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Abstract

In this article, we show how fault tree analysis, carried out by means of binary decision diagrams (BDD), is able to approximate reliability

of systems made of independent repairable components with a good accuracy and a good efficiency. We consider four algorithms: the

Murchland lower bound, the Barlow-Proschan lower bound, the Vesely full approximation and the Vesely asymptotic approximation.

For each of these algorithms, we consider an implementation based on the classical minimal cut sets/rare events approach and another one

relying on the BDD technology. We present numerical results obtained with both approaches on various examples.

q 2004 Published by Elsevier Ltd.
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1. Introduction

In the RAMS (reliability, availability, maintainability

and safety) domain, fault tree (FT) technique is a well

known engineering approach [9,16,18]. It is one of the most

widely used by practitioners. However, because their

limited expressive power, FTs cannot be used to assess

the exact value of system reliability. Consequently, only

approximate computations are used to get this latter quantity

[10]. This article discusses these methods, their

implementations, their accuracies and their efficiencies.

FTs make it possible to assess availability at time t for

any system made of independent components, i.e. the

probability that the system is working at time t: If the system

is made only of non-repairable components, system

availability is same thing as system reliability, i.e.

the probability that the system works continuously from

time 0 to time t: Otherwise, these two parameters differ, in

general by orders of magnitude. There are some cases where

the assessment of system reliability can be reduced to

the assessment of system availability, even if components

are repairable. This is for instance the case when systems

under study are periodically tested [2]. If components are

repairable and their repair times are randomly distributed

these techniques do not apply and no algorithm exists to

assess the exact value of system reliability.

Several approximate computations of system reliability

have been proposed in the literature. These methods involve

basically two ideas: First, to determine system reliability it

suffices to know system failure rate, i.e. the probability that

the system fails between t and t þ dt; given that it worked

continuously from 0 to t: Second, a good approximation of

system failure rate can be obtained by assessing system

conditional failure intensity, i.e. the probability that the

system fails between t and t þ dt; given it was working at t:

System conditional failure intensity can be in turn assessed

by adapting algorithms to compute system availability.

In this article, we study four different algorithms based on

these two ideas. Namely, we consider the Murchland lower

bound, the Barlow–Proschan lower bound, the Vesely

full approximation and the Vesely asymptotic approxi-

mation [5,6]. For each of these algorithms, we consider two

implementations. The first one is based on the classical

minimal cut sets/rare events approach. The second one

relies on the binary decision diagrams (BDD) technology.

In order to test these algorithms, we compared their

results with a Markovian analysis on various examples.

These experiments showed that approximations are

accurate and that algorithms are efficient in terms of

computation times.
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The contribution of this article is as follows. First, we

review mathematical methods to assess system reliability

from a FT. Second, we propose efficient implementations of

these methods. Third, we show, by means of various

examples, that these algorithms give accurate results and are

efficient in terms of computation time. We show also their

limitations.

The remainder of the article is organized as follows.

Section 2 gives some definitions and assumptions. Section 3

presents the four methods under study. Section 4 discusses

their implementation. Finally, Section 5 reports results of an

experimental study.

2. Definitions and assumptions

2.1. Assumptions

Throughout this article, we make the following assump-

tions.

† Systems under study are made of repairable and non-

repairable components.

† Each component c has two modes (working and failed), a

failure rate lc and repair rate mc: If the component is

non repairable, mc is null. lc and mc are constant through

the time.

† Components are independent, i.e. both their failures and

their repairs are statistically independent.

† Components are as good as new after a repair. They are

as good as new at time 0.

† Failures of systems under study are modelled by means

of coherent FTs. In the sequel, we assimilate systems

with their FTs.

As a consequence, systems under study can be

represented also as Markov models.

2.2. System reliability

Let S denote the system under study. Let T denote the

date of the first failure of S: T is a random variable. It is

called the lifetime of S: We assume that components of S

were as good as new at time 0 and that they are as good as

new after a repair.

Reliability RSðtÞ and unreliability FSðtÞ : the reliability of

S at t is the probability that S experiences no failure during

time interval ½0; t�; given that all its components were

working at 0. Formally,

RSðtÞ ¼
def

Pr{t , T} ð1Þ

The unreliability, or cumulative distribution function FSðtÞ;

is just the opposite.

FSðtÞ ¼
def

Pr{t $ T} ¼ 1 2 RSðtÞ ð2Þ

The curve RSðtÞ is a survival distribution. This distribution is

monotonically decreasing. Moreover, the following

asymptotic properties hold.

limt!0RSðtÞ ¼ 1 ð3Þ

limt!1RSðtÞ ¼ 0 ð4Þ

Failure density fSðtÞ : The failure density refers to

the probability density function of the law of T : It is the

derivative of FSðf Þ :

fSðtÞ ¼
def dFSðtÞ

dt
ð5Þ

For sufficiently small dt’s, fSðtÞdt expresses the probability

that the system fails between t and t þ dt; given its was

working at time 0.

Failure rate rSðtÞ: the failure rate or hazard rate is the

probability the system fails for the first time per unit of time

at age t: Formally,

rSðtÞ ¼
def

limdt!0

Pr{the system fails between t þ dt=C}

dt
ð6Þ

where C denotes the event ‘the system experienced no

failure during the time interval ½0; t�’. As before, for

sufficiently small dt’s, one can deduce from definition (6),

the following expression.

rSðtÞdt ¼
Pr½ðt , T # t þ dtÞ> ðt , TÞ�

Prðt , TÞ

¼
Prðt , T # t þ dtÞ

Prðt , TÞ
¼

fSðtÞ

RSðtÞ
¼

dRSðtÞ

dt

� �

RSðtÞ
ð7Þ

By integrating each member of equality (7), one obtains

immediately the following property.

RSðtÞ ¼ exp 2
ðt

0
rSðuÞdu

� �
ð8Þ

2.3. System availability

Availability ASðtÞ and unavailability QSðtÞ: the

availability of S at t is the probability that S is working at

t; given that all its components were working at 0.

ASðtÞ ¼
def

Pr S is working at tf g ð9Þ

The unavailability is just the opposite.

QSðtÞ ¼
def

1 2 ASðtÞ ð10Þ

The following properties hold.

ASðtÞ $ RSðtÞ; for general systems: ð11Þ
ASðtÞ ¼ RSðtÞ; for systems with only non-repairable

components: ð12Þ

Conditional failure intensity lSðtÞ: the conditional failure

intensity refers to the probability that the system fails per
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unit time at time t; given that it was working at time 0 and is

working at time t: Formally,

lSðtÞ¼
def

limdt!0

Pr thesystemfailsbetween tand tþdt=Df g

dt
ð13Þ

where D denotes the event ‘the system S was working at

time 0 and is working at time t:’ The conditional failure

intensity is sometimes called Vesely rate. lSðtÞ is an

indicator of how the system is likely to fail.

Unconditional failure intensity wSðtÞ: the unconditional

failure intensity refers to the probability that the system fails

per unit of time at time t; given it was working at time 0.

Formally,

wSðtÞ¼
def

limdt!0

Pr thesystemfailsbetween tand tþdt=Ef g

dt
ð14Þ

where E denotes the event ‘the system was working at

time 0.’ This parameter is called ‘failure frequency’ by

some authors [1,17].

In the case of systems with non-repairable components,

the following property holds.

wSðtÞ ¼ fSðtÞ; for systems with only non-repairable

components: ð15Þ

Equalities (13) and (14) induce, respectively, properties (16)

and (17).

lSðtÞdt ¼ Pr the system fails between t and t þ dt=Df g

¼ Pr{A=D} ¼ Pr{A=E > F} ¼ Pr{ðA=EÞ=F} ð16Þ

where F denotes the event ‘the system is working at time t:’

wSðtÞdt ¼ Pr the system fails between t and t þ dt=Ef g

¼ Pr{A=E} ð17Þ

Let B be the conditional event ðA=EÞ: B can be expressed as

follows.

B ¼ ðB > FÞ< ðB > �FÞ ð18Þ

Now, if we consider that at most one failure can occur

during the small time interval dt; the event ðB > �FÞ is not

realizable (it corresponds to a repair followed with a

failure). From equality (18), we can conclude that the

compound event ðB > FÞ reduces to event B: Property (16)

can be rewritten as follows.

lSðtÞdt ¼ Pr{B=F} ¼
Pr{B > F}

Pr{F}
¼

Pr{B}

Pr{F}
¼

Pr{A=E}

Pr{F}

¼
wSðtÞdt

ASðtÞ

Therefore, the following property holds.

lSðtÞ ¼
wSðtÞ

ASðtÞ
ð19Þ

Marginal importance factor of the component c ðMIFS;cðtÞÞ :

The marginal importance factor is often called Birnbaum

importance factor [4]. It can be interpreted, when S is a

monotone function, as the conditional probability that, given

that c occurred, the system S is failed and c is critical, i.e. a

repair of c makes the system working. Formally,

MIFS;cðtÞ ¼
def ›QSðtÞ

›QcðtÞ
ð20Þ

Shannon decomposition: The Marginal importance factor

can be reinterpreted by means of the Shannon decomposition.

Let f be any Boolean function and let v be a variable.

Then, the following equality holds.

f ¼ vf½1=v� þ �vf½0=v� ð21Þ

wheref½i=v� denotes the functionf evaluated at v ¼ i: In terms

of probabilities, equality (18) can be rewritten as follows.

PrðfÞ¼PrðvÞPrðf½1=v�Þþð12PrðvÞÞPrðf½0=v�Þ

¼PrðvÞðPrðf½1=v�Þ2Prðf½0=v�ÞÞþPrðf½0=v�Þ ð22Þ

The following equality holds from definition (20) and

equality (22).

MIFS;cðtÞ¼PrðS½1=c�Þ2PrðS½0=c�Þ ð23Þ

The set of states in which the system S is failed can be

decomposed in three subsets: the set S1 of states in which the

repair of the component c repairs the system. The set S0 of

states in which the failure of c repairs the system. Finally, the

set S2 of states in which the system is failed, whatever is

the state of the component c: Since the system is coherent,

S0¼B: It follows that S½1=c� describes S1<S2 and S½0=c�

describes S2: Let CRITS;cðtÞ denote the probability that is

system S is in a critical state w.r.t. the component c at time t;

i.e. a state in which S is not failed and a failure of c induces a

failure of S: From the above developments, the following

equality holds.

CRITS;cðtÞ¼AcðtÞMIFS;cðtÞ ð24Þ

For sufficiently small value of dt; the probability that the

system fails between t and dt; is as follows.

Pr{thesystemfailsbetween tand tþ dt}

<
X
c[S

dtlc0CRITS;cðtÞ ð25Þ

Therefore, assuming that the system was perfect at time 0, the

following equality holds.

wSðtÞ¼
X
c[S

MIFS;cðtÞwcðtÞ ð26Þ

where wcðtÞ¼lcAcðtÞ:
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3. Approximate computations

If the system S under study is made only of non-

repairable components, RSðtÞ ¼ QSðtÞ and rSðtÞ ¼ lSðtÞ: In

the general case, this equality does not hold.

3.1. Murchland lower bound

Let NSðtÞ be the number of failures the system

experimented between time 0 and t: Let E½X� denote the

mathematical expectation of a random variable X:

Then, according to Markov inequality, the following

property holds.

FSðtÞ ¼ PrðNSðtÞ $ 1Þ $ E½NSðtÞ� ð27Þ

According to Eqs. (25) and (26), wSðtÞ be interpreted as the

derivative of E½NSðtÞ�: Hence, the Murchland lower bound

of the reliability.

F½M�
S $

ðt

0
wSðtÞdt ð28Þ

Indeed, F½M�
S ðtÞ is close to FSðtÞ only for small values of t:

3.2. Barlow–Proschan lower bound

In Ref. [3], Barlow and Proschan remark that the mean

time to failure (MTTF) is always greater than the mean up

time (MUT). They show also the following equality.

MUT ¼
ASð1Þ

wsð1Þ
¼

1

lSð1Þ
ð29Þ

From equality (29), they derive the following upper bound

of the unreliability.

F½BP�
S $ tlSð1Þ ð30Þ

3.3. Vesely approximations

The underlying idea of both Vesely approximations of

the reliability is to substitute lSðtÞ for rSðtÞ in Eq. (8).

The full Vesely approximation F½V�
S ðtÞ is defined as follows.

F½V�
S ðtÞ ¼ 1 2 exp 2

ðt

0
lSðuÞdu

� �
ð31Þ

The asymptotic Vesely approximation F½V ;1�
S ðtÞ is defined as

follows.

F½V ;1�
S ðtÞ ¼ 1 2 e2lSð1Þt ð32Þ

This latter approximation works for large values of t only.

4. Implementation

This section presents algorithms to assess reliability

according to the previous mathematical developments.

We consider two kinds of implementations:

† The classical approach based on minimal cut sets and

rare event approximation.

† The BDD approach.

We would not discuss here methods to get minimal cut

sets. We assume minimal cut sets are given.

4.1. Preliminaries

The unavailability at time t of a repairable component is

determined according to the well-known following equation

[11].

QcðtÞ ¼
lc

lc þ mc

£ ð1 2 e2ðlcþmcÞtÞ ð33Þ

In order to implement approximate computations, we need

basically two algorithms.

† An algorithm to assess QSðtÞ; or equivalently ASðtÞ:

† An algorithm to assess MIFS;cðtÞ or wSðtÞ:

Integrals are computed numerically (in our implemen-

tation, using a triangular approximation).

4.2. Classical approach

The rare event approximation is as follows.

QSðtÞ <
X

p[MCS½S�

QpðtÞ ð34Þ

where MCS½S� denotes the set of minimal cut sets of S and

QpðtÞ is the product over the basic events c that occurs in p

of the QcðtÞ
0s:

QS½0=c�ðtÞ and QS½1=c�ðtÞ can be determined in the same

way. Since S is assumed to be coherent, MCS½S� can be

splitted into two disjoint subsets: the set of the cut sets

that contain c and the set of the cut sets that do not contain c:

Let MCS1=c½S� and MCS0=c½S� denote, respectively, the

sets {p [ MCS½S�; c [ p} and {p [ MCS½S�; c � p}:

The following properties hold.

QS½1=c�ðtÞ <
X

p[MCS1=c½S�

QpðtÞ

QcðtÞ
þ

X
p[MCS0=c½S�

QpðtÞ ð35Þ

QS½0=c�ðtÞ <
X

p[MCS0=c½S�

QpðtÞ ð36Þ

From approximation of Eqs. (35) and (36), the following

property holds.

MIFS;cðtÞ <
X

p[MCS1=c½S�

QpðtÞ

QcðtÞ
ð37Þ

Approximation Eq. (37) gives a two steps algorithm to

compute wSðtÞ: First, the probability of each cut set is

computed (in one pass through MCS½S�). Second, the wSðtÞ
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is assessed using property (37) (again in one pass through

MCS½S�). Therefore, the whole algorithm is in OðlMCS½S�lÞ;
where lMCS½S�l denotes the size of the encoding of

MCS½S�:

4.3. Binary decision diagrams: principles

BDD are the state-of-the-art date structure to encode and

manipulate Boolean functions. They are nowadays used in a

wide range of areas. Since their introduction in the RAMS

field, they have proved to be the most efficient tool to assess

FTs [7,12–15].

The BDD representation is based on the Shannon

decomposition: Let f be a Boolean function that depends

on the variable v: By choosing a total order over the

variables and applying recursively the Shannon decompo-

sition, the truth table of any formula can be graphically

represented as a binary tree. The nodes are labelled with

variables and have two outedges: a then-outedge, pointing

to the node that encodes f½1=v�; and an else-outedge,

pointing to the node that encodes f½0=v�: The leaves are

labelled with either 0 or 1. The value of the formula for a

given variable assignment is obtained by descending along

the corresponding branch of the tree.

Indeed such a representation is very space consuming.

It is however possible to shrink it by means of the following

two reduction rules.

† Isomorphic subtrees merging. Since two isomorphic

subtrees encode the same formula, at least one is useless.

† Useless nodes deletion. A node with two equal sons is

useless since it is equivalent to its son ðf ¼ vfþ �vfÞ:

By applying these two rules as far as possible, one get the

BDD associated with the formula. A BDD is therefore a

directed acyclic graph. It is unique, up to an isomorphism.

This process is illustrated in Fig. 1.

Logical operations (and, or, x or, …) can be directly

performed on BDDs. This results from the orthogonality of

usual connectives and the Shannon decomposition:

ðvf1 þ �vf0Þ%ðvw1 þ �vw0Þ ¼ vðf1%w1Þ þ �vðf0%w0Þ ð38Þ

where % is any binary connective.

Among other consequences, this means that the complete

binary tree is never built and then shrunk: the BDD

encoding a formula is obtained by composing the BDDs

encoding its subformulae. Moreover, a caching principle is

used to store intermediate results of computations.

This makes the usual logical operations (conjunction,

disjunction) polynomial in the sizes of their operands.

4.4. Binary decision diagrams: quantification

In order to assess QSðtÞ given a BDD that encodes S; it

suffices to apply the Shannon decomposition (22) at each

node. This idea, together with the caching mechanism,

gives a linear time algorithm [12]. This algorithm is

sketched Fig. 2.

The algorithm of Fig. 2 is in OðlflÞ: MIFS;cðtÞ can be

assessed in the same way, according to the following

decomposition [8].

MIF1;cðtÞ0

MIF0;cðtÞ0

MIFcS1 �cS0;c
ðtÞQS1

ðtÞQS0
ðtÞ

ð39Þ

MIFdS1
�dS0;c

ðtÞQdðtÞMIFS1
ðtÞð1QdðtÞÞMIFS0

ðtÞÞ

Decomposition (39) together with the caching mechanism

make it possible to design an OðlBDDðSÞlÞ algorithm.

This algorithm works in two traversals of the BDD: a first

traversal to compute unavailability at each node and a

second pass to compute MIF at each node.

The above algorithm could be used for approximate

computations. However, the same idea can be applied to get

wSðtÞwSðtÞ is obtained by two traversals of the BDD which

avoids to perform a computation of MIFS;cðtÞ for each basic

event c: The corresponding decomposition is as follows.

w1ðtÞ ¼ 0

w0ðtÞ ¼ 0

wcS1þ�cS0
ðtÞ ¼ wcðtÞ QS1

ðtÞ2 QS0
ðtÞ

h i
þ QcðtÞ £ wS1

ðtÞ

þ 1 2 QcðtÞ
	 


wS0
ðtÞÞ ð40Þ

The algorithm derived from decomposition (40) is in

OðlBDDlÞ which is to be compared to the OðnlMCS½S�lÞ
of the corresponding classical algorithm. This linear

time complexity is of great interest to assess Murchland

lower bound and Vesely full approximation: these two

methods require to perform a numerical integration

which in turn requires a lot of points to be accurate.Fig. 1. From the Shannon Tree to the BDD.

Fig. 2. Algorithm to assess a probability from a BDD.
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5. Experimental results

5.1. Accuracy

As an illustrative example, we consider the FT is pictured

Fig. 3. Its reliability parameters are given in Table 1. This

test case is very representative of what can be observed on

real-life models. We performed dozens of experiments on

different models that gave similar results. The FT of Fig. 3

admits 12 MCS of order 2, 10 of order 3 and 21 of order 4.

The asymptotic conditional failure intensity lSð1Þ for this

test case is 2.32 £ 1024. Its MUT is 4312 h.

Fig. 4 shows FtopðtÞ assessed by means of a Markov

analysis. The curve consists of 200 points (FtopðtÞ has been

computed at t ¼ 100; 200, 300,…, 20,000 h).

Fig. 5 shows the relative error r½Murchland�
S ðtÞ of the

Murchland lower bound computed at the same points as

the curve drawn Fig. 4. The relative error is defined as

follows.

r½Murchland�
S ðtÞ ¼

def F½Markov�
S ðtÞ2 F½Murchland�

S ðtÞ

F½Markov�
S ðtÞ

ð41Þ

Figs. 6–8 do the same for the Barlow–Proschan lower

bound, the asymptotic Vesely approximation and the full

Vesely approximation. The curve named BDD gives the

results of BDD algorithm while the curve named SoP gives

the results of the Sum-Of-Products algorithm, i.e. the

classical minimal cut sets/rare event approach.

Several remarks can be made about these curves.

† The four methods give quite accurate results. The Full

Vesely Approximation gives especially good results,

with a relative error that never exceeds 6%.

† The curve of the classical Sum-Of-Products algorithm is

always above the curve of the BDD algorithm. This is

due to the rare-event approximation, which is optimistic.

The distance between the two curves decreases as the

probabilities of basic events (i.e. their l0s) decrease.

† The relative error of Murchland and Barlow–Proschan

lower bounds increases up to t ¼ 4000 h and then

decreases (this threshold indeed varies according with

the model).

† The methods show a different behavior close to the

origin. A zoom on the curves is shown for each method

Figs. 9–12. This different behavior can be explained by

the fact that numerical values are very small close to the

origin. Therefore, they can impacted strongly by round-

ing errors (this is especially true for the Markov

assessment).

† The Barlow–Proschan lower bound is never better than

the asymptotic Vesely approximation. Since both

methods are of the same complexity, the latter should

be used rather than the former.

† The full Vesely approximation gives in most of the cases

more accurate results than the Murchland lower bound.

This is indeed true when t is large. This is also true for

small values of t: Since the two methods are of the same

complexity (both require a numerical integration), the

former should be used preferably to the latter.

Fig. 3. A fault tree.

Table 1

Reliability parameters for the FT pictureFig. 3

Basic events 1, 2, 3

( h21)

4, 6, 9

( h21)

5, 6, 8

( h21)

10, 11, 12

( h21)

l 1.0 £ 1024 2.0 £ 1024 1.0 £ 1023 2.0 £ 1023

m 0.05 0.08 0.1 0.125

Fig. 4. FtopðtÞ assessed by means of a Markov analysis.
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Fig. 5. Relative error of the Murchland lower bound.

Fig. 6. Relative error of the Barlow–Proschan lower bound.

Fig. 7. Relative error of the asymptotic Vesely approximation.

Fig. 8. Relative error of the full Vesely approximation.
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Fig. 9. Relative error of the Murchland lower bound (zoom).

Fig. 10. Relative error of the Barlow–Proschan lower bound (zoom).

Fig. 11. Relative error of the asymptotic Vesely approximation (zoom).

Fig. 12. Relative error of the full Vesely approximation (zoom).
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All the above remarks apply to almost all systems we

dealt with.

5.2. Efficiency

In order to test the efficiency of the four methods, we

applied them on real-life FTs of various sizes (and coming

from various industries). Table 2 gives the results. The first

five columns give some information about the trees

(name, number of gates, number of basic events, size of

the BDD, number of MCS considered). The actual number

of cut sets is almost always bigger than the given number,

but we considered here only the most important MCS.

The last height columns give the running times of both the

classical and the BDD approach for the four methods under

study. The running times are those to assess the reliability at

both 24, 680, 8760 and 43,800 h.

Several remarks can be made about these results.

† F½BP� and F½Vð1Þ� are much easier to compute than F½M�

and F½V�: This holds for both the classical and the BDD

approaches.

All of the methods are quite efficient. None of them takes

more 60 s on a laptop computer.

When the number of cut sets is low, the classical

approach is often faster than the BDD approach, although

less precise.

6. Conclusion

The exact value of system reliability cannot be computed

from a FT. In this article, we studied four different

methods to compute approximate values. We considered

implementations for both the classical minimal cut sets/rare-

event approach and the BDD approach. We show, by means

of examples, that these methods are accurate and efficient.

With that respect, the full and asymptotic Vesely

approximations are especially interesting. The full Vesely

approximation gives almost always the most accurate

results. The asymptotic Vesely approximation is less precise

but much faster.

Throughout this article, we assumed that the FTs under

study are coherent. Several important properties we used

here are true only for such systems. However, one has

sometimes to handle non-coherent Boolean models, for

instance when dealing with success branches of event trees.

The mathematical framework to design approximate

computations of the reliability of non-coherent systems is

still to develop. This development requires almost certainly

to revisit a number of central notions of FT analysis,

including the notion of importance factors.
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