New insights into the assessment
of k-out-of-n and related systems

Y. Dutuit A. Rauzy
LAP, LaBRI, CNRS,
Université Bordeaux I, 351, cours de la Libération,
33405 Talence Cedex, FRANCE 33405 Talence Cedex, FRANCE
dutuit@hse.iuta.u-bordeaux.fr rauzy@labri.u-bordeaux.fr
Abstract

k-out-of-n and related systems have received much attention in the recent past
years. Hundreds of articles were devoted to various methods to assess them. In this
article, we show that there exist very efficient algorithms to compute the reliability of
k-out-of-n, [-to-h-out-of-n and consecutive k-out-of-n systems. k-within-r-out-of-n
systems are intrinsically much harder. We study the performance of Binary Decision
Diagrams on these systems. Then, we propose a new approximation scheme. This
algorithm is much more efficient in practice than already proposed methods.

keywords: k-out-of-n and related systems, Binary Decision Diagrams

1 Introduction

A k-within-r-out-of-n system consists of n components linearly arranged. The system is
failed if there is at least a window of r consecutive components with among them at least
k failed components. k-within-r-out-of-n systems were introduced by Tong [Ton85] and
Griffith [Gri86]. They generalize both k-out-of-n systems (r = n) and consecutive k-out-
of-n systems (r = k). years. Hundreds of articles were devoted to various methods to
assess them. The survey by Chao et al. [CFK95] and the book by Misra [Mis93] provide
comprehensive surveys on this topic. The recent article by Habib and Széntai [HSO00]
deserves also a special mention for it compares experimentally several methods.

In this article, we show that there exist O(k.n) algorithms to compute the exact value
of k-out-of-n and consecutive k-out-of-n system reliabilities (as a by-product we study also
[-to-h-out-of-n-systems). The algorithm we propose for k-out-of-n systems looks like the
method proposed by Rushdi in [Rus86, Rus91]. Those dealing with [-to-h-out-of-n and
consecutive k-out-of-n systems are new, at least to a certain extent (since they are just

variations on the former). Their conciseness is noticeable: they consist of about 10 lines
of ANSI C code.

Basically, these algorithms consist in sliding a window of size k£ through the components
and to consider the number of failed components inside the window. k-within-r-out-of-n
systems are intrinsically much harder. In this general case, counting arguments do no
suffice. One has to consider individually each component of the window, which leads to a
combinatorial explosion. The various methods proposed in the literature to handle these
systems are therefore designed to compute lower and upper bounds on reliability rather
than its exact value (see [CFK95, HS00] for a review of recent developments). Moreover,
most of them assume that all components have the same reliability.

In this article, we propose two approach to tackle k-within-r-out-of-n systems.

First, we study the performance of Bryant’s Binary Decision Diagrams (BDDs) [Bry86,
BRB90]. BDDs are the state-of-the-art data structure to encode and to manipulate Boolean
functions. Since their introduction in the reliability analysis framework [Rau93, CM94],
BDDs have proved to be the most efficient technique to assess fault trees. We report
twofold experimental results. On the one hand, we show that BDDs are able to deal with
rather large systems (with several dozens of components). By the way, we correct a claim
by Habib and Szdntai who wrote in [HS00] that only simulation is able to assess (almost)
exact results for such systems. On the other hand, we exhibit a formula that gives the
size of the BDD encoding a k-within-r-out-n system, for n > 2r. This formula makes clear
that BDDs are subject to combinatorial explosion.

Second, we propose a new approximation scheme. Conversely to BDDs but according
to most of proposed methods, this algorithm assumes that all components have the same
reliability. Our algorithm computes a lower bound on system unreliability in O(2".k.n),
where 0 < h < r is a parameter that fixes the accuracy of the lower bound. By comparing
values obtained for h and h — 1, it is possible to deduce an upper bound. We report
experimental results that show that our algorithm outperforms the best methods already
proposed. It gives much more accurate results, even for small h’s. Moreover, it is much
more efficient in terms of computational cost. It is actually able to give accurate results
for systems far beyond the limits of any other known method.

The remaining of this article is organized as follows. k-out-of-n and consecutive k-out-
of-n systems are studied section 3. Results with Binary Decision Diagrams are presented
section 4. The new approximation scheme is described section 5. Finally, experimental
results of this algorithm are presented section 6.

2 Nomenclature

In what follows, we consider n components c¢;, ¢, ..., ¢, linearly arranged and that
can be in one of two states, either good or failed (not good). We assume that component
reliabilities may vary and that component failures are s-independent. Moreover, we assume
that component reliabilities P; (probability of survival) and unreliabilities @; (probability
of failure) are available at no cost (P; + @Q; = 1).

A k-within-r-out-of-n system over components ¢; up to ¢, (k <r < n) is failed iff there
are r consecutive components which include among them, at least k£ failed components.

k-out-of-n and consecutive k-out-of-n systems correspond respectively to the cases r = n
and r = k. A [-to-h-out-of-n system over components c¢; up to ¢, is failed iff there are at
least [and at most h failed components among the n.

Throughout the article, we keep the same meaning for k£, r and n. Events are de-
noted by caligraphic capital letters, e.g. £. Since all algorithms presented here iterate
over components, events are indiced with positions e.g. & (1 < i < n). & denotes the
complementary of the event £ in the considered set of outcomes. The probability p(€) of
an event £ is denoted by the same capital letter as the event, here FE.

We use the following notations.

— Q; (1 <i < n) denotes the event “the component ¢; is failed”.

- Ei-/r (0 <1<k, r <i<n)denotes the event “there are at least [failed components

7

among ¢; ,i1, Ci_ri2, --- , ¢; . 1 is omitted when it is clear from the context, e.g. Eé.

- ’H?/T (0 < h < k,r <i<n) denotes the event “at most h among components ¢; 1,
., ¢; are failed”. r is omitted when it is clear from the context, e.g. H2.

-]:Z-k/ " (r <i < n) denotes the event “there is at least a window of r consecutive com-
ponents in ¢y, ..., ¢; among which at least k£ are failed”. In other words, .7-';6/7" =

Urgzgi Ef/r. k and r are omitted when they are clear from the context, e.g. F;.

— ¢[c/v] denotes the Boolean formula ¢ in which the constant ¢ € {0,1} has been substi-
tuted for the variable v.

Moreover, we use the following derived notations.
- K! o £ﬁ/i, i.e. at least [among components cq, ... ,c; are failed.
— T o Eé/i N Hf/i i.e. at least [and at most h among components cy, ..., ¢; are failed.

def A1/l k/k . . .
- Cl'= £Z~/ U .7-"Z~_/1, i.e. either components ¢;_;i1, ..., ¢; are failed or there is at least a

window of r consecutive components in ¢y, ..., ¢;_; among which at least k are failed.

- &! def EE/T N ’Hé/r N ﬂ;_:i ’H?il/r i.e. there are exactly [failed components among ¢;_,,

., ¢; and no window of r consecutive components ¢;_,41, ... , ¢;, j < %, contains more
than k£ — 1 failed components.

3 Easy k-out-of-n and related systems

3.1 Algorithms

Kk, TH" and C* denote respectively unreliabilities of k-out-of-n, [-to-h-out-of-n and con-
secutive k-out-of-n systems. The following equalities hold.

_ 0 if 7>
K] = 1 ‘ it <0 (1)
Q. K/~ + P.K! | otherwise
0 if (I>1i) Vv (h<0)
T = 1 if (1<0) A (h>1) (2)
QZ-.TZ-Z:I1 h=l g PZ-.TZ-l;h1 otherwise
. 0 if j>1
c! = 1 it j<0 (3)

Q;.CY_! + P.C* | otherwise

Equations 1, 2 and 3 can be seen as recursive definitions of k-out-of-n, [-to-h-out-of-n and
consecutive k-out-of-n systems. They give also a mean to compute Kf, Tz-lf(hfj)’h*(h*j) and
C? (0 < j <k or h) by strates: first for i = 1, then for i = 2, and so on up to i = n.

The corresponding ANSI C functions are given figures 1, 2 and 3. Since they consists of
two nested loops over n and k (or h) they are respectively in O(k.n), O(h.n) and O(k.n).
Arrays K, T and C are passed as parameters of these functions. They could be allocated
and freed inside the functions as well.

The algorithm to assess k-out-of-n systems has strong similarities with the one proposed
by Rushdi in [Rus86, Rus91]. The two other ones are new, even if the underlying recursive
equations appeared under other forms in some articles (see for instance [CFK95, Mis93]
for reviews).

It is possible to improve a bit the algorithms by restricting the inner loop in following
way: one set the starting value for j at ¢ (until i < k) and its final value at k — i (when
i>n—k).

3.2 Experimental Results

For verification purposes, table 1 presents reliabilities of some [-to-h-out-of-n systems with
identical components. These results correct slightly those reported in [JG85]. They were
obtained instantaneously.

Tables 2 and 3 give some running times obtained on a laptop computer with a pentium
I processor cadenced at 166 MHz and running Linux. The computation of very large
system reliabilities (with several thousands components) takes only few seconds. In order
to appreciate these running times, one could compare them with those of the RAFT-GFP
algorithm presented Fig. 2. of reference [I195], that are about 20 times greater. Indeed,

double k_out_of_n(int k, int n, double* Q, doublex K)
{
double Pi, Qi;
int i, j;
for (j=k;j>=0;j--) K[j1=(j==0 ? 1.0 : 0.0);
for (i=1;i<=n;i++) {
Qi=Q[il; Pi=1-Qi;
for (j=k;j>0;j--) K[j1=Qi*K[j-1]1+Pi*K[j];
}
return(K[k]);

Figure 1: The ANSI C function to assess k-out-of-n systems

double 1_h_out_of_n(int 1, int h, int n, double* Q, doublex T)
{
double Pi, Qi;
int i, j;
for (j=h;j>=0;j++) T[jl=(j<=h-1 7 1.0 : 0.0);
for (i=1;i<=n;i++) {
Qi=Q[il; Pi=1-Qi;
for (j=h;j>0;j++) T[j1=Qi*T[j-11+Pi*T[j1;
T[0]=Pix*T[0];
}
return(T[h]);

Figure 2: The ANSI C function to assess [-to-h-out-of-n systems

double consecutive_k_out_of_n(int k, int n, doublex @, doublex C)
{
double Pi, Qi, Ck;
int i, j;
for (j=k;j>=0;j--) C[j1=(j==0 7 1.0 : 0.0);
for (i=1;i<=n;i++) {
Qi=Q[il; Pi=1-Qi; Ck=Clkl;
for (j=k;j>0;j--) C[j1=Qi*C[j-1]+Pix*Ck;
}
return(C[k]);

Figure 3: The ANSI C function to assess consecutive k-out-of-n systems

Table 1: Reliability of some [-to-h-out-of-n systems

System | p=0.5 p=0.6 p=0.7 p=0.8 p=0. 9
[=5h=8mn=10 | 0.612305 0.787404 0.803343 0.617821 0.263754
[=5h=9,n=12 | 0.786865 0.859247 0.737695 0.441073 0.110867

[=10,h =12,n =15 | 0.147186 0.376102 0.594794 0.540925 0.181811

Table 2: Running times in seconds for (consecutive) k-out-of-10000 systems

k 2 10 100 1000 2500 5000 7500 9998
k-out-of-n | 0.00 0.01 0.04 0.54 1.17 220 3.23 4.26
consecutive k-out-of-n | 0.00 0.00 0.04 047 1.10 220 3.25 4.33

Table 3: Running times in seconds for [-to-h-out-of-10000 systems

Iy h— 2 10 100 1000 2500 5000 7500 9998
21000 0.00 0.05 047 122 231 332 435

10 _ 003 018 0.56 1.17 218 3.19 4.21

100 - - 0.04 041 1.01 2.03 3.06 491
1000 - - - 0.54 1.17 216 3.18 4.20
2500 - - - - 1.16 2.15 3.18 4.22
5000 - - - - - 217 3.20 4.20
7500 - - - - - - 3.18 4.05
9998 - - - - - - - 4.20

Shannon Tree BDD

R Reduction Rules \

\
R
\ \
~ \

e : e : @\ \\\\
— =0 C
(1) [l (9] (1] @ [9]

Figure 4: From the Shannon tree to the BDD encoding ab + ac.

this comparison is not absolutely fair because processors were not the same. Nevertheless,
this shows that our very simple procedure competes with the fastest known algorithms.

It is worth noticing that values computed for so large systems are subject to strong
deviations, due to rounding errors.

4 Performance of Binary Decision Diagrams

We turn now to k-within-r-out-of-n systems and their assessment by means of Binary
Decision Diagrams (BDDs).

4.1 Binary Decision Diagrams

The BDD associated with a formulae is a compact encoding of the truth table of this
formula. This representation is based on the Shannon decomposition: let ¢ be a Boolean
formula that depends on the variable v, then ¢ = v.¢[1/v] + 7.4[0/v]. By choosing a total
order over the variables and applying recursively the Shannon decomposition, the truth
table of any formula can be graphically represented as a binary tree. Each internal node
encodes a formula ¢ = v.¢[1/v] +©0.4[0/v]. It is labeled with the variable v and it has two
outedges (a then-outedge, pointing to the node that encodes ¢[1/v], and a else-outedge,
pointing to the node that encodes 1[0/v]). Leaves are labeled with either 0 or 1. The
value of the formula under a given variable assignment is obtained by descending along
the corresponding branch. The Shannon tree for the formula ab+ a@c and the lexicographic
order is pictured Fig. 4 (dashed lines represent else-outedges).

Indeed such a representation is very space consuming. It is however possible to shrink
it by means of the two following reduction rules.

e [somorphic subtrees merging. Since two isomorphic subtrees encode the same for-
mula, at least one is useless.

e Useless nodes deletion. A node with two equal sons is useless since it is equivalent,
to its son (v.1) + V.h = 1).

By applying these two rules as far as possible, one gets the BDD that encodes the formula.
A BDD is therefore a directed acyclic graph. It is unique, up to an isomorphism [Bry86].
This process is illustrated Fig. 4.

Logical operations (and, or, xor, ...) can be directly performed on BDDs. Among other
consequences, this means that the complete binary tree is never built, then shrunk: the
BDD encoding a formula is obtained by composing the BDDs encoding its subformulae. A
caching principle is used to store intermediate results of computations. This makes usual
logical operations (conjunction, disjunction) polynomial in the size of their operands. A
complete implementation of a BDD package is described in [BRB90]. The reader interested
in more details should refer to this article.

By applying the Shannon decomposition to probabilities:

p(vhr +0.ahy) = p(v).p(¢r) + (1 = p(v)).p(¢o)

one gets an linear time algorithm to assess the probability of a formula from the BDD that
encodes this formula [Rau93].

4.2 Results on Habib and Szantai examples

In order to assess the performance of BDDs on k-within-m-out-of-n systems, we described
them by means of the following parametric formula.

O N (g,)

i=r

The connective k/r (k-out-of-r) can be efficiently implemented on BDDs. The algorithm
to do so is given appendix A.

Table 4 gives results we obtained on a desktop computer with a pentium IIT micro-
processor cadenced at 733MHz and running Linux. These examples are those studied by
Habib and Széntai in [HS00]. They were, up to this article, the biggest k-within-r-out-of-n
(with k£ < r < n) considered in the literature. Their components have the same probability
Q) of failure.

In their article, Habib and Szantai report actually two kinds of results: some obtained
by means of a Monte-Carlo simulation algorithm applying the variance reduction technique
of Szantai [Sza86] and some other obtained with their method based on Boole-Bonferroni
bounding technique. For the latters, they consider three levels of approximation. We give
here only the most accurate results, obtained with the S;-S; based method.

Table 4 presents, for each method, the obtained probability (or lower and upper bounds
of the probability), the running time in seconds, and the number of nodes of BDDs. Run-
ning times for Habib and Szantai’s results were obtained on a different computer, running

Table 4: Comparison of BDDs performance with results presented by Habib and Szantai

System Method F,f /r Times Sizes
n=15r=12,k =8, =0.75 S1-54 based [0.916268,0.916268] 0.00 _
BDD 0.916268 0.00 235
n=15r =10,k =4,Q =0.25 S1-54 based [0.375167,0.407571] 0.00 _
Simulation 0.395 £ 0.001257 2.85 _
BDD 0.394538 0.00 289
n=15r=7k=50Q =0.25 S1-S4 based [0.053382,0.060869] 0.00 _
Simulation 0.057 4+ 0.000516 2.80 _
BDD 0.0570453 0.00 246
n=30,r=6,k=3,Q =0.10 S1-S4 based [0.136317,0.178668] 0.11 _
Simulation 0.151 £ 0.000936 5.99 _
BDD 0.1514353 0.00 363
n=40,r =7,k =4,Q =0.10 S1-S4 based [0.038368,0.047818] 0.22 _
Simulation 0.042 £ 0.000450 8.35 _
BDD 0.0421106 0.00 1122
n ="50,7r =40,k =28,Q =0.50 S1-S4 based [0.018356,0.024645] 2.09 _
Simulation 0.0021 4+ 0.000435 15.71 _
BDD 0.0211604 1.11 211427
n =>50,r =35,k =20,Q =0.50 S1-S4 based [0.411635,0.583983] 38.56 _
Simulation 0.463 £ 0.001920 50.48
BDD 0.462869 147.28 3833835

a different operating system, and with programs written in a different language. There-
fore, it makes a little sense to compare them directly with our own. However, orders of
magnitude can be compared.

These results show that BDDs are able to deal with rather large systems. This corrects
a claim by Habib and Széntai who wrote in [HS00] that only simulation is able to assess
(almost) exact results for such systems. However, the two last examples enlight limits of
BDDs. Their size grows quickly as & and r increase. A BDD node is encoded within 4
machine words. It means that nowadays computer memories are exhausted if BDDs with
more than few millions nodes have to be built.

Table 4 shows that Monte-Carlo simulations give accurate results with a good efficiency.
However, it would be interesting to study their accuracy with lower and more realistic
component unreliabilities, for it is well known that rare events are difficult to capture with
this kind of methods.

The Habib-Szantai’s method gives good results as well. However, its performance
should deteriorate as n increases (in reason of the increasing number of terms). Moreover,
it requires that all components have the same reliability.

4.3 BDD Sizes

The second series of experiments aims to show how BDD sizes increase as k, r and n
increase. We take the number of nodes as the size of a BDD.

It can be shown, but this requires a tedious case study that is outside the scope of this
article, that if n > 2r, the size Xﬁ/r of the BDD that encodes a k-within-r-out-of-n is as
follows.

i~ 2X§i(min(r_j’_i‘1)>+(n_2r—1)xi<r_j>+z (4)

s — s—7
i=1 j=1 J J

j=1
where,

e s=Fkifk<r/2and s =r— k+ 2 otherwise.

e 2=1—Fkifk <r/2and z=1—k + 2 otherwise.

In order to illustrate this result, we fix first £ and r and we let n increase. We repeat
this experiment for various values of &, for » = 16 and for n = 16, 24, 32, ... ,80. Each row
of the table 5 gives the growth of BDD sizes. For all values of k, after n = 32, the size
grows linearly with n, which is indeed a very good new for BDDs.

Second, we fix r and n and we let k increase. Each column of the table 5 gives the
growth of BDD sizes. A strong symmetry appears. The maximum size is obtained for
k =29, sizes for 9+ i and 9 — i, 1 = 1,2,... are approximately the same.

Third, we fix £ and n and let r increase. Table 6 gives the size of the BDDs as well
as the computation times (in seconds) for n = 64 and £ = 9. We were unable to compute
BDDs beyond r» = 20. For r larger than 20, the given sizes were obtained by applying

10

Table 5: Sizes of BDDs encoding k-within-16-out-of-n systems

kEln— |16 24 32 40 48 56 64 72 80

4 53 1465 5555 10035 14515 18995 23475 27955 32435

6 67 4183 32753 67697 102641 137585 172529 207473 242417
8 73 6135 76067 167587 259107 350627 442147 533667 625187
9 73 6390 84360 187320 290280 393240 496200 599160 702120
10 71 6133 76065 167585 259105 350625 442145 533665 625185
12 61 4177 32747 67691 102635 137579 172523 207467 242411
14 43 1455 5545 10025 14505 18985 23465 27945 32425

Table 6: Sizes of BDDs and running times for 9-within-r-out-of-64 systems.

T 10 12 14 16 18 20 22 24
Size | 2365 23399 127975 496200 1517376 3892140 8690628 17281155
Time | 0.01 0.05 0.35 3.12 46.91 431.36 ? ?

equation 4. Table 6 illustrates the combinatorial explosion of BDD sizes when k£ and n are
fixed and r increases (up to n/2).

Equation 4 makes explicit advantages and drawbacks of BDDs. On the one hand, when
k and r are small, the BDD is small, even for large values of n. For instance the BDD that
encodes a 5-within-10-out-of-1000 system is made only of 207, 168 nodes and is computed
in 0.76s. On the other hand, when k£ and r are not too small, the BDD is huge even
for small values of n. For instance the BDD that would encode a 15-within-30-out-of-60
system would be made of 986,022, 749 nodes.

5 Bounds on reliability of k-within-r-out-of-n systems

From now, we shall assume that all components have the same reliability P and unreliability
(2. This section is organized as follows. First, we present a basic algorithm that runs in
O(k.n). Then, we extend it into the full algorithm that runs in O(2".k.n). The basic
algorithm corresponds to the case h = 0.

5.1 Principle

The basic algorithm consists of two nested loops. The outer loop iterates over components.
The inner loop assesses S/, for 0 < j < k. The following equality holds. It justifies the
algorithm.

Fo = KFu |J S (5)

1=r+1

11

Terms of the right member are pairwisely disjoint, therefore equality 5 can be lifted to
probabilities. I.e.

F, = KF + > st (6)
1=r+1
5.2 Decomposition of S¥

Sf (0<I1<k,r+1<1i<n)can be decomposed according to what enters and goes out a
sliding window of r components. We distinguish four cases: the main case 0 <[< k — 1
and the three degenerated cases [=0, =k —1and [= k.

case < Il<k—-1

S = (N0, NS~H U (&iNQi, NS, (7)
U (NG, NS u(@ng NS
case [=0
S = (@nS) U (Qng ,.nS)) (8)
case [=k —1
Sk = (N O, NS 2) U (&NQi, NS (9)

U (2N QNS
case | — k
St = 9N, NS} (10)

Again, terms of members are pairwisely disjoint. Therefore, the above equalities can
be lifted to probabilities.

By extending slightly the definition, we can set S. = 7). S! as well as K can be
computed in O(k.r) using functions given Fig. 1 and 2.

Q; is independant of both Q; , and S! ;. Therefore, p(Q; N Q; , N S! ;) = Qz x
p(Q; »NS!). A similar remark holds for terms that involve Q; and Q; .

The idea is to approximate p(Q; , NS! ;) and p(Q; , NS!) from p(S! ;). We shall
see that this can be done in constant time. Therefore, equations 7-10 give a mean to assess
F, in O(k.n).

The ANSI C code for this basic algorithm is given appendix B.

12

5.3 Approximation(s) of p(Q;,_,NS!)

Assume that we toss a coin r times with a probability P to draw a head. There are (:)

different drawings that give exactly [heads. The proportion of these drawings that start
r—1

(1(3) = % This proportion does not depend on P, because all drawings
!

(that give [heads) have the same probability to occur, namely P!(1 — P)" !,
The idea is thus to approximate p(Q;_, N S!) as follows.

with a head is

[
p(Qir N 85—1) ~ - X S£—1 (11)

Indeed, p(Q;i—, NSI_y) ~ =L x SL_.

Let o be a sequence of states of components ¢; up to ¢; 1 ending with [failed components
among ¢; ,, ..., ¢;_1. Assume that o, , = 0 (i.e. ¢;_, is failed). Let p be any sequence
such that o and p differ on exactly two components: ¢; , and a component ¢, such that
s>i—rand o, =1 (p;_, =1, ps = 0). Then, if o belongs to S! ,, p belongs to S! ; as
well. The converse is not true. In other words, if the number x; of sequences that belong
to 8! is a;. (ﬁ) for a given positive number a;, then the number y; of sequences o of S! such
that o(i —r) = 1 is less than a;.(_}). Therefore, < L

It follows that equation 11 gives an upper approximation of p(Q; , NSt).

5.4 Taking the recent past into account

To apply equation 11, one needs only to store the last value of S!, for 0 < I < k. It is possible
to refine this approximation by taking into account states of components ¢;_y, ... ,¢;_1, for
a given h such that 0 < h < r. In other words, !, can be decomposed as follows
(extending equation 7).

51471 = (8571 NQi1)U (8571 A @) - h
= (S.,NQiiNQis) U (SL1NQieiNQis) |k
U (8,NQi-iNQin) U (S 1NnQi_1NQis)

1
2

The idea is to maintain 2" vectors of probabilities, where A stands for the length of the
history we want to consider. These vectors contain the probabilities p(S!_, N ﬂ;;};_l Q)
where a; € {0,1}, Q} denotes Q; and Q? denotes Q;. The refinement of the approximation

is as follows.

i—1 i1 i—1
Q.n& ,n () Q| = I omin® (st M <
p 1—T i—1] ~ r—h p i—1 . j

j=i—h j=i—h
i—1 i—1 1—1
- — a; (r_h)_(l_z—z— al) a
P <QZ~T NS | n ﬂ Qf) ~ — = L oxp SN ﬂ Q;’
j=i—h Jj=i—h

13

Figure 5: A pictural view of the number of failed components in a sliding r-window

The application of the above approximations requires careful case studies in order to
make sure that Z;-_:};fl a; <.

The above left members can be computed incrementally as in the basic algorithm. The
main case is as follows.

= NS O M Q?‘)

(o
+ plQFNQi, N Szl N Qi hmﬂ]thQ;j)
+ p(QFNQ,NSTHT NQiuN m] =i—h+11 Q;j>
+ p(iNQ; rﬂszl fﬁlmQZ* ﬂnJZhHqu)
v (e x TRt (5L 0 @M)
Q

(r—h)—(l—a; -7} .
X T—h] ht1® (Sl 1 N QZ h ﬂm] i—h41 Q;j>

()

p(Q7) _

p(Qp) x B (sl LNQi NN @)
p(Q) x Rt sy (SN O N M Q)

Figure 5 may help the reader to figure out how above equations work.

Let Fr’f denote the approximation of F; obtained by applying the algorithm with a
history of length h. Each iteration of the outer loop of the algorithm consists in updating
the 2" values for each [, 0 <[< k. Therefore, the algorithm runs in O(2".k.n).

Now, there are two important facts.

Fact 1 The following inequalities hold.

=0 ~1 ~
ng ng"'é f,::FTL

14

Fact 2 The following inequality holds (for h=10,... ,r —2).

rh+1 h h+2 h+1
FiHl_ Fh o> Fht2 _ ph

At the moment, we have no short proof for these two facts. The proof of fact 1 is by
means of double induction on n and k£ to show that the sum of the computed values for
Sf (0<I1<k-—1,r+1<i< n)is greater than the sum of their actual values. We
have no simple proof of fact 2. Anyway, both facts are supported by strong experimental
evidences.

Fact 1 asserts that the algorithm computes a lower bound and converges to the exact
values. Fact 2 asserts that its convergence is fast. Moreover, it can be used to compute
upper bounds. The following inequality holds for h=1,... ,r.

F, < F'4(r—n)[FM—F"Y (12)

Proof. F' = F + > hi Fi — Fi='. By fact 2, we have Fi — Fi=! < Fh — Fh=1 for
h <i <r. The inequality 12 follows just by summing the terms.
The idea is therefore to compute successively the following ranges.

h | lower bound | upper bound

0| F? min(1,r.FP)

1| E! Fl!'+(r—1).[E! - F?

h| E" Er 4 (r — h).[EF — M1

The process is iterated until either h reaches a given value or the maximum relative un-
certainty goes below a predefined threshold. The maximum relative uncertainty is defined
as follows.

(r—h).[Fy — Fp~']
E}

It is worth noticing that this algorithm is still in O(2".k.n).

6 Experimental results

6.1 Comparison with results Habib and Szantai

Tables 7, 8, 9 and 10 report results of the algorithm described in the previous section
on the four biggest examples studied by Habib and Szantai. We set the maximum value
for h to 15 and the threshold for the maximum relative uncertainty to 1%. In all of the

15

Table 7: n = 30,r = 6,k = 3,Q = 0.10, Fol® = 0.1514353

h lower bound upper bound %error %uncert. time
S51-54 based 0.136317 0.178668 11 31 0.11
0 0.140738 0.985163 7.6 600 0.00
1 0.144795 0.165079 4.6 14 0.00
2 0.147685 0.159249 2.5 7.8 0.00
3 0.149676 0.155649 1.2 4 0.00
4 0.150902 0.153355 0.35 1.6 0.00
) 0.151435 0.151968 0.0002 0.35 0.00

Table 8: n =40,r =7,k =4,Q = 0.10, F; " = 0.0421106

h lower bound upper bound %error %uncert. time
S51-54 based 0.038368 0.047818 9.8 25 0.22
0 0.0395055 0.316044 6.6 700 0.00
1 0.0405621 0.0469018 3.8 16 0.00
2 0.0412406 0.0446329 2.1 8.2 0.00
3 0.0416707 0.043391 1.1 4.1 0.00
4 0.0419282 0.0427006 0.44 1.8 0.00
) 0.0420626 0.0423316 0.11 0.64 0.00

Table 9: n = 50,r = 40, k = 28, Q = 0.50, F2/** = 0.0211604

h lower bound upper bound %error %uncert. time
S51-54 based 0.018356 0.024645 15 34 2.09
0 0.0208034 0.852939 1.7 4000 0

1 0.0209393 0.026241 1.1 25 0.00
2 0.021023 0.0242029 0.65 15 0.00
3 0.0210771 0.0230771 0.4 9.5 0.00
4 0.0211122 0.0223766 0.23 6 0.00
) 0.0211346 0.0219171 0.12 3.7 0.00
6 0.0211481 0.0216095 0.058 2.2 0.01
7 0.0211557 0.0214048 0.022 1.2 0.02
8 0.0211592 0.0212735 0.0067 0.54 0.04

16

Table 10: n = 50,r = 35,k = 20,Q = 0.50, F22/% = 0.462869

h lower bound upper bound %error %uncert. time
S51-54 based 0.411635 0.583983 12 42 38.56
0 0.453422 1 2.1 120 0.00
1 0.455741 0.534583 1.6 17 0.00
2 0.45744 0.513492 1.2 12 0.00
3 0.458748 0.500632 0.9 9.1 0.00
4 0.459776 0.491635 0.67 6.9 0.00
) 0.460588 0.48493 0.5 5.3 0.01
6 0.461226 0.479755 0.36 4 0.01
7 0.461725 0.475673 0.25 3 0.02
8 0.462106 0.472408 0.17 2.2 0.04
9 0.46239 0.469778 0.1 1.6 0.07
10 0.462593 0.467667 0.06 1.1 0.15
11 0.462729 0.465999 0.03 0.71 0.33

k/r

subsequent tables, we give the percentage of relative error, i.e. = LZ?LB, as well as the
percentage of relative uncertainty, i.e. %. Both values are of interest to give a picture

of the accuracy of methods.
The following observations can be made on these results.

6.2

Running times are excellent.

The algorithm converges in few steps even on strong requirements on the maximum
relative uncertainty.

Approximations are much more accurate than those obtained with the algorithm by
Habib and Szantai, even for h = 1.

The lower bound is much closer to the exact result than the upper bound. It could
be the case that with more mathematical efforts the latter can be improved.

Further experiments

We shall now report further experiments to show the advantages, but also the limits, of
our method.

Table 11 reports results on the last example of [HS00] with various values of Q). As
previously, we set the threshold for the maximum relative uncertainty to 1%. Each row of
the table corresponds to a value of (). The given results are those obtained for the smallest
value of h such that the relative error is below the threshold. These results show that the
algorithm is rather sensitive to the reliability of components. Its accuracy decreases at ()
tends to 0.5. The same picture is obtained for all values of k£, r and n.

17

Table 11: n =50,r =35,k = 20

Q F52(? /35 h LB UB %error %uncert. time
0.75 0.999519 0 0.999381 1 0.014 0.062 0.00
0.6 0.882321 9 0.881804 0.889007 0.059 0.82 0.07
0.5 0.462869 11 0.462729 0.465999 0.03 0.71 0.33
0.4 0.0851995 10 0.0851587 0.0859966 0.048 0.98 0.13
0.25 0.000253384 8 0.000253262 0.000255672 0.048 0.95 0.03
0.1 5.51169e-11 5 5.51017e-11 5.5526e-11 0.028 0.77 0.01
0.01 2.63586e-30 2 2.63558e-30 2.64961e-30 0.011 0.53 0.00

One could expect that the accuracy of our algorithm decreases as n increases, because
it is the case for most of other approximation schemes. In order to study how much
its degrades, we consider 15-within-20-out-of-n systems. We study these systems for two
reasons: first, their exact reliabilities can be assessed by means of BDDs. Second, real-
life problems such as those mentioned by Papastavridis and Koutras in [PK93], namely
quality control procedures and radar detection, should be such that k is close to r and n is
large w.r.t. r. Table 12 reports results we obtained for several values of n. These results
show that the accuracy of our method actually decreases as n increases, but very slowly.
Moreover, it seems that the accuracy decreases linearly with n. This gives a rule of thumb
to correct the lower bound: compute the exact value for k£, » and some low values of n,
deduce the decrease of accuracy as a function of n, compute the lower bound for the actual
value of n and finally correct it.

To end this presentation, table 13 reports results we obtained on 224-within-256-out-
of-n systems. In order to make the reliability of such systems realistic, we took () = 0.75.
These results show that our method is still efficient and accurate on very large systems
(much larger than any system already studied in the literature).

7 Conclusion

In this article, we showed that there exist very simple yet very efficient algorithms to assess
k-out-of-n, [-to-h-out-of-n and consecutive k-out-of-n systems. Namely, these algorithms
run respectively in O(k.n), O(h.n) and O(k.n). In our humble point of view, they make
of a little interest further improvements in the assessment of systems of the above classes.
Then, we considered k-within-r-out-of-n systems that are instrinsically much harder.
First, we studied the performance of Binary Decision Diagrams on k-within-r-out-of-n
systems. We explicited the number of nodes of the BDD that encodes such a system for
the case where n > 2r. We show by means of an experimental study that BDD makes
it possible to compute the exact value of the reliability of k-within-r-out-of-n systems for
small values of r (say r ~ 10) but large values of n (say n & 1000). It is worth noticing
that BDD can be used even in the case where components have different reliabilities.

18

Table 12: r = 20,k = 15

n Fgg /20 LB UB %error %uncert. time
40 1.28822e-10 1.28799e-10 1.29422e-10 0.018 0.48 0.00
TT 50 1.88329e-10 1.88289e-10 1.89335e-10 0.021 0.56 0.00
< 60 2.47837e-10 2.47778e-10 2.49249e-10 0.024 0.59 0.00
— 70 3.07344e-10 3.07268e-10 3.09162e-10 0.025 0.62 0.00
? 80 3.66851e-10 3.66757e-10 3.69075e-10 0.026 0.63 0.00
> 9 4.26358e-10 4.26247e-10 4.28988e-10 0.026 0.64 0.01
100 4.85865e-10 4.85737e-10 4.88902e-10 0.026 0.65 0.01
= 40 0.10052 0.0999556 0.101953 0.56 2 0.13
T 50 0.13667 0.134815 0.139778 1.4 3.7 0.20
< 60 0.171319 0.168218 0.17631 1.8 4.8 0.26
w70 0.204582 0.200302 0.21143 2.1 5.6 0.33
ﬁ 80 0.236509 0.23114 0.245116 2.3 6 0.38
o> 9 0.267154 0.260787 0.277397 2.4 6.4 0.44
100 0.29657 0.28929 0.308319 2.5 6.6 0.51
Table 13: r = 256, k = 224, Q = 0.75
n h LB UB Y%uncert. time
512 1 1.07986e-05 1.92281e-05 78 0.05
5 1.08976e-05 1.61837e-05 49 0.89
10 1.098e-05 1.44353e-05 31 37.24
1024 1 3.06454e-05 5.61601e-05 83 0.12
5 3.09509e-05 4.74539¢-05 53 2.61
10 3.12129e-05 4.23426e-05 36 111.26
2048 1 0.703347e-04 1.30026e-04 85 0.29
5 0.710531e-04 1.09998e-04 55 6.11
10 0.716746e-04 0.98162e-04 37 259.9
4096 1 1.49708e-04 2.77744e-04 86 0.62
5 1.51253e-04 2.35077e-04 55 13.11
10 1.52593e-04 2.09793e-04 37 556.83

19

Then, we proposed an algorithm to compute lower and upper bounds of k-within-r-
out-of-n system reliabitilities in the case where all components have the same reliability.
This algorithm runs in O(2".k.n), where 0 < h < r is parameter that fixes the allowed
amount of computations. We show by means of experiments that it outperforms the best
algorithms proposed up to now: it is much faster and it gives much more accurate results.

References

[BRBIO]

[Bry86]

[CFK95)

[CMY4]

[Gris6]

[HS00]

[1195]

1G85

[Mis93]

[PK93]

[Rau93|

K. Brace, R. Rudell, and R. Bryant. Efficient Implementation of a BDD Package.
In Proceedings of the 27th ACM/IEEE Design Automation Conference, pages 40—
45. TEEE 0738, 1990.

R. Bryant. Graph Based Algorithms for Boolean Fonction Manipulation. IEFEFE
Transactions on Computers, 35(8):677-691, August 1986.

M.T. Chao, J.C. Fu, and M.V. Koutras. Survey on Reliability Studies of
Consecutive-k-out-of-n:f & related systems. IEEE Transactions on Reliability,
44(1):120-127, 1995.

O. Coudert and J.-C. Madre. MetaPrime: an Iteractive Fault Tree Analyser.
IEEE Transactions on Reliability, 43(1):121-127, March 1994.

W.S. Griffith. On consecutive k-out-of-n failure systems and their generalizations.
Reliability and Quality Control, pages 157165, 1986.

A. Habib and T. Szantai. New bounds on the reliability of consecutive k-out-of-
r-from-n:f system. Reliability Engineering and System Safety, 68:97-104, 2000.

L.A. Belfore II. A O(n.(logz(n)?)) Algorithm for Computing the Reliability of k-
out-of-n:G & k-to-l-out-of-n:G systems. IEEE Transactions on Reliability, 44(1),
March 1995.

S.P. Jain and K. Gopal. Reliability of k-to-l-out-of-n Systems. Reliability Engi-
neering, 12:175-179, 1985.

K.R. Misra. New Trends in System Reliability Fvaluation. Fundamental Studies
in Engineering, 16. Elsevier, 1993. ISBN 0-444-816607.

S.G. Papastravidis and M.V. Koutras. Bounds for Reliability of Consecutive k-
within-m-out-of-n:f Systems. IEEE Transactions on Reliability, 42(1):156-160,
March 1993.

A. Rauzy. New Algorithms for Fault Trees Analysis. Reliability Engineering €
System Safety, 05(59):203-211, 1993.

20

[Rus86] A.M. Rushdi. Utilization of Symmetric Switching Functions in the Computations
k-out-of-n Systems Reliability. Microelectronics and Reliability, 26(5):973-987,
1986.

[Rus91] A.M. Rushdi. Comment on: An Efficient Non-recursive Algorithm for Computing
the Reliability of k-out-of-n Systems. IEEE Transactions on Reliability, 40(1):60—
61, April 1991.

[Sza86] T. Széntai. Evaluation of a special multivariate gamma distribution. Math. Prog.
Study., 27:1-16, 1986.

[Ton85] Y.L. Tong. Rearrangement inequality for the longuest run, with application to
network reliability. Journal of Applied Probability, 22:286-393, 1985.

A Computation of BDDs for k-out-of-n systems

The algorithm that computes the BDD of a k-out-of-n system is essentially the logical
counter-part of the algorithm of Fig. 1. It is based on the following recursive equations.

0/n(p1,... ,¢n) = 1
k/n(ér,...,0n) = 0if k>n

k/n(¢17 7¢n) - ¢1k_1/n_1(¢27 7¢n)+ak/n_1(¢27 7¢n)

This recursive principle can be implemented efficiently in an imperative style by means
of two nested loops. The outer loop just iterates n times the inner loop. The inner loop
goes through the k£ 4 1 cells of a vector V of BDDs. At the ith iteration of the outer loop,
the BDD of the jth cell V; encodes the formula j/i(¢, ... , ;).

The pseudo code for this algorithm is as follows.

Vi < BddOne
for j=1,... ,k do V; <- BddZero done
fori=1,...,ndo

forj=k,...,1do
V; < BddOr(BddAnd(¢;, Vj), BddAnd (BddNot(¢;), V;))
done
Vy < BddAnd(BddNot(¢;), Vp)
done
return Vj,

B The basic algorithm

The ANSI C function that implements the basic algorithm is given Fig. 6. In order to
simplify instructions, we use two arrays M and N in which the quotients %’s and TT_l’s are
stored. The array T is an auxiliary data structure that is used to store the S!_,’s.

21

double lower_bound_k_within_r_out_of_n(int k, int r, int n, double Q)
{

double *S, *T, *M, *N, F, P;

int i, 1;

M=(double*) calloc(sizeof (double) ,k);
N=(double*) calloc(sizeof (double) ,k);
for (1=0;1<k;1++) { M[1]=1/(double)r; N[1]=1-M[1]; }

S=(doublex*x) calloc(sizeof (double) ,k);
T=(double*) calloc(sizeof (double) ,k);

F=0; P=1-Q;
S[0]=1.0; for (1=1;1<k;1++) S[j]1=0.0;
for (i=1;i<=r;i++) {
F=F+qg*S[k-1];
for (1=k-1;1>0;1--) S[1]1=Q*S[1-1]+P*S[1];
S[01=P*S[0];
}

for (i=r+1;i<=n;i++) {
for (1=0;1<k;1++) T[1]=S[1];
S[0]1=P*(T[O]+M[1]*T[1]);
for (1=1;1<k-1;1++)

S[11=Q*(N[1-11*T[1-11+M[1]1*T[1]) + Px(N[1I*T[1]1+M[1+1]1*T[1+1]);
S[k-11=Q*(N[k-2] *T[k-2]+M[k-1]1*T[k-1]) + P*N[k-1]1*T[k-1];
F=F+Q*N[k-1]*T[k-1];

}

free(S); free(T); free(M); free(N);

return(F) ;

}

Figure 6: The ANSI C function to compute a lower bound of the reliability of k-within-r-
out-of-n systems.

22

