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tOne of the prin
ipal a
tivities of risk assessment is expe
ted to be either theranking or the 
ategorization of stru
tures, systems and 
omponents with respe
tto their risk-signi�
an
e or their safety-signi�
ian
e. Several measures, so-
alledimportan
e fa
tors, of su
h a signi�
ian
e have been proposed for the 
ase where thesupport model is a fault tree. In this arti
le, we show how Binary De
ision Diagrams
an be use to assess eÆ
iently a number of 
lassi
al importan
e fa
tors. This work
ompletes the preliminary results obtained re
ently by Andrews and Sinnamon, andthe authors. It deals also with the notion of joint reliability importan
e.Keywords: Fault Trees, Importan
e Fa
tors, Binary De
ision Diagrams1 Introdu
tionOne of the prin
ipal a
tivities of risk assessment is expe
ted to be either the ranking or the
ategorization of stru
tures, systems and 
omponents with respe
t to their risk-signi�
an
eor their safety-signi�
ian
e. Several measures of su
h a signi�
ian
e have been proposedfor the 
ase where the support model is a fault tree. These measures are grouped underthe generi
 designation of \importan
e fa
tors". Many arti
les have been devoted to theirmathemati
al expressions, their physi
al interpretations and the various ways they 
an beevaluated by 
omputer programs.Importan
e fa
tors 
an be grouped into two 
ategories:� Importan
e fa
tors that are 
omputed at one point in the time. In this arti
le, westudy importan
e fa
tors that belong to this 
ategory, namely the marginal impor-tan
e fa
tor (MIF ), the 
riti
al importan
e fa
tor (CIF ), the diagnosti
 importan
e1



fa
tor (DIF ), the risk a
hievement worth (RAW ), and the risk redu
tion worth(RRW ).� Importan
e fa
tors that average su
h quantities over a time period, in order to avoidthe diÆ
ult task of sele
ting points of the time to be studied (e.g. [BP75, Nat79,Nat85℄). These importan
e fa
tors are indeed mu
h more 
ostly to assess for, pre-
isely, they require integrations over a time period. We shall not 
onsider them itthis arti
le.Some authors studied extensions of these importan
e fa
tors to assess the intera
tionbetween 
omponents in 
ontributing to system reliability (e.g. [HL93, Arm95, HKL00,CPS98℄).Most of these works are based on 
lassi
al methods to assess the top event probability,i.e. methods that work with the well-known Sylvester-Poin
are development applied tominimal 
utsets. As pointed out in [Fle96℄ and [Ves96℄, this kind of methods may indu
emisleading 
on
lusions be
ause they make a lot of approximations. These approximationsare in general safe for what 
on
erns the assessment of the top event probability, but theyare often too rough to rank 
omponents properly.It is now known that these 
lassi
al methods are outperformed by the so-
alled BinaryDe
ision Diagrams (BDD) te
hnique (see for instan
e [Rau93℄). With BDDs, not only theassessment of the top event probability is more eÆ
ient than with 
lassi
al methods, butalso the obtained results are exa
t (for no approximation is needed).It was therefore of a great interest to revisit importan
e fa
tors from the BDD pointof view. J. Andrews and R. Sinnamon initiated su
h a work in [SA96, SA97℄ and furtherstudied by the authors in [DR99℄. The present arti
le 
ompletes their work. Our resultsare twofold.� First, we show that the de�nitions of the main importan
e fa
tors work even in the
ase where the 
omponent under study is not redu
ed to a terminal event and/or thestru
ture fun
tion is not monotone.� Se
ond, we proposed eÆ
ient algorithms to assess these importan
e fa
tors (thatimprove those proposed in [SA96, SA97℄ for MIF and CIF measures).� Third, we show by means of an example that the algorithms we propose makes itpossible to 
ompute easily the joint reliability importan
e [HL93, Arm95, HKL00℄ oftwo gates in a fault tree.It is worth noti
ing that the algorithms we propose give exa
t results, therefore avoidingthe pitfalls pointed out in [Fle96, Ves96℄.The remaining of this arti
le is organized as follows. In se
tion 3, we give the math-emati
al de�nitions of the importan
e fa
tors we 
onsider here. In se
tion 4, we re
allbasi
s about BDDs. In se
tion 5 we give basi
 algorithms to assess probabilisti
 quantitiesof interest. In se
tion 6, we show how these basi
 algorithms 
an be used to 
ompute allof the importan
e fa
tors. Finally, some experimental results are presented se
tion 7.2



2 De�nitions and NotationsIn this arti
le, we shall use the following 
onventions.� Boolean variables (terminal events) are denoted by lower 
ase letters, e.g. a, e, . . . .� Boolean fun
tions (fault trees) are denoted by upper 
ase letters, e.g. S, F , . . . .� The disjun
t of two Boolean fun
tions F and G is denoted by F +G. Their 
onjun
tis denoted by F:G, or even by FG. The negation of F is denoted by F .� The probability of a Boolean fun
tion F is denoted by p(F ).� The 
onditional probability of a Boolean fun
tion F given a fun
tion G is denotedby p(F jG). The fundamental equality of 
onditional probabilities is as follows.p(F:G) = p(F jG):p(G) (1)A produ
t is a 
onjun
t of literals (i.e. variables or negation of variables) that doesnot 
ontain both a literal and its opposite (e and e). Let V be a �nite set of variables. Aprodu
t that 
ontains a literal built over ea
h variable of V is 
alled a minterm of V . Wedenote by minterms(V ) the set of minterms that 
an be built over V . From a probabilisti
point of view, minterms are always pairwisely independent.Any Boolean fun
tion F 
an be assimilated to a disjun
t of minterms. It is often
onvenient to write that the minterm � belongs to the fun
tion F , when F = � + : : :, andthat the literal l belongs to the produ
t (or the minterm) �, when � = l: : : :.We denote by F [v=e℄, where F is a Boolean fun
tion, e is a Boolean variable andv 2 f0; 1g, the fun
tion F in whi
h the value v has been substituted for the variable e.F [1=e℄ and F [0=e℄ are 
alled respe
tively the positive and negative 
ofa
tors of F w.r.t. e.Most of the importan
e fa
tors were de�ned with the impli
it assumption that the faulttree under study is 
oherent. A fun
tion F is monotone (or 
oherent) w.r.t. a variable e iffor all minterm � = e:�0 that belongs to F , the minterm � = e:�0 belongs to F as well. Afun
tion is (globally) monotone if it is monotone w.r.t. all of its variable.3 Importan
e Fa
torsIn this se
tion, we present the six importan
e fa
tors we 
onsider throughout the paper.We re
all their mathemati
al de�nitions as well as their possible physi
al interpretations.Detailed presentations of these measures 
an be found in textbooks (for instan
e [HR94,KKP97, MKK99℄).It is worth noti
ing that all of these importan
e fa
tors depend on the time t at whi
hthe system and its 
omponents are observed. In what follows, the time t is omitted,although it is impli
itely present in all of the de�nitions.3



Conditional Probability The 
onditional probability p(Sje), where S denotes the stru
-ture fun
tion of the fault tree under study and e denotes one of its basi
 events, is notstri
tly speaking an importan
e fa
tor. However, the assessment of this quantity is one ofthe keypoints of the assessment of the other importan
e fa
tors.It is easy to show that the following equality holds.p(Sje) = p(S[1=e℄) (2)Marginal Importan
e Fa
tor The marginal importan
e fa
tor, denoted byMIF (S; e),is de�ned as follows. MIF (S; e) def= �[p(S)℄�[p(e)℄ (3)MIF is often denoted by IB and 
alled Birnbaum importan
e fa
tor in the literature forit has been introdu
ed in [Bir69℄. As we shall see, it 
an be interpreted, when S is amonotone fun
tion, as the 
onditional probability that, given e, the system S is failed ande is 
riti
al, i.e. a repair of e makes the system working.Formally, let V be the set of variables of S and let us denote 
rit(S; e) the set of 
riti
alstates of S w.r.t. e. 
rit(S; e) is de�ned as follows.
rit(S; e) def= fe:� 2 minterms(V ); e:� 2 S ^ e:� 62 Sg (4)
rit(S; e) is a Boolean fun
tion. Another way to write it is as follows.
rit(S; e) = e:(S[1=e℄:S[0=e℄) (5)Now, the following equalities hold.MIF (S; e) = �p(S)�p(e) = �[p(e):[p(S[1=e℄)� p(S[0=e℄)℄ + p(S[0=e℄)℄�[p(e)℄= p(S[1=e℄)� p(S[0=e℄) (6)= p(Sje)� p(Sje) (7)If S is monotone w.r.t. e, then any minterm of S[0=e℄ is also a minterm of S[1=e℄.Therefore, p(S[1=e℄)� p(S[0=e℄) = p(S[1=e℄:S[0=e℄). It follows that:MIF (S; e) = p(
rit(S; e)je) (8)It is worth noti
ing that MIF (S; e) does not depend on p(e). Therefore, MIF 
an beused only to rank the 
omponents a

ording to their 
riti
ity.Equation 6 is often taken as the de�nition of the Birnbaum importan
e fa
tor. In orderto generalize this measure to non-basi
 
omponents, the equation 7 should be taken as thede�nition. This has however the drawba
k to make impossible an interpretation of MIFin term of 
riti
al states. 4



Note that in the 
ase where S is not a monotone fun
tion, this interpretation is anywayno longer valid. Consider for instan
e S = ab + a
. Then, p(Sja) = p(S[1=a℄) = p(b),p(Sja) = p(S[0=a℄) = p(
), 
rit(S; a) = ab
. It follows that p(Sja)�p(Sja) = p(b
)�p(b
) 6=p(
rit(S; a)ja) = p(b
). It is worth noti
ing that p(Sja) � p(Sja) may be negative, while,by de�nition, p(
rit(S; e)je) is non-negative for all S and e. Therefore, to extend theinterpretation of MIF in terms of 
riti
al states to non-monotone fun
tions (and basi

omponents), the equation 8 
ould be used as a de�nition.Criti
al Importan
e Fa
tor The 
riti
ality of a 
omponent is related to the potentialimprovement of the system reliability resulting from the improvement of the 
omponentreliability. It is 
lear that it would be more diÆ
ult and 
ostly to improve the more reliable
omponents than to improve the less reliable ones. However, the marginal importan
e fa
-tor does not depend on the 
omponent reliability. The 
riti
al importan
e fa
tor, denotedby CIF (S; e), is another measure of 
omponent 
riti
ality that does depend on 
omponentreliability. It is de�ned as follows.CIF (S; e) def= p(e)p(S) �MIF (S; e) (9)CIF (S; e) has been introdu
ed in [Lam75℄. The following equality holds, by de�nition 9and equality 8. CIF (S; e) = p(
rit(S; e)jS) (10)Therefore, in the 
ase of monotone systems, CIF (S; e) 
an be interpreted as the 
on-ditional probability that the system is in a 
riti
al state w.r.t. e, given that the systemis failed. For the same reasons as previously, if S is not monotone and/or if e is not aterminal event, this interpretation is not valid.Diagnosti
 Importan
e Fa
tor The diagnosti
 importan
e fa
tor, denoted byDIF (S; e),is de�ned as follows. DIF (S; e) def= p(ejS) (11)DIF is often denoted by IV F (S) and 
alled Vesely-Fussel Importan
e fa
tor, for it has beenintrodu
ed by Vesely and Fussel in [Fus75℄. Sin
e, by equation 1, p(ejS) = p(S:e)p(S) , DIF (S; e)is the fra
tion of the system unavailability (or risk) that involves the 
omponent failure. Itis worth noti
ing that this interpretation still works in the 
ases where S is not monotoneand/or e is not a terminal event.Risk A
hievement Worth The risk a
hievement worth, denoted by RAW (S; e), isde�ned as follows. RAW (S; e) def= p(Sje)p(S) (12)5



RAW (S; e) is also 
alled risk in
rease fa
tor. It measures the in
rease in system failureprobability assuming the worst 
ase of failing 
omponent. It is an indi
ator of the impor-tan
e of maintaining the 
urrent level of reliability for the 
omponent [CPS98℄. In referen
e[WW96℄, it is argued that RAW should be used with 
ared, for it is rather rough.Risk Redu
tion Worth The risk redu
tion worth, denoted by RRW (S; e), is de�nedas follows. RRW (S; e) def= p(S)p(Sje) (13)RRW (S; e) is also 
alled risk de
rease fa
tor. It represents the maximum de
reasing ofthe risk it may be expe
ted by in
reasing the reliability of the 
omponent. Therefore thisquantity may be used to sele
t 
omponents that are the best 
andidates for e�orts leadingto improving system reliability.4 Binary De
ision DiagramsBryant's Binary De
ision Diagrams (BDDs) [BRB90℄ are the state-of-the-art data stru
tureto en
ode and to manipulate Boolean fun
tions. Sin
e their introdu
tion in the reliabilityanalysis framework [Rau93, CM94℄, BDDs have proved to be the most eÆ
ient te
hniqueto assess fault trees.The BDD asso
iated with a formulae is a 
ompa
t en
oding of the truth table of thisformula. This representation is based on the Shannon de
omposition: Let F be a Booleanformula that depends on the variable v, then F = v:F [1=v℄ + v:F [0=v℄. By 
hoosing atotal order over the variables and applying re
ursively the Shannon de
omposition, thetruth table of any formula 
an be graphi
ally represented as a binary tree. The nodes arelabeled with variables and have two outedges (a then-outedge, pointing to the node thaten
odes F [1=v℄, and a else-outedge, pointing to the node that en
odes F [0=v℄). The leavesare labeled with either 0 or 1. The value of the formula for a given variable assignment isobtained by des
ending along the 
orresponding bran
h of the tree. The Shannon tree forthe formula ab + a
 and the lexi
ographi
 order is pi
tured Fig. 1 (dashed lines representelse-outedges).Indeed su
h a representation is very spa
e 
onsuming. It is however possible to shrinkit by means of the following two redu
tion rules.� Isomorphi
 subtrees merging. Sin
e two isomorphi
 subtrees en
ode the same for-mula, at least one is useless.� Useless nodes deletion. A node with two equal sons is useless sin
e it is equivalentto its son (v:F + v:F = F ).By applying these two rules as far as possible, one get the BDD asso
iated with the formula.A BDD is therefore a dire
ted a
y
li
 graph. It is unique, up to an isomorphism. Thispro
ess is illustrated on Fig. 1. 6
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Figure 1: From the Shannon tree to the BDD en
oding ab + a
.Logi
al operations (and, or, xor, ...) 
an be dire
tly performed on BDDs. This resultsfrom the orthogonality of usual 
onne
tives and the Shannon de
omposition:(v:F1 + v:F0)� (v:G1 + v:G0) = v:(F1 �G1) + v:(F0 �G0) (14)where � is any binary 
onne
tive.Among other 
onsequen
es, this means that the 
omplete binary tree is never built andthen shrunk: the BDD en
oding a formula is obtained by 
omposing the BDDs en
odingits subformulae. Moreover, a 
a
hing prin
iple is used to store intermediate results of 
om-putations. This makes the usual logi
al operations (
onjun
tion, disjun
tion) polynomialin the sizes of their operands. A 
omplete implementation of a BDD pa
kage is des
ribedin [BRB90℄. The reader interested in more details should thus refer to this arti
le.Dis
ussion It is widely known, sin
e the very �rst uses of BDDs, that the 
hosen variableordering has a great impa
t on the size of BDDs, and therefore on the eÆ
ien
y of the wholemethodology. Finding the best ordering (or even a reasonnably good one) is a very hardproblem (see [Weg00℄ for a re
ent survey on this topi
s). Two kinds of heuristi
s are usedto determine whi
h variable ordering to apply. Stati
 heuristi
s are based on topoligi
al
onsiderations and sele
t the variable ordering on
e for all (see for instan
e [FFK88℄).Dynami
 heuristi
s 
hange the variable ordering at some points of the 
omputation. Theyare thus more versatile than the formers, but the pri
e to pay is a serious in
rease ofrunning times. Sifting is the most widely used dynami
 heuristi
s [Rud93℄.The algorithms proposed in this arti
le are independent of the 
hoi
e of a variableordering, although this 
hoi
e in
uen
es their eÆ
ien
y. For the experiments we report, asimple depth-�rst left-most ordering was used. This heuristi
s gives often very good result.5 Basi
 AlgorithmsIn this se
tion, we propose di�erent BDD algorithms to 
ompute p(S), p(SjC) andMIF (S;C),where S and C are Boolean fun
tions (C is in general redu
ed to a terminal event e). These7



Pr(S)if S = 0 return 0if S = 1 return 1if S = v:S1 + v:S0if 
a
he has entry hS; pi return pp1  Pr(S1)p0  Pr(S0)p p(v):p1 + [1� p(v)℄:p0add to 
a
he hS; pireturn pFigure 2: The pseudo-
ode for the Pr algorithm.algorithms will be used in the next se
tion to assess the other importan
e fa
tors.Algorithms are named using this font in order to distinguish them from the math-emati
al quantities they 
ompute. E.g. MIF(S;C) denotes the algorithm that 
omputesMIF (S;C). Moreover, in the expression MIF(S;C), S and C denote the BDDs that en
odethe 
orresponding fun
tions.The algorithm to 
ompute p(S). The �rst basi
 algorithm that is needed to assessimportan
e fa
tors is indeed the 
omputation of the top event probability from the basi
events probabilities. In the 
ase of Binary De
ision Diagrams, this algorithm is based onthe Shannon de
omposition. It is fully des
ribed by the following equations (that re
urseover BDD nodes). Pr(1) = 1Pr(0) = 0Pr(v:S1 + v:S0) = p(v):Pr(S1) + [1� p(v)℄:Pr(S0) (15)The algorithm Pr 
omputes the exa
t probability. Moreover, thanks to the memorizationof intermediate results, the algorithm is 
alled only on
e on ea
h BDD node. Its 
omplexityis therefore of linear in the size of the BDD [Rau93℄.The pseudo-
ode for a
tual algorithm is given Fig. 2. This pseudo-
ode makes expli
itthe way the memorization of intermediate results works. To be eÆ
ient, a BDD algorithmmust 
ompute the quantity it assesses bottom-up in order to make it possible to use this
a
hing me
hanism.All of the algorithms presented in what follows do work bottom-up. We shall des
ribethem only by means of set of re
ursive equations as equations 15, but the use of a 
a
hingme
hanism will be impli
itely assumed.Algorithms to 
ompute p(SjC). The se
ond quantity of interest for our purpose is the
onditional probability p(SjC). A �rst way to assess p(SjC) is to apply the fundamental8



theorem of 
onditional probabilities (equation 1).CPr1(S;C) = Pr(BddAnd(S;C))Pr(C) (16)The algorithm CPr1 works in two steps. First, one 
omputes the BDD that en
odes thefun
tion S:C. Se
ond, one 
omputes the quotient p(S:C)p(C) (using Pr).If C is redu
ed to a basi
 event e, the 
omputation may be simpli�ed by 
omputingthe BDD that en
odes the 
ofa
tor S[1=e℄ and then the probability from this BDD (byequation 2). The algorithm to 
ompute S[v=e℄, v 2 f0; 1g, is des
ribed by the followingequations (re
all that BDDs assume a total order over the variables [BRB90℄).
ofa
tor(1; v; e) = 1
ofa
tor(0; v; e) = 0
ofa
tor(x:S1 + x:S0; v; e) =8>><>>: x:
ofa
tor(S1; v; e) + x:
ofa
tor(S0; v; e) if x < eS1 if x = e ^ v = 1S0 if x = e ^ v = 0x:S1 + x:S0 if x > e (17)
CPr2(S; e) is de�ned as follows.CPr2(S; e) = Pr(
ofa
tor(S; 1; e)) (18)The 
omputation of BddAnd(S;C) is in O(jSj:jCj) (where jSj denotes the number ofnodes of the BDD S) [BRB90℄. It is 
lear from equations 17 that the 
omputation S[v=e℄ isin O(jSj). Sin
e Pr(S) is in O(jSj), CPr1(S;C) and CPr2(S; e) are respe
tively in O(jSj:jCj)and O(jSj), whi
h is indeed very good.It remains that the 
onstru
tion of the BDDs that en
ode respe
tively S:C and S[1=e℄may be spa
e 
onsuming (if these BDDs are otherwise useless). It is therefore questionablewhether these 
onstru
tions 
an be avoided. The answer is positive.In the 
ase where C is redu
ed to the terminal event e, the idea is to performed the(virtual) 
omputation of the 
ofa
tor together with the (a
tual) 
omputation of the prob-ability. The algorithm CPr3 is de�ned by the following equations.CPr3(1; v; e) = 1CPr3(0; v; e) = 0CPr3(x:S1 + x:S0; v; e) =8>><>>: p(x):CPr3(S1; v; e) + [1� p(x)℄:CPr3(S0; v; e) if x < ePr(S1) if x = e ^ v = 1Pr(S0) if x = e ^ v = 0Pr(x:S1 + x:S0) if x > e (19)
Finally, a similar idea applies to 
ompute dire
tly p(SjC). One 
ombines the (virtual)
omputation of the 
onjun
t of S and C with the (a
tual) 
omputation of the probability9



of this 
onjun
t. The algorithm CPr4 is de�ned by the following equations.CPr4(S;C) = PrAnd(S;C)Pr(C) (20)PrAnd(0; C) = 0PrAnd(F; 0) = 0PrAnd(1; 1) = 1PrAnd(x:S1 + x:S0; 1) = Pr(x:S1 + x:S0)PrAnd(1; y:C1 + y:C0) = Pr(y:C1 + y:C0)PrAnd(x:S1 + x:S0; y:C1 + y:C0) =8<: p(x):PrAnd(S1; C) + [1� p(x)℄:PrAnd(S0; C) if x < yp(x):PrAnd(S1; C1) + [1� p(x)℄:PrAnd(S0; C0) if x = yp(y):PrAnd(S;C1) + [1� p(y)℄:PrAnd(S;C0) if x > y (21)
Thanks to the 
a
hing prin
iple and from equations 19, 20 and 21, it is 
lear thatCPr3(S; v; e) and CPr4(S;C) are respe
tively in O(jSj) and O(jSj:jCj).Algorithms to 
omputeMIF (S;C). The last quantity of interest for our purpose is themarginal importan
e fa
tor MIF (S;C). Equation 7 gives a mean to 
ompute MIF (S;C)from p(SjC) and p(SjC). If C is redu
ed to a terminal event any of the CPri above de�nedworks. Otherwise, one should use either CPr1 or CPr4. Note that equation 7 indu
es two
onditional probability 
omputations. It is possible to assess MIF (S;C) with only one
all at CPri and two 
alls at Pr.MIF (S;C) eq: 7= p(SjC)� p(SjC) = p(SjC)� p(S)1� p(C)However, there exists mu
h more dire
t means to assess MIF (S;C).If C is redu
ed to a terminal event e, a �rst method 
onsists in 
omputing a partialderivative. First, the value of p(S) is assessed for p(e), then it is assessed for p(e) + Æ(e),�nally the following quotient is 
omputed.MIF1(S; e) � Pr(S)p(e)+Æp(e) � Pr(S)p(e)Æp(e) (22)The se
ond method 
onsists in 
omputing a BDD that en
odes the 
riti
al state of Sw.r.t. e, and then to assess MIF (S; e) from this BDD. The algorithm that 
omputes the
riti
al states of S w.r.t. e looks like 
ofa
tor. It is de�ned by the following equations.
rit(1; e) = 0
rit(0; e) = 0
rit(x:S1 + x:S0; e) =8<: x:
rit(S1; e) + x:
rit(S0; e) if x < eAND(S1; NOT(S0)) if x = e0 if x > e (23)

10



Note that the BDD built by 
rit(S; e) does not depend on e (
onversely to the de�nition 4).This makes it possible to 
ompute MIF (S; e) without divising the result by p(e).MIF2(S; e) = Pr(
rit(S; e)) (24)A third method 
onsists in 
omputing MIF (S; e) dire
tly from the BDD that en
odesS. This is a
hieved by means of a re
ursive algorithm that looks like CPr3. MIF3 is de�nedby the following re
ursive equations.MIF3(1; e) = 0MIF3(0; e) = 0MIF3(x:S1 + x:S0; e) =8<: p(x):MIF3(S1; e) + [1� p(x)℄:MIF3(S0; e) if x < ePr(S1)� Pr(S0) if x = e0 if x > e (25)MIF1(S; e) requires two 
alls to Pr(S). It is therefore in O(jSj). MIF3(S; e) requires onlytraversal of S, sin
e for ea
h node either CPr3 is 
alled or Pr is 
alled, but not both. Itis therefore also in O(jSj). The 
omputation of 
rit(S; e) is quadrati
 in the worst 
asebe
ause AND is so. Therefore MIF2(S; e) is in O(jSj2). Note however that this worst 
ase
omplexity is seldom rea
hed in pra
ti
e.In the 
ase where C is not redu
ed to a terminal event, it is still possible to assessp(SjC)� p(SjC) in one pass over these BDDs. The idea is as follows.p(SjC)� p(SjC) = p(S:C)p(C) � p(S:C)p(C)= X�2S( 1p(C) :p(�) if � 2 C� 11�p(C) :p(�) if � 62 CThe resulting algorithm looks like PrAnd. The tri
k is to pass p(C) as a parameter.MIF4(S;C) = MIF?4(S;C; Pr(C))MIF?4(0; C; �) = 0MIF?4(1; C; �) =8<: � 11�� if C = 01� if C = 1p(y):MIF?4(1; C1; �) + [1� p(y)℄:MIF?4(1; C0; �) if C = y:C1 + y:C0MIF?4(S; 0; �) = � 11�� :Pr(S)MIF?4(S; 1; �) = 1� :Pr(S)MIF?4(x:S1 + x:S0; y:C1 + y:C0; �) =8<: p(x):MIF?4(S1; C; �) + [1� p(x)℄:MIF?4(S0; C; �) if x < yp(x):MIF?4(S1; C1; �) + [1� p(x)℄:MIF?4(S0; C0; �) if x = yp(y):MIF?4(S;C1; �) + [1� p(y)℄:MIF?4(S;C0; �) if x > y
(26)
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Figure 3: The bridge.It is 
lear from equations 26 that MIF4(S;C) is in O(jSj:jCj).J. Andrews and R. Sinnamon proposed in [SA96, SA97℄ an algorithm to assessMIF (S; e)in the 
ase where e is a terminal event. This algorithm relies on di�erent prin
iples and isnot as eÆ
ient as those presented above. The algorithms CPri and MIFi we proposed hereare thus entirely new.6 Algorithms to assess importan
e fa
torsThe importan
e fa
tors de�ned in se
tion 3 
an be assessed using only the basi
 algorithmspresented in the previous se
tion. The game 
onsists in rewriting their de�nitions usingp(S), p(C) and either and p(S:C) or p(SjC) or MIF (S;C). The table 1 provides su
h arewriting. The negation 
an be performed in 
onstant time over BDDs [BRB90℄. Thereforewe didn't 
onsider them as a basi
 algorithm.7 ExperimentsAs an illustration, we give in this se
tion some experimental results.The bridge. The �rst example is the well-known bridge network pi
tured Fig. 3. Thefun
tion that en
odes s-t 
uts is S = C1+C2+C3+C4; where C1 = ab, C2 = de, C3 = a
eand C4 = b
d.The following table gives the values of the main importan
e fa
tors for di�erent 
om-

12



Basi
 algorithmsPr;BddAnd Pr; CPr Pr; MIFp(SjC) Pr(BddAnd(S;C))Pr(C) CPr(S;C) Pr(S) + (1� Pr(C)):MIF(S;C)MIF (S;C) Pr(BddAnd(S;C))Pr(C) � Pr(S)1� Pr(C) CPr(S;C)� Pr(S)1� Pr(C) MIF(S;C)CIF (S;C) 1� Pr(BddAnd(S;BddNot(C)))(1� Pr(C)):Pr(S) 1� CPr(S;BddNot(C))Pr(S) Pr(C)Pr(S) � MIF(S;C)DIF (S;C) Pr(BddAnd(S;C))Pr(S) Pr(C):CPr(S;C)Pr(S) Pr(C) + Pr(C):[1� Pr(C)℄:MIF(S;C)Pr(S)RAW (S;C) Pr(BddAnd(S;C))Pr(C)� Pr(S) CPr(S;C)Pr(S) 1 + [1� Pr(C)℄:MIF(S;C)Pr(S)RRW (S;C) [1� Pr(C)℄:Pr(S)Pr(BddAnd(S;BddNot(C)) Pr(S)CPr(S;BddNot(C)) Pr(S)Pr(S)� Pr(C):MIF(S;C)

Table1:Algorithmsto
omputeimportan
efa
tors.
13



ponents. The probability of S, not indi
ated in the table, is p(S) = 0:234.C Pr CPr MIF CIF DIF RAW RRWa 0:1 0:432 0:22 0:0940171 0:184615 1:84615 1:10377b 0:2 0:334 0:125 0:106838 0:28547 1:42735 1:11962
 0:3 0:276 0:06 0:0769231 0:353846 1:17949 1:08333d 0:4 0:537 0:505 0:863248 0:917949 2:29487 7:3125e 0:5 0:4264 0:3848 0:822222 0:911111 1:82222 5:625C1 0:02 1 0:781633 0:0668062 0:0854701 4:2735 1:07159C2 0:2 1 0:9575 0:818376 0:854701 4:2735 5:50588C3 0:015 1 0:777665 0:0498503 0:0641026 4:2735 1:05247C4 0:024 1 0:784836 0:080496 0:102564 4:2735 1:08754C1 + C2 0:216 1 0:977041 0:901884 0:923077 4:2735 10:192C3 + C4 0:0378 1 0:796092 0:1286 0:161538 4:2735 1:14758The main purpose of the above table is to show that BDDs make it possible to rankthe in
uen
e of not only the basi
 
omponents of the network, but also of paths, groups ofpaths, 
uts, groups of 
uts, . . . .Joint Importan
e Reliability. The joint importan
e reliability (JRI) has been intro-du
ed in [HL93℄ and further studied in [Arm95, HKL00℄. It measures the intera
tion oftwo 
omponents in 
ontributing to the system reliability. Its de�nition is as follows.JRI(S;C1; C2) def= p(SjC1:C2) + p(SjC1 :C2 )� p(SjC1 :C2)� p(SjC1:C2 ) (27)Negative JRI's indi
ate that one 
omponent be
omes less important when the other isfun
tionning [HL93℄.In the 
ase where both C1 and C2 are redu
ed to two basi
 events e1 and e2, it is notdiÆ
ult to verify that the following equalities hold.JRI(S; e1; e2) = MIF (S[1=e1℄; e2)�MIF (S[0=e1℄; e2 )The above equation 
an be used to design a one pass algorithm to assess JRI(S; e1; e2).The following table gives the values of the JRI for all of the pairs of s-t 
uts of thebridge example. The basi
 events have the same failure probability p. In the table, we in-di
ate for ea
h pair (Ci; Cj) the 
onditional probability p(SjCi :Cj ) (the others 
onditional
14



probabilities involved in the de�nition of JRI are obviously equal to 1).p = 0:5 p = 0:9i; j CPr(Ci :Cj ) JRI(Ci; Cj) CPr(Ci :Cj ) JRI(Ci; Cj)1; 2 0:111111 �0:888888 0:403878 �0:5961221; 3 0:272727 �0:727272 0:816225 �0:1837751; 4 0:272727 �0:727272 0:816225 �0:1837752; 3 0:272727 �0:727272 0:816225 �0:1837752; 4 0:272727 �0:727272 0:816225 �0:1837753; 4 0:36 �0:64 0:837573 �0:162427The above values are in a

ordan
e with those given in [HKL00℄ for p = 0:5 (but di�er forp = 0:9).A 
onse
utive k-within-m-out-of-n system As a third example, we 
onsider a 
on-se
utive k-within-m-out-of-n system. A 
onse
utive k-within-m-out-of-n system 
onsistsof n linearly ordered 
omponents su
h that the system fails i� there are m 
onse
utive
omponents whi
h in
lude among them, at least k failed 
omponents. Conse
utive k-within-m-out-of-n systems were introdu
ed in [Gri86℄ as a generalization of both k-out-ofnand 
onse
utive k-out-of-n systems.Formally, the formula Sk;m;n is de�ned as follows (assuming 1 � k � m � n).Sk;m;n def= n�m+1Xi=1 k=m(ei; ei+1; : : : ; ei+m�1)For the sake of the simpli
ity, we 
onsider that all of the variables have the same probabilityp. The probability of a minimal solution is therefore pk.We did the following experiments for k = 8, m = 16 and n = 64.First, we 
omputed the BDD that en
odes S8;16;64. This 
omputation took 3.06s ona pentium III (
aden
ed at 733 MegaHerz). The BDD is made of 442147 nodes (S8;16;64admits 321750 minimal 
uts).Se
ond, we 
omputed the marginal importan
e fa
tor of Sk;m;n and e1, e16, e32, e48 ande64, for di�erent values of p. We used the algorithms MIF1, MIF2 and MIF3. It makes senseto examine several variables for they are lo
ated at di�erent levels in the BDD.The running times are independent of p. Moreover, the three algorithms give exa
tlythe same result for all p > 10�3 (whi
h was not that obvious, due to rounding errors). Thefollowing table gives the size of the auxiliary BDDs as well as the average running timesof ea
h algorithm. The 
omputation of the top event probability took 0.79s on average.
15



event e1 e16 e32 e48 e64time MIF1 1.56s 1.56s 1.57s 1.58s 1.58sj
rit(S8;16;64; ei)j 350627 430707 430707 430707 430707time 
rit 0.04s 0.42s 3.46s 25.96s 95.60stime Pr 0.62s 0.80s 0.80s 0.77s 0.61stime MIF3 0.79s 0.79s 0.81s 0.85s 0.85sAt least one thing is 
lear: the running time of j
rit(S8;16;64; ei)j depends on the variablelo
ation in the BDD !The above table shows that the situation is rather 
lear, at least when the BDD thaten
odes the stru
ture fun
tion is large (whi
h is the 
ase here).First, it is not interesting to build auxiliary BDDs, even in the perspe
tive of many
omputations in a row (for instan
e to perform sensitivity analyses). Se
ond, the numeri
aldi�erentiation is always about twi
e as 
ostly as the dire
t assessment (for it performs twoBDD traversals). Therefore, MIF3 should be prefered.Other experiments have shown that the above remarks apply in general, even in the
ases where the 
omponent is not redu
ed to a terminal event.Sylvester-Poin
ar�e versus Binary De
ision Diagrams Binary De
ision Diagramsgive exa
t results. Their are also sometimes mu
h more eÆ
ient that 
lassi
al fault treeassessment algorithms su
h as MOCUS [FV72℄.As an illustration, we 
onsider now a 
lassi
al test 
ase so-
alled baobab1 in the litter-ature. This fault tree is made of 61 terminal events and 84 gates (16 and-gates, 59 or-gatesand 9 3-out-of-4-gates). We apply on this tree BDDs as well as our (highly optmized)version of MOCUS [Rau00℄. For this latter algorithm, we 
onsider 4 relative 
uto�s. Theminimal 
utsets C su
h that the quotient p(C)=P p(C) is below the relative 
uto� aredis
arded. This makes it possible to redu
e dramati
ally the 
omputational e�ort.The table 2 gives the results we obtained on the baobab1 test 
ase. These resultsillustrate that BDD are sometimes by order of magnitude more eÆ
ient than MOCUS likealgorithms.The latters make approximations that lead to rather una

urate results. More exa
tly,either one a

epts to pay a high 
omputational 
ost (as with the relative 
uto� 10�5 in ourexample) or the result may be subje
t to strong deviations.Moreover, as soon as there is a rather important number of minimal 
utsets, it is notpossible to 
ompute the Sylvester-Poin
ar�e development for orders beyond two (withinreasonable time 
onstraints).Finally, some minimal 
utsets of low order may be missed anyway (as the 
utset oforder 3 in the above example), whi
h is indeed problemati
 when 
omputing importan
efa
tors.
16



Table 2: Results on the baobab1 test 
ase.Algorithms BDD MOCUS with a relative 
uto� of10�2 10�3 10�4 10�5#
utsets of order 2 1 1 1#
utsets of order 3 1#
utsets of order 4 70 8 52 60#
utsets of order 5 400 12 64 196#
utsets of order 6 2212 36 220 644 1268#
utsets of order 7 14748 4 528 4620#
utsets of order 8 8460#
utsets of order 9 10624#
utsets of order 10 6600#
utsets of order 11 3072Total 46188 36 244 1289 6145Running times 0.08s 10.28s 20.27s 57.54s 161.57sSylvester-Poin
ar�e order 1 3.59 10�7 9.39 10�7 1.38 10�6 1.62 10�6Running times 0.00s 0.00s 0.00s 0.00sSylvester-Poin
ar�e order 2 3.02 10�7 7.07 10�7 9.18 10�7 9.64 10�7Running times 0.00s 0.04s 1.31s 44.18sSylvester-Poin
ar�e order 3 3.20 10�7 8.34 10�7 1.38 10�6Running times 0.02s 3.50s 530.93sExa
t probability 1.28 10�6Running times 0.00s
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8 Con
lusionIn this paper, we presented a 
omplete pi
ture of the BDD based algorithms to 
omputeimportan
e fa
tors CPr, MIF , CIF , DIF , RAW , RRW and JRI. Most of these algo-rithms are entirely new. It is worth mentioning that:� The algorithms we proposed give exa
t results (no approximation is performed).� For ea
h importan
e fa
tor, we proposed at least one algorithm that works in the
ase where the 
omponent is not redu
ed to a terminal event. This opens newperspe
tives in the ranking of systems, stru
tures and 
omponents with respe
t totheir risk-signi�
ian
e and safety-signi�
ian
e. Referen
es [HL93, Arm95, CPS98℄
ontain preliminary dis
ussions on this topi
s.� The algorithms we proposed are very eÆ
ient for they are linear in the size of theBDD that en
odes the system if the 
omponent is redu
ed to a terminal event, andin the produ
t of the sizes of the BDDs that en
ode the system and the 
omponentotherwise. We reported experiments that illustrate their eÆ
ien
y.� The algorithms we proposed are therefore good 
andidates to assess importan
e fa
-tors de�ned over a time period by means of a numeri
al integration.The results presented here are a part of a study on BDD algorithms to assess Booleanrisk assessment models. This study in
ludes also on-going works on importan
e fa
torsde�ned over minimal 
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