
New insights into the assessmentof k-out-of-n and related systemsY. DutuitLAP,Universit�e Bordeaux I,33405 Talene Cedex, FRANCEdutuit�hse.iuta.u-bordeaux.fr
A. RauzyLaBRI, CNRS,351, ours de la Lib�eration,33405 Talene Cedex, FRANCErauzy�labri.u-bordeaux.frAbstratk-out-of-n and related systems have reeived muh attention in the reent pastyears. Hundreds of artiles were devoted to various methods to assess them. In thisartile, we show that there exist very eÆient algorithms to ompute the reliability ofk-out-of-n, l-to-h-out-of-n and onseutive k-out-of-n systems. k-within-r-out-of-nsystems are intrinsially muh harder. We study the performane of Binary DeisionDiagrams on these systems. Then, we propose a new approximation sheme. Thisalgorithm is muh more eÆient in pratie than already proposed methods.keywords: k-out-of-n and related systems, Binary Deision Diagrams1 IntrodutionA k-within-r-out-of-n system onsists of n omponents linearly arranged. The system isfailed if there is at least a window of r onseutive omponents with among them at leastk failed omponents. k-within-r-out-of-n systems were introdued by Tong [Ton85℄ andGriÆth [Gri86℄. They generalize both k-out-of-n systems (r = n) and onseutive k-out-of-n systems (r = k). years. Hundreds of artiles were devoted to various methods toassess them. The survey by Chao et al. [CFK95℄ and the book by Misra [Mis93℄ provideomprehensive surveys on this topi. The reent artile by Habib and Sz�antai [HS00℄deserves also a speial mention for it ompares experimentally several methods.In this artile, we show that there exist O(k:n) algorithms to ompute the exat valueof k-out-of-n and onseutive k-out-of-n system reliabilities (as a by-produt we study alsol-to-h-out-of-n-systems). The algorithm we propose for k-out-of-n systems looks like themethod proposed by Rushdi in [Rus86, Rus91℄. Those dealing with l-to-h-out-of-n andonseutive k-out-of-n systems are new, at least to a ertain extent (sine they are justvariations on the former). Their oniseness is notieable: they onsist of about 10 linesof ANSI C ode. 1

Basially, these algorithms onsist in sliding a window of size k through the omponentsand to onsider the number of failed omponents inside the window. k-within-r-out-of-nsystems are intrinsially muh harder. In this general ase, ounting arguments do nosuÆe. One has to onsider individually eah omponent of the window, whih leads to aombinatorial explosion. The various methods proposed in the literature to handle thesesystems are therefore designed to ompute lower and upper bounds on reliability ratherthan its exat value (see [CFK95, HS00℄ for a review of reent developments). Moreover,most of them assume that all omponents have the same reliability.In this artile, we propose two approah to takle k-within-r-out-of-n systems.First, we study the performane of Bryant's Binary Deision Diagrams (BDDs) [Bry86,BRB90℄. BDDs are the state-of-the-art data struture to enode and to manipulate Booleanfuntions. Sine their introdution in the reliability analysis framework [Rau93, CM94℄,BDDs have proved to be the most eÆient tehnique to assess fault trees. We reporttwofold experimental results. On the one hand, we show that BDDs are able to deal withrather large systems (with several dozens of omponents). By the way, we orret a laimby Habib and Sz�antai who wrote in [HS00℄ that only simulation is able to assess (almost)exat results for suh systems. On the other hand, we exhibit a formula that gives thesize of the BDD enoding a k-within-r-out-n system, for n � 2r. This formula makes learthat BDDs are subjet to ombinatorial explosion.Seond, we propose a new approximation sheme. Conversely to BDDs but aordingto most of proposed methods, this algorithm assumes that all omponents have the samereliability. Our algorithm omputes a lower bound on system unreliability in O(2h:k:n),where 0 � h � r is a parameter that �xes the auray of the lower bound. By omparingvalues obtained for h and h � 1, it is possible to dedue an upper bound. We reportexperimental results that show that our algorithm outperforms the best methods alreadyproposed. It gives muh more aurate results, even for small h's. Moreover, it is muhmore eÆient in terms of omputational ost. It is atually able to give aurate resultsfor systems far beyond the limits of any other known method.The remaining of this artile is organized as follows. k-out-of-n and onseutive k-out-of-n systems are studied setion 3. Results with Binary Deision Diagrams are presentedsetion 4. The new approximation sheme is desribed setion 5. Finally, experimentalresults of this algorithm are presented setion 6.2 NomenlatureIn what follows, we onsider n omponents 1, 2, : : : , n linearly arranged and thatan be in one of two states, either good or failed (not good). We assume that omponentreliabilities may vary and that omponent failures are s-independent. Moreover, we assumethat omponent reliabilities Pi (probability of survival) and unreliabilities Qi (probabilityof failure) are available at no ost (Pi +Qi = 1).A k-within-r-out-of-n system over omponents 1 up to n (k � r � n) is failed i� thereare r onseutive omponents whih inlude among them, at least k failed omponents.2

k-out-of-n and onseutive k-out-of-n systems orrespond respetively to the ases r = nand r = k. A l-to-h-out-of-n system over omponents 1 up to n is failed i� there are atleast l and at most h failed omponents among the n.Throughout the artile, we keep the same meaning for k, r and n. Events are de-noted by aligraphi apital letters, e.g. E . Sine all algorithms presented here iterateover omponents, events are indied with positions e.g. Ei (1 � i � n). E denotes theomplementary of the event E in the onsidered set of outomes. The probability p(E) ofan event E is denoted by the same apital letter as the event, here E.We use the following notations.{ Qi (1 � i � n) denotes the event \the omponent i is failed".{ Ll=ri (0 � l � k, r � i � n) denotes the event \there are at least l failed omponentsamong i�r+1, i�r+2, : : : , i". r is omitted when it is lear from the ontext, e.g. Lli.{ Hh=ri (0 � h � k; r � i � n) denotes the event \at most h among omponents i�r+1,: : : , i are failed". r is omitted when it is lear from the ontext, e.g. Hhi .{ Fk=ri (r � i � n) denotes the event \there is at least a window of r onseutive om-ponents in 1, : : : , i among whih at least k are failed". In other words, Fk=ri =Sr�l�iLk=rl . k and r are omitted when they are lear from the ontext, e.g. Fi.{ �[=v℄ denotes the Boolean formula � in whih the onstant 2 f0; 1g has been substi-tuted for the variable v.Moreover, we use the following derived notations.{ Kli def= Ll=ii , i.e. at least l among omponents 1, : : : ,i are failed.{ T l;hi def= Ll=ii \Hh=ii i.e. at least l and at most h among omponents 1, : : : , i are failed.{ Cli def= Ll=li [Fk=ki�1 , i.e. either omponents i�l+1, : : : , i are failed or there is at least awindow of r onseutive omponents in 1, : : : , i�1 among whih at least k are failed.{ S li def= Ll=ri \ Hl=ri \ Ti�1j=rHk�1=rj i.e. there are exatly l failed omponents among i�r+1,: : : , i and no window of r onseutive omponents j�r+1, : : : , j, j < i, ontains morethan k � 1 failed omponents.
3

3 Easy k-out-of-n and related systems3.1 AlgorithmsKkn, T l;hn and Ckn denote respetively unreliabilities of k-out-of-n, l-to-h-out-of-n and on-seutive k-out-of-n systems. The following equalities hold.Kji = 8<: 0 if j > i1 if j � 0Qi:Kj�1i�1 + Pi:Kji�1 otherwise (1)T l;hi = 8<: 0 if (l > i) _ (h < 0)1 if (l � 0) ^ (h � i)Qi:T l�1;h�1i�1 + Pi:T l;hi�1 otherwise (2)Cji = 8<: 0 if j > i1 if j � 0Qi:Cj�1i�1 + Pi:Cki�1 otherwise (3)Equations 1, 2 and 3 an be seen as reursive de�nitions of k-out-of-n, l-to-h-out-of-n andonseutive k-out-of-n systems. They give also a mean to ompute Kji , T l�(h�j);h�(h�j)i andCji (0 � j � k or h) by strates: �rst for i = 1, then for i = 2, and so on up to i = n.The orresponding ANSI C funtions are given �gures 1, 2 and 3. Sine they onsists oftwo nested loops over n and k (or h) they are respetively in O(k:n), O(h:n) and O(k:n).Arrays K, T and C are passed as parameters of these funtions. They ould be alloatedand freed inside the funtions as well.The algorithm to assess k-out-of-n systems has strong similarities with the one proposedby Rushdi in [Rus86, Rus91℄. The two other ones are new, even if the underlying reursiveequations appeared under other forms in some artiles (see for instane [CFK95, Mis93℄for reviews).It is possible to improve a bit the algorithms by restriting the inner loop in followingway: one set the starting value for j at i (until i < k) and its �nal value at k � i (wheni � n� k).3.2 Experimental ResultsFor veri�ation purposes, table 1 presents reliabilities of some l-to-h-out-of-n systems withidential omponents. These results orret slightly those reported in [JG85℄. They wereobtained instantaneously.Tables 2 and 3 give some running times obtained on a laptop omputer with a pentiumI proessor adened at 166 MHz and running Linux. The omputation of very largesystem reliabilities (with several thousands omponents) takes only few seonds. In orderto appreiate these running times, one ould ompare them with those of the RAFT-GFPalgorithm presented Fig. 2. of referene [II95℄, that are about 20 times greater. Indeed,4

double k_out_of_n(int k, int n, double* Q, double* K){ double Pi, Qi;int i, j;for (j=k;j>=0;j--) K[j℄=(j==0 ? 1.0 : 0.0);for (i=1;i<=n;i++) {Qi=Q[i℄; Pi=1-Qi;for (j=k;j>0;j--) K[j℄=Qi*K[j-1℄+Pi*K[j℄;}return(K[k℄);} Figure 1: The ANSI C funtion to assess k-out-of-n systemsdouble l_h_out_of_n(int l, int h, int n, double* Q, double* T){ double Pi, Qi;int i, j;for (j=h;j>=0;j++) T[j℄=(j<=h-l ? 1.0 : 0.0);for (i=1;i<=n;i++) {Qi=Q[i℄; Pi=1-Qi;for (j=h;j>0;j++) T[j℄=Qi*T[j-1℄+Pi*T[j℄;T[0℄=Pi*T[0℄;}return(T[h℄);} Figure 2: The ANSI C funtion to assess l-to-h-out-of-n systemsdouble onseutive_k_out_of_n(int k, int n, double* Q, double* C){ double Pi, Qi, Ck;int i, j;for (j=k;j>=0;j--) C[j℄=(j==0 ? 1.0 : 0.0);for (i=1;i<=n;i++) {Qi=Q[i℄; Pi=1-Qi; Ck=C[k℄;for (j=k;j>0;j--) C[j℄=Qi*C[j-1℄+Pi*Ck;}return(C[k℄);} Figure 3: The ANSI C funtion to assess onseutive k-out-of-n systems5

Table 1: Reliability of some l-to-h-out-of-n systemsSystem p=0.5 p=0.6 p=0.7 p=0.8 p=0. 9l = 5; h = 8; n = 10 0.612305 0.787404 0.803343 0.617821 0.263754l = 5; h = 9; n = 12 0.786865 0.859247 0.737695 0.441073 0.110867l = 10; h = 12; n = 15 0.147186 0.376102 0.594794 0.540925 0.181811
Table 2: Running times in seonds for (onseutive) k-out-of-10000 systemsk 2 10 100 1000 2500 5000 7500 9998k-out-of-n 0.00 0.01 0.04 0.54 1.17 2.20 3.23 4.26onseutive k-out-of-n 0.00 0.00 0.04 0.47 1.10 2.20 3.25 4.33

Table 3: Running times in seonds for l-to-h-out-of-10000 systemsl # h! 2 10 100 1000 2500 5000 7500 99982 0.00 0.00 0.05 0.47 1.22 2.31 3.32 4.3510 0.03 0.18 0.56 1.17 2.18 3.19 4.21100 0.04 0.41 1.01 2.03 3.05 4.911000 0.54 1.17 2.16 3.18 4.202500 1.16 2.15 3.18 4.225000 2.17 3.20 4.207500 3.18 4.059998 4.20
6

b

a

c

01

BDD
a

bb

cc

1 1 0 0 1 0 1 0

c c

Shannon Tree

Reduction Rules

Figure 4: From the Shannon tree to the BDD enoding ab + a.this omparison is not absolutely fair beause proessors were not the same. Nevertheless,this shows that our very simple proedure ompetes with the fastest known algorithms.It is worth notiing that values omputed for so large systems are subjet to strongdeviations, due to rounding errors.4 Performane of Binary Deision DiagramsWe turn now to k-within-r-out-of-n systems and their assessment by means of BinaryDeision Diagrams (BDDs).4.1 Binary Deision DiagramsThe BDD assoiated with a formulae is a ompat enoding of the truth table of thisformula. This representation is based on the Shannon deomposition: let � be a Booleanformula that depends on the variable v, then � = v:�[1=v℄ + v:�[0=v℄. By hoosing a totalorder over the variables and applying reursively the Shannon deomposition, the truthtable of any formula an be graphially represented as a binary tree. Eah internal nodeenodes a formula = v: [1=v℄ + v: [0=v℄. It is labeled with the variable v and it has twooutedges (a then-outedge, pointing to the node that enodes [1=v℄, and a else-outedge,pointing to the node that enodes [0=v℄). Leaves are labeled with either 0 or 1. Thevalue of the formula under a given variable assignment is obtained by desending alongthe orresponding branh. The Shannon tree for the formula ab+a and the lexiographiorder is pitured Fig. 4 (dashed lines represent else-outedges).Indeed suh a representation is very spae onsuming. It is however possible to shrinkit by means of the two following redution rules.� Isomorphi subtrees merging. Sine two isomorphi subtrees enode the same for-mula, at least one is useless. 7

� Useless nodes deletion. A node with two equal sons is useless sine it is equivalentto its son (v: + v: =).By applying these two rules as far as possible, one gets the BDD that enodes the formula.A BDD is therefore a direted ayli graph. It is unique, up to an isomorphism [Bry86℄.This proess is illustrated Fig. 4.Logial operations (and, or, xor, ...) an be diretly performed on BDDs. Among otheronsequenes, this means that the omplete binary tree is never built, then shrunk: theBDD enoding a formula is obtained by omposing the BDDs enoding its subformulae. Aahing priniple is used to store intermediate results of omputations. This makes usuallogial operations (onjuntion, disjuntion) polynomial in the size of their operands. Aomplete implementation of a BDD pakage is desribed in [BRB90℄. The reader interestedin more details should refer to this artile.By applying the Shannon deomposition to probabilities:p(v: 1 + v : 0) = p(v):p(1) + (1� p(v)):p(0)one gets an linear time algorithm to assess the probability of a formula from the BDD thatenodes this formula [Rau93℄.4.2 Results on Habib and Sz�antai examplesIn order to assess the performane of BDDs on k-within-m-out-of-n systems, we desribedthem by means of the following parametri formula.�k=rn def= nXi=r k=r(i�r+1; : : : ; i)The onnetive k=r (k-out-of-r) an be eÆiently implemented on BDDs. The algorithmto do so is given appendix A.Table 4 gives results we obtained on a desktop omputer with a pentium III miro-proessor adened at 733MHz and running Linux. These examples are those studied byHabib and Sz�antai in [HS00℄. They were, up to this artile, the biggest k-within-r-out-of-n(with k < r < n) onsidered in the literature. Their omponents have the same probabilityQ of failure.In their artile, Habib and Sz�antai report atually two kinds of results: some obtainedby means of a Monte-Carlo simulation algorithm applying the variane redution tehniqueof Sz�antai [Sz�a86℄ and some other obtained with their method based on Boole-Bonferronibounding tehnique. For the latters, they onsider three levels of approximation. We givehere only the most aurate results, obtained with the S1-S4 based method.Table 4 presents, for eah method, the obtained probability (or lower and upper boundsof the probability), the running time in seonds, and the number of nodes of BDDs. Run-ning times for Habib and Sz�antai's results were obtained on a di�erent omputer, running8

Table 4: Comparison of BDDs performane with results presented by Habib and Sz�antaiSystem Method F k=rn Times Sizesn = 15; r = 12; k = 8; Q = 0:75 S1-S4 based [0.916268,0.916268℄ 0.00BDD 0.916268 0.00 235n = 15; r = 10; k = 4; Q = 0:25 S1-S4 based [0.375167,0.407571℄ 0.00Simulation 0.395 � 0.001257 2.85BDD 0.394538 0.00 289n = 15; r = 7; k = 5; Q = 0:25 S1-S4 based [0.053382,0.060869℄ 0.00Simulation 0.057 � 0.000516 2.80BDD 0.0570453 0.00 246n = 30; r = 6; k = 3; Q = 0:10 S1-S4 based [0.136317,0.178668℄ 0.11Simulation 0.151 � 0.000936 5.99BDD 0.1514353 0.00 363n = 40; r = 7; k = 4; Q = 0:10 S1-S4 based [0.038368,0.047818℄ 0.22Simulation 0.042 � 0.000450 8.35BDD 0.0421106 0.00 1122n = 50; r = 40; k = 28; Q = 0:50 S1-S4 based [0.018356,0.024645℄ 2.09Simulation 0.0021 � 0.000435 15.71BDD 0.0211604 1.11 211427n = 50; r = 35; k = 20; Q = 0:50 S1-S4 based [0.411635,0.583983℄ 38.56Simulation 0.463 � 0.001920 50.48BDD 0.462869 147.28 3833835

9

a di�erent operating system, and with programs written in a di�erent language. There-fore, it makes a little sense to ompare them diretly with our own. However, orders ofmagnitude an be ompared.These results show that BDDs are able to deal with rather large systems. This orretsa laim by Habib and Sz�antai who wrote in [HS00℄ that only simulation is able to assess(almost) exat results for suh systems. However, the two last examples enlight limits ofBDDs. Their size grows quikly as k and r inrease. A BDD node is enoded within 4mahine words. It means that nowadays omputer memories are exhausted if BDDs withmore than few millions nodes have to be built.Table 4 shows that Monte-Carlo simulations give aurate results with a good eÆieny.However, it would be interesting to study their auray with lower and more realistiomponent unreliabilities, for it is well known that rare events are diÆult to apture withthis kind of methods.The Habib-Sz�antai's method gives good results as well. However, its performaneshould deteriorate as n inreases (in reason of the inreasing number of terms). Moreover,it requires that all omponents have the same reliability.4.3 BDD SizesThe seond series of experiments aims to show how BDD sizes inrease as k, r and ninrease. We take the number of nodes as the size of a BDD.It an be shown, but this requires a tedious ase study that is outside the sope of thisartile, that if n > 2r, the size �k=rn of the BDD that enodes a k-within-r-out-of-n is asfollows.�k=rn = 2� r�1Xi=1 sXj=1 �min(r � j; i� 1)s� j �+ (n� 2r � 1)� sXj=1 �r � js� j�+ z (4)where,� s = k if k � r=2 and s = r � k + 2 otherwise.� z = 1� k if k � r=2 and z = 1� k + 2 otherwise.In order to illustrate this result, we �x �rst k and r and we let n inrease. We repeatthis experiment for various values of k, for r = 16 and for n = 16; 24; 32; : : : ; 80. Eah rowof the table 5 gives the growth of BDD sizes. For all values of k, after n = 32, the sizegrows linearly with n, whih is indeed a very good new for BDDs.Seond, we �x r and n and we let k inrease. Eah olumn of the table 5 gives thegrowth of BDD sizes. A strong symmetry appears. The maximum size is obtained fork = 9, sizes for 9 + i and 9� i, i = 1; 2; : : : are approximately the same.Third, we �x k and n and let r inrease. Table 6 gives the size of the BDDs as wellas the omputation times (in seonds) for n = 64 and k = 9. We were unable to omputeBDDs beyond r = 20. For r larger than 20, the given sizes were obtained by applying10

Table 5: Sizes of BDDs enoding k-within-16-out-of-n systemsk # n! 16 24 32 40 48 56 64 72 804 53 1465 5555 10035 14515 18995 23475 27955 324356 67 4183 32753 67697 102641 137585 172529 207473 2424178 73 6135 76067 167587 259107 350627 442147 533667 6251879 73 6390 84360 187320 290280 393240 496200 599160 70212010 71 6133 76065 167585 259105 350625 442145 533665 62518512 61 4177 32747 67691 102635 137579 172523 207467 24241114 43 1455 5545 10025 14505 18985 23465 27945 32425Table 6: Sizes of BDDs and running times for 9-within-r-out-of-64 systems.r 10 12 14 16 18 20 22 24Size 2365 23399 127975 496200 1517376 3892140 8690628 17281155Time 0.01 0.05 0.35 3.12 46.91 431.36 ? ?equation 4. Table 6 illustrates the ombinatorial explosion of BDD sizes when k and n are�xed and r inreases (up to n=2).Equation 4 makes expliit advantages and drawbaks of BDDs. On the one hand, whenk and r are small, the BDD is small, even for large values of n. For instane the BDD thatenodes a 5-within-10-out-of-1000 system is made only of 207; 168 nodes and is omputedin 0.76s. On the other hand, when k and r are not too small, the BDD is huge evenfor small values of n. For instane the BDD that would enode a 15-within-30-out-of-60system would be made of 986; 022; 749 nodes.5 Bounds on reliability of k-within-r-out-of-n systemsFrom now, we shall assume that all omponents have the same reliabilityP and unreliabilityQ. This setion is organized as follows. First, we present a basi algorithm that runs inO(k:n). Then, we extend it into the full algorithm that runs in O(2h:k:n). The basialgorithm orresponds to the ase h = 0.5.1 PrinipleThe basi algorithm onsists of two nested loops. The outer loop iterates over omponents.The inner loop assesses Sji , for 0 � j � k. The following equality holds. It justi�es thealgorithm. Fn = Kkr [n[i=r+1Ski (5)11

Terms of the right member are pairwisely disjoint, therefore equality 5 an be lifted toprobabilities. I.e. Fn = Kkr + nXi=r+1Ski (6)5.2 Deomposition of SkiS li (0 � l � k, r + 1 � i � n) an be deomposed aording to what enters and goes out asliding window of r omponents. We distinguish four ases: the main ase 0 < l < k � 1and the three degenerated ases l = 0, l = k � 1 and l = k.ase 0 < l < k � 1 S li = (Qi \ Qi�r \ S l�1i�1) [(Qi \Qi�r \ S li�1)[(Qi \ Qi�r \ S li�1) [(Qi \Qi�r \ S l+1i�1) (7)ase l = 0 S0i = (Qi \ S0i�1) [(Qi \ Qi�r \ S1i�1) (8)ase l = k � 1 Sk�1i = (Qi \ Qi�r \ Sk�2i�1) [(Qi \ Qi�r \ Sk�1i�1)[(Qi \ Qi�r \ Sk�1i�1) (9)ase l = k Ski = Qi \ Qi�r \ Sk�1i�1 (10)Again, terms of members are pairwisely disjoint. Therefore, the above equalities anbe lifted to probabilities.By extending slightly the de�nition, we an set Slr = T l;lr . Slr as well as Kkr an beomputed in O(k:r) using funtions given Fig. 1 and 2.Qi is independant of both Qi�r and S li�1. Therefore, p(Qi \ Qi�r \ S li�1) = Qz �p(Qi�r \ S li�1). A similar remark holds for terms that involve Qi and Qi�r .The idea is to approximate p(Qi�r \ S li�1) and p(Qi�r \ S li�1) from p(S li�1). We shallsee that this an be done in onstant time. Therefore, equations 7-10 give a mean to assessFn in O(k:n).The ANSI C ode for this basi algorithm is given appendix B.
12

5.3 Approximation(s) of p(Qi�r \ S li�1)Assume that we toss a oin r times with a probability P to draw a head. There are �rl�di�erent drawings that give exatly l heads. The proportion of these drawings that startwith a head is (r�1l�1)(rl) = lr . This proportion does not depend on P , beause all drawings(that give l heads) have the same probability to our, namely P l(1� P)r�l.The idea is thus to approximate p(Qi�r \ S li�1) as follows.p(Qi�r \ S li�1) � lr � Sli�1 (11)Indeed, p(Qi�r \ S li�1) � r�lr � Sli�1.Let � be a sequene of states of omponents 1 up to i�1 ending with l failed omponentsamong i�r, : : : , i�1. Assume that �i�r = 0 (i.e. i�r is failed). Let � be any sequenesuh that � and � di�er on exatly two omponents: i�r and a omponent s suh thats > i � r and �s = 1 (�i�r = 1, �s = 0). Then, if � belongs to S li�1, � belongs to S li�1 aswell. The onverse is not true. In other words, if the number xi of sequenes that belongto S li is ai:�li� for a given positive number ai, then the number yi of sequenes � of S li suhthat �(i� r) = 1 is less than ai:�l�1i�1�. Therefore, yixi < li .It follows that equation 11 gives an upper approximation of p(Qi�r \ S li�1).5.4 Taking the reent past into aountTo apply equation 11, one needs only to store the last value of Sli, for 0 � l < k. It is possibleto re�ne this approximation by taking into aount states of omponents i�h; : : : ; i�1, fora given h suh that 0 � h � r. In other words, S li�1 an be deomposed as follows(extending equation 7).S li�1 = (S li�1 \ Qi�1) [(S li�1 \ Qi�1) h = 1= (S li�1 \Qi�1 \ Qi�2) [(S li�1 \ Qi�1 \ Qi�2)[(S li�1 \ Qi�1 \Qi�2) [(S li�1 \ Qi�1 \ Qi�2) h = 2= ... h = ...The idea is to maintain 2h vetors of probabilities, where h stands for the length of thehistory we want to onsider. These vetors ontain the probabilities p(S li�1 \Ti�hj=i�1Qajj),where aj 2 f0; 1g, Q1j denotes Qj and Q0j denotes Qj . The re�nement of the approximationis as follows.p Qi�r \ S li�1 \ i�1\j=i�hQajj ! � l �Pi�1j=i�h air � h � p S li�1 \ i�1\j=i�hQajj !p Qi�r \ S li�1 \ i�1\j=i�hQajj ! � (r � h)� (l �Pi�1j=i�h ai)r � h � p S li�1 \ i�1\j=i�hQajj !13

: : : ai�r ai�r+1 : : : ai�h ai�h+1 : : : ai�1 ai[. l . ℄[. l + ai�r � ai ℄[l + ai�r � ai �Pi�1j=i�h aj ℄Figure 5: A pitural view of the number of failed omponents in a sliding r-windowThe appliation of the above approximations requires areful ase studies in order tomake sure that Pi�hj=i�1 aj � l.The above left members an be omputed inrementally as in the basi algorithm. Themain ase is as follows.p�S li \Tij=i�h+1Qajj �= p�Qi�r \ S l�aii�1 \Tij=i�h+1Qajj �+ p�Qi�r \ S l�ai+1i�1 \Tij=i�h+1Qajj �= p�Qaii \ Qi�r \ S l�a1i�1 \Qi�h \Ti�1j=i�h+1Qajj �+ p�Qaii \ Qi�r \ S l�a1i�1 \ Qi�h \Ti�1j=i�h+1Qajj �+ p�Qaii \Qi�r \ S l�ai+1i�1 \ Qi�h \Ti�1j=i�h+11Qajj �+ p�Qaii \Qi�r \ S l�ai+1i�1 \ Qi�h \Ti�1j=i�h+1Qajj �� p(Qaii)� (r�h)�(l�ai�Pi�1j=i�h+1 aj�1)r�h � p�S li�1 \ Qi�h \Ti�1j=i�h+1Qajj �+ p(Qaii)� (r�h)�(l�ai�Pi�1j=i�h+1 aj)r�h � p�S li�1 \ Qi�h \Ti�1j=i�h+1Qajj �+ p(Qaii)� l�ai+1�Pi�1j=i�h+1 aj�1r�h � p�S l�1i�1 \Qi�h \Ti�1j=i�h+1Qajj �+ p(Qaii)� l�ai+1�Pi�1j=i�h+1 ajr�h � p�S l�1i�1 \ Qi�h \Ti�1j=i�h+1Qajj �Figure 5 may help the reader to �gure out how above equations work.Let ~F hn denote the approximation of Fn obtained by applying the algorithm with ahistory of length h. Eah iteration of the outer loop of the algorithm onsists in updatingthe 2h values for eah l, 0 � l � k. Therefore, the algorithm runs in O(2h:k:n).Now, there are two important fats.Fat 1 The following inequalities hold.~F 0n � ~F 1n � : : : � ~F rn = Fn
14

Fat 2 The following inequality holds (for h = 0; : : : ; r � 2).~F h+1n � ~F hn � ~F h+2n � ~F h+1nAt the moment, we have no short proof for these two fats. The proof of fat 1 is bymeans of double indution on n and k to show that the sum of the omputed values forSli (0 � l � k � 1, r + 1 � i � n) is greater than the sum of their atual values. Wehave no simple proof of fat 2. Anyway, both fats are supported by strong experimentalevidenes.Fat 1 asserts that the algorithm omputes a lower bound and onverges to the exatvalues. Fat 2 asserts that its onvergene is fast. Moreover, it an be used to omputeupper bounds. The following inequality holds for h = 1; : : : ; r.Fn � ~F hn + (r � h):[~F hn � ~F h�1n ℄ (12)Proof. ~F rn = ~F hn +Pri=h+1 ~F in � ~F i�1n . By fat 2, we have ~F in � ~F i�1n � ~F hn � ~F h�1n forh < i � r. The inequality 12 follows just by summing the terms.The idea is therefore to ompute suessively the following ranges.h lower bound upper bound0 ~F 0n min(1; r: ~F 0n)1 ~F 1n ~F 1n + (r � 1):[~F 1n � ~F 0n ℄...h ~F hn ~F hn + (r � h):[~F hn � ~F h�1n ℄...The proess is iterated until either h reahes a given value or the maximum relative un-ertainty goes below a prede�ned threshold. The maximum relative unertainty is de�nedas follows. (r � h):[~F hn � ~F h�1n ℄~F hnIt is worth notiing that this algorithm is still in O(2h:k:n).6 Experimental results6.1 Comparison with results Habib and Sz�antaiTables 7, 8, 9 and 10 report results of the algorithm desribed in the previous setionon the four biggest examples studied by Habib and Sz�antai. We set the maximum valuefor h to 15 and the threshold for the maximum relative unertainty to 1%. In all of the15

Table 7: n = 30; r = 6; k = 3; Q = 0:10; F 3=630 = 0:1514353h lower bound upper bound %error %unert. timeS1-S4 based 0.136317 0.178668 11 31 0.110 0.140738 0.985163 7.6 600 0.001 0.144795 0.165079 4.6 14 0.002 0.147685 0.159249 2.5 7.8 0.003 0.149676 0.155649 1.2 4 0.004 0.150902 0.153355 0.35 1.6 0.005 0.151435 0.151968 0.0002 0.35 0.00Table 8: n = 40; r = 7; k = 4; Q = 0:10; F 4=740 = 0:0421106h lower bound upper bound %error %unert. timeS1-S4 based 0.038368 0.047818 9.8 25 0.220 0.0395055 0.316044 6.6 700 0.001 0.0405621 0.0469018 3.8 16 0.002 0.0412406 0.0446329 2.1 8.2 0.003 0.0416707 0.043391 1.1 4.1 0.004 0.0419282 0.0427006 0.44 1.8 0.005 0.0420626 0.0423316 0.11 0.64 0.00Table 9: n = 50; r = 40; k = 28; Q = 0:50; F 28=4050 = 0:0211604h lower bound upper bound %error %unert. timeS1-S4 based 0.018356 0.024645 15 34 2.090 0.0208034 0.852939 1.7 4000 01 0.0209393 0.026241 1.1 25 0.002 0.021023 0.0242029 0.65 15 0.003 0.0210771 0.0230771 0.4 9.5 0.004 0.0211122 0.0223766 0.23 6 0.005 0.0211346 0.0219171 0.12 3.7 0.006 0.0211481 0.0216095 0.058 2.2 0.017 0.0211557 0.0214048 0.022 1.2 0.028 0.0211592 0.0212735 0.0057 0.54 0.04
16

Table 10: n = 50; r = 35; k = 20; Q = 0:50; F 20=3550 = 0:462869h lower bound upper bound %error %unert. timeS1-S4 based 0.411635 0.583983 12 42 38.560 0.453422 1 2.1 120 0.001 0.455741 0.534583 1.6 17 0.002 0.45744 0.513492 1.2 12 0.003 0.458748 0.500632 0.9 9.1 0.004 0.459776 0.491635 0.67 6.9 0.005 0.460588 0.48493 0.5 5.3 0.016 0.461226 0.479755 0.36 4 0.017 0.461725 0.475673 0.25 3 0.028 0.462106 0.472408 0.17 2.2 0.049 0.46239 0.469778 0.1 1.6 0.0710 0.462593 0.467667 0.06 1.1 0.1511 0.462729 0.465999 0.03 0.71 0.33subsequent tables, we give the perentage of relative error, i.e. F k=rn �LBLB , as well as theperentage of relative unertainty, i.e. UB�LBLB . Both values are of interest to give a pitureof the auray of methods.The following observations an be made on these results.� Running times are exellent.� The algorithm onverges in few steps even on strong requirements on the maximumrelative unertainty.� Approximations are muh more aurate than those obtained with the algorithm byHabib and Sz�antai, even for h = 1.� The lower bound is muh loser to the exat result than the upper bound. It ouldbe the ase that with more mathematial e�orts the latter an be improved.6.2 Further experimentsWe shall now report further experiments to show the advantages, but also the limits, ofour method.Table 11 reports results on the last example of [HS00℄ with various values of Q. Aspreviously, we set the threshold for the maximum relative unertainty to 1%. Eah row ofthe table orresponds to a value of Q. The given results are those obtained for the smallestvalue of h suh that the relative error is below the threshold. These results show that thealgorithm is rather sensitive to the reliability of omponents. Its auray dereases at Qtends to 0:5. The same piture is obtained for all values of k, r and n.17

Table 11: n = 50; r = 35; k = 20Q F 20=3550 h LB UB %error %unert. time0.75 0.999519 0 0.999381 1 0.014 0.062 0.000.6 0.882321 9 0.881804 0.889007 0.059 0.82 0.070.5 0.462869 11 0.462729 0.465999 0.03 0.71 0.330.4 0.0851995 10 0.0851587 0.0859966 0.048 0.98 0.130.25 0.000253384 8 0.000253262 0.000255672 0.048 0.95 0.030.1 5.51169e-11 5 5.51017e-11 5.5526e-11 0.028 0.77 0.010.01 2.63586e-30 2 2.63558e-30 2.64961e-30 0.011 0.53 0.00One ould expet that the auray of our algorithm dereases as n inreases, beauseit is the ase for most of other approximation shemes. In order to study how muhits degrades, we onsider 15-within-20-out-of-n systems. We study these systems for tworeasons: �rst, their exat reliabilities an be assessed by means of BDDs. Seond, real-life problems suh as those mentioned by Papastavridis and Koutras in [PK93℄, namelyquality ontrol proedures and radar detetion, should be suh that k is lose to r and n islarge w.r.t. r. Table 12 reports results we obtained for several values of n. These resultsshow that the auray of our method atually dereases as n inreases, but very slowly.Moreover, it seems that the auray dereases linearly with n. This gives a rule of thumbto orret the lower bound: ompute the exat value for k, r and some low values of n,dedue the derease of auray as a funtion of n, ompute the lower bound for the atualvalue of n and �nally orret it.To end this presentation, table 13 reports results we obtained on 224-within-256-out-of-n systems. In order to make the reliability of suh systems realisti, we took Q = 0:75.These results show that our method is still eÆient and aurate on very large systems(muh larger than any system already studied in the literature).7 ConlusionIn this artile, we showed that there exist very simple yet very eÆient algorithms to assessk-out-of-n, l-to-h-out-of-n and onseutive k-out-of-n systems. Namely, these algorithmsrun respetively in O(k:n), O(h:n) and O(k:n). In our humble point of view, they makeof a little interest further improvements in the assessment of systems of the above lasses.Then, we onsidered k-within-r-out-of-n systems that are instrinsially muh harder.First, we studied the performane of Binary Deision Diagrams on k-within-r-out-of-nsystems. We expliited the number of nodes of the BDD that enodes suh a system forthe ase where n � 2r. We show by means of an experimental study that BDD makesit possible to ompute the exat value of the reliability of k-within-r-out-of-n systems forsmall values of r (say r � 10) but large values of n (say n � 1000). It is worth notiingthat BDD an be used even in the ase where omponents have di�erent reliabilities.18

Table 12: r = 20; k = 15n F 15=2050 LB UB %error %unert. time40 1.28822e-10 1.28799e-10 1.29422e-10 0.018 0.48 0.0050 1.88329e-10 1.88289e-10 1.89335e-10 0.021 0.56 0.0060 2.47837e-10 2.47778e-10 2.49249e-10 0.024 0.59 0.0070 3.07344e-10 3.07268e-10 3.09162e-10 0.025 0.62 0.0080 3.66851e-10 3.66757e-10 3.69075e-10 0.026 0.63 0.0090 4.26358e-10 4.26247e-10 4.28988e-10 0.026 0.64 0.01Q=0:1;h=
4

100 4.85865e-10 4.85737e-10 4.88902e-10 0.026 0.65 0.0140 0.10052 0.0999556 0.101953 0.56 2 0.1350 0.13667 0.134815 0.139778 1.4 3.7 0.2060 0.171319 0.168218 0.17631 1.8 4.8 0.2670 0.204582 0.200302 0.21143 2.1 5.6 0.3380 0.236509 0.23114 0.245116 2.3 6 0.3890 0.267154 0.260787 0.277397 2.4 6.4 0.44Q=0:5;h=
10

100 0.29657 0.28929 0.308319 2.5 6.6 0.51Table 13: r = 256; k = 224; Q = 0:75n h LB UB %unert. time512 1 1.07986e-05 1.92281e-05 78 0.055 1.08976e-05 1.61837e-05 49 0.8910 1.098e-05 1.44353e-05 31 37.241024 1 3.06454e-05 5.61601e-05 83 0.125 3.09509e-05 4.74539e-05 53 2.6110 3.12129e-05 4.23426e-05 36 111.262048 1 0.703347e-04 1.30026e-04 85 0.295 0.710531e-04 1.09998e-04 55 6.1110 0.716746e-04 0.98162e-04 37 259.94096 1 1.49708e-04 2.77744e-04 86 0.625 1.51253e-04 2.35077e-04 55 13.1110 1.52593e-04 2.09793e-04 37 556.83
19

Then, we proposed an algorithm to ompute lower and upper bounds of k-within-r-out-of-n system reliabitilities in the ase where all omponents have the same reliability.This algorithm runs in O(2h:k:n), where 0 � h � r is parameter that �xes the allowedamount of omputations. We show by means of experiments that it outperforms the bestalgorithms proposed up to now: it is muh faster and it gives muh more aurate results.Referenes[BRB90℄ K. Brae, R. Rudell, and R. Bryant. EÆient Implementation of a BDD Pakage.In Proeedings of the 27th ACM/IEEE Design Automation Conferene, pages 40{45. IEEE 0738, 1990.[Bry86℄ R. Bryant. Graph Based Algorithms for Boolean Fontion Manipulation. IEEETransations on Computers, 35(8):677{691, August 1986.[CFK95℄ M.T. Chao, J.C. Fu, and M.V. Koutras. Survey on Reliability Studies ofConseutive-k-out-of-n:f & related systems. IEEE Transations on Reliability,44(1):120{127, 1995.[CM94℄ O. Coudert and J.-C. Madre. MetaPrime: an Iterative Fault Tree Analyser.IEEE Transations on Reliability, 43(1):121{127, Marh 1994.[Gri86℄ W.S. GriÆth. On onseutive k-out-of-n failure systems and their generalizations.Reliability and Quality Control, pages 157{165, 1986.[HS00℄ A. Habib and T. Sz�antai. New bounds on the reliability of onseutive k-out-of-r-from-n:f system. Reliability Engineering and System Safety, 68:97{104, 2000.[II95℄ L.A. Belfore II. A O(n:(log2(n)2)) Algorithm for Computing the Reliability of k-out-of-n:G & k-to-l-out-of-n:G systems. IEEE Transations on Reliability, 44(1),Marh 1995.[JG85℄ S.P. Jain and K. Gopal. Reliability of k-to-l-out-of-n Systems. Reliability Engi-neering, 12:175{179, 1985.[Mis93℄ K.R. Misra. New Trends in System Reliability Evaluation. Fundamental Studiesin Engineering, 16. Elsevier, 1993. ISBN 0-444-816607.[PK93℄ S.G. Papastravidis and M.V. Koutras. Bounds for Reliability of Conseutive k-within-m-out-of-n:f Systems. IEEE Transations on Reliability, 42(1):156{160,Marh 1993.[Rau93℄ A. Rauzy. New Algorithms for Fault Trees Analysis. Reliability Engineering &System Safety, 05(59):203{211, 1993.20

[Rus86℄ A.M. Rushdi. Utilization of Symmetri Swithing Funtions in the Computationsk-out-of-n Systems Reliability. Miroeletronis and Reliability, 26(5):973{987,1986.[Rus91℄ A.M. Rushdi. Comment on: An EÆient Non-reursive Algorithm for Computingthe Reliability of k-out-of-n Systems. IEEE Transations on Reliability, 40(1):60{61, April 1991.[Sz�a86℄ T. Sz�antai. Evaluation of a speial multivariate gamma distribution. Math. Prog.Study., 27:1{16, 1986.[Ton85℄ Y.L. Tong. Rearrangement inequality for the longuest run, with appliation tonetwork reliability. Journal of Applied Probability, 22:286{393, 1985.A Computation of BDDs for k-out-of-n systemsThe algorithm that omputes the BDD of a k-out-of-n system is essentially the logialounter-part of the algorithm of Fig. 1. It is based on the following reursive equations.0=n(�1; : : : ; �n) = 1k=n(�1; : : : ; �n) = 0 if k > nk=n(�1; : : : ; �n) = �1:k � 1=n� 1(�2; : : : ; �n) + �1 :k=n� 1(�2; : : : ; �n)This reursive priniple an be implemented eÆiently in an imperative style by meansof two nested loops. The outer loop just iterates n times the inner loop. The inner loopgoes through the k+ 1 ells of a vetor ~V of BDDs. At the ith iteration of the outer loop,the BDD of the jth ell Vj enodes the formula j=i(�1; : : : ; �i).The pseudo ode for this algorithm is as follows.V0 BddOnefor j = 1; : : : ; k do Vj BddZero donefor i = 1; : : : ; n dofor j = k; : : : ; 1 doVj BddOr(BddAnd(�i; Vj�1); BddAnd(BddNot(�i); Vj))doneV0 BddAnd(BddNot(�i); V0)donereturn VkB The basi algorithmThe ANSI C funtion that implements the basi algorithm is given Fig. 6. In order tosimplify instrutions, we use two arrays M and N in whih the quotients lr 's and r�lr 's arestored. The array T is an auxiliary data struture that is used to store the Sli�1's.21

double lower_bound_k_within_r_out_of_n(int k, int r, int n, double Q){ double *S, *T, *M, *N, F, P;int i, l;M=(double*) allo(sizeof(double),k);N=(double*) allo(sizeof(double),k);for (l=0;l<k;l++) { M[l℄=l/(double)r; N[l℄=1-M[l℄; }S=(double*) allo(sizeof(double),k);T=(double*) allo(sizeof(double),k);F=0; P=1-Q;S[0℄=1.0; for (l=1;l<k;l++) S[j℄=0.0;for (i=1;i<=r;i++) {F=F+q*S[k-1℄;for (l=k-1;l>0;l--) S[l℄=Q*S[l-1℄+P*S[l℄;S[0℄=P*S[0℄;}for (i=r+1;i<=n;i++) {for (l=0;l<k;l++) T[l℄=S[l℄;S[0℄=P*(T[0℄+M[1℄*T[1℄);for (l=1;l<k-1;l++)S[l℄=Q*(N[l-1℄*T[l-1℄+M[l℄*T[l℄) + P*(N[l℄*T[l℄+M[l+1℄*T[l+1℄);S[k-1℄=Q*(N[k-2℄*T[k-2℄+M[k-1℄*T[k-1℄) + P*N[k-1℄*T[k-1℄;F=F+Q*N[k-1℄*T[k-1℄;}free(S); free(T); free(M); free(N);return(F);}Figure 6: The ANSI C funtion to ompute a lower bound of the reliability of k-within-r-out-of-n systems.
22

