
New insights into the assessmentof k-out-of-n and related systemsY. DutuitLAP,Universit�e Bordeaux I,33405 Talen
e Cedex, FRANCEdutuit�hse.iuta.u-bordeaux.fr
A. RauzyLaBRI, CNRS,351,
ours de la Lib�eration,33405 Talen
e Cedex, FRANCErauzy�labri.u-bordeaux.frAbstra
tk-out-of-n and related systems have re
eived mu
h attention in the re
ent pastyears. Hundreds of arti
les were devoted to various methods to assess them. In thisarti
le, we show that there exist very eÆ
ient algorithms to
ompute the reliability ofk-out-of-n, l-to-h-out-of-n and
onse
utive k-out-of-n systems. k-within-r-out-of-nsystems are intrinsi
ally mu
h harder. We study the performan
e of Binary De
isionDiagrams on these systems. Then, we propose a new approximation s
heme. Thisalgorithm is mu
h more eÆ
ient in pra
ti
e than already proposed methods.keywords: k-out-of-n and related systems, Binary De
ision Diagrams1 Introdu
tionA k-within-r-out-of-n system
onsists of n
omponents linearly arranged. The system isfailed if there is at least a window of r
onse
utive
omponents with among them at leastk failed
omponents. k-within-r-out-of-n systems were introdu
ed by Tong [Ton85℄ andGriÆth [Gri86℄. They generalize both k-out-of-n systems (r = n) and
onse
utive k-out-of-n systems (r = k). years. Hundreds of arti
les were devoted to various methods toassess them. The survey by Chao et al. [CFK95℄ and the book by Misra [Mis93℄ provide
omprehensive surveys on this topi
. The re
ent arti
le by Habib and Sz�antai [HS00℄deserves also a spe
ial mention for it
ompares experimentally several methods.In this arti
le, we show that there exist O(k:n) algorithms to
ompute the exa
t valueof k-out-of-n and
onse
utive k-out-of-n system reliabilities (as a by-produ
t we study alsol-to-h-out-of-n-systems). The algorithm we propose for k-out-of-n systems looks like themethod proposed by Rushdi in [Rus86, Rus91℄. Those dealing with l-to-h-out-of-n and
onse
utive k-out-of-n systems are new, at least to a
ertain extent (sin
e they are justvariations on the former). Their
on
iseness is noti
eable: they
onsist of about 10 linesof ANSI C
ode. 1

Basi
ally, these algorithms
onsist in sliding a window of size k through the
omponentsand to
onsider the number of failed
omponents inside the window. k-within-r-out-of-nsystems are intrinsi
ally mu
h harder. In this general
ase,
ounting arguments do nosuÆ
e. One has to
onsider individually ea
h
omponent of the window, whi
h leads to a
ombinatorial explosion. The various methods proposed in the literature to handle thesesystems are therefore designed to
ompute lower and upper bounds on reliability ratherthan its exa
t value (see [CFK95, HS00℄ for a review of re
ent developments). Moreover,most of them assume that all
omponents have the same reliability.In this arti
le, we propose two approa
h to ta
kle k-within-r-out-of-n systems.First, we study the performan
e of Bryant's Binary De
ision Diagrams (BDDs) [Bry86,BRB90℄. BDDs are the state-of-the-art data stru
ture to en
ode and to manipulate Booleanfun
tions. Sin
e their introdu
tion in the reliability analysis framework [Rau93, CM94℄,BDDs have proved to be the most eÆ
ient te
hnique to assess fault trees. We reporttwofold experimental results. On the one hand, we show that BDDs are able to deal withrather large systems (with several dozens of
omponents). By the way, we
orre
t a
laimby Habib and Sz�antai who wrote in [HS00℄ that only simulation is able to assess (almost)exa
t results for su
h systems. On the other hand, we exhibit a formula that gives thesize of the BDD en
oding a k-within-r-out-n system, for n � 2r. This formula makes
learthat BDDs are subje
t to
ombinatorial explosion.Se
ond, we propose a new approximation s
heme. Conversely to BDDs but a

ordingto most of proposed methods, this algorithm assumes that all
omponents have the samereliability. Our algorithm
omputes a lower bound on system unreliability in O(2h:k:n),where 0 � h � r is a parameter that �xes the a

ura
y of the lower bound. By
omparingvalues obtained for h and h � 1, it is possible to dedu
e an upper bound. We reportexperimental results that show that our algorithm outperforms the best methods alreadyproposed. It gives mu
h more a

urate results, even for small h's. Moreover, it is mu
hmore eÆ
ient in terms of
omputational
ost. It is a
tually able to give a

urate resultsfor systems far beyond the limits of any other known method.The remaining of this arti
le is organized as follows. k-out-of-n and
onse
utive k-out-of-n systems are studied se
tion 3. Results with Binary De
ision Diagrams are presentedse
tion 4. The new approximation s
heme is des
ribed se
tion 5. Finally, experimentalresults of this algorithm are presented se
tion 6.2 Nomen
latureIn what follows, we
onsider n
omponents
1,
2, : : : ,
n linearly arranged and that
an be in one of two states, either good or failed (not good). We assume that
omponentreliabilities may vary and that
omponent failures are s-independent. Moreover, we assumethat
omponent reliabilities Pi (probability of survival) and unreliabilities Qi (probabilityof failure) are available at no
ost (Pi +Qi = 1).A k-within-r-out-of-n system over
omponents
1 up to
n (k � r � n) is failed i� thereare r
onse
utive
omponents whi
h in
lude among them, at least k failed
omponents.2

k-out-of-n and
onse
utive k-out-of-n systems
orrespond respe
tively to the
ases r = nand r = k. A l-to-h-out-of-n system over
omponents
1 up to
n is failed i� there are atleast l and at most h failed
omponents among the n.Throughout the arti
le, we keep the same meaning for k, r and n. Events are de-noted by
aligraphi

apital letters, e.g. E . Sin
e all algorithms presented here iterateover
omponents, events are indi
ed with positions e.g. Ei (1 � i � n). E denotes the
omplementary of the event E in the
onsidered set of out
omes. The probability p(E) ofan event E is denoted by the same
apital letter as the event, here E.We use the following notations.{ Qi (1 � i � n) denotes the event \the
omponent
i is failed".{ Ll=ri (0 � l � k, r � i � n) denotes the event \there are at least l failed
omponentsamong
i�r+1,
i�r+2, : : : ,
i". r is omitted when it is
lear from the
ontext, e.g. Lli.{ Hh=ri (0 � h � k; r � i � n) denotes the event \at most h among
omponents
i�r+1,: : : ,
i are failed". r is omitted when it is
lear from the
ontext, e.g. Hhi .{ Fk=ri (r � i � n) denotes the event \there is at least a window of r
onse
utive
om-ponents in
1, : : : ,
i among whi
h at least k are failed". In other words, Fk=ri =Sr�l�iLk=rl . k and r are omitted when they are
lear from the
ontext, e.g. Fi.{ �[
=v℄ denotes the Boolean formula � in whi
h the
onstant
 2 f0; 1g has been substi-tuted for the variable v.Moreover, we use the following derived notations.{ Kli def= Ll=ii , i.e. at least l among
omponents
1, : : : ,
i are failed.{ T l;hi def= Ll=ii \Hh=ii i.e. at least l and at most h among
omponents
1, : : : ,
i are failed.{ Cli def= Ll=li [Fk=ki�1 , i.e. either
omponents
i�l+1, : : : ,
i are failed or there is at least awindow of r
onse
utive
omponents in
1, : : : ,
i�1 among whi
h at least k are failed.{ S li def= Ll=ri \ Hl=ri \ Ti�1j=rHk�1=rj i.e. there are exa
tly l failed
omponents among
i�r+1,: : : ,
i and no window of r
onse
utive
omponents
j�r+1, : : : ,
j, j < i,
ontains morethan k � 1 failed
omponents.
3

3 Easy k-out-of-n and related systems3.1 AlgorithmsKkn, T l;hn and Ckn denote respe
tively unreliabilities of k-out-of-n, l-to-h-out-of-n and
on-se
utive k-out-of-n systems. The following equalities hold.Kji = 8<: 0 if j > i1 if j � 0Qi:Kj�1i�1 + Pi:Kji�1 otherwise (1)T l;hi = 8<: 0 if (l > i) _ (h < 0)1 if (l � 0) ^ (h � i)Qi:T l�1;h�1i�1 + Pi:T l;hi�1 otherwise (2)Cji = 8<: 0 if j > i1 if j � 0Qi:Cj�1i�1 + Pi:Cki�1 otherwise (3)Equations 1, 2 and 3
an be seen as re
ursive de�nitions of k-out-of-n, l-to-h-out-of-n and
onse
utive k-out-of-n systems. They give also a mean to
ompute Kji , T l�(h�j);h�(h�j)i andCji (0 � j � k or h) by strates: �rst for i = 1, then for i = 2, and so on up to i = n.The
orresponding ANSI C fun
tions are given �gures 1, 2 and 3. Sin
e they
onsists oftwo nested loops over n and k (or h) they are respe
tively in O(k:n), O(h:n) and O(k:n).Arrays K, T and C are passed as parameters of these fun
tions. They
ould be allo
atedand freed inside the fun
tions as well.The algorithm to assess k-out-of-n systems has strong similarities with the one proposedby Rushdi in [Rus86, Rus91℄. The two other ones are new, even if the underlying re
ursiveequations appeared under other forms in some arti
les (see for instan
e [CFK95, Mis93℄for reviews).It is possible to improve a bit the algorithms by restri
ting the inner loop in followingway: one set the starting value for j at i (until i < k) and its �nal value at k � i (wheni � n� k).3.2 Experimental ResultsFor veri�
ation purposes, table 1 presents reliabilities of some l-to-h-out-of-n systems withidenti
al
omponents. These results
orre
t slightly those reported in [JG85℄. They wereobtained instantaneously.Tables 2 and 3 give some running times obtained on a laptop
omputer with a pentiumI pro
essor
aden
ed at 166 MHz and running Linux. The
omputation of very largesystem reliabilities (with several thousands
omponents) takes only few se
onds. In orderto appre
iate these running times, one
ould
ompare them with those of the RAFT-GFPalgorithm presented Fig. 2. of referen
e [II95℄, that are about 20 times greater. Indeed,4

double k_out_of_n(int k, int n, double* Q, double* K){ double Pi, Qi;int i, j;for (j=k;j>=0;j--) K[j℄=(j==0 ? 1.0 : 0.0);for (i=1;i<=n;i++) {Qi=Q[i℄; Pi=1-Qi;for (j=k;j>0;j--) K[j℄=Qi*K[j-1℄+Pi*K[j℄;}return(K[k℄);} Figure 1: The ANSI C fun
tion to assess k-out-of-n systemsdouble l_h_out_of_n(int l, int h, int n, double* Q, double* T){ double Pi, Qi;int i, j;for (j=h;j>=0;j++) T[j℄=(j<=h-l ? 1.0 : 0.0);for (i=1;i<=n;i++) {Qi=Q[i℄; Pi=1-Qi;for (j=h;j>0;j++) T[j℄=Qi*T[j-1℄+Pi*T[j℄;T[0℄=Pi*T[0℄;}return(T[h℄);} Figure 2: The ANSI C fun
tion to assess l-to-h-out-of-n systemsdouble
onse
utive_k_out_of_n(int k, int n, double* Q, double* C){ double Pi, Qi, Ck;int i, j;for (j=k;j>=0;j--) C[j℄=(j==0 ? 1.0 : 0.0);for (i=1;i<=n;i++) {Qi=Q[i℄; Pi=1-Qi; Ck=C[k℄;for (j=k;j>0;j--) C[j℄=Qi*C[j-1℄+Pi*Ck;}return(C[k℄);} Figure 3: The ANSI C fun
tion to assess
onse
utive k-out-of-n systems5

Table 1: Reliability of some l-to-h-out-of-n systemsSystem p=0.5 p=0.6 p=0.7 p=0.8 p=0. 9l = 5; h = 8; n = 10 0.612305 0.787404 0.803343 0.617821 0.263754l = 5; h = 9; n = 12 0.786865 0.859247 0.737695 0.441073 0.110867l = 10; h = 12; n = 15 0.147186 0.376102 0.594794 0.540925 0.181811
Table 2: Running times in se
onds for (
onse
utive) k-out-of-10000 systemsk 2 10 100 1000 2500 5000 7500 9998k-out-of-n 0.00 0.01 0.04 0.54 1.17 2.20 3.23 4.26
onse
utive k-out-of-n 0.00 0.00 0.04 0.47 1.10 2.20 3.25 4.33

Table 3: Running times in se
onds for l-to-h-out-of-10000 systemsl # h! 2 10 100 1000 2500 5000 7500 99982 0.00 0.00 0.05 0.47 1.22 2.31 3.32 4.3510 0.03 0.18 0.56 1.17 2.18 3.19 4.21100 0.04 0.41 1.01 2.03 3.05 4.911000 0.54 1.17 2.16 3.18 4.202500 1.16 2.15 3.18 4.225000 2.17 3.20 4.207500 3.18 4.059998 4.20
6

b

a

c

01

BDD
a

bb

cc

1 1 0 0 1 0 1 0

c c

Shannon Tree

Reduction Rules

Figure 4: From the Shannon tree to the BDD en
oding ab + a
.this
omparison is not absolutely fair be
ause pro
essors were not the same. Nevertheless,this shows that our very simple pro
edure
ompetes with the fastest known algorithms.It is worth noti
ing that values
omputed for so large systems are subje
t to strongdeviations, due to rounding errors.4 Performan
e of Binary De
ision DiagramsWe turn now to k-within-r-out-of-n systems and their assessment by means of BinaryDe
ision Diagrams (BDDs).4.1 Binary De
ision DiagramsThe BDD asso
iated with a formulae is a
ompa
t en
oding of the truth table of thisformula. This representation is based on the Shannon de
omposition: let � be a Booleanformula that depends on the variable v, then � = v:�[1=v℄ + v:�[0=v℄. By
hoosing a totalorder over the variables and applying re
ursively the Shannon de
omposition, the truthtable of any formula
an be graphi
ally represented as a binary tree. Ea
h internal nodeen
odes a formula = v: [1=v℄ + v: [0=v℄. It is labeled with the variable v and it has twooutedges (a then-outedge, pointing to the node that en
odes [1=v℄, and a else-outedge,pointing to the node that en
odes [0=v℄). Leaves are labeled with either 0 or 1. Thevalue of the formula under a given variable assignment is obtained by des
ending alongthe
orresponding bran
h. The Shannon tree for the formula ab+a
 and the lexi
ographi
order is pi
tured Fig. 4 (dashed lines represent else-outedges).Indeed su
h a representation is very spa
e
onsuming. It is however possible to shrinkit by means of the two following redu
tion rules.� Isomorphi
 subtrees merging. Sin
e two isomorphi
 subtrees en
ode the same for-mula, at least one is useless. 7

� Useless nodes deletion. A node with two equal sons is useless sin
e it is equivalentto its son (v: + v: =).By applying these two rules as far as possible, one gets the BDD that en
odes the formula.A BDD is therefore a dire
ted a
y
li
 graph. It is unique, up to an isomorphism [Bry86℄.This pro
ess is illustrated Fig. 4.Logi
al operations (and, or, xor, ...)
an be dire
tly performed on BDDs. Among other
onsequen
es, this means that the
omplete binary tree is never built, then shrunk: theBDD en
oding a formula is obtained by
omposing the BDDs en
oding its subformulae. A
a
hing prin
iple is used to store intermediate results of
omputations. This makes usuallogi
al operations (
onjun
tion, disjun
tion) polynomial in the size of their operands. A
omplete implementation of a BDD pa
kage is des
ribed in [BRB90℄. The reader interestedin more details should refer to this arti
le.By applying the Shannon de
omposition to probabilities:p(v: 1 + v : 0) = p(v):p(1) + (1� p(v)):p(0)one gets an linear time algorithm to assess the probability of a formula from the BDD thaten
odes this formula [Rau93℄.4.2 Results on Habib and Sz�antai examplesIn order to assess the performan
e of BDDs on k-within-m-out-of-n systems, we des
ribedthem by means of the following parametri
 formula.�k=rn def= nXi=r k=r(
i�r+1; : : : ;
i)The
onne
tive k=r (k-out-of-r)
an be eÆ
iently implemented on BDDs. The algorithmto do so is given appendix A.Table 4 gives results we obtained on a desktop
omputer with a pentium III mi
ro-pro
essor
aden
ed at 733MHz and running Linux. These examples are those studied byHabib and Sz�antai in [HS00℄. They were, up to this arti
le, the biggest k-within-r-out-of-n(with k < r < n)
onsidered in the literature. Their
omponents have the same probabilityQ of failure.In their arti
le, Habib and Sz�antai report a
tually two kinds of results: some obtainedby means of a Monte-Carlo simulation algorithm applying the varian
e redu
tion te
hniqueof Sz�antai [Sz�a86℄ and some other obtained with their method based on Boole-Bonferronibounding te
hnique. For the latters, they
onsider three levels of approximation. We givehere only the most a

urate results, obtained with the S1-S4 based method.Table 4 presents, for ea
h method, the obtained probability (or lower and upper boundsof the probability), the running time in se
onds, and the number of nodes of BDDs. Run-ning times for Habib and Sz�antai's results were obtained on a di�erent
omputer, running8

Table 4: Comparison of BDDs performan
e with results presented by Habib and Sz�antaiSystem Method F k=rn Times Sizesn = 15; r = 12; k = 8; Q = 0:75 S1-S4 based [0.916268,0.916268℄ 0.00BDD 0.916268 0.00 235n = 15; r = 10; k = 4; Q = 0:25 S1-S4 based [0.375167,0.407571℄ 0.00Simulation 0.395 � 0.001257 2.85BDD 0.394538 0.00 289n = 15; r = 7; k = 5; Q = 0:25 S1-S4 based [0.053382,0.060869℄ 0.00Simulation 0.057 � 0.000516 2.80BDD 0.0570453 0.00 246n = 30; r = 6; k = 3; Q = 0:10 S1-S4 based [0.136317,0.178668℄ 0.11Simulation 0.151 � 0.000936 5.99BDD 0.1514353 0.00 363n = 40; r = 7; k = 4; Q = 0:10 S1-S4 based [0.038368,0.047818℄ 0.22Simulation 0.042 � 0.000450 8.35BDD 0.0421106 0.00 1122n = 50; r = 40; k = 28; Q = 0:50 S1-S4 based [0.018356,0.024645℄ 2.09Simulation 0.0021 � 0.000435 15.71BDD 0.0211604 1.11 211427n = 50; r = 35; k = 20; Q = 0:50 S1-S4 based [0.411635,0.583983℄ 38.56Simulation 0.463 � 0.001920 50.48BDD 0.462869 147.28 3833835

9

a di�erent operating system, and with programs written in a di�erent language. There-fore, it makes a little sense to
ompare them dire
tly with our own. However, orders ofmagnitude
an be
ompared.These results show that BDDs are able to deal with rather large systems. This
orre
tsa
laim by Habib and Sz�antai who wrote in [HS00℄ that only simulation is able to assess(almost) exa
t results for su
h systems. However, the two last examples enlight limits ofBDDs. Their size grows qui
kly as k and r in
rease. A BDD node is en
oded within 4ma
hine words. It means that nowadays
omputer memories are exhausted if BDDs withmore than few millions nodes have to be built.Table 4 shows that Monte-Carlo simulations give a

urate results with a good eÆ
ien
y.However, it would be interesting to study their a

ura
y with lower and more realisti

omponent unreliabilities, for it is well known that rare events are diÆ
ult to
apture withthis kind of methods.The Habib-Sz�antai's method gives good results as well. However, its performan
eshould deteriorate as n in
reases (in reason of the in
reasing number of terms). Moreover,it requires that all
omponents have the same reliability.4.3 BDD SizesThe se
ond series of experiments aims to show how BDD sizes in
rease as k, r and nin
rease. We take the number of nodes as the size of a BDD.It
an be shown, but this requires a tedious
ase study that is outside the s
ope of thisarti
le, that if n > 2r, the size �k=rn of the BDD that en
odes a k-within-r-out-of-n is asfollows.�k=rn = 2� r�1Xi=1 sXj=1 �min(r � j; i� 1)s� j �+ (n� 2r � 1)� sXj=1 �r � js� j�+ z (4)where,� s = k if k � r=2 and s = r � k + 2 otherwise.� z = 1� k if k � r=2 and z = 1� k + 2 otherwise.In order to illustrate this result, we �x �rst k and r and we let n in
rease. We repeatthis experiment for various values of k, for r = 16 and for n = 16; 24; 32; : : : ; 80. Ea
h rowof the table 5 gives the growth of BDD sizes. For all values of k, after n = 32, the sizegrows linearly with n, whi
h is indeed a very good new for BDDs.Se
ond, we �x r and n and we let k in
rease. Ea
h
olumn of the table 5 gives thegrowth of BDD sizes. A strong symmetry appears. The maximum size is obtained fork = 9, sizes for 9 + i and 9� i, i = 1; 2; : : : are approximately the same.Third, we �x k and n and let r in
rease. Table 6 gives the size of the BDDs as wellas the
omputation times (in se
onds) for n = 64 and k = 9. We were unable to
omputeBDDs beyond r = 20. For r larger than 20, the given sizes were obtained by applying10

Table 5: Sizes of BDDs en
oding k-within-16-out-of-n systemsk # n! 16 24 32 40 48 56 64 72 804 53 1465 5555 10035 14515 18995 23475 27955 324356 67 4183 32753 67697 102641 137585 172529 207473 2424178 73 6135 76067 167587 259107 350627 442147 533667 6251879 73 6390 84360 187320 290280 393240 496200 599160 70212010 71 6133 76065 167585 259105 350625 442145 533665 62518512 61 4177 32747 67691 102635 137579 172523 207467 24241114 43 1455 5545 10025 14505 18985 23465 27945 32425Table 6: Sizes of BDDs and running times for 9-within-r-out-of-64 systems.r 10 12 14 16 18 20 22 24Size 2365 23399 127975 496200 1517376 3892140 8690628 17281155Time 0.01 0.05 0.35 3.12 46.91 431.36 ? ?equation 4. Table 6 illustrates the
ombinatorial explosion of BDD sizes when k and n are�xed and r in
reases (up to n=2).Equation 4 makes expli
it advantages and drawba
ks of BDDs. On the one hand, whenk and r are small, the BDD is small, even for large values of n. For instan
e the BDD thaten
odes a 5-within-10-out-of-1000 system is made only of 207; 168 nodes and is
omputedin 0.76s. On the other hand, when k and r are not too small, the BDD is huge evenfor small values of n. For instan
e the BDD that would en
ode a 15-within-30-out-of-60system would be made of 986; 022; 749 nodes.5 Bounds on reliability of k-within-r-out-of-n systemsFrom now, we shall assume that all
omponents have the same reliabilityP and unreliabilityQ. This se
tion is organized as follows. First, we present a basi
 algorithm that runs inO(k:n). Then, we extend it into the full algorithm that runs in O(2h:k:n). The basi
algorithm
orresponds to the
ase h = 0.5.1 Prin
ipleThe basi
 algorithm
onsists of two nested loops. The outer loop iterates over
omponents.The inner loop assesses Sji , for 0 � j � k. The following equality holds. It justi�es thealgorithm. Fn = Kkr [n[i=r+1Ski (5)11

Terms of the right member are pairwisely disjoint, therefore equality 5
an be lifted toprobabilities. I.e. Fn = Kkr + nXi=r+1Ski (6)5.2 De
omposition of SkiS li (0 � l � k, r + 1 � i � n)
an be de
omposed a

ording to what enters and goes out asliding window of r
omponents. We distinguish four
ases: the main
ase 0 < l < k � 1and the three degenerated
ases l = 0, l = k � 1 and l = k.
ase 0 < l < k � 1 S li = (Qi \ Qi�r \ S l�1i�1) [(Qi \Qi�r \ S li�1)[(Qi \ Qi�r \ S li�1) [(Qi \Qi�r \ S l+1i�1) (7)
ase l = 0 S0i = (Qi \ S0i�1) [(Qi \ Qi�r \ S1i�1) (8)
ase l = k � 1 Sk�1i = (Qi \ Qi�r \ Sk�2i�1) [(Qi \ Qi�r \ Sk�1i�1)[(Qi \ Qi�r \ Sk�1i�1) (9)
ase l = k Ski = Qi \ Qi�r \ Sk�1i�1 (10)Again, terms of members are pairwisely disjoint. Therefore, the above equalities
anbe lifted to probabilities.By extending slightly the de�nition, we
an set Slr = T l;lr . Slr as well as Kkr
an be
omputed in O(k:r) using fun
tions given Fig. 1 and 2.Qi is independant of both Qi�r and S li�1. Therefore, p(Qi \ Qi�r \ S li�1) = Qz �p(Qi�r \ S li�1). A similar remark holds for terms that involve Qi and Qi�r .The idea is to approximate p(Qi�r \ S li�1) and p(Qi�r \ S li�1) from p(S li�1). We shallsee that this
an be done in
onstant time. Therefore, equations 7-10 give a mean to assessFn in O(k:n).The ANSI C
ode for this basi
 algorithm is given appendix B.
12

5.3 Approximation(s) of p(Qi�r \ S li�1)Assume that we toss a
oin r times with a probability P to draw a head. There are �rl�di�erent drawings that give exa
tly l heads. The proportion of these drawings that startwith a head is (r�1l�1)(rl) = lr . This proportion does not depend on P , be
ause all drawings(that give l heads) have the same probability to o

ur, namely P l(1� P)r�l.The idea is thus to approximate p(Qi�r \ S li�1) as follows.p(Qi�r \ S li�1) � lr � Sli�1 (11)Indeed, p(Qi�r \ S li�1) � r�lr � Sli�1.Let � be a sequen
e of states of
omponents
1 up to
i�1 ending with l failed
omponentsamong
i�r, : : : ,
i�1. Assume that �i�r = 0 (i.e.
i�r is failed). Let � be any sequen
esu
h that � and � di�er on exa
tly two
omponents:
i�r and a
omponent
s su
h thats > i � r and �s = 1 (�i�r = 1, �s = 0). Then, if � belongs to S li�1, � belongs to S li�1 aswell. The
onverse is not true. In other words, if the number xi of sequen
es that belongto S li is ai:�li� for a given positive number ai, then the number yi of sequen
es � of S li su
hthat �(i� r) = 1 is less than ai:�l�1i�1�. Therefore, yixi < li .It follows that equation 11 gives an upper approximation of p(Qi�r \ S li�1).5.4 Taking the re
ent past into a

ountTo apply equation 11, one needs only to store the last value of Sli, for 0 � l < k. It is possibleto re�ne this approximation by taking into a

ount states of
omponents
i�h; : : : ;
i�1, fora given h su
h that 0 � h � r. In other words, S li�1
an be de
omposed as follows(extending equation 7).S li�1 = (S li�1 \ Qi�1) [(S li�1 \ Qi�1) h = 1= (S li�1 \Qi�1 \ Qi�2) [(S li�1 \ Qi�1 \ Qi�2)[(S li�1 \ Qi�1 \Qi�2) [(S li�1 \ Qi�1 \ Qi�2) h = 2= ... h = ...The idea is to maintain 2h ve
tors of probabilities, where h stands for the length of thehistory we want to
onsider. These ve
tors
ontain the probabilities p(S li�1 \Ti�hj=i�1Qajj),where aj 2 f0; 1g, Q1j denotes Qj and Q0j denotes Qj . The re�nement of the approximationis as follows.p Qi�r \ S li�1 \ i�1\j=i�hQajj ! � l �Pi�1j=i�h air � h � p S li�1 \ i�1\j=i�hQajj !p Qi�r \ S li�1 \ i�1\j=i�hQajj ! � (r � h)� (l �Pi�1j=i�h ai)r � h � p S li�1 \ i�1\j=i�hQajj !13

: : : ai�r ai�r+1 : : : ai�h ai�h+1 : : : ai�1 ai[. l . ℄[. l + ai�r � ai ℄[l + ai�r � ai �Pi�1j=i�h aj ℄Figure 5: A pi
tural view of the number of failed
omponents in a sliding r-windowThe appli
ation of the above approximations requires
areful
ase studies in order tomake sure that Pi�hj=i�1 aj � l.The above left members
an be
omputed in
rementally as in the basi
 algorithm. Themain
ase is as follows.p�S li \Tij=i�h+1Qajj �= p�Qi�r \ S l�aii�1 \Tij=i�h+1Qajj �+ p�Qi�r \ S l�ai+1i�1 \Tij=i�h+1Qajj �= p�Qaii \ Qi�r \ S l�a1i�1 \Qi�h \Ti�1j=i�h+1Qajj �+ p�Qaii \ Qi�r \ S l�a1i�1 \ Qi�h \Ti�1j=i�h+1Qajj �+ p�Qaii \Qi�r \ S l�ai+1i�1 \ Qi�h \Ti�1j=i�h+11Qajj �+ p�Qaii \Qi�r \ S l�ai+1i�1 \ Qi�h \Ti�1j=i�h+1Qajj �� p(Qaii)� (r�h)�(l�ai�Pi�1j=i�h+1 aj�1)r�h � p�S li�1 \ Qi�h \Ti�1j=i�h+1Qajj �+ p(Qaii)� (r�h)�(l�ai�Pi�1j=i�h+1 aj)r�h � p�S li�1 \ Qi�h \Ti�1j=i�h+1Qajj �+ p(Qaii)� l�ai+1�Pi�1j=i�h+1 aj�1r�h � p�S l�1i�1 \Qi�h \Ti�1j=i�h+1Qajj �+ p(Qaii)� l�ai+1�Pi�1j=i�h+1 ajr�h � p�S l�1i�1 \ Qi�h \Ti�1j=i�h+1Qajj �Figure 5 may help the reader to �gure out how above equations work.Let ~F hn denote the approximation of Fn obtained by applying the algorithm with ahistory of length h. Ea
h iteration of the outer loop of the algorithm
onsists in updatingthe 2h values for ea
h l, 0 � l � k. Therefore, the algorithm runs in O(2h:k:n).Now, there are two important fa
ts.Fa
t 1 The following inequalities hold.~F 0n � ~F 1n � : : : � ~F rn = Fn
14

Fa
t 2 The following inequality holds (for h = 0; : : : ; r � 2).~F h+1n � ~F hn � ~F h+2n � ~F h+1nAt the moment, we have no short proof for these two fa
ts. The proof of fa
t 1 is bymeans of double indu
tion on n and k to show that the sum of the
omputed values forSli (0 � l � k � 1, r + 1 � i � n) is greater than the sum of their a
tual values. Wehave no simple proof of fa
t 2. Anyway, both fa
ts are supported by strong experimentaleviden
es.Fa
t 1 asserts that the algorithm
omputes a lower bound and
onverges to the exa
tvalues. Fa
t 2 asserts that its
onvergen
e is fast. Moreover, it
an be used to
omputeupper bounds. The following inequality holds for h = 1; : : : ; r.Fn � ~F hn + (r � h):[~F hn � ~F h�1n ℄ (12)Proof. ~F rn = ~F hn +Pri=h+1 ~F in � ~F i�1n . By fa
t 2, we have ~F in � ~F i�1n � ~F hn � ~F h�1n forh < i � r. The inequality 12 follows just by summing the terms.The idea is therefore to
ompute su

essively the following ranges.h lower bound upper bound0 ~F 0n min(1; r: ~F 0n)1 ~F 1n ~F 1n + (r � 1):[~F 1n � ~F 0n ℄...h ~F hn ~F hn + (r � h):[~F hn � ~F h�1n ℄...The pro
ess is iterated until either h rea
hes a given value or the maximum relative un-
ertainty goes below a prede�ned threshold. The maximum relative un
ertainty is de�nedas follows. (r � h):[~F hn � ~F h�1n ℄~F hnIt is worth noti
ing that this algorithm is still in O(2h:k:n).6 Experimental results6.1 Comparison with results Habib and Sz�antaiTables 7, 8, 9 and 10 report results of the algorithm des
ribed in the previous se
tionon the four biggest examples studied by Habib and Sz�antai. We set the maximum valuefor h to 15 and the threshold for the maximum relative un
ertainty to 1%. In all of the15

Table 7: n = 30; r = 6; k = 3; Q = 0:10; F 3=630 = 0:1514353h lower bound upper bound %error %un
ert. timeS1-S4 based 0.136317 0.178668 11 31 0.110 0.140738 0.985163 7.6 600 0.001 0.144795 0.165079 4.6 14 0.002 0.147685 0.159249 2.5 7.8 0.003 0.149676 0.155649 1.2 4 0.004 0.150902 0.153355 0.35 1.6 0.005 0.151435 0.151968 0.0002 0.35 0.00Table 8: n = 40; r = 7; k = 4; Q = 0:10; F 4=740 = 0:0421106h lower bound upper bound %error %un
ert. timeS1-S4 based 0.038368 0.047818 9.8 25 0.220 0.0395055 0.316044 6.6 700 0.001 0.0405621 0.0469018 3.8 16 0.002 0.0412406 0.0446329 2.1 8.2 0.003 0.0416707 0.043391 1.1 4.1 0.004 0.0419282 0.0427006 0.44 1.8 0.005 0.0420626 0.0423316 0.11 0.64 0.00Table 9: n = 50; r = 40; k = 28; Q = 0:50; F 28=4050 = 0:0211604h lower bound upper bound %error %un
ert. timeS1-S4 based 0.018356 0.024645 15 34 2.090 0.0208034 0.852939 1.7 4000 01 0.0209393 0.026241 1.1 25 0.002 0.021023 0.0242029 0.65 15 0.003 0.0210771 0.0230771 0.4 9.5 0.004 0.0211122 0.0223766 0.23 6 0.005 0.0211346 0.0219171 0.12 3.7 0.006 0.0211481 0.0216095 0.058 2.2 0.017 0.0211557 0.0214048 0.022 1.2 0.028 0.0211592 0.0212735 0.0057 0.54 0.04
16

Table 10: n = 50; r = 35; k = 20; Q = 0:50; F 20=3550 = 0:462869h lower bound upper bound %error %un
ert. timeS1-S4 based 0.411635 0.583983 12 42 38.560 0.453422 1 2.1 120 0.001 0.455741 0.534583 1.6 17 0.002 0.45744 0.513492 1.2 12 0.003 0.458748 0.500632 0.9 9.1 0.004 0.459776 0.491635 0.67 6.9 0.005 0.460588 0.48493 0.5 5.3 0.016 0.461226 0.479755 0.36 4 0.017 0.461725 0.475673 0.25 3 0.028 0.462106 0.472408 0.17 2.2 0.049 0.46239 0.469778 0.1 1.6 0.0710 0.462593 0.467667 0.06 1.1 0.1511 0.462729 0.465999 0.03 0.71 0.33subsequent tables, we give the per
entage of relative error, i.e. F k=rn �LBLB , as well as theper
entage of relative un
ertainty, i.e. UB�LBLB . Both values are of interest to give a pi
tureof the a

ura
y of methods.The following observations
an be made on these results.� Running times are ex
ellent.� The algorithm
onverges in few steps even on strong requirements on the maximumrelative un
ertainty.� Approximations are mu
h more a

urate than those obtained with the algorithm byHabib and Sz�antai, even for h = 1.� The lower bound is mu
h
loser to the exa
t result than the upper bound. It
ouldbe the
ase that with more mathemati
al e�orts the latter
an be improved.6.2 Further experimentsWe shall now report further experiments to show the advantages, but also the limits, ofour method.Table 11 reports results on the last example of [HS00℄ with various values of Q. Aspreviously, we set the threshold for the maximum relative un
ertainty to 1%. Ea
h row ofthe table
orresponds to a value of Q. The given results are those obtained for the smallestvalue of h su
h that the relative error is below the threshold. These results show that thealgorithm is rather sensitive to the reliability of
omponents. Its a

ura
y de
reases at Qtends to 0:5. The same pi
ture is obtained for all values of k, r and n.17

Table 11: n = 50; r = 35; k = 20Q F 20=3550 h LB UB %error %un
ert. time0.75 0.999519 0 0.999381 1 0.014 0.062 0.000.6 0.882321 9 0.881804 0.889007 0.059 0.82 0.070.5 0.462869 11 0.462729 0.465999 0.03 0.71 0.330.4 0.0851995 10 0.0851587 0.0859966 0.048 0.98 0.130.25 0.000253384 8 0.000253262 0.000255672 0.048 0.95 0.030.1 5.51169e-11 5 5.51017e-11 5.5526e-11 0.028 0.77 0.010.01 2.63586e-30 2 2.63558e-30 2.64961e-30 0.011 0.53 0.00One
ould expe
t that the a

ura
y of our algorithm de
reases as n in
reases, be
auseit is the
ase for most of other approximation s
hemes. In order to study how mu
hits degrades, we
onsider 15-within-20-out-of-n systems. We study these systems for tworeasons: �rst, their exa
t reliabilities
an be assessed by means of BDDs. Se
ond, real-life problems su
h as those mentioned by Papastavridis and Koutras in [PK93℄, namelyquality
ontrol pro
edures and radar dete
tion, should be su
h that k is
lose to r and n islarge w.r.t. r. Table 12 reports results we obtained for several values of n. These resultsshow that the a

ura
y of our method a
tually de
reases as n in
reases, but very slowly.Moreover, it seems that the a

ura
y de
reases linearly with n. This gives a rule of thumbto
orre
t the lower bound:
ompute the exa
t value for k, r and some low values of n,dedu
e the de
rease of a

ura
y as a fun
tion of n,
ompute the lower bound for the a
tualvalue of n and �nally
orre
t it.To end this presentation, table 13 reports results we obtained on 224-within-256-out-of-n systems. In order to make the reliability of su
h systems realisti
, we took Q = 0:75.These results show that our method is still eÆ
ient and a

urate on very large systems(mu
h larger than any system already studied in the literature).7 Con
lusionIn this arti
le, we showed that there exist very simple yet very eÆ
ient algorithms to assessk-out-of-n, l-to-h-out-of-n and
onse
utive k-out-of-n systems. Namely, these algorithmsrun respe
tively in O(k:n), O(h:n) and O(k:n). In our humble point of view, they makeof a little interest further improvements in the assessment of systems of the above
lasses.Then, we
onsidered k-within-r-out-of-n systems that are instrinsi
ally mu
h harder.First, we studied the performan
e of Binary De
ision Diagrams on k-within-r-out-of-nsystems. We expli
ited the number of nodes of the BDD that en
odes su
h a system forthe
ase where n � 2r. We show by means of an experimental study that BDD makesit possible to
ompute the exa
t value of the reliability of k-within-r-out-of-n systems forsmall values of r (say r � 10) but large values of n (say n � 1000). It is worth noti
ingthat BDD
an be used even in the
ase where
omponents have di�erent reliabilities.18

Table 12: r = 20; k = 15n F 15=2050 LB UB %error %un
ert. time40 1.28822e-10 1.28799e-10 1.29422e-10 0.018 0.48 0.0050 1.88329e-10 1.88289e-10 1.89335e-10 0.021 0.56 0.0060 2.47837e-10 2.47778e-10 2.49249e-10 0.024 0.59 0.0070 3.07344e-10 3.07268e-10 3.09162e-10 0.025 0.62 0.0080 3.66851e-10 3.66757e-10 3.69075e-10 0.026 0.63 0.0090 4.26358e-10 4.26247e-10 4.28988e-10 0.026 0.64 0.01Q=0:1;h=
4

100 4.85865e-10 4.85737e-10 4.88902e-10 0.026 0.65 0.0140 0.10052 0.0999556 0.101953 0.56 2 0.1350 0.13667 0.134815 0.139778 1.4 3.7 0.2060 0.171319 0.168218 0.17631 1.8 4.8 0.2670 0.204582 0.200302 0.21143 2.1 5.6 0.3380 0.236509 0.23114 0.245116 2.3 6 0.3890 0.267154 0.260787 0.277397 2.4 6.4 0.44Q=0:5;h=
10

100 0.29657 0.28929 0.308319 2.5 6.6 0.51Table 13: r = 256; k = 224; Q = 0:75n h LB UB %un
ert. time512 1 1.07986e-05 1.92281e-05 78 0.055 1.08976e-05 1.61837e-05 49 0.8910 1.098e-05 1.44353e-05 31 37.241024 1 3.06454e-05 5.61601e-05 83 0.125 3.09509e-05 4.74539e-05 53 2.6110 3.12129e-05 4.23426e-05 36 111.262048 1 0.703347e-04 1.30026e-04 85 0.295 0.710531e-04 1.09998e-04 55 6.1110 0.716746e-04 0.98162e-04 37 259.94096 1 1.49708e-04 2.77744e-04 86 0.625 1.51253e-04 2.35077e-04 55 13.1110 1.52593e-04 2.09793e-04 37 556.83
19

Then, we proposed an algorithm to
ompute lower and upper bounds of k-within-r-out-of-n system reliabitilities in the
ase where all
omponents have the same reliability.This algorithm runs in O(2h:k:n), where 0 � h � r is parameter that �xes the allowedamount of
omputations. We show by means of experiments that it outperforms the bestalgorithms proposed up to now: it is mu
h faster and it gives mu
h more a

urate results.Referen
es[BRB90℄ K. Bra
e, R. Rudell, and R. Bryant. EÆ
ient Implementation of a BDD Pa
kage.In Pro
eedings of the 27th ACM/IEEE Design Automation Conferen
e, pages 40{45. IEEE 0738, 1990.[Bry86℄ R. Bryant. Graph Based Algorithms for Boolean Fon
tion Manipulation. IEEETransa
tions on Computers, 35(8):677{691, August 1986.[CFK95℄ M.T. Chao, J.C. Fu, and M.V. Koutras. Survey on Reliability Studies ofConse
utive-k-out-of-n:f & related systems. IEEE Transa
tions on Reliability,44(1):120{127, 1995.[CM94℄ O. Coudert and J.-C. Madre. MetaPrime: an Itera
tive Fault Tree Analyser.IEEE Transa
tions on Reliability, 43(1):121{127, Mar
h 1994.[Gri86℄ W.S. GriÆth. On
onse
utive k-out-of-n failure systems and their generalizations.Reliability and Quality Control, pages 157{165, 1986.[HS00℄ A. Habib and T. Sz�antai. New bounds on the reliability of
onse
utive k-out-of-r-from-n:f system. Reliability Engineering and System Safety, 68:97{104, 2000.[II95℄ L.A. Belfore II. A O(n:(log2(n)2)) Algorithm for Computing the Reliability of k-out-of-n:G & k-to-l-out-of-n:G systems. IEEE Transa
tions on Reliability, 44(1),Mar
h 1995.[JG85℄ S.P. Jain and K. Gopal. Reliability of k-to-l-out-of-n Systems. Reliability Engi-neering, 12:175{179, 1985.[Mis93℄ K.R. Misra. New Trends in System Reliability Evaluation. Fundamental Studiesin Engineering, 16. Elsevier, 1993. ISBN 0-444-816607.[PK93℄ S.G. Papastravidis and M.V. Koutras. Bounds for Reliability of Conse
utive k-within-m-out-of-n:f Systems. IEEE Transa
tions on Reliability, 42(1):156{160,Mar
h 1993.[Rau93℄ A. Rauzy. New Algorithms for Fault Trees Analysis. Reliability Engineering &System Safety, 05(59):203{211, 1993.20

[Rus86℄ A.M. Rushdi. Utilization of Symmetri
 Swit
hing Fun
tions in the Computationsk-out-of-n Systems Reliability. Mi
roele
troni
s and Reliability, 26(5):973{987,1986.[Rus91℄ A.M. Rushdi. Comment on: An EÆ
ient Non-re
ursive Algorithm for Computingthe Reliability of k-out-of-n Systems. IEEE Transa
tions on Reliability, 40(1):60{61, April 1991.[Sz�a86℄ T. Sz�antai. Evaluation of a spe
ial multivariate gamma distribution. Math. Prog.Study., 27:1{16, 1986.[Ton85℄ Y.L. Tong. Rearrangement inequality for the longuest run, with appli
ation tonetwork reliability. Journal of Applied Probability, 22:286{393, 1985.A Computation of BDDs for k-out-of-n systemsThe algorithm that
omputes the BDD of a k-out-of-n system is essentially the logi
al
ounter-part of the algorithm of Fig. 1. It is based on the following re
ursive equations.0=n(�1; : : : ; �n) = 1k=n(�1; : : : ; �n) = 0 if k > nk=n(�1; : : : ; �n) = �1:k � 1=n� 1(�2; : : : ; �n) + �1 :k=n� 1(�2; : : : ; �n)This re
ursive prin
iple
an be implemented eÆ
iently in an imperative style by meansof two nested loops. The outer loop just iterates n times the inner loop. The inner loopgoes through the k+ 1
ells of a ve
tor ~V of BDDs. At the ith iteration of the outer loop,the BDD of the jth
ell Vj en
odes the formula j=i(�1; : : : ; �i).The pseudo
ode for this algorithm is as follows.V0 BddOnefor j = 1; : : : ; k do Vj BddZero donefor i = 1; : : : ; n dofor j = k; : : : ; 1 doVj BddOr(BddAnd(�i; Vj�1); BddAnd(BddNot(�i); Vj))doneV0 BddAnd(BddNot(�i); V0)donereturn VkB The basi
 algorithmThe ANSI C fun
tion that implements the basi
 algorithm is given Fig. 6. In order tosimplify instru
tions, we use two arrays M and N in whi
h the quotients lr 's and r�lr 's arestored. The array T is an auxiliary data stru
ture that is used to store the Sli�1's.21

double lower_bound_k_within_r_out_of_n(int k, int r, int n, double Q){ double *S, *T, *M, *N, F, P;int i, l;M=(double*)
allo
(sizeof(double),k);N=(double*)
allo
(sizeof(double),k);for (l=0;l<k;l++) { M[l℄=l/(double)r; N[l℄=1-M[l℄; }S=(double*)
allo
(sizeof(double),k);T=(double*)
allo
(sizeof(double),k);F=0; P=1-Q;S[0℄=1.0; for (l=1;l<k;l++) S[j℄=0.0;for (i=1;i<=r;i++) {F=F+q*S[k-1℄;for (l=k-1;l>0;l--) S[l℄=Q*S[l-1℄+P*S[l℄;S[0℄=P*S[0℄;}for (i=r+1;i<=n;i++) {for (l=0;l<k;l++) T[l℄=S[l℄;S[0℄=P*(T[0℄+M[1℄*T[1℄);for (l=1;l<k-1;l++)S[l℄=Q*(N[l-1℄*T[l-1℄+M[l℄*T[l℄) + P*(N[l℄*T[l℄+M[l+1℄*T[l+1℄);S[k-1℄=Q*(N[k-2℄*T[k-2℄+M[k-1℄*T[k-1℄) + P*N[k-1℄*T[k-1℄;F=F+Q*N[k-1℄*T[k-1℄;}free(S); free(T); free(M); free(N);return(F);}Figure 6: The ANSI C fun
tion to
ompute a lower bound of the reliability of k-within-r-out-of-n systems.
22

