the BDDsenoding their prime impliants (or minimal p-uts). In order to takle thisdiÆulty, we designed variations on MPPI, MPPC and MPQC that ompute onlyprime impliants whose order is less than a given onstant or whose proba-21

bility is greater than a given threshold. From a pratial point of view, theseimpliants are interesting beause they onentrate in general the most prob-able failures. Good assessments on reliability (and other measures of the risk)an be obtained by onsidering them only.From a tehnial point of view, variations we designed are based on the ob-servation that, at any step of the algorithms, we know a lower bound on theorder and a upper bound on the probability of prime impliants (or minimalp-uts) to be built. Namely, assume that at the given step the formula understudy is f = ite(x; f1; f0) and that we know that prime impliants to be builtare at least of order k and at most of probability p, then aording to thedeomposition theorem (theorem 9):{ The prime impliants of f ontaining x are at least of order k + 1 and atmost of probability p:p(x).{ The prime impliants of f ontaining :x are at least of order k + 1 and atmost of probability p:(1� p(x)).{ The prime impliants of f ontaining neither x or :x are at least of orderk and at most of probability p.Similarly, aording to theorem 10:{ The minimal p-uts of f ontaining x are at least of order k+1 and at mostof probability p:p(x).{ The minimal p-uts of f that do not ontain x are at least of order k andat most of probability p.The idea is thus simply to stop the omputation when the urrent order k orthe urrent probability p reah the prede�ned bounds. Let us all TrMPPI(f; k; p),TrMPPC(f; k; p) and TrMPQC(f; k; p) (the pre�x Tr stands for trunated) the al-gorithms omputing respetively the prime impliants and the minimal p-utsof f whose order is less than k and whose probability is greater than p. Equa-tions de�ning TrMPPI are given Fig. 13. kmax and pmin denote respetively theprede�ned upper bound on the order and lower bound on the probability ofthe onsidered produts. TrMPPI should be alled with initial values of k andp set respetively to 0 and 1.Equations de�ning TrMPPC and TrMPQC an be stated in a very similar way, asshown Fig. 14 for TrMPQC.The following properties hold.Proposition 12 (Completeness of TrMPPI) TrMPPI produes all of the primeimpliants of the funtion under study whose order is less than the given lowerbound and whose probability is greater than the given upper bound.22

TrMPPI(�; L; k; p) def= �1 if k > kmax or p < pminTrMPPI(�1; L; k; p) def= �1TrMPPI(1; [℄; k; p) def= 1TrMPPI(1; x:L; k; p) def= �(px; �1; TrMPPI(1; L))TrMPPI(��(x; �1; �0); L; k; p) def= TrMPPI(�(x; ��1; ��0); L; k; p)TrMPPI(�(y; �1; �0); x:L; k; p) def= �(px; �1; TrMPPI(�(y; �1; �0); L; k; p))TrMPPI(�(x; �1; �0); x:L; k; p) def= �(px;�(sx; �1; �0); �10)where, 8>>>>><>>>>>:�10 = TrMPPI(apply(^; �1; �0); L; k; p)�1 = apply(^; TrMPPI(�1; L; k + 1; p:p(x)); ��10)�0 = apply(^; TrMPPI(�0; L; k + 1; p:(1� p(x))); ��10)Fig. 13. The equations de�ning the algorithm TrMPPI.TrMPQC(�; L; k; p) def= �1 if k > kmax or p < pminTrMPQC(�1; L; k; p) def= �1TrMPQC(1; [℄; k; p) def= 1TrMPQC(1; x:L; k; p) def= �(px; �1; TrMPQC(1; L; k; p))TrMPQC(��(x; �1; �0); L; k; p) def= TrMPQC(�(x; ��1; ��0); L; k; p)TrMPQC(�(y; �1; �0); x:L; k; p) def= �(px; �1; TrMPQC(�(y; �1; �0); L; k; p))TrMPQC(�(x; �1; �0); x:L; k; p) def= �(px; �1; �0)where, 8><>:�0 = TrMPQC(�0; L; k; p)�1 = without(TrMPQC(�1; L; k + 1; p:p(x)); �0)Fig. 14. The equations de�ning the algorithm TrMPQC.Proposition 13 (Completeness of TrMPPC and TrMPQC) TrMPPC and TrMPQCprodue all of the minimal p-uts of the funtion under study whose order isless than the given lower bound and whose probability is greater than the givenupper bound (and indeed they give the same result).The proof of both properties is done by indution of the struture of theformula enoded by the BDD assoiated with the funtion under study.It is also easy to establish a maximum bound on the number of alls to the23

algorithms.Proposition 14 (Complexity of TrMPPI) The number of reursive alls tothe algorithm is in O(2knk) (when k is small with respet to n).Proof by strutural indution as well.Proposition 15 (Complexity of TrMPPC and TrMPQC) The number of re-ursive alls to the algorithm is in O(nk) (when k is small with respet ton).Proof by strutural indution as well.This means that running times spent in the searh for prime impliants anbe arbitrarily bound by �xing k aordingly.5.2 Computation of Probability of Trunated Prime Impliants and MinimalP-CutsAs shown in setion 3.8, it is easy to ompute the probability of the root eventof a fault tree f one the BDD � enoding f has been omputed. On theother hand, the omputation of trunated prime impliants and minimal p-utsraises a question: is the approximation we get by onsidering only trunatedprime impliants or minimal p-uts good enough ? To answer this question,it would be ideal to design an algorithm that omputes the probability thatat least one of these prime impliants is true from the BDD � enoding them.Unfortunately, it is not possible to ompute this probability diretly. Thesolution onsists in omputing a BDD that enodes a funtion whose primeimpliants are exatly those enoded by �. One has been omputed, thedesired probability is easily obtained (see setion 3.8).To ome bak to a standard BDD from a BDD enoding a meta-produt, wewill use an algorithm that is almost diretly indued by the reursive equationsgiven Fig. 8 that de�ne the semantis of meta-produt BDD's. The equationsde�ning this algorithm are given Fig. 15.If the onsidered BDD enodes a simpli�ed meta-produt for minimal p-uts(as disussed setion 4.4), the third rule should be applied on every internalnode).It is easy to verify from equations of Fig.15, that the BDD ReverseMP(�)enodes the disjuntion of the produts enoded by �. Formally, the following24

ReverseMP(1) def= 1ReverseMP(�1) def= �1ReverseMP(��(x; �1; �0)) def= ReverseMP(�(x; ��1; ��0))ReverseMP(�(px; �1; �0)) def= apply(_; ReverseMP(�1); ReverseMP(�0))ReverseMP(�(sx; �1; �0)) def= �(x; ReverseMP(�1); ReverseMP(�0))Fig. 15. The equations de�ning ReverseMP.property holds.Proposition 16 (Semantis of ReverseMP) Let � be a meta-produt BDDand let � = ReverseMP(�), then the following equality holds.Shannon[[�℄℄� _�2MP (�) l̂2� lThe following property asserts the soundness of this bakward omputation.Proposition 17 (Soundness of ReverseMP) Let � be a BDD, k be an orderand p a probability, then the following equalities hold.ReverseMP(MPPI(�))=� (3)MPPI(ReverseMP(TrMPPI(�; k; p)))= TrMPPI(�; k; p) (4)TrMPPI(ReverseMP(TrMPPI(�; k; p)); k; p)= TrMPPI(�; k; p) (5)MPPC(ReverseMP(TrMPPC(�; k; p)))= TrMPPC(�; k; p) (6)TrMPPC(ReverseMP(TrMPPC(�; k; p)); k; p)= TrMPPC(�; k; p) (7)MPQC(ReverseMP(TrMPQC(�; k; p)))= TrMPQC(�; k; p) (8)TrMPQC(ReverseMP(TrMPQC(�; k; p)); k; p)= TrMPQC(�; k; p) (9)Equality 3 means that by omputing prime impliants of a BDD � and thenapplying ReverseMP on the obtained BDD, we get � again. Equalities 4-5 extend this result to omputations with trunation. Indeed, suh a nieproperty does not hold for minimal p-uts, sine the funtion enoded byReverseMP(MPPC(�)) is always monotone, even if the one enoded by � is not,for p-uts ontain only positive literals. However, equalities 6-9 indiate thatthe ombination � of one of the algorithms omputing minimal p-uts withReverseMP works as a projetion, in the mathematial meaning of this term,from the spae of Boolean funtions to the spae of monotone Boolean fun-tions whose prime impliants obey onstraints on their order and probability.Namely, for any funtion enoded by a BDD �, we have �(�(�)) = �(�).25

Moreover, it is easy to verify the following property.Proposition 18 (Complexity of ReverseMP) Let � be a BDD, then thenumber of reursive alls to the algorithm when alling ReverseMP on � isin O(j�j), where j�j denotes the number of nodes of the BDD j�j.6 Experimental Results and ConlusionIn order to test the algorithms presented in this paper, we onsidered a numberof real-life fault trees that were provided by our industrial partners. We reporthere results obtained of two of them oming from \�Eletriit�e de Frane" and\Dassault Aviation". The tests reported in the tables below were performedon a SUN workstation ultra spark 1 with a 512 megabytes of memory. It islear that suh a omputer is not on every desk ! On the other hand, sinemost of the researh enters are now equiped with suh mahines, it makessense to study what an be done at the limits of the urrent tehnology.6.1 A Coherent Fault Tree from �Eletriit�e de FraneThe �rst tree we onsider is a oherent one from �Eletriit�e de Frane. Itis referened under the name edfpa01 in our benhmark and it is a goodrepresentative for a very large lass of fault trees. It has 337 gates (^ and _gates), 306 primary events and only 31 small modules. The omputation ofthe BDD enoding it takes 13:1 seonds on average. This BDD is made of17836 nodes. The omputation of the exat probability of its top event fromthis BDD takes 0:55 seonds. The following table reports the probability ofthe top event for di�erent values of the probabilities of the primary events (forthis test, we assume that all primary events have the same probability).ProbabilitiesPrimary events 0:5 0:1 0:01 0:001 0:0001Top event 1 1 0:536048 0:0386668 0:0033621Note that the two �rst probabilities of the top event are 1, whih simply meansthat they are too lose to 1 to be distinguished from this value with the doublepreision oating point numbers of our omputer.edfpa01 admits 7; 520; 142 prime impliants (or minimal uts or minimal p-uts sine these notions are equivalent for monotone funtions). The table 226

ContributionsOrders #PI jReverseMPj Times 0:5 0:1 0:01 0:001 0:00011 33 34 0:02 1 0:969097 0:526574 0:83993 0:9799622 6801 1474 0:02 1 0:999984 0:949656 0:996757 0:9999583 148780 19532 0:12 1 1 0:998515 0:999987 14 647556 68890 0:39 1 1 0:999991 1 15 507572 185849 1:01 1 1 1 1 16 577192 475242 2:54 1 1 1 1 17 1575616 583036 3:12 1 1 1 1 18 1745584 564808 3:05 1 1 1 1 19 1323120 310649 1:68 1 1 1 1 110 812520 152699 0:83 1 1 1 1 111 166968 106832 0:58 1 1 1 1 112 8400 100921 0:55 1 1 1 1 1Table 2Numbers of Prime Impliants and their ontributions to the probability of the topevent of edfpa01.gives, for eah order k:{ The numbers of prime impliants of order k.{ The size of the BDD enoding the funtion whose prime impliants are thoseof edfpa01 of order less than k.{ The running times to get the probability of this funtion from the previousBDD (these times are independant of the probability of primary events).{ The ontribution of this funtion to the probability of edfpa01 for thedi�erent values of the probabilities of the primary events mentioned above(this ontribution is de�ned as the probability of the funtion divided bythe probability of edfpa01).A number of remarks an be made about this table.Remark 19 The number of prime impliants is very large and it is doubtfulthat lassial methods based on inlusion/exlusion tehniques ould proeedthis tree.Remark 20 Most of the probability of the funtion edfpa01 is onentratedinto prime impliants of low orders, whih is in general the ase for the o-herent fault trees of our benhmark. 27

02040
6080100120140

0 2 4 6 8 10 12 14

TrMPMCTrMPPITrMPPC

Fig. 16. Running times in seonds (y-axis) of TrMPMC, TrMPPI and TrMPPC onedfpa01 for di�erent trunation orders (x-axis).Remark 21 Even for large BDD's, the omputation of the probability of thefuntion enoded by the BDD is ahieved very quikly.In order to ompute prime impliants of edfpa01, we tested four algorithms:MPMC, the version with trunation of the algorithm one of us proposed in[Rau93℄, and the versions with trunation of the three algorithms MPPI, MPPCand MPQC presented in this paper. The running times of these algorithms areompared on Fig. 16 and Fig. 17. Horizontal lines give running times foralgorithms without trunation.A number of remarks an be made about these two �gures.Remark 22 Running times for MPPI and MPPC (and the versions with trun-ation of these two algorithms) are almost the same. MPMC is faster, while MPQCis far slower. It is hard to �nd onvining arguments to explain that. Clearly,MPMC takes advantage it knows that the funtion is monotone. On the otherside, performanes of MPQC are bad as soon as the number of impliants islarge.Remark 23 For all of these four algorithms, there is an order k beyond whihit is more ostly to ompute prime impliants whose order is less than k thanto ompute all prime impliants. The same remark holds also for the num-ber of nodes of the obtained BDD's and the total number of nodes required toomputed them. This an be explained in two ways: �rst, the memorization ofintermediate results is less eÆient when a trunation is performed (sine thetrunation order must be taken into aount), and seond, there are probablymore regularities that an be aptured by BDD's when no trunation is per-28

020040060080010001200140016001800

0 2 4 6 8 10 12 14

TrMPPCTrMPQC

Fig. 17. Running times in seonds (y-axis) of TrMPPC and TrMPQC on edfpa01 fordi�erent trunation orders (x-axis).formed. The later argument is enfored by the observation that, at least forMPMC and MPQC in the edfpa01 ase, the omputations times derease as thetrunation order inreases beyond a ertain order.6.2 A Non Coherent Fault Tree from Dassault AviationThe seond tree we onsider is a non-oherent one from Dassault Aviation. Itis referened under the name das9605 in our benhmark. It has 287 gates (:,^, _ and k-out-of-n gates), 122 primary events and only 28 small modules.The omputation of the BDD enoding it takes 3:55 seonds on average. ThisBDD is made of 34913 nodes.Sine this tree is non-oherent, the notions of prime impliants and minimalp-uts do not oinide. das9605 admits 1:30977 1011 prime impliants. TheBDD enoding them is omputed in 173 seonds by MPPI and has 897253nodes. The Fig.18 reports the evolution of the number of prime impliants asa funtion of the order. A number of remarks should be done about this �gure.{ The prime impliants of lowest order ontain already 22 literals.{ The did not sueed in omputing trunated prime impliants whose ordersare greater than 65. To give an idea, for the trunation order 60, TrMPPItakes 38 minutes and builds a BDD of 1; 189; 426 nodes.The number of prime impliants of das9605 (1:30977 1011) should be omparedwith its number of minimal p-uts: 4259. The table 3 gives the number of29

101001000100001000001e+061e+071e+081e+091e+101e+11

20 25 30 35 40 45 50 55 60 65

"#PI"

Fig. 18. Number of prime impliants (y-axis) as a funtion of the order (x-axis) fordas9605.Order 1 2 3 4 5 6 7 8 9 All#p� uts 0 47 80 319 342 571 580 1168 1152 4259TrMPPC 0:89 5:24 25:20 94:03 288:72 924:34 5006 13; 914 ? 47; 109TrMPQC 0:01 0:06 0:30 0:91 2:03 3:56 5:41 7:28 8:86 2:06Table 3Number of minimal p-uts and running times in seonds of TrMPPC and TrMPQC ondas9605 for di�erent trunation orders.minimal p-uts for eah order and the running times in seonds to get theBDD enoding them with TrMPPC and TrMPQC. MPPC and MPQC take respetively47; 109 and 2:06 seonds to ompute the BDD enoding all minimal p-uts.These results lead to the two following remarks.Remark 24 Both orders and numbers of minimal p-uts are reasonnable whilethose of prime impliants are not. This means that qualitative treatments anbe ahieved by means of the minimal p-uts but not by means of prime impli-ants.Remark 25 Sine the number of minimal p-uts remains small, MPQC is farmore eÆient than MPPC (whih takes about 13 hours to ahieve the omputa-tion).The omputation of the exat probability of the top event of das9605 (fromthe BDD enoding this funtion) takes 0:30 seonds. The table 4 reports the30

ProbabilitiesPrimary events 0:5 0:1 0:01 0:001 0:0001Top event 5:56868 10�5 0:125066 0:0042344 4:6525 10�5 4:69524 10�7Trunation order Contributions of minimal p� uts2 17942:8 2:56175 1:08091 1:00768 1:000763 17955:3 2:81484 1:09866 1:00939 1:000934 17957:1 2:89925 1:09936 1:0094 1:000935 17957:1 2:90572 1:09937 1:0094 1:000936 17957:1 2:90659 1:09937 1:0094 1:000937 17957:1 2:90665 1:09937 1:0094 1:000938 17957:1 2:90666 1:09937 1:0094 1:000939 17957:1 2:90667 1:09937 1:0094 1:00093Table 4Numbers of minimal p-uts and their ontributions to the probability of the topevent of das9605.probability of the top event for di�erent values of the probabilities of theprimary events (for this test, we assume that all primary events have the sameprobability). Beyond the third row, it reports the ontribution of minimal p-uts to the probability of the top event.Here, the term ontribution should be taken with are: it means the quotientof the probability of the top event by the probability of the funtion enodedby the BDD ReverseMP(TrMPPC(das9605; k)). The prime impliants of thisfuntion are the minimal p-uts of das9605 whose orders are less than k. Theimportant point is the following.Remark 26 None of the funtions enoded by the BDD's ReverseMP(TrMPPC(das9605; k))is equivalent to das9605, even the one enoded by the BDD ReverseMP(MPPC(das9605))is not. These funtions are monotone (sine p-uts ontain only positive liter-als) while das9605 is ertainly not. This has two onsequenes:{ The ontributions we get are approximations of the ontributions of primeimpliants, whih explains that the table 4 reports ontributions greater than1.{ These approximations are sound only when the probabilities of primaryevents are low (and thus that the probabilities of the orresponding negativeliterals an be assimilated to 1), whih explains that for high probabilities ofprimary events (0.5, 0.1) the obtained results have stritly no meaning.31

Remark 27 Note however that for low probabilities of primary events (10�3; 10�4),approximations are rather good, whih makes minimal p-uts an useful toolboth for qualitative and quantitative analysis of non oherent fault trees.7 ConlusionIn this paper, we introdued a new notion of impliants of Boolean funtions,the minimal p-uts, that formalizes the idea to keep only positive parts ofprime impliants.We proposed two BDD based algorithms to ompute minimal p-uts. We alsoproposed variations on these algorithms as well as on known algorithms toompute prime impliants that ompute only prime impliants or minimal p-uts whose order is less than a given value and whose probability is greaterthan a given threshold.We provide experimental evidene that these algorithms allow fast, aurateand inremental qualitative and quantitative analyses of very large oherentand non-oherent real-life fault trees. These experiments show that the BDDbased tehnology outperforms by orders of magnitude all previously proposedmethods to assess the probability of a Boolean model.Referenes[Ake78℄ B. Akers. Binary Deision Diagrams. IEEE Transations on Computers,27(6):509{516, 1978.[Ara94℄ Groupe Aralia. Arbres de D�efaillanes et diagrammes binaires ded�eision. In Ates du 1er ongr�es interdisiplinaire sur la Qualit�e etla Sûret�e de Fontionnement, pages 47{56. Universit�e Tehnologique deCompi�egne, 1994. The \Groupe Aralia" is onstitued by A. Rauzy(LaBRI { Universit�e Bordeaux I), Y. Dutuit (LADS { Universit�eBordeaux I), J.P. Signoret (Elf-Aquitaine { Pau), M. Chevalier(Shneider Eletri { Grenoble), I. Morlaes (SGN { Saint Quentinen Yvelines), A.M. Lapassat (CEA-LETI { Salay), S. Combaon(CEA-IPSN { Valdu), F. Brug�ere (Tehniatome { Aix-Les Milles),M. Bouissou (EDF-DER { Clamart).[Ara95℄ Groupe Aralia. Computation of Prime Impliants of a Fault Tree withinAralia. In Proeedings of the European Safety and Reliability AssoiationConferene, ESREL'95, pages 190{202, Bournemouth { England, June1995. European Safety and Reliability Assoiation.32

[BRB90℄ K. Brae, R. Rudell, and R. Bryant. EÆient Implementation of a BDDPakage. In Proeedings of the 27th ACM/IEEE Design AutomationConferene. IEEE 0738, 1990.[Bry86℄ R. Bryant. Graph Based Algorithms for Boolean Fontion Manipulation.IEEE Transations on Computers, 35(8):677{691, August 1986.[Bry92℄ R. Bryant. Symboli Boolean Manipulation with Ordered BinaryDeision Diagrams. ACM Computing Surveys, 24:293{318, September1992.[CM78℄ A.K. Chandra and G. Markowsky. On the number of prime impliants.Disrete Mathemathis, 24:7{11, 1978.[CM92a℄ O. Coudert and J.-C. Madre. A New Method to Compute Prime andEssential Prime Impliants of Boolean Funtions. In T. Knight andJ. Savage, editors, Advaned Researh in VLSI and Parallel Systems,pages 113{128, Marh 1992.[CM92b℄ O. Coudert and J.-C. Madre. Impliit and Inremental Computation ofPrimes and Essential Primes of Boolean Funtions. In Proeedings of the29th ACM/IEEE Design Automation Conferene, DAC'92, June 1992.[CY85℄ L. Camarinopoulos and J. Yllera. An Improved Top-down AlgorithmCombined with Modularization as Highly EÆient Method for FaultTree Analysis. Reliability Engineering and System Safety, 11:93{108,1985.[LGTL85℄ W.S. Lee, D.L. Grosh, F.A. Tillman, and C.H. Lie. Fault tree analysis,methods and appliations : a review. IEEE Transations on Reliability,34:194{303, 1985.[Min93℄ S. Minato. Zero-Suppressed BDDs for Set Manipulation inCombinatorial Problems. In Proeedings of the 30th ACM/IEEE DesignAutomation Conferene, DAC'93, pages 272{277, 1993.[Qui52℄ W.V.O. Quine. The problem of simplifying truth funtions. AmerianMathematis Monthly, 59:521{531, 1952.[Qui59℄ W.V.O. Quine. On ores and prime impliants of truth funtions.Amerian Mathematis Monthly, 66:755{760, 1959.[Rau93℄ A. Rauzy. New Algorithms for Fault Trees Analysis. ReliabilityEngineering & System Safety, 05(59):203{211, 1993.[Rau96℄ A. Rauzy. An Introdution to Binary Deision Diagrams and someof their Appliations to Risk Assessment. In O. Roux, editor, Atesde l'�eole d'�et�e, Mod�elisation et V�eri�ation de Proessus Parall�eles,MOVEP'96, 1996. Also Tehnial Report LaBRI number 1121-96.[VGRH81℄ W.E. Vesely, F.F. Goldberg, N.H. Robert, and D.F. Haas. Fault TreeHandbook. Tehnial Report NUREG 0492, U.S. Nulear RegulatoryCommission, 1981. 33

A Proof of the Deomposition Theorem for Prime ImpliantsLet us �rst reall the theorem to be proved.Theorem 9 (Deomposition Theorem) Let f(x1; : : : ; xn) be a boolean fun-tion. Then, the set of prime impliants of f(x1; : : : ; xn) an be obtained as theunion of the sets.PI[f(x1; : : : ; xn)℄ =PI10 [PI1 [PI0where, PI10, PI1 and PI0 are de�ned as follows.PI10 def= PI[f(1; x2; : : : ; xn) ^ f(0; x2; : : : ; xn)℄PI1 def= ffx1g [�; � 2 PI[f(1; x2; : : : ; xn) n PI10gPI0 def= ff:x1g [�; � 2 PI[f(0; x2; : : : ; xn) n PI10gwhere n stands for the set di�erene.In order to prove the above theorem, we �rst demonstrate the following lemma.Lemma 28 Let f(x1; : : : ; xn) be a Boolean funtion and let � be a produtbuilt over x1, . . . , xn suh that x1 62 � and :x1 62 �. Then, � is a primeimpliant of f(x1; : : : ; xn) i� it is a prime impliant of f(1; x2; : : : ; xn) ^f(0; x2; : : : ; xn)Proof: if part: Let � a prime impliant of f(x1; : : : ; xn) suh that x1 62 � and:x1 62 �. Then, � is an impliant of f(1; x2; : : : ; xn) and of f(0; x2; : : : ; xn).Thus, � is an impliant of f(1; x2; : : : ; xn)^f(0; x2; : : : ; xn). Now, assume thereexists a prime impliant � of f(1; x2; : : : ; xn)^f(0; x2; : : : ; xn) suh that � � �.Clearly, � is an impliant of ite(x; f(1; x2; : : : ; xn); f(0; x2; : : : ; xn)) and thusof f(x1; : : : ; xn). But � is prime: a ontradition.only if part: Now, let � a prime impliant of f(1; x2; : : : ; xn)^ f(0; x2; : : : ; xn)and assume that there is a prime impliant � of f(x1; : : : ; xn) suh that � � �.� annot ontain x and thus, by the above reasonning, it is an impliant off(1; x2; : : : ; xn) ^ f(0; x2; : : : ; xn). A ontradition. 2In order to omplete the proof of the theorem 9, it suÆes to remark that tobe a prime impliant of f(x1; : : : ; xn), a produt fx1g[� should ful�l the twofollowing requirements:(i) � is a prime impliant of f(1; x2; : : : ; xn).(ii) � is not a prime impliant of f(x1; : : : ; xn), i.e. sine x1 62 �, � 62PI[f(1; x2; : : : ; xn) ^ f(0; x2; : : : ; xn)℄.34

Similarly for prime impliants ontaining :x1. 2B Proof of the Deomposition Theorem for Minimal P-CutsLet us �rst reall the theorem to be proved.Theorem 10 (Deomposition Theorem for Minimal P-Cuts) Let f(x1; : : : ; xn)be a boolean funtion. Then, the set of minimal p-uts of f(x1; : : : ; xn) an beobtained as the union of two sets.PC[f(x1; : : : ; xn)℄ =PC1 [PC0where, PC1 and PC0 are de�ned as follows.PC1 def= ffx1g [�; � 2 PC[f(1; x2; : : : ; xn) _ f(0; x2; : : : ; xn)℄ n PC0gPC0 def= PC[f(0; x2; : : : ; xn)℄Let us �rst remark that for any funtion f(x1; : : : ; xn), the funtion g(x1; : : : ; xn)de�ned as follows:g(x1; : : : ; xn)= ite(x1; f(1; x2; : : : ; xn) _ f(0; x2; : : : ; xn); f(0; x2; : : : ; xn))is monotone in x1. Moreover, it is easy to see thatPC[g(x1; : : : ; xn)℄=PC[f(x1; : : : ; xn)℄It is lear that they have the same minimal p-uts that do not ontain x1. Letfx1g [� be a minimal p-ut of g(x1; : : : ; xn). � should be an impliant ofg(1; x2; : : : ; xn) but not of g(0; x2; : : : ; xn), that is � should be an impliantof f(1; x2; : : : ; xn).The reader will easily omplete in a way very similar to the one we used todemonstrate theorem 9. 2Notie that it is mandatory to onsider minimal p-uts of f(1; x2; : : : ; xn) _f(0; x2; : : : ; xn) in order to get minimal p-uts of f(x1; : : : ; xn) that ontain x1.The reason is that one should eliminate from minimal p-uts of f(1; x2; : : : ; xn)those that ontain stritly a minimal p-ut of f(0; x2; : : : ; xn). For instane,let f(a; b;) = (a ^ b ^) _ (:a ^ b). We have PC[f(1; b;)℄ = ffb; gg and35

PC[f(0; b;)℄ = ffbgg, and thus PC[f(1; b;)℄nPC[f(0; b;)℄ = PC[f(1; b;)℄,but PC[f(1; b;) _ f(0; b;)℄ = PC[f(0; b;)℄. Thus, by onsidering minimalp-uts of f(1; b;) _ f(0; b;), we eliminate the produt fb; g whih does notbelong to PC[f(0; b;)℄ but that ontains stritly a produt of this set, namelyfg.

36

