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A. RauzyLaBRI, CNRS,351, ours de la Lib�eration,33405 Talene Cedex, FRANCErauzy�labri.u-bordeaux.frAbstratOne of the prinipal ativities of risk assessment is expeted to be either theranking or the ategorization of strutures, systems and omponents with respetto their risk-signi�ane or their safety-signi�iane. Several measures, so-alledimportane fators, of suh a signi�iane have been proposed for the ase where thesupport model is a fault tree. In this artile, we show how Binary Deision Diagramsan be use to assess eÆiently a number of lassial importane fators. This workompletes the preliminary results obtained reently by Andrews and Sinnamon, andthe authors. It deals also with the notion of joint reliability importane.Keywords: Fault Trees, Importane Fators, Binary Deision Diagrams1 IntrodutionOne of the prinipal ativities of risk assessment is expeted to be either the ranking or theategorization of strutures, systems and omponents with respet to their risk-signi�aneor their safety-signi�iane. Several measures of suh a signi�iane have been proposedfor the ase where the support model is a fault tree. These measures are grouped underthe generi designation of \importane fators". Many artiles have been devoted to theirmathematial expressions, their physial interpretations and the various ways they an beevaluated by omputer programs.Importane fators an be grouped into two ategories:� Importane fators that are omputed at one point in the time. In this artile, westudy importane fators that belong to this ategory, namely the marginal impor-tane fator (MIF ), the ritial importane fator (CIF ), the diagnosti importane1



fator (DIF ), the risk ahievement worth (RAW ), and the risk redution worth(RRW ).� Importane fators that average suh quantities over a time period, in order to avoidthe diÆult task of seleting points of the time to be studied (e.g. [BP75, Nat79,Nat85℄). These importane fators are indeed muh more ostly to assess for, pre-isely, they require integrations over a time period. We shall not onsider them itthis artile.Some authors studied extensions of these importane fators to assess the interationbetween omponents in ontributing to system reliability (e.g. [HL93, Arm95, HKL00,CPS98℄).Most of these works are based on lassial methods to assess the top event probability,i.e. methods that work with the well-known Sylvester-Poinare development applied tominimal utsets. As pointed out in [Fle96℄ and [Ves96℄, this kind of methods may induemisleading onlusions beause they make a lot of approximations. These approximationsare in general safe for what onerns the assessment of the top event probability, but theyare often too rough to rank omponents properly.It is now known that these lassial methods are outperformed by the so-alled BinaryDeision Diagrams (BDD) tehnique (see for instane [Rau93℄). With BDDs, not only theassessment of the top event probability is more eÆient than with lassial methods, butalso the obtained results are exat (for no approximation is needed).It was therefore of a great interest to revisit importane fators from the BDD pointof view. J. Andrews and R. Sinnamon initiated suh a work in [SA96, SA97℄ and furtherstudied by the authors in [DR99℄. The present artile ompletes their work. Our resultsare twofold.� First, we show that the de�nitions of the main importane fators work even in thease where the omponent under study is not redued to a terminal event and/or thestruture funtion is not monotone.� Seond, we proposed eÆient algorithms to assess these importane fators (thatimprove those proposed in [SA96, SA97℄ for MIF and CIF measures).� Third, we show by means of an example that the algorithms we propose makes itpossible to ompute easily the joint reliability importane [HL93, Arm95, HKL00℄ oftwo gates in a fault tree.It is worth notiing that the algorithms we propose give exat results, therefore avoidingthe pitfalls pointed out in [Fle96, Ves96℄.The remaining of this artile is organized as follows. In setion 3, we give the math-ematial de�nitions of the importane fators we onsider here. In setion 4, we reallbasis about BDDs. In setion 5 we give basi algorithms to assess probabilisti quantitiesof interest. In setion 6, we show how these basi algorithms an be used to ompute allof the importane fators. Finally, some experimental results are presented setion 7.2



2 De�nitions and NotationsIn this artile, we shall use the following onventions.� Boolean variables (terminal events) are denoted by lower ase letters, e.g. a, e, . . . .� Boolean funtions (fault trees) are denoted by upper ase letters, e.g. S, F , . . . .� The disjunt of two Boolean funtions F and G is denoted by F +G. Their onjuntis denoted by F:G, or even by FG. The negation of F is denoted by F .� The probability of a Boolean funtion F is denoted by p(F ).� The onditional probability of a Boolean funtion F given a funtion G is denotedby p(F jG). The fundamental equality of onditional probabilities is as follows.p(F:G) = p(F jG):p(G) (1)A produt is a onjunt of literals (i.e. variables or negation of variables) that doesnot ontain both a literal and its opposite (e and e). Let V be a �nite set of variables. Aprodut that ontains a literal built over eah variable of V is alled a minterm of V . Wedenote by minterms(V ) the set of minterms that an be built over V . From a probabilistipoint of view, minterms are always pairwisely independent.Any Boolean funtion F an be assimilated to a disjunt of minterms. It is oftenonvenient to write that the minterm � belongs to the funtion F , when F = � + : : :, andthat the literal l belongs to the produt (or the minterm) �, when � = l: : : :.We denote by F [v=e℄, where F is a Boolean funtion, e is a Boolean variable andv 2 f0; 1g, the funtion F in whih the value v has been substituted for the variable e.F [1=e℄ and F [0=e℄ are alled respetively the positive and negative ofators of F w.r.t. e.Most of the importane fators were de�ned with the impliit assumption that the faulttree under study is oherent. A funtion F is monotone (or oherent) w.r.t. a variable e iffor all minterm � = e:�0 that belongs to F , the minterm � = e:�0 belongs to F as well. Afuntion is (globally) monotone if it is monotone w.r.t. all of its variable.3 Importane FatorsIn this setion, we present the six importane fators we onsider throughout the paper.We reall their mathematial de�nitions as well as their possible physial interpretations.Detailed presentations of these measures an be found in textbooks (for instane [HR94,KKP97, MKK99℄).It is worth notiing that all of these importane fators depend on the time t at whihthe system and its omponents are observed. In what follows, the time t is omitted,although it is impliitely present in all of the de�nitions.3



Conditional Probability The onditional probability p(Sje), where S denotes the stru-ture funtion of the fault tree under study and e denotes one of its basi events, is notstritly speaking an importane fator. However, the assessment of this quantity is one ofthe keypoints of the assessment of the other importane fators.It is easy to show that the following equality holds.p(Sje) = p(S[1=e℄) (2)Marginal Importane Fator The marginal importane fator, denoted byMIF (S; e),is de�ned as follows. MIF (S; e) def= �[p(S)℄�[p(e)℄ (3)MIF is often denoted by IB and alled Birnbaum importane fator in the literature forit has been introdued in [Bir69℄. As we shall see, it an be interpreted, when S is amonotone funtion, as the onditional probability that, given e, the system S is failed ande is ritial, i.e. a repair of e makes the system working.Formally, let V be the set of variables of S and let us denote rit(S; e) the set of ritialstates of S w.r.t. e. rit(S; e) is de�ned as follows.rit(S; e) def= fe:� 2 minterms(V ); e:� 2 S ^ e:� 62 Sg (4)rit(S; e) is a Boolean funtion. Another way to write it is as follows.rit(S; e) = e:(S[1=e℄:S[0=e℄) (5)Now, the following equalities hold.MIF (S; e) = �p(S)�p(e) = �[p(e):[p(S[1=e℄)� p(S[0=e℄)℄ + p(S[0=e℄)℄�[p(e)℄= p(S[1=e℄)� p(S[0=e℄) (6)= p(Sje)� p(Sje) (7)If S is monotone w.r.t. e, then any minterm of S[0=e℄ is also a minterm of S[1=e℄.Therefore, p(S[1=e℄)� p(S[0=e℄) = p(S[1=e℄:S[0=e℄). It follows that:MIF (S; e) = p(rit(S; e)je) (8)It is worth notiing that MIF (S; e) does not depend on p(e). Therefore, MIF an beused only to rank the omponents aording to their ritiity.Equation 6 is often taken as the de�nition of the Birnbaum importane fator. In orderto generalize this measure to non-basi omponents, the equation 7 should be taken as thede�nition. This has however the drawbak to make impossible an interpretation of MIFin term of ritial states. 4



Note that in the ase where S is not a monotone funtion, this interpretation is anywayno longer valid. Consider for instane S = ab + a. Then, p(Sja) = p(S[1=a℄) = p(b),p(Sja) = p(S[0=a℄) = p(), rit(S; a) = ab. It follows that p(Sja)�p(Sja) = p(b)�p(b) 6=p(rit(S; a)ja) = p(b). It is worth notiing that p(Sja) � p(Sja) may be negative, while,by de�nition, p(rit(S; e)je) is non-negative for all S and e. Therefore, to extend theinterpretation of MIF in terms of ritial states to non-monotone funtions (and basiomponents), the equation 8 ould be used as a de�nition.Critial Importane Fator The ritiality of a omponent is related to the potentialimprovement of the system reliability resulting from the improvement of the omponentreliability. It is lear that it would be more diÆult and ostly to improve the more reliableomponents than to improve the less reliable ones. However, the marginal importane fa-tor does not depend on the omponent reliability. The ritial importane fator, denotedby CIF (S; e), is another measure of omponent ritiality that does depend on omponentreliability. It is de�ned as follows.CIF (S; e) def= p(e)p(S) �MIF (S; e) (9)CIF (S; e) has been introdued in [Lam75℄. The following equality holds, by de�nition 9and equality 8. CIF (S; e) = p(rit(S; e)jS) (10)Therefore, in the ase of monotone systems, CIF (S; e) an be interpreted as the on-ditional probability that the system is in a ritial state w.r.t. e, given that the systemis failed. For the same reasons as previously, if S is not monotone and/or if e is not aterminal event, this interpretation is not valid.Diagnosti Importane Fator The diagnosti importane fator, denoted byDIF (S; e),is de�ned as follows. DIF (S; e) def= p(ejS) (11)DIF is often denoted by IV F (S) and alled Vesely-Fussel Importane fator, for it has beenintrodued by Vesely and Fussel in [Fus75℄. Sine, by equation 1, p(ejS) = p(S:e)p(S) , DIF (S; e)is the fration of the system unavailability (or risk) that involves the omponent failure. Itis worth notiing that this interpretation still works in the ases where S is not monotoneand/or e is not a terminal event.Risk Ahievement Worth The risk ahievement worth, denoted by RAW (S; e), isde�ned as follows. RAW (S; e) def= p(Sje)p(S) (12)5



RAW (S; e) is also alled risk inrease fator. It measures the inrease in system failureprobability assuming the worst ase of failing omponent. It is an indiator of the impor-tane of maintaining the urrent level of reliability for the omponent [CPS98℄. In referene[WW96℄, it is argued that RAW should be used with ared, for it is rather rough.Risk Redution Worth The risk redution worth, denoted by RRW (S; e), is de�nedas follows. RRW (S; e) def= p(S)p(Sje) (13)RRW (S; e) is also alled risk derease fator. It represents the maximum dereasing ofthe risk it may be expeted by inreasing the reliability of the omponent. Therefore thisquantity may be used to selet omponents that are the best andidates for e�orts leadingto improving system reliability.4 Binary Deision DiagramsBryant's Binary Deision Diagrams (BDDs) [BRB90℄ are the state-of-the-art data strutureto enode and to manipulate Boolean funtions. Sine their introdution in the reliabilityanalysis framework [Rau93, CM94℄, BDDs have proved to be the most eÆient tehniqueto assess fault trees.The BDD assoiated with a formulae is a ompat enoding of the truth table of thisformula. This representation is based on the Shannon deomposition: Let F be a Booleanformula that depends on the variable v, then F = v:F [1=v℄ + v:F [0=v℄. By hoosing atotal order over the variables and applying reursively the Shannon deomposition, thetruth table of any formula an be graphially represented as a binary tree. The nodes arelabeled with variables and have two outedges (a then-outedge, pointing to the node thatenodes F [1=v℄, and a else-outedge, pointing to the node that enodes F [0=v℄). The leavesare labeled with either 0 or 1. The value of the formula for a given variable assignment isobtained by desending along the orresponding branh of the tree. The Shannon tree forthe formula ab + a and the lexiographi order is pitured Fig. 1 (dashed lines representelse-outedges).Indeed suh a representation is very spae onsuming. It is however possible to shrinkit by means of the following two redution rules.� Isomorphi subtrees merging. Sine two isomorphi subtrees enode the same for-mula, at least one is useless.� Useless nodes deletion. A node with two equal sons is useless sine it is equivalentto its son (v:F + v:F = F ).By applying these two rules as far as possible, one get the BDD assoiated with the formula.A BDD is therefore a direted ayli graph. It is unique, up to an isomorphism. Thisproess is illustrated on Fig. 1. 6
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Figure 1: From the Shannon tree to the BDD enoding ab + a.Logial operations (and, or, xor, ...) an be diretly performed on BDDs. This resultsfrom the orthogonality of usual onnetives and the Shannon deomposition:(v:F1 + v:F0)� (v:G1 + v:G0) = v:(F1 �G1) + v:(F0 �G0) (14)where � is any binary onnetive.Among other onsequenes, this means that the omplete binary tree is never built andthen shrunk: the BDD enoding a formula is obtained by omposing the BDDs enodingits subformulae. Moreover, a ahing priniple is used to store intermediate results of om-putations. This makes the usual logial operations (onjuntion, disjuntion) polynomialin the sizes of their operands. A omplete implementation of a BDD pakage is desribedin [BRB90℄. The reader interested in more details should thus refer to this artile.Disussion It is widely known, sine the very �rst uses of BDDs, that the hosen variableordering has a great impat on the size of BDDs, and therefore on the eÆieny of the wholemethodology. Finding the best ordering (or even a reasonnably good one) is a very hardproblem (see [Weg00℄ for a reent survey on this topis). Two kinds of heuristis are usedto determine whih variable ordering to apply. Stati heuristis are based on topoligialonsiderations and selet the variable ordering one for all (see for instane [FFK88℄).Dynami heuristis hange the variable ordering at some points of the omputation. Theyare thus more versatile than the formers, but the prie to pay is a serious inrease ofrunning times. Sifting is the most widely used dynami heuristis [Rud93℄.The algorithms proposed in this artile are independent of the hoie of a variableordering, although this hoie inuenes their eÆieny. For the experiments we report, asimple depth-�rst left-most ordering was used. This heuristis gives often very good result.5 Basi AlgorithmsIn this setion, we propose di�erent BDD algorithms to ompute p(S), p(SjC) andMIF (S;C),where S and C are Boolean funtions (C is in general redued to a terminal event e). These7



Pr(S)if S = 0 return 0if S = 1 return 1if S = v:S1 + v:S0if ahe has entry hS; pi return pp1  Pr(S1)p0  Pr(S0)p p(v):p1 + [1� p(v)℄:p0add to ahe hS; pireturn pFigure 2: The pseudo-ode for the Pr algorithm.algorithms will be used in the next setion to assess the other importane fators.Algorithms are named using this font in order to distinguish them from the math-ematial quantities they ompute. E.g. MIF(S;C) denotes the algorithm that omputesMIF (S;C). Moreover, in the expression MIF(S;C), S and C denote the BDDs that enodethe orresponding funtions.The algorithm to ompute p(S). The �rst basi algorithm that is needed to assessimportane fators is indeed the omputation of the top event probability from the basievents probabilities. In the ase of Binary Deision Diagrams, this algorithm is based onthe Shannon deomposition. It is fully desribed by the following equations (that reurseover BDD nodes). Pr(1) = 1Pr(0) = 0Pr(v:S1 + v:S0) = p(v):Pr(S1) + [1� p(v)℄:Pr(S0) (15)The algorithm Pr omputes the exat probability. Moreover, thanks to the memorizationof intermediate results, the algorithm is alled only one on eah BDD node. Its omplexityis therefore of linear in the size of the BDD [Rau93℄.The pseudo-ode for atual algorithm is given Fig. 2. This pseudo-ode makes expliitthe way the memorization of intermediate results works. To be eÆient, a BDD algorithmmust ompute the quantity it assesses bottom-up in order to make it possible to use thisahing mehanism.All of the algorithms presented in what follows do work bottom-up. We shall desribethem only by means of set of reursive equations as equations 15, but the use of a ahingmehanism will be impliitely assumed.Algorithms to ompute p(SjC). The seond quantity of interest for our purpose is theonditional probability p(SjC). A �rst way to assess p(SjC) is to apply the fundamental8



theorem of onditional probabilities (equation 1).CPr1(S;C) = Pr(BddAnd(S;C))Pr(C) (16)The algorithm CPr1 works in two steps. First, one omputes the BDD that enodes thefuntion S:C. Seond, one omputes the quotient p(S:C)p(C) (using Pr).If C is redued to a basi event e, the omputation may be simpli�ed by omputingthe BDD that enodes the ofator S[1=e℄ and then the probability from this BDD (byequation 2). The algorithm to ompute S[v=e℄, v 2 f0; 1g, is desribed by the followingequations (reall that BDDs assume a total order over the variables [BRB90℄).ofator(1; v; e) = 1ofator(0; v; e) = 0ofator(x:S1 + x:S0; v; e) =8>><>>: x:ofator(S1; v; e) + x:ofator(S0; v; e) if x < eS1 if x = e ^ v = 1S0 if x = e ^ v = 0x:S1 + x:S0 if x > e (17)
CPr2(S; e) is de�ned as follows.CPr2(S; e) = Pr(ofator(S; 1; e)) (18)The omputation of BddAnd(S;C) is in O(jSj:jCj) (where jSj denotes the number ofnodes of the BDD S) [BRB90℄. It is lear from equations 17 that the omputation S[v=e℄ isin O(jSj). Sine Pr(S) is in O(jSj), CPr1(S;C) and CPr2(S; e) are respetively in O(jSj:jCj)and O(jSj), whih is indeed very good.It remains that the onstrution of the BDDs that enode respetively S:C and S[1=e℄may be spae onsuming (if these BDDs are otherwise useless). It is therefore questionablewhether these onstrutions an be avoided. The answer is positive.In the ase where C is redued to the terminal event e, the idea is to performed the(virtual) omputation of the ofator together with the (atual) omputation of the prob-ability. The algorithm CPr3 is de�ned by the following equations.CPr3(1; v; e) = 1CPr3(0; v; e) = 0CPr3(x:S1 + x:S0; v; e) =8>><>>: p(x):CPr3(S1; v; e) + [1� p(x)℄:CPr3(S0; v; e) if x < ePr(S1) if x = e ^ v = 1Pr(S0) if x = e ^ v = 0Pr(x:S1 + x:S0) if x > e (19)
Finally, a similar idea applies to ompute diretly p(SjC). One ombines the (virtual)omputation of the onjunt of S and C with the (atual) omputation of the probability9



of this onjunt. The algorithm CPr4 is de�ned by the following equations.CPr4(S;C) = PrAnd(S;C)Pr(C) (20)PrAnd(0; C) = 0PrAnd(F; 0) = 0PrAnd(1; 1) = 1PrAnd(x:S1 + x:S0; 1) = Pr(x:S1 + x:S0)PrAnd(1; y:C1 + y:C0) = Pr(y:C1 + y:C0)PrAnd(x:S1 + x:S0; y:C1 + y:C0) =8<: p(x):PrAnd(S1; C) + [1� p(x)℄:PrAnd(S0; C) if x < yp(x):PrAnd(S1; C1) + [1� p(x)℄:PrAnd(S0; C0) if x = yp(y):PrAnd(S;C1) + [1� p(y)℄:PrAnd(S;C0) if x > y (21)
Thanks to the ahing priniple and from equations 19, 20 and 21, it is lear thatCPr3(S; v; e) and CPr4(S;C) are respetively in O(jSj) and O(jSj:jCj).Algorithms to omputeMIF (S;C). The last quantity of interest for our purpose is themarginal importane fator MIF (S;C). Equation 7 gives a mean to ompute MIF (S;C)from p(SjC) and p(SjC). If C is redued to a terminal event any of the CPri above de�nedworks. Otherwise, one should use either CPr1 or CPr4. Note that equation 7 indues twoonditional probability omputations. It is possible to assess MIF (S;C) with only oneall at CPri and two alls at Pr.MIF (S;C) eq: 7= p(SjC)� p(SjC) = p(SjC)� p(S)1� p(C)However, there exists muh more diret means to assess MIF (S;C).If C is redued to a terminal event e, a �rst method onsists in omputing a partialderivative. First, the value of p(S) is assessed for p(e), then it is assessed for p(e) + Æ(e),�nally the following quotient is omputed.MIF1(S; e) � Pr(S)p(e)+Æp(e) � Pr(S)p(e)Æp(e) (22)The seond method onsists in omputing a BDD that enodes the ritial state of Sw.r.t. e, and then to assess MIF (S; e) from this BDD. The algorithm that omputes theritial states of S w.r.t. e looks like ofator. It is de�ned by the following equations.rit(1; e) = 0rit(0; e) = 0rit(x:S1 + x:S0; e) =8<: x:rit(S1; e) + x:rit(S0; e) if x < eAND(S1; NOT(S0)) if x = e0 if x > e (23)
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Note that the BDD built by rit(S; e) does not depend on e (onversely to the de�nition 4).This makes it possible to ompute MIF (S; e) without divising the result by p(e).MIF2(S; e) = Pr(rit(S; e)) (24)A third method onsists in omputing MIF (S; e) diretly from the BDD that enodesS. This is ahieved by means of a reursive algorithm that looks like CPr3. MIF3 is de�nedby the following reursive equations.MIF3(1; e) = 0MIF3(0; e) = 0MIF3(x:S1 + x:S0; e) =8<: p(x):MIF3(S1; e) + [1� p(x)℄:MIF3(S0; e) if x < ePr(S1)� Pr(S0) if x = e0 if x > e (25)MIF1(S; e) requires two alls to Pr(S). It is therefore in O(jSj). MIF3(S; e) requires onlytraversal of S, sine for eah node either CPr3 is alled or Pr is alled, but not both. Itis therefore also in O(jSj). The omputation of rit(S; e) is quadrati in the worst asebeause AND is so. Therefore MIF2(S; e) is in O(jSj2). Note however that this worst aseomplexity is seldom reahed in pratie.In the ase where C is not redued to a terminal event, it is still possible to assessp(SjC)� p(SjC) in one pass over these BDDs. The idea is as follows.p(SjC)� p(SjC) = p(S:C)p(C) � p(S:C)p(C)= X�2S( 1p(C) :p(�) if � 2 C� 11�p(C) :p(�) if � 62 CThe resulting algorithm looks like PrAnd. The trik is to pass p(C) as a parameter.MIF4(S;C) = MIF?4(S;C; Pr(C))MIF?4(0; C; �) = 0MIF?4(1; C; �) =8<: � 11�� if C = 01� if C = 1p(y):MIF?4(1; C1; �) + [1� p(y)℄:MIF?4(1; C0; �) if C = y:C1 + y:C0MIF?4(S; 0; �) = � 11�� :Pr(S)MIF?4(S; 1; �) = 1� :Pr(S)MIF?4(x:S1 + x:S0; y:C1 + y:C0; �) =8<: p(x):MIF?4(S1; C; �) + [1� p(x)℄:MIF?4(S0; C; �) if x < yp(x):MIF?4(S1; C1; �) + [1� p(x)℄:MIF?4(S0; C0; �) if x = yp(y):MIF?4(S;C1; �) + [1� p(y)℄:MIF?4(S;C0; �) if x > y
(26)
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Figure 3: The bridge.It is lear from equations 26 that MIF4(S;C) is in O(jSj:jCj).J. Andrews and R. Sinnamon proposed in [SA96, SA97℄ an algorithm to assessMIF (S; e)in the ase where e is a terminal event. This algorithm relies on di�erent priniples and isnot as eÆient as those presented above. The algorithms CPri and MIFi we proposed hereare thus entirely new.6 Algorithms to assess importane fatorsThe importane fators de�ned in setion 3 an be assessed using only the basi algorithmspresented in the previous setion. The game onsists in rewriting their de�nitions usingp(S), p(C) and either and p(S:C) or p(SjC) or MIF (S;C). The table 1 provides suh arewriting. The negation an be performed in onstant time over BDDs [BRB90℄. Thereforewe didn't onsider them as a basi algorithm.7 ExperimentsAs an illustration, we give in this setion some experimental results.The bridge. The �rst example is the well-known bridge network pitured Fig. 3. Thefuntion that enodes s-t uts is S = C1+C2+C3+C4; where C1 = ab, C2 = de, C3 = aeand C4 = bd.The following table gives the values of the main importane fators for di�erent om-
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Basi algorithmsPr;BddAnd Pr; CPr Pr; MIFp(SjC) Pr(BddAnd(S;C))Pr(C) CPr(S;C) Pr(S) + (1� Pr(C)):MIF(S;C)MIF (S;C) Pr(BddAnd(S;C))Pr(C) � Pr(S)1� Pr(C) CPr(S;C)� Pr(S)1� Pr(C) MIF(S;C)CIF (S;C) 1� Pr(BddAnd(S;BddNot(C)))(1� Pr(C)):Pr(S) 1� CPr(S;BddNot(C))Pr(S) Pr(C)Pr(S) � MIF(S;C)DIF (S;C) Pr(BddAnd(S;C))Pr(S) Pr(C):CPr(S;C)Pr(S) Pr(C) + Pr(C):[1� Pr(C)℄:MIF(S;C)Pr(S)RAW (S;C) Pr(BddAnd(S;C))Pr(C)� Pr(S) CPr(S;C)Pr(S) 1 + [1� Pr(C)℄:MIF(S;C)Pr(S)RRW (S;C) [1� Pr(C)℄:Pr(S)Pr(BddAnd(S;BddNot(C)) Pr(S)CPr(S;BddNot(C)) Pr(S)Pr(S)� Pr(C):MIF(S;C)

Table1:Algorithmstoomputeimportanefators.
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ponents. The probability of S, not indiated in the table, is p(S) = 0:234.C Pr CPr MIF CIF DIF RAW RRWa 0:1 0:432 0:22 0:0940171 0:184615 1:84615 1:10377b 0:2 0:334 0:125 0:106838 0:28547 1:42735 1:11962 0:3 0:276 0:06 0:0769231 0:353846 1:17949 1:08333d 0:4 0:537 0:505 0:863248 0:917949 2:29487 7:3125e 0:5 0:4264 0:3848 0:822222 0:911111 1:82222 5:625C1 0:02 1 0:781633 0:0668062 0:0854701 4:2735 1:07159C2 0:2 1 0:9575 0:818376 0:854701 4:2735 5:50588C3 0:015 1 0:777665 0:0498503 0:0641026 4:2735 1:05247C4 0:024 1 0:784836 0:080496 0:102564 4:2735 1:08754C1 + C2 0:216 1 0:977041 0:901884 0:923077 4:2735 10:192C3 + C4 0:0378 1 0:796092 0:1286 0:161538 4:2735 1:14758The main purpose of the above table is to show that BDDs make it possible to rankthe inuene of not only the basi omponents of the network, but also of paths, groups ofpaths, uts, groups of uts, . . . .Joint Importane Reliability. The joint importane reliability (JRI) has been intro-dued in [HL93℄ and further studied in [Arm95, HKL00℄. It measures the interation oftwo omponents in ontributing to the system reliability. Its de�nition is as follows.JRI(S;C1; C2) def= p(SjC1:C2) + p(SjC1 :C2 )� p(SjC1 :C2)� p(SjC1:C2 ) (27)Negative JRI's indiate that one omponent beomes less important when the other isfuntionning [HL93℄.In the ase where both C1 and C2 are redued to two basi events e1 and e2, it is notdiÆult to verify that the following equalities hold.JRI(S; e1; e2) = MIF (S[1=e1℄; e2)�MIF (S[0=e1℄; e2 )The above equation an be used to design a one pass algorithm to assess JRI(S; e1; e2).The following table gives the values of the JRI for all of the pairs of s-t uts of thebridge example. The basi events have the same failure probability p. In the table, we in-diate for eah pair (Ci; Cj) the onditional probability p(SjCi :Cj ) (the others onditional
14



probabilities involved in the de�nition of JRI are obviously equal to 1).p = 0:5 p = 0:9i; j CPr(Ci :Cj ) JRI(Ci; Cj) CPr(Ci :Cj ) JRI(Ci; Cj)1; 2 0:111111 �0:888888 0:403878 �0:5961221; 3 0:272727 �0:727272 0:816225 �0:1837751; 4 0:272727 �0:727272 0:816225 �0:1837752; 3 0:272727 �0:727272 0:816225 �0:1837752; 4 0:272727 �0:727272 0:816225 �0:1837753; 4 0:36 �0:64 0:837573 �0:162427The above values are in aordane with those given in [HKL00℄ for p = 0:5 (but di�er forp = 0:9).A onseutive k-within-m-out-of-n system As a third example, we onsider a on-seutive k-within-m-out-of-n system. A onseutive k-within-m-out-of-n system onsistsof n linearly ordered omponents suh that the system fails i� there are m onseutiveomponents whih inlude among them, at least k failed omponents. Conseutive k-within-m-out-of-n systems were introdued in [Gri86℄ as a generalization of both k-out-ofnand onseutive k-out-of-n systems.Formally, the formula Sk;m;n is de�ned as follows (assuming 1 � k � m � n).Sk;m;n def= n�m+1Xi=1 k=m(ei; ei+1; : : : ; ei+m�1)For the sake of the simpliity, we onsider that all of the variables have the same probabilityp. The probability of a minimal solution is therefore pk.We did the following experiments for k = 8, m = 16 and n = 64.First, we omputed the BDD that enodes S8;16;64. This omputation took 3.06s ona pentium III (adened at 733 MegaHerz). The BDD is made of 442147 nodes (S8;16;64admits 321750 minimal uts).Seond, we omputed the marginal importane fator of Sk;m;n and e1, e16, e32, e48 ande64, for di�erent values of p. We used the algorithms MIF1, MIF2 and MIF3. It makes senseto examine several variables for they are loated at di�erent levels in the BDD.The running times are independent of p. Moreover, the three algorithms give exatlythe same result for all p > 10�3 (whih was not that obvious, due to rounding errors). Thefollowing table gives the size of the auxiliary BDDs as well as the average running timesof eah algorithm. The omputation of the top event probability took 0.79s on average.
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event e1 e16 e32 e48 e64time MIF1 1.56s 1.56s 1.57s 1.58s 1.58sjrit(S8;16;64; ei)j 350627 430707 430707 430707 430707time rit 0.04s 0.42s 3.46s 25.96s 95.60stime Pr 0.62s 0.80s 0.80s 0.77s 0.61stime MIF3 0.79s 0.79s 0.81s 0.85s 0.85sAt least one thing is lear: the running time of jrit(S8;16;64; ei)j depends on the variableloation in the BDD !The above table shows that the situation is rather lear, at least when the BDD thatenodes the struture funtion is large (whih is the ase here).First, it is not interesting to build auxiliary BDDs, even in the perspetive of manyomputations in a row (for instane to perform sensitivity analyses). Seond, the numerialdi�erentiation is always about twie as ostly as the diret assessment (for it performs twoBDD traversals). Therefore, MIF3 should be prefered.Other experiments have shown that the above remarks apply in general, even in theases where the omponent is not redued to a terminal event.Sylvester-Poinar�e versus Binary Deision Diagrams Binary Deision Diagramsgive exat results. Their are also sometimes muh more eÆient that lassial fault treeassessment algorithms suh as MOCUS [FV72℄.As an illustration, we onsider now a lassial test ase so-alled baobab1 in the litter-ature. This fault tree is made of 61 terminal events and 84 gates (16 and-gates, 59 or-gatesand 9 3-out-of-4-gates). We apply on this tree BDDs as well as our (highly optmized)version of MOCUS [Rau00℄. For this latter algorithm, we onsider 4 relative uto�s. Theminimal utsets C suh that the quotient p(C)=P p(C) is below the relative uto� aredisarded. This makes it possible to redue dramatially the omputational e�ort.The table 2 gives the results we obtained on the baobab1 test ase. These resultsillustrate that BDD are sometimes by order of magnitude more eÆient than MOCUS likealgorithms.The latters make approximations that lead to rather unaurate results. More exatly,either one aepts to pay a high omputational ost (as with the relative uto� 10�5 in ourexample) or the result may be subjet to strong deviations.Moreover, as soon as there is a rather important number of minimal utsets, it is notpossible to ompute the Sylvester-Poinar�e development for orders beyond two (withinreasonable time onstraints).Finally, some minimal utsets of low order may be missed anyway (as the utset oforder 3 in the above example), whih is indeed problemati when omputing importanefators.
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Table 2: Results on the baobab1 test ase.Algorithms BDD MOCUS with a relative uto� of10�2 10�3 10�4 10�5#utsets of order 2 1 1 1#utsets of order 3 1#utsets of order 4 70 8 52 60#utsets of order 5 400 12 64 196#utsets of order 6 2212 36 220 644 1268#utsets of order 7 14748 4 528 4620#utsets of order 8 8460#utsets of order 9 10624#utsets of order 10 6600#utsets of order 11 3072Total 46188 36 244 1289 6145Running times 0.08s 10.28s 20.27s 57.54s 161.57sSylvester-Poinar�e order 1 3.59 10�7 9.39 10�7 1.38 10�6 1.62 10�6Running times 0.00s 0.00s 0.00s 0.00sSylvester-Poinar�e order 2 3.02 10�7 7.07 10�7 9.18 10�7 9.64 10�7Running times 0.00s 0.04s 1.31s 44.18sSylvester-Poinar�e order 3 3.20 10�7 8.34 10�7 1.38 10�6Running times 0.02s 3.50s 530.93sExat probability 1.28 10�6Running times 0.00s
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8 ConlusionIn this paper, we presented a omplete piture of the BDD based algorithms to omputeimportane fators CPr, MIF , CIF , DIF , RAW , RRW and JRI. Most of these algo-rithms are entirely new. It is worth mentioning that:� The algorithms we proposed give exat results (no approximation is performed).� For eah importane fator, we proposed at least one algorithm that works in thease where the omponent is not redued to a terminal event. This opens newperspetives in the ranking of systems, strutures and omponents with respet totheir risk-signi�iane and safety-signi�iane. Referenes [HL93, Arm95, CPS98℄ontain preliminary disussions on this topis.� The algorithms we proposed are very eÆient for they are linear in the size of theBDD that enodes the system if the omponent is redued to a terminal event, andin the produt of the sizes of the BDDs that enode the system and the omponentotherwise. We reported experiments that illustrate their eÆieny.� The algorithms we proposed are therefore good andidates to assess importane fa-tors de�ned over a time period by means of a numerial integration.The results presented here are a part of a study on BDD algorithms to assess Booleanrisk assessment models. This study inludes also on-going works on importane fatorsde�ned over minimal utsets and time dependent analyses.Referenes[Arm95℄ M.J. Armstrong. Joint reliability importane of omponents. IEEE Transationson Reliability, 44:408{412, 1995.[Bir69℄ Z.W. Birnbaum. On the importane of di�erent omponents and a multiompo-nent system. In P.R. Korishnaiah, editor, Multivariable analysis II. AademiPress, New York, 1969.[BP75℄ R.E. Barlow and F. Proshan. Importane of system omponents and fault treeevents. Stohasti Proesses and their Appliations, 3:153{173, 1975.[BRB90℄ K. Brae, R. Rudell, and R. Bryant. EÆient Implementation of a BDD Pakage.In Proeedings of the 27th ACM/IEEE Design Automation Conferene, pages40{45. IEEE 0738, 1990.[CM94℄ O. Coudert and J.-C. Madre. MetaPrime: an Iterative Fault Tree Analyser.IEEE Transations on Reliability, 43(1):121{127, Marh 1994.18
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