Efficient Algorithms to Assess
Components and Gates Importances
in Fault Tree Analysis

Y. Dutuit A. Rauzy
LAP LaBRI, CNRS,
Université Bordeaux I, 351, cours de la Libération,
33405 Talence Cedex, FRANCE 33405 Talence Cedex, FRANCE
dutuit@hse.iuta.u-bordeaux.fr rauzy@labri.u-bordeaux.fr
Abstract

One of the principal activities of risk assessment is expected to be either the
ranking or the categorization of structures, systems and components with respect
to their risk-significance or their safety-significiance. Several measures, so-called
importance factors, of such a significiance have been proposed for the case where the
support model is a fault tree. In this article, we show how Binary Decision Diagrams
can be use to assess efficiently a number of classical importance factors. This work
completes the preliminary results obtained recently by Andrews and Sinnamon, and
the authors. It deals also with the notion of joint reliability importance.

Keywords: Fault Trees, Importance Factors, Binary Decision Diagrams

1 Introduction

One of the principal activities of risk assessment is expected to be either the ranking or the
categorization of structures, systems and components with respect to their risk-significance
or their safety-significiance. Several measures of such a significiance have been proposed
for the case where the support model is a fault tree. These measures are grouped under
the generic designation of “importance factors”. Many articles have been devoted to their
mathematical expressions, their physical interpretations and the various ways they can be
evaluated by computer programs.
Importance factors can be grouped into two categories:

e Importance factors that are computed at one point in the time. In this article, we
study importance factors that belong to this category, namely the marginal impor-
tance factor (MIF), the critical importance factor (C'IF), the diagnostic importance

factor (DIF), the risk achievement worth (RAW), and the risk reduction worth
(RRW).

e Importance factors that average such quantities over a time period, in order to avoid
the difficult task of selecting points of the time to be studied (e.g. [BP75, Nat79,
Nat85]). These importance factors are indeed much more costly to assess for, pre-
cisely, they require integrations over a time period. We shall not consider them it
this article.

Some authors studied extensions of these importance factors to assess the interaction
between components in contributing to system reliability (e.g. [HL93, Arm95, HKL00,
CPS98]).

Most of these works are based on classical methods to assess the top event probability,
i.e. methods that work with the well-known Sylvester-Poincare development applied to
minimal cutsets. As pointed out in [F1e96] and [Ves96], this kind of methods may induce
misleading conclusions because they make a lot of approximations. These approximations
are in general safe for what concerns the assessment of the top event probability, but they
are often too rough to rank components properly.

It is now known that these classical methods are outperformed by the so-called Binary
Decision Diagrams (BDD) technique (see for instance [Rau93]). With BDDs, not only the
assessment of the top event probability is more efficient than with classical methods, but
also the obtained results are exact (for no approximation is needed).

It was therefore of a great interest to revisit importance factors from the BDD point
of view. J. Andrews and R. Sinnamon initiated such a work in [SA96, SA97] and further
studied by the authors in [DR99]. The present article completes their work. Our results
are twofold.

e First, we show that the definitions of the main importance factors work even in the
case where the component under study is not reduced to a terminal event and/or the
structure function is not monotone.

e Second, we proposed efficient algorithms to assess these importance factors (that
improve those proposed in [SA96, SA97] for MIF and CIF measures).

e Third, we show by means of an example that the algorithms we propose makes it
possible to compute easily the joint reliability importance [HL93, Arm95, HKL00] of
two gates in a fault tree.

It is worth noticing that the algorithms we propose give exact results, therefore avoiding
the pitfalls pointed out in [F1e96, Ves96].

The remaining of this article is organized as follows. In section 3, we give the math-
ematical definitions of the importance factors we consider here. In section 4, we recall
basics about BDDs. In section 5 we give basic algorithms to assess probabilistic quantities
of interest. In section 6, we show how these basic algorithms can be used to compute all
of the importance factors. Finally, some experimental results are presented section 7.

2 Definitions and Notations

In this article, we shall use the following conventions.
e Boolean variables (terminal events) are denoted by lower case letters, e.g. a, e,
e Boolean functions (fault trees) are denoted by upper case letters, e.g. S, F,

e The disjunct of two Boolean functions F' and G is denoted by F'+G. Their conjunct
is denoted by F.G, or even by F'GG. The negation of F' is denoted by F.

e The probability of a Boolean function F'is denoted by p(F).

e The conditional probability of a Boolean function F' given a function G is denoted
by p(F|G). The fundamental equality of conditional probabilities is as follows.

p(F.G) = p(F|G).p(G) (1)

A product is a conjunct of literals (i.e. variables or negation of variables) that does
not contain both a literal and its opposite (e and €). Let V be a finite set of variables. A
product that contains a literal built over each variable of V' is called a minterm of V. We
denote by minterms(V') the set of minterms that can be built over V. From a probabilistic
point of view, minterms are always pairwisely independent.

Any Boolean function F' can be assimilated to a disjunct of minterms. It is often
convenient to write that the minterm 7 belongs to the function F', when FF' =7+ ..., and
that the literal [belongs to the product (or the minterm) 7, when 7 =1.....

We denote by Fv/e], where F' is a Boolean function, e is a Boolean variable and
v € {0,1}, the function F' in which the value v has been substituted for the variable e.
F[1/e] and F[0/e] are called respectively the positive and negative cofactors of F' w.r.t. e.

Most of the importance factors were defined with the implicit assumption that the fault
tree under study is coherent. A function F' is monotone (or coherent) w.r.t. a variable e if
for all minterm 7 = €.7" that belongs to F', the minterm p = e.7’ belongs to F' as well. A
function is (globally) monotone if it is monotone w.r.t. all of its variable.

3 Importance Factors

In this section, we present the six importance factors we consider throughout the paper.
We recall their mathematical definitions as well as their possible physical interpretations.
Detailed presentations of these measures can be found in textbooks (for instance [HR94,
KKP97, MKK99]).

It is worth noticing that all of these importance factors depend on the time ¢ at which
the system and its components are observed. In what follows, the time ¢ is omitted,
although it is implicitely present in all of the definitions.

Conditional Probability The conditional probability p(S|e), where S denotes the struc-
ture function of the fault tree under study and e denotes one of its basic events, is not
strictly speaking an importance factor. However, the assessment of this quantity is one of
the keypoints of the assessment of the other importance factors.

It is easy to show that the following equality holds.

p(Sle) = p(S[1/e]) (2)

Marginal Importance Factor The marginal importance factor, denoted by MTF (S, e),
is defined as follows.

MIF(S,e) < (3)

MTIF is often denoted by Iz and called Birnbaum importance factor in the literature for
it has been introduced in [Bir69]. As we shall see, it can be interpreted, when S is a
monotone function, as the conditional probability that, given e, the system S is failed and
e is critical, i.e. a repair of e makes the system working.

Formally, let V' be the set of variables of S and let us denote crit(S, e) the set of critical
states of S w.r.t. e. crit(S,e) is defined as follows.

crit(S, e) o {e.m € minterms(V);emr € S N e ¢ S} (4)

crit(S, e) is a Boolean function. Another way to write it is as follows.

crit(S,e) = e.(S[1/e].S[0/€]) (5)
Now, the following equalities hold.

MIF(S.e) = 2PS) _ Alpe)p(S[1/e) —p(S[0/e])] +p(S[0/e))

op(e) Olp(e)
= p(S[1/e]) = p(S[0/e)) (6)
= p(Sle) - p(S[e) (7)

If S is monotone w.r.t. e, then any minterm of S[0/e] is also a minterm of S[1/e].

Therefore, p(S[1/e]) — p(S[0/e]) = p(S[1/e].S[0/e]). It follows that:
MIF(S,e) = p(erit(S,e)le) (8)

It is worth noticing that MIF(S,e) does not depend on p(e). Therefore, MIF can be
used only to rank the components according to their criticity.

Equation 6 is often taken as the definition of the Birnbaum importance factor. In order
to generalize this measure to non-basic components, the equation 7 should be taken as the
definition. This has however the drawback to make impossible an interpretation of MIF
in term of critical states.

Note that in the case where S is not a monotone function, this interpretation is anyway
no longer valid. Consider for instance S = ab + ac. Then, p(S|a) = p(S[1/a]) = p(b),
p(S|@) = p(S[0/a]) = p(c), crit(S, a) = abe. It follows that p(S|a)—p(S|a) = p(be) —p(bc) #
p(crit(S,a)|a) = p(be). It is worth noticing that p(S|a) — p(S|a@) may be negative, while,
by definition, p(crit(S,e)le) is non-negative for all S and e. Therefore, to extend the
interpretation of MIF in terms of critical states to non-monotone functions (and basic

components), the equation 8 could be used as a definition.

Critical Importance Factor The criticality of a component is related to the potential
improvement of the system reliability resulting from the improvement of the component
reliability. It is clear that it would be more difficult and costly to improve the more reliable
components than to improve the less reliable ones. However, the marginal importance fac-
tor does not depend on the component reliability. The critical importance factor, denoted
by CIF(S,e), is another measure of component criticality that does depend on component
reliability. It is defined as follows.

CIF(S,e) & ple) MIF(S,e) (9)

p(S)
CIF(S,e) has been introduced in [Lam75]. The following equality holds, by definition 9
and equality 8.

CIF(S,e) = p(crit(S,e)|S) (10)

Therefore, in the case of monotone systems, CIF(S,e) can be interpreted as the con-
ditional probability that the system is in a critical state w.r.t. e, given that the system
is failed. For the same reasons as previously, if S is not monotone and/or if e is not a
terminal event, this interpretation is not valid.

Diagnostic Importance Factor The diagnostic importance factor, denoted by DIF(S,e),
is defined as follows.

DIF(S,e) < p(e]S) (11)
DIF is often denoted by Iy r(S) and called Vesely-Fussel Importance factor, for it has been
introduced by Vesely and Fussel in [Fus75]. Since, by equation 1, p(e|S) = p}féf)z), DIF(S,e)
is the fraction of the system unavailability (or risk) that involves the component failure. It
is worth noticing that this interpretation still works in the cases where S is not monotone
and/or e is not a terminal event.

Risk Achievement Worth The risk achievement worth, denoted by RAW (S, e), is
defined as follows.

RAW (S,e) < (12)

RAW (S, e) is also called risk increase factor. It measures the increase in system failure
probability assuming the worst case of failing component. It is an indicator of the impor-
tance of maintaining the current level of reliability for the component [CPS98|. In reference
[WW96], it is argued that RAW should be used with cared, for it is rather rough.

Risk Reduction Worth The risk reduction worth, denoted by RRW (S, e), is defined
as follows.

def P(S)
p(S[e)

RRW (S, e) is also called risk decrease factor. It represents the maximum decreasing of
the risk it may be expected by increasing the reliability of the component. Therefore this
quantity may be used to select components that are the best candidates for efforts leading
to improving system reliability.

RRW (S, e)

(13)

4 Binary Decision Diagrams

Bryant’s Binary Decision Diagrams (BDDs) [BRB90] are the state-of-the-art data structure
to encode and to manipulate Boolean functions. Since their introduction in the reliability
analysis framework [Rau93, CM94], BDDs have proved to be the most efficient technique
to assess fault trees.

The BDD associated with a formulae is a compact encoding of the truth table of this
formula. This representation is based on the Shannon decomposition: Let F' be a Boolean
formula that depends on the variable v, then F' = v.F[1/v] + ©.F[0/v]. By choosing a
total order over the variables and applying recursively the Shannon decomposition, the
truth table of any formula can be graphically represented as a binary tree. The nodes are
labeled with variables and have two outedges (a then-outedge, pointing to the node that
encodes F[1/v], and a else-outedge, pointing to the node that encodes F'[0/v]). The leaves
are labeled with either 0 or 1. The value of the formula for a given variable assignment is
obtained by descending along the corresponding branch of the tree. The Shannon tree for
the formula ab + @c and the lexicographic order is pictured Fig. 1 (dashed lines represent
else-outedges).

Indeed such a representation is very space consuming. It is however possible to shrink
it by means of the following two reduction rules.

e [somorphic subtrees merging. Since two isomorphic subtrees encode the same for-
mula, at least one is useless.

e Useless nodes deletion. A node with two equal sons is useless since it is equivalent,
to its son (v.F +0.F = F).

By applying these two rules as far as possible, one get the BDD associated with the formula.
A BDD is therefore a directed acyclic graph. It is unique, up to an isomorphism. This
process is illustrated on Fig. 1.

Shannon Tree BDD

R Reduction Rules \

Q : Q : @%o
4000 [0) o [o

Figure 1: From the Shannon tree to the BDD encoding ab + ac.

Logical operations (and, or, xor, ...) can be directly performed on BDDs. This results
from the orthogonality of usual connectives and the Shannon decomposition:

(U.F1 + @.Fo) ® (’U.Gl + 5.G0) = ’U.(Fl ® Gl) +E.(F[) O] G[)) (14)

where ® is any binary connective.

Among other consequences, this means that the complete binary tree is never built and
then shrunk: the BDD encoding a formula is obtained by composing the BDDs encoding
its subformulae. Moreover, a caching principle is used to store intermediate results of com-
putations. This makes the usual logical operations (conjunction, disjunction) polynomial
in the sizes of their operands. A complete implementation of a BDD package is described
in [BRB90]. The reader interested in more details should thus refer to this article.

Discussion It is widely known, since the very first uses of BDDs, that the chosen variable
ordering has a great impact on the size of BDDs, and therefore on the efficiency of the whole
methodology. Finding the best ordering (or even a reasonnably good one) is a very hard
problem (see [Weg00] for a recent survey on this topics). Two kinds of heuristics are used
to determine which variable ordering to apply. Static heuristics are based on topoligical
considerations and select the variable ordering once for all (see for instance [FFKS88]).
Dynamic heuristics change the variable ordering at some points of the computation. They
are thus more versatile than the formers, but the price to pay is a serious increase of
running times. Sifting is the most widely used dynamic heuristics [Rud93].

The algorithms proposed in this article are independent of the choice of a variable
ordering, although this choice influences their efficiency. For the experiments we report, a
simple depth-first left-most ordering was used. This heuristics gives often very good result.

5 Basic Algorithms

In this section, we propose different BDD algorithms to compute p(S), p(S|C) and MIF(S,C),
where S and C' are Boolean functions (C'is in general reduced to a terminal event e). These

7

Pr(S)

if S =0 return 0

if S =1 return 1

if S =v.8 +5.5,
if cache has entry (S, p) return p
p1 < Pr(S))
po < Pr(Sy)
p < p(v).pr + [1 = p(v)]-po
add to cache (S, p)

return p

Figure 2: The pseudo-code for the Pr algorithm.

algorithms will be used in the next section to assess the other importance factors.

Algorithms are named using this font in order to distinguish them from the math-
ematical quantities they compute. E.g. MIF(S,C) denotes the algorithm that computes
MIF(S,C). Moreover, in the expression MIF(S, '), S and C denote the BDDs that encode
the corresponding functions.

The algorithm to compute p(S). The first basic algorithm that is needed to assess
importance factors is indeed the computation of the top event probability from the basic
events probabilities. In the case of Binary Decision Diagrams, this algorithm is based on
the Shannon decomposition. It is fully described by the following equations (that recurse
over BDD nodes).

Pr(1) =1
Pr(0)
Pr(v.S1 +0.5)) = p(v).Pr(Sy)+[1 — p(v)].Pr(Sy)

(15)

The algorithm Pr computes the exact probability. Moreover, thanks to the memorization
of intermediate results, the algorithm is called only once on each BDD node. Its complexity
is therefore of linear in the size of the BDD [Rau93|.

The pseudo-code for actual algorithm is given Fig. 2. This pseudo-code makes explicit
the way the memorization of intermediate results works. To be efficient, a BDD algorithm
must compute the quantity it assesses bottom-up in order to make it possible to use this
caching mechanism.

All of the algorithms presented in what follows do work bottom-up. We shall describe
them only by means of set of recursive equations as equations 15, but the use of a caching
mechanism will be implicitely assumed.

Algorithms to compute p(S|C). The second quantity of interest for our purpose is the
conditional probability p(S|C). A first way to assess p(S|C) is to apply the fundamental

8

theorem of conditional probabilities (equation 1).

Pr(BDDAND(S, C))

CPri(S,C) = Pr(C)

(16)

The algorithm CPr; works in two steps. First, one computes the BDD that encodes the
function S.C. Second, one computes the quotient p}gféc;) (using Pr).

If C is reduced to a basic event e, the computation may be simplified by computing
the BDD that encodes the cofactor S[1/e] and then the probability from this BDD (by
equation 2). The algorithm to compute S{v/e], v € {0, 1}, is described by the following
equations (recall that BDDs assume a total order over the variables [BRB90]).

cofactor(1,v,e) =1
cofactor(0,v,e) =0
cofactor(z.Sy + .50, v,e) =
z.cofactor(Sy,v,e) + T.cofactor(Sy,v,e) if z<e (17)
Sy if r=eAnv=1
So if r=eAv=0
x.51 + 7.5 if x>e

CPry(S, e) is defined as follows.
CPry(S,e) = Pr(cofactor(S,1,e)) (18)

The computation of BbDAND(S, C) is in O(|S].|C|) (where |S| denotes the number of
nodes of the BDD S) [BRB90]. It is clear from equations 17 that the computation S[v/e] is
in O(]S]). Since Pr(S) isin O(]S]), CPry (S, C') and CPry (S, e) are respectively in O(|S|.|C])
and O(|S]), which is indeed very good.

It remains that the construction of the BDDs that encode respectively S.C' and S[1/¢]
may be space consuming (if these BDDs are otherwise useless). It is therefore questionable
whether these constructions can be avoided. The answer is positive.

In the case where C' is reduced to the terminal event e, the idea is to performed the
(virtual) computation of the cofactor together with the (actual) computation of the prob-
ability. The algorithm CPrj is defined by the following equations.

CPr3(1,v,€) =1
CPr3(0, v, €) =0
CPr;(z.5) + 7.5, v,e) =
p(x).CPr3(St,v,e) + [1 — p(x)].CPr3(Sp,v,e) if x<e (19)
Pr(S)) if r=env=1
Pr(Sp) if r=eAv=0
Pr(z.S) +T.5) if z>e

Finally, a similar idea applies to compute directly p(S|C). One combines the (virtual)
computation of the conjunct of S and C' with the (actual) computation of the probability

9

of this conjunct. The algorithm CPr, is defined by the following equations.

PrAnd(S, C)

CPr4(S, O) b (C) (20)
PrAnd(0,C) =0
PrAnd(F,0) =0
PrAnd(1,1) =1
PrAnd(z.5) +7.50,1) = Pr(z.S;+7.5))
PrAnd(1,y.Ch +35.Cy) = Pr(y.Ci+73.Cy) (21)
PrAnd(x.S’l + E.SU, yCl + gCO) =

p(z).PrAnd(S;, C) + [1 — p(z)].PrAnd(S,,C) if z <y
p(x).PrAnd (S, Cy) + [1 — p(x)].PrAnd(Sy, Cy) if z =1y
p(y).PrAnd(S,Cy) + [1 — p(y)].PrAnd(S,Cy) if =z >y

Thanks to the caching principle and from equations 19, 20 and 21, it is clear that
CPr3(S,v,e) and CPry(S, C) are respectively in O(|S]) and O(|S].|C|).

Algorithms to compute MIF(S,C). The last quantity of interest for our purpose is the
marginal importance factor MIF(S,C). Equation 7 gives a mean to compute MIF(S,C)
from p(S|C) and p(S|C). If C is reduced to a terminal event any of the CPr; above defined
works. Otherwise, one should use either CPr; or CPry. Note that equation 7 induces two
conditional probability computations. It is possible to assess MIF(S,C) with only one
call at CPr; and two calls at Pr.

p(S|C) — p(S)
1—p(C)

However, there exists much more direct means to assess MIF(S,C).

If C is reduced to a terminal event e, a first method consists in computing a partial
derivative. First, the value of p(S) is assessed for p(e), then it is assessed for p(e) + d(e),
finally the following quotient is computed.

Pr(S)p(e)+ap(e) = PT(S)p(e)
op(e)
The second method consists in computing a BDD that encodes the critical state of S

w.r.t. e, and then to assess MIF(S,e) from this BDD. The algorithm that computes the
critical states of S w.r.t. e looks like cofactor. It is defined by the following equations.

MIF(S,C) ‘=" p(S|C) —p(S|C) =

MIF,(S,e) =~ (22)

crit(l,e) =0

crit(0,e) =0

crit(z.51 +7.5p,e) =
z.crit(Sy,e) + T.crit(Sp,e) if z<e
AND(S}, NOT(S))) if x=e
0 it z>e

10

Note that the BDD built by crit(S, e) does not depend on e (conversely to the definition 4).
This makes it possible to compute MIF(S,e) without divising the result by p(e).

MIFy(S,e) = Pr(crit(S,e)) (24)

A third method consists in computing M TF(S,e) directly from the BDD that encodes
S. This is achieved by means of a recursive algorithm that looks like CPr3. MIF; is defined
by the following recursive equations.

MIF;(1,e) =0

MIF;(0,e) =0

MIFg(IL’Sl +E.SO,6) = (25)
p(x).MIF3(S1,e) + [1 — p(x)].MIF3(Sy,e) if z<e
Pr(S;) — Pr(Sy) if x=e
0 if z>e

MIF,(S,e) requires two calls to Pr(S). It is therefore in O(|S|). MIF3(S, e) requires only
traversal of S, since for each node either CPrj is called or Pr is called, but not both. It
is therefore also in O(]S|). The computation of crit(S,e) is quadratic in the worst case
because AND is so. Therefore MIFy(S,¢e) is in O(]S]?). Note however that this worst case
complexity is seldom reached in practice.

In the case where C' is not reduced to a terminal event, it is still possible to assess
p(S|C) — p(S|C) in one pass over these BDDs. The idea is as follows.

p(S.C) p(8.0)
p(C) p(C)

_ Z ﬁ.p(ﬂ') if meC
e _Tl(c)'p(ﬁ) if m¢C

p(SIC) = p(SIC)

The resulting algorithm looks like PrAnd. The trick is to pass p(C') as a parameter.

MIF,(S,C) = MIF}(S,C,Pr(C))

MIF;(0,C,p) = 0
MIF;(1,C,p) =
_1_1,, it ¢=0
% it ¢=1
p(y)MIF;(1,CY, p) + [1 — p(y)]-MIF;(1,Co, p) if C=y.Ci+7.Cy (26)
MIF}(S,0,p) = —i5.Pr(S)
MIF;(S,1,p) = 5.Pr(S)

MIF}(z.S1 + 7.5, y.Ch +75.Co, p) =
p(x).MIF;(S1,C, p) + [1 — p(x)].MIF;(So,C,p) if xz<y
p(x).MIF;(Sy, Cy, p) + [1 — p(x)].MIF;(Sy, Co,p) if =y
p(y).MIF;(S, Cy, p) + [1 — p(y)] . MIF;(S,Co,p) if x>y

11

3]
Snm E:] mt

[b] Le]

B

Figure 3: The bridge.

It is clear from equations 26 that MIF4(S,C) is in O(|S|.|C)).

J. Andrews and R. Sinnamon proposed in [SA96, SA97] an algorithm to assess MIF'(S,e)
in the case where e is a terminal event. This algorithm relies on different principles and is
not as efficient as those presented above. The algorithms CPr; and MIF; we proposed here
are thus entirely new.

6 Algorithms to assess importance factors

The importance factors defined in section 3 can be assessed using only the basic algorithms
presented in the previous section. The game consists in rewriting their definitions using
p(S), p(C) and either and p(S.C) or p(S|C) or MIF(S,C). The table 1 provides such a
rewriting. The negation can be performed in constant time over BDDs [BRB90]. Therefore
we didn’t consider them as a basic algorithm.

7 Experiments

As an illustration, we give in this section some experimental results.

The bridge. The first example is the well-known bridge network pictured Fig. 3. The
function that encodes s-t cuts is S = C + Cy 4+ C3 + Cy; where C; = ab, Cy = de, C3 = ace
and Cy = bed.

The following table gives the values of the main importance factors for different com-

12

€l
"s1030€] Pouelrodut 9yndurod 03 SWYIIOS[Y T 9[qe],

Basic algorithms

Pr, BDDAND Pr,CPr Pr,MIF
p(S|C) Pr(BD’;rA(NC’;(S’) cPr (S,) Pr(S) + (1 — Pr(C)).MIF(S, C)
Pr(BbDAND(S,C)) Pr(S)

MIF(S,C) Pr@ 51T Cpr(f’_(’;)rch)r(s) MIF(S,C)
CIF(S,C) |1 Pr(BDEA_Ngﬁfé];?Pz?gT(C))) 1_ CPr(S,]?D??Sl\)IOT(C)) 11211:((% « MTF(S, C)
DIF(S,C) Pr(BD];f(l\g;(S,) Pr(C%SE’;)(S,) br(C) 4 PEOLLL = iigg))]'MIF(S’)

r(BbpAND(S, C r(S,C 1 —Pr(C)]. S,C
RAW(S,C) : ;r](DC’D) o 5) . 7cppr((5)) 1 L=F (pr)%sM)IF(:
RRW(S,C) [1 — Pr(C)].Pr(5) Pr(S) Pr(S)

Pr(BppAND(S, BbDNOT(())

CPr(S, BbpNot(C))

Pr(S) — Pr(C).MIF(S,C)

ponents. The probability of S, not indicated in the table, is p(S) = 0.234.

C Pr CPr MIF CIF DIF RAW RRW
a 0.1 0.432 0.22 0.0940171 0.184615 1.84615 1.10377
b 0.2 0.334 0.125 0.106838 0.28547 1.42735 1.11962
c 0.3 0.276 0.06 0.0769231 0.353846 1.17949 1.08333
d 0.4 0.537 0.505 0.863248 0.917949 2.29487 7.3125
e 0.5 0.4264 0.3848 0.822222 0911111 1.82222 5.625

4 0.02 1 0.781633 0.0668062 0.0854701 4.2735 1.07139
Cy 0.2 1 0.9575 0.818376 0.854701 4.2735 5.50588
Cs 0.015 1 0.777665 0.0498503 0.0641026 4.2735 1.05247
Cy 0.024 1 0.784836 0.080496 0.102564 4.2735 1.08754
1
1

Cy +Cy | 0.216 0.977041 0.901884 0.923077 4.2735 10.192
Cs +Cy | 0.0378 0.796092 0.1286 0.161538 4.2735 1.14758

The main purpose of the above table is to show that BDDs make it possible to rank
the influence of not only the basic components of the network, but also of paths, groups of
paths, cuts, groups of cuts,

Joint Importance Reliability. The joint importance reliability (JRI) has been intro-
duced in [HL93] and further studied in [Arm95, HKL00]. It measures the interaction of
two components in contributing to the system reliability. Its definition is as follows.

JRI(S, Cl, 02) déf p(S|C’1C'2) —|—p(5|a@) — p(5|a02) — p(5|01?2) (27)

Negative JRI’s indicate that one component becomes less important when the other is
functionning [HL93|.

In the case where both C'; and C5 are reduced to two basic events e; and e», it is not
difficult to verify that the following equalities hold.

JRI(S,e1,e0) = MIF(S[1/e1],e5) — MIF(S[0/e4], €3)

The above equation can be used to design a one pass algorithm to assess JRI(S, eq,e3).
The following table gives the values of the JRI for all of the pairs of s-t cuts of the

bridge example. The basic events have the same failure probability p. In the table, we in-

dicate for each pair (C;, C;) the conditional probability p(S|C;.C;) (the others conditional

14

probabilities involved in the definition of JRI are obviously equal to 1).

p=0.5 p=0.9
i,j | CPr(C;.C;) JRI(C;,C;) | CPr(C;.C;) JRI(C;,C))
1,2]0.111111 —0.888888 | 0.403878 —0.596122
1,3]0.272727 —0.727272 | 0.816225 —0.183775
1,4]0.272727 —0.727272 | 0.816225 —0.183775
2,3 0.272727 —0.727272 | 0.816225 —0.183775
2,4 0.272727 —0.727272 | 0.816225 —0.183775
3,40.36 —0.64 0.837573 —0.162427

The above values are in accordance with those given in [HKLO0O] for p = 0.5 (but differ for
p=0.9).

A consecutive k-within-m-out-of-n system As a third example, we consider a con-
secutive k-within-m-out-of-n system. A consecutive k-within-m-out-of-n system consists
of n linearly ordered components such that the system fails iff there are m consecutive
components which include among them, at least k failed components. Consecutive k-
within-m-out-of-n systems were introduced in [Gri86] as a generalization of both k-out-ofn
and consecutive k-out-of-n systems.

Formally, the formula Sk, is defined as follows (assuming 1 < k < m < n).

n—m+1

def
Sk,m,n é Z k/m(eia €itly -, ei—l—m—l)
=1

For the sake of the simplicity, we consider that all of the variables have the same probability
p. The probability of a minimal solution is therefore p*.

We did the following experiments for £ = 8, m = 16 and n = 64.

First, we computed the BDD that encodes Ssi664. This computation took 3.06s on
a pentium III (cadenced at 733 MegaHerz). The BDD is made of 442147 nodes (Ss,16,64
admits 321750 minimal cuts).

Second, we computed the marginal importance factor of S, and e;, €5, €32, €4s and
eeq, for different values of p. We used the algorithms MIF;, MIF, and MIF;. It makes sense
to examine several variables for they are located at different levels in the BDD.

The running times are independent of p. Moreover, the three algorithms give exactly
the same result for all p > 1073 (which was not that obvious, due to rounding errors). The
following table gives the size of the auxiliary BDDs as well as the average running times
of each algorithm. The computation of the top event probability took 0.79s on average.

15

event €1 €16 €392 €48 €64
time MIF, 1.56s 1.56s 1.57s 1.58s 1.58s
|crit(Ss 1664, €:)| | 350627 430707 430707 430707 430707
time crit 0.04s 0.42s 3.46s 25.96s 95.60s
time Pr 0.62s 0.80s 0.80s 0.77s 0.61s
time MIF; 0.79s 0.79s 0.81s 0.85s 0.85s

At least one thing is clear: the running time of |crit(Ss 664, €;)| depends on the variable
location in the BDD !

The above table shows that the situation is rather clear, at least when the BDD that
encodes the structure function is large (which is the case here).

First, it is not interesting to build auxiliary BDDs, even in the perspective of many
computations in a row (for instance to perform sensitivity analyses). Second, the numerical
differentiation is always about twice as costly as the direct assessment (for it performs two
BDD traversals). Therefore, MIF3 should be prefered.

Other experiments have shown that the above remarks apply in general, even in the
cases where the component is not reduced to a terminal event.

Sylvester-Poincaré versus Binary Decision Diagrams Binary Decision Diagrams
give exact results. Their are also sometimes much more efficient that classical fault tree
assessment algorithms such as MOCUS [FV72].

As an illustration, we consider now a classical test case so-called baobab1 in the litter-
ature. This fault tree is made of 61 terminal events and 84 gates (16 and-gates, 59 or-gates
and 9 3-out-of-4-gates). We apply on this tree BDDs as well as our (highly optmized)
version of MOCUS [Rau00]. For this latter algorithm, we consider 4 relative cutoffs. The
minimal cutsets C' such that the quotient p(C)/ > p(C) is below the relative cutoff are
discarded. This makes it possible to reduce dramatically the computational effort.

The table 2 gives the results we obtained on the baobabl test case. These results
illustrate that BDD are sometimes by order of magnitude more efficient than MOCUS like
algorithms.

The latters make approximations that lead to rather unaccurate results. More exactly,
either one accepts to pay a high computational cost (as with the relative cutoff 107° in our
example) or the result may be subject to strong deviations.

Moreover, as soon as there is a rather important number of minimal cutsets, it is not
possible to compute the Sylvester-Poincaré development for orders beyond two (within
reasonable time constraints).

Finally, some minimal cutsets of low order may be missed anyway (as the cutset of
order 3 in the above example), which is indeed problematic when computing importance
factors.

16

Table 2: Results on the baobabl test case.

Algorithms BDD MOCUS with a relative cutoff of

102 1073 10~* 107°
#cutsets of order 2 1 1 1
#cutsets of order 3 1
#cutsets of order 4 70 8 52 60
#cutsets of order 5 400 12 64 196
#cutsets of order 6 2212 36 220 644 1268
#cutsets of order 7 14748 4 528 4620
#cutsets of order 8 8460
#cutsets of order 9 10624
#cutsets of order 10 6600
#cutsets of order 11 3072
Total 46188 36 244 1289 6145
Running times 0.08s 10.28s 20.27s 57.54s 161.57s
Sylvester-Poincaré order 1 3.59 1077 9.391077 1.38107° 1.62107°
Running times 0.00s 0.00s 0.00s 0.00s
Sylvester-Poincaré order 2 3.021077 7.0710°7 9.1810° 7 9.64 107
Running times 0.00s 0.04s 1.31s 44.18s
Sylvester-Poincaré order 3 3.201077 834107 1.3810°°
Running times 0.02s 3.50s 530.93s
Exact probability 1.2810°°
Running times 0.00s

17

8 Conclusion

In this paper, we presented a complete picture of the BDD based algorithms to compute
importance factors CPr, MIF, CIF, DIF, RAW, RRW and JRI. Most of these algo-

rithms are entirely new. It is worth mentioning that:
e The algorithms we proposed give exact results (no approximation is performed).

e For each importance factor, we proposed at least one algorithm that works in the
case where the component is not reduced to a terminal event. This opens new
perspectives in the ranking of systems, structures and components with respect to
their risk-significiance and safety-significiance. References [HL93, Arm95, CPS98]
contain preliminary discussions on this topics.

e The algorithms we proposed are very efficient for they are linear in the size of the
BDD that encodes the system if the component is reduced to a terminal event, and
in the product of the sizes of the BDDs that encode the system and the component
otherwise. We reported experiments that illustrate their efficiency.

e The algorithms we proposed are therefore good candidates to assess importance fac-
tors defined over a time period by means of a numerical integration.

The results presented here are a part of a study on BDD algorithms to assess Boolean
risk assessment models. This study includes also on-going works on importance factors
defined over minimal cutsets and time dependent analyses.

References

[Arm95] M.J. Armstrong. Joint reliability importance of components. IEEE Transactions
on Reliability, 44:408-412, 1995.

[Bir69] Z.W. Birnbaum. On the importance of different components and a multicompo-
nent system. In P.R. Korishnaiah, editor, Multivariable analysis II. Academic
Press, New York, 1969.

[BP75] R.E. Barlow and F. Proschan. Importance of system components and fault tree
events. Stochastic Processes and their Applications, 3:153-173, 1975.

[BRB90] K. Brace, R. Rudell, and R. Bryant. Efficient Implementation of a BDD Package.
In Proceedings of the 27th ACM/IEEE Design Automation Conference, pages
40-45. TEEE 0738, 1990.

[CM94] O. Coudert and J.-C. Madre. MetaPrime: an Iteractive Fault Tree Analyser.
IEEE Transactions on Reliability, 43(1):121-127, March 1994.

18

[CPSOg]

[DR99)

[FFK83]

[F1e96]

[Fus75]

[FV72]

[Gri86]

[HKL00]

[HL93]

[HR94]

[KKP97]

[Lam75]

[MKK99]

M.C. Cheok, G.W. Parry, and R.R. Sherry. Use of importance measures in risk
informed regulatory applications. Reliability Engineering and System Safety,
60:213-226, 1998.

Y. Dutuit and A. Rauzy. New algorithms to compute importance factors

CPr, MIF, CIF, DIF, RAW and RRW. In Proceedings of the European Safety
and Reliability Association Conference, ESREL’99, volume 2, pages 1015-1020.
A.A. Balkema, 1999. ISBN 90 5809 111 2.

M. Fujita, H. Fujisawa, and N. Kawato. FEvaluation and Improvements of
Boolean Comparison Method Based on Binary Decision Diagrams. In Proceed-
ings of IEEE International Conference on Computer Aided Design, ICCAD’88,
pages 2-5, 1988.

Flemming. Developping useful insights and avoiding misleading conclusion from
risk importance measures in psa applications. In Proceedings of the Probabilistic
Safety Assessment conference, PSA’96, 1996.

J.B. Fussel. How to hand-calculate system reliability characteristics. [FEFE
Transactions on Reliability, R-24(3), 1975.

J.B. Fussel and W.E. Vesely. A New Methodology for Obtaining Cut Sets for
Fault Trees. Trans. Am. Nucl. Soc., 15:262-263, June 1972.

W.S. Griffith. On consecutive k-out-of-n failure systems and their generaliza-
tions. Reliability and Quality Control, pages 157165, 1986.

J.S. Hong, H.Y. Koo, and C.H. Lie. Computation of joint reliability importance
of two gates in a fault tree. Reliability Engineering and System Safety, 68(1):1-5,
2000.

J.S. Hong and C.H. Lie. Joint reliability importance of two edges in an undirected
network. IEFEE Transaction on Reliability, 42:17-23, 1993.

A. Hgyland and M. Rausand. System Reliability Theory. John Wiley & Sons,
1994. ISBN 0-471-59397.

[.N. Kovalenko, N.Y. Kuznetsov, and P.A. Pegg. Mathematical Theory of Reli-
ability of Time Dependent Systems with Practical Applications. Wiley Series in
Probability and Statistics. John Wiley & Sons, 1997. ISBN 0-471-95060-2.

H.E. Lambert. Measures of importance of events and cut sets in fault trees. In
R.E. Barlow, J.B. Fussel, and N.D. Singpurwalla, editors, Reliability and Fault
Tree Analysis, pages 77-100. STAM Press, 1975.

M. Modarres, M. Kaminsky, and V. Krivstov. Reliability Engineering and Risk
Analysis. Marcel Dekker, 1999. ISBN 0-8247-2000-8.

19

[Nat79]

[Nat85]

[Rau93|

[Rau00]

[Rud93]

[SA96]

[SAO7]

[Ves96]

[Weg00]

[WW96]

B. Natvig. A suggestion of a new measure of importance of system components.
Stochastic Processes and their Applications, 9:319-330, 1979.

B. Natvig. New light on measures of importance of system components. Scan-
dinavian Journal of Statistics, 12:43-52, 1985.

A. Rauzy. New Algorithms for Fault Trees Analysis. Reliability Engineering &
System Safety, 05(59):203-211, 1993.

A. Rauzy. Towards an Efficient Implementation of Mocus, 2000. Technical note
LaBRI/MVTSI/Aralia/NT00-9, submitted to IEEE Transactions on Reliability.

R. Rudell. Dynamic Variable Ordering for Ordered Binary Decision Diagrams.
In Proceedings of IEEE International Conference on Computer Aided Design,
ICCAD’93, pages 42—-47, November 1993.

R.M. Sinnamon and J.D. Andrews. Quantitative Fault Tree Analysis Using Bi-
nary Decision Diagrams. Journal Européen des Systémes Automatisés, RAIRO-
APII-JESA, 30:1051-1072, 1996. Special Issue on Binary Decision Diagrams.

R.M. Sinnamon and J.D. Andrews. Improved Accuracy in Qualitative Fault
Tree Analysis. Quality and Reliability Engineering International, 13:285-292,
1997.

W.E. Vesely. The use of risk importances for risk-based applications and risk-
based regulation. In Proceedings of the Probabilistic Safety Assessment confer-
ence, PSA’96, 1996.

[. Wegener. Branching Programs and Binary Decision Diagrams - Theory and
Applications. SIAM Monographs on Discrete Mathematics and Applications,
2000. ISBN 0-89871-458-3.

[.B. Wall and D.H. Worledge. Some perspectives on risk importance measures. In
Proceedings of the international conference on Probabilistic Safety Assessment,
PSA’96, pages 203-207, 1996.

20

