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Abstract
Importance factors are indicators of the risk significance of the components of a system. They are widely used in prob-
abilistic safety analyses to rank components according to their contribution to the global risk. In this article, we review
definitions and interpretations of importance factors in the case the support model is a coherent fault tree, and failures
of components are described by basic events of that fault tree. First, we show that each importance factor characterizes
the probability of a certain set of minterms. The notion of critical states, that is, minterms in which failing/repairing the
component suffices to fail/repair the system, plays a central role in this process. Then, we discuss assessment algorithms
for the two main technologies at hand: minimal cutsets and binary decision diagrams. Finally, we draw some practical
conclusions from these developments. This article thus contributes to clarify mathematical and algorithmic foundations
of importance factors.
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Introduction

One of the activities of risk assessment is expected to be
the ranking of the components of the system under
study with respect to their risk significance or their
safety significance. Importance factors are probabilistic
indicators that aim to capture different aspects of this
significance and thus to make it possible to rank com-
ponents in different ways.1–6 They are primarily defined
for the case the support model is a coherent fault tree,
and failures of components are represented by basic
events of this fault tree. Most of them have been intro-
duced in the 1970s,7–9 that is, at a time where the pre-
dominant, if not the only, technology to assess fault
trees consisted in calculating probabilistic measures
from minimal cutsets (MCS).10,11 For this reason, most
of importance factors are usually defined and calcu-
lated in terms of MCS.

In the 1990s, a new assessment technology for fault
trees came into play: Bryant’s binary decision dia-
grams12,13 (BDDs). To the noticeable exception of large
models of the nuclear industry, BDDs have proved to
outperform the MCS technology (see, for example,
Rauzy14 for an overview of their use for risk analyses).
Among other advantages over the MCS approach,
BDDs make it possible to calculate exact values of
probabilistic measures. In 2001, the authors published

an article in which they proposed BDD-based algo-
rithms to calculate importance factors15 (a first step
into this direction has been done before by Sinnamon
and Andrews16). To do so, we derived ‘‘pure’’ mathe-
matical definitions from actual definitions of impor-
tance factors (in terms of MCS), therefore separating
mathematical concepts from calculation means.

In the cited article, we did not draw, however, all the
consequences of this new perspective on importance
factors, nor we discussed its relationship with the MCS
approach. The aim of this article is to fill this hole by
reinterpreting importance factors in terms of minterms.
Mathematically speaking, minterms are the atoms of
the underlying Boolean algebra. They represent global
states of the system under study. This new interpreta-
tion clarifies dramatically the mathematical and physi-
cal meanings of importance factors. Namely, we show
that they can be categorized according to the set of
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minterms they characterize, which is necessarily one of
the following three sets:

� The set of minterms that fail both the system and
the component;

� The set of minterms that fail the system but not the
component;

� The set of critical states, that is, of minterms in
which failing/repairing the component suffices to
fail/repair the system.

Thanks to this clarification, we can study assessment
algorithms for importance factors, based on the two
technologies at hand, namely, MCS and BDDs, and
draw some conclusions regarding their practical use.

This article contributes therefore to clarify mathemat-
ical and algorithmic foundations of importance factors.
The remainder of this article is organized as follows:

� Section ‘‘Basic definitions and properties’’ intro-
duces basic definitions and properties.

� Section ‘‘MCS’’ recalls definition of MCS.
� Section ‘‘Critical states’’ introduces the notion of

critical states.
� Section ‘‘Importance factors of coherent systems’’

presents definitions and interpretations of impor-
tance factors.

� Section ‘‘Algorithms’’ recalls algorithmic principles
of their calculations.

� Based on the developments of the previous sections,
section ‘‘Discussion’’ discusses their use.

� Finally, section ‘‘Conclusion’’ concludes the article.

Basic definitions and properties

Throughout this article, we consider Boolean formulae
built over a denumerable set E of variables and the
usual connectives ‘‘�’’ (and), ‘‘+ ’’ (or) and ‘‘2’’ (not).
Variables are also called basic events.

We use uppercase letters, E, A, B, C, possibly with
subscripts, to denote basic events. We use lowercase let-
ters, s, t, c, possibly with subscripts, to denote Boolean
formulae. We denote by var(s) the variables occurring
in the formula s.

Let s be a Boolean formula. A variable assignment of
s is a function from var(s) into f0, 1g. Variable assign-
ments are lifted up as usual as functions from formulae
into f0, 1g using the truth tables of connectives. A
Boolean formula s is interpreted as the Boolean function
s½ �½ �, that is, as the function from variable assignments of
s into 0, 1, defined as follows: for any variable assign-
ment s of s, s½ �½ �(s)=1 if s(s)=1 and 0 otherwise.

In this article, we do not need to distinguish between
syntax and semantics. Therefore, we shall assimilate the
Boolean formula s with its semantics s½ �½ �.

A literal is either a variable E or its negation E. We
use uppercase letters, L, I, J, possibly with subscripts,
to denote literals. We denote by �L the opposite of a lit-
eral L, given that L[L. Let L be a set of literals, we

denote by �L the set of negations of literals of L, that is,
f �L;L 2 Lg.

A product is a conjunct of literals that does not con-
tain both a variable and its negation. Let s be a
Boolean formula. A minterm of s is a product that con-
tains a literal built over each variable of var(s). We use
lowercase Greek letters, s, t, p, r, possibly with sub-
scripts, to denote products and minterms. We denote
as Minterms(e) the set of 2jej minterms that can be built
over a set of basic events e.

There is a one-to-one correspondence between variable
assignments and minterms (and therefore between
Boolean functions and sets or disjuncts of minterms): the
variable assignment s one-to-one corresponds with the
minterm p such that p contains the positive literal E if
s(E)=1 and the negative literal �E if s(E)=0. It follows
that any Boolean formula s is equivalent to the set of min-
terms p such that p(s)=1. Minterms of Minterms(e) are
the atoms of the Boolean algebra built over e.

For the sake of convenience, we shall use a set theory
notation, that is, we shall note p 2 s when p(s)=1 and
p 62 s when p(s)=0. Note also that p 62 s if and only if
p 2 �s.

Example (minterms). As an illustration, consider the two
formulae s1 =A � B+A � C+B � C and s2 =A � B+
�A � C. The minterms of s1 and s2 are as follows

s1 [A � B � C+A � B � �C+A � �B � C+ �A � B � C
s2 [A � B � C+A � B � �C+ �A � B � C+ �A � �B � C

Let s be a Boolean function and L= fL1, . . . ,Lkg
be a set of literals built over a subset of var(s). We
denote by sjL the Boolean function built over
var(s)nvar(L) as follows

sjfL1, . . . ,Lkg =
def fpjL1, . . . ,Lk � p 2 sg

For the sake of the simplicity, we write sjL1, . . . ,Lk

(instead of sjfL1, . . . ,Lkg). The notation sjL is inten-
tionally close to the one used for conditional probabil-
ities because it is really what it means: s given L.

Example (sjL). Considering the function s1 defined
above, the following equalities hold

s1jA[B � C+B � �C+ �B � C=B+C

s1j �A[B � C
s1jA,B[C

s1jA, �B[C

We can now state the Shannon decomposition.

Property 1 ((logical) Shannon decomposition). Let s be a
Boolean formula and E a basic event of var(s). Then, the
following equivalence holds

s[E � sjE+ �E � sj �E

Throughout this article, we shall assume that basic
events are independent from a statistical viewpoint.
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The above equivalence is translated in terms of prob-
ability by the either of the two equalities that will play
an important role later.

Property 2 ((probabilistic) Shannon decomposition). Let s be a
Boolean formula and E a basic event of var(s). Then, the
following equalities hold

Prfsg=PrfEg � PrfsjEg+1� PrfEg � Prfsj �Eg ð1Þ
Prfsg=PrfEg � PrfsjEg � Prfsj �Eg+Prfsj �Eg ð2Þ

In the framework on safety and reliability analyses,
basic events represent general failures of components of
the system under study. Therefore, there is an asymme-
try between a positive literal that represents the occur-
rence of a failure and its negation. The former has in
general a much lower probability than the latter.

This asymmetry induces a natural partial order
among minterms. The minterm s is smaller than the
minterm p, which we denote by s v p, if for any basic
event E, E 2 s implies that E 2 p. In other words, all
components failed in s are failed in p as well.

A Boolean function s is coherent if for any two min-
terms s and p, such that s v p, s 2 s implies that
p 2 s. In other words, in a coherent system, the more
the components failed, the more likely the system itself
failed. Or to put it the other way round, the repair of a
component cannot fail the system.

A formula built over only connective ‘‘�’’ and ‘‘+ ’’ is
coherent.

Example (coherence). The above function s1 is coherent
while s2 is not: �A � �B � C 2 s2, but A � �B � C 62 s2.

If a function s is not coherent, it is always possible to
consider a coherent upper approximation of s. Namely,
the coherent envelope of s, denoted as sd e, which is the
smallest coherent set of minterms that contains s

sd e =def fp 2Minterms(var(s)); 9s,s v p ^ s 2 sg

Obviously, for any function s, s � sd e and s is coher-
ent if and only if sd e[ s.

Example (coherence). Consider again s2 =A � B+ �A � C

s2 [A � B � C+A � B � �C+ �A � B � C+ �A � �B � C
s2d e[A � B � C+A � B � �C +A � �B � C + �A � B � C+ �A � �B � C

[A � B+C

The added minterm is boxed.

MCS

In this section, we recall basic definitions and properties
of MCS. Our presentation follows Rauzy17 (see also
Rauzy14).

Let e be a finite set of variables and let p be a posi-
tive product built over some of the variables of e. We

denote by pb ce the minterm obtained by completing p

with negative literals built over variable of e that do not
show up in p.

Example ( pb c). Consider the positive products A � B
and C. Then, we have A � Bb cfA,B,Cg=A � B � �C and
Cb cfA,B,Cg= �A � �B � C.
Let s be a Boolean function and p be a positive

product built over some of the variables of var(s). Then

� p is a cutset of s if pb cvar(s) 2 f;
� p is a MCS of s if it is a cutset of s and there is no

cutset r of s such that r p.

We denote by MCS(s) the disjunction of MCS of s.
This formal definition of MCS, first given in Rauzy,17

works equally for coherent and noncoherent formulae.

Example (MCS). Consider again our two functions
s1 =A � B+A � C+B � C and s2 =A � B+ �A � C. We
have

MCS(s1)=A � B+A � C+B � C
MCS(s2)=A � B+C

The following property, again established in
Rauzy,17 characterizes coherent functions through their
MCS.

Property 3 (MCS and coherence). Let s be a Boolean func-
tion, then s is coherent if and only if MCS(s)[ s.
Moreover, in any case, sd e[MCS(s).

Example (coherent envelope). Consider again the function
s2 =A � B+ �A � C

s2 [A � B � C+A � B � �C+ �A � B � C+ �A � �B � C
MCS(s2)[A � B+C[ s2d e

The calculation of the probability of a set (a disjunc-
tion) of MCS could be done through the so-called
Sylvester–Poincaré development (also called inclusion–
exclusion principle)

p(p1 + � � � +pn)=
X

14i4n

Prfpig

�
X

14i1 \ i24n

Prfp11 � pi2g

+ � � �
+(� 1)k+1

X
14i1 \ ���\ ik4n

Prfp11 . . . pikg

+ � � �

ð3Þ

This development contains, however, 2n terms to
calculate, which would lead to an exponential blow-up.
The transformation of the set of MCS into a set of
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disjoint products (from which the probability can be
easily calculated), although sometimes more efficient
than the inclusion–exclusion principle, suffers from the
same problem (see, for example, Châtelet et al.18 for a
review of algorithms to calculate sum-of-disjoint prod-
ucts). Therefore, approximations are used. The so-
called mincut upper bound (MCUB) consists in taking
only the first term of the Sylvester–Poincaré develop-
ment. Namely

MCUB(p1 + � � � +pn) =
def P

14i4n

Prfpig

MCUB is a safe approximation in the sense that for
any disjunction U of products, PrfUg4MCUB(U).
Moreover, for most of the real-life coherent system s,
this approximation is very accurate: PrfMCS(s)g’

MCUB(MCS(s)).
Another approximation is often used, the so-called

rare event approximation (REA), which is as follows

REA(p1 + � � � +pn) =
def

1�P14i4n(1� Prfpig)

We will not use the REA in the sequel.

Critical states

The notion of critical state is the core of the theory of
importance factors. Although this notion may sound
familiar to the reader, to our knowledge, the presenta-
tion we give here is original and completes an interpre-
tation sketched by Vaurio.19

Let s be the Boolean function and L be the literal
built over a basic event of var(s). We define critical and
noncritical states of s with respect to L as follows

crit(s,L) =
def fL � p 2 s; �L � p 2 �sg

crit(s,L) =
def fL � p 2 s; �L � p 2 sg

Intuitively, a minterm L � p of s is critical with
respect to the literal L if by flipping the value of L we
change also the value of s.

Example (critical states). Consider again the function
s1 =A � B+A � C+B � C. We have

crit(s1,A)=A � B � �C+A � �B � C
crit(s1,A)=A � B � C
crit(s1, �A)=0
crit(s1, �A)= �A � B � C
crit(�s1,A)=0
crit(�s1,A)=A � �B � �C
crit(�s1, �A)= �A � B � �C+ �A � �B � C
crit(�s1, �A)= �A � �B � �C

As suggested by the above example, the notion of
criticality separates the minterm space into eight zones,
according to the three binary choices s=�s, E= �E and
Critical=Critical. This separation is graphically illu-
strated in Figure 1.

This figure illustrates also two simple properties
(that follows immediately from the definitions)

E � s=crit(s,E)+ crit(s,E)

�E � s=crit(s, �E)+ crit(s, �E)

Moreover, zones are paired by flipping the value of
E, as established by the following property.

Property 4 (minterm zones). Let s be a Boolean function
and E be a basic event of var(s). Then, the following
equivalences hold

crit(s,E)jE[ crit(�s, �E)j �E
crit(s, �E)j �E[ crit(�s,E)jE
crit(s,E)jE[ crit(s, �E)j �E
crit(�s,E)jE[ crit(�s, �E)j �E

Intuitively, the above property says that for any min-
term E � p of crit(s,E), the minterm �E � p belongs to
crit(�s, �E) and vice versa. The above logical equivalences
translate indeed into probabilities: Prfcrit(s,E)jEg=
Prfcrit(�s, �E)j �Eg, . . . . In the case, s represents a coherent
system, the repair of a component cannot fail the sys-
tem. Therefore, the following property holds.

Property 5 (minterm zones of coherent systems). Let s be a
coherent Boolean function and E be a basic event of
var(s). Then, the following equalities hold

crit(s, �E)= crit(�s,E)=0

crit(s,E)jE=crit(s, �E)jE= sj �E

We have now all the elements to revisit importance
factors.

Importance factors of coherent systems

As mentioned in the ‘‘Introduction’’ section, impor-
tance factors have been defined at a time MCS were the
predominant, if not the only, technology at hand to

Figure 1. Minterm zones.
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assess fault trees. For this reason, they are usually inter-
preted in terms of MCS. Moreover, only coherent mod-
els were considered (the formal extension of the notion
of MCS to noncoherent models came later17).

In this section, we shall review the main importance
factors. We shall give their definitions both in terms of
MCS and in terms of minterms and discuss their mean-
ings. We shall also illustrate their interest and draw-
backs by means of small examples.

Marginal importance factor

In many scientific domains, parametric models are
defined, and a central question is to measure the
sensitivity of the model to variations of its parameters.
A way to do so is the so-called marginal gain technique
which consists of making each of the parameter
vary slightly in turn, and to observe, mutatis mutandis,
the variations induced on the measure(s) at stake.

This typical local sensitivity technique has been used
by Birnbaum7 to express the importance measure he
proposed. The marginal importance factor (MIF),
denoted by MIF(s,E), is defined as follows

MIF(s,E) =
def ∂½Prfsg�

∂½PrfEg�

The MIF can be assessed by calculating first Prfsg
with the regular value of PrfEg, then with a slightly
modified value of PrfEg, for example, PrfEg+ e. But
it is generally more efficient and anyway more interest-
ing to apply the second form of the Shannon decompo-
sition (equation (2))

MIF(s,E) =
def ∂½Prfsg�

∂½PrfEg�

=
∂½PrfEg � PrfsjEg � Prfsj �Eg � Prfsj �Eg�

∂½PrfEg�
=PrfsjEg � Prfsj �Eg

ð4Þ

Now look at Figure 1. When s is coherent, according
to property 5, crit(s, �E)=0. Therefore, according to
property 4, Prfsj �Eg=crit(s, �E)j �E=crit(s,E)jE. Since
sjE= s � EjE=(crit(s,E)+ crit(s,E))jE, the following
property holds.

Property 6 (MIF and critical states). Let s be a coherent fault
tree and E be a basic event of s, then the following equal-
ities hold

MIF(s,E)=Prfcrit(s,E)jEg ð5Þ

MIF(s,E)=Prfcrit(s,E)g+Prfcrit(�s, �E)g ð6Þ

As we shall see, equations (5) and (6) play a central
role in importance factors theory. Now let us come
back to equation (4) and approximate them by means

of MCS. MCS of s can be split into two subsets: those
that contain E and those that do not contain E (nor �E).

Using MCUB approximation, we have

PrfsjEg ’
X

E�p2MCS(s)

Prfpg+
X

p2MCS(s),E 62p

Prfpg

Prfsj �Eg ’
X

p2MCS(s),E 62p

Prfpg

Therefore, applying equality (4), we have

MIF(s,E) ’
P

E�p2MCS(s)

Prfpg

Critical importance factor

One of the inconveniences of the MIF is that it does
not take into account the probability of the basic event.
So, if two basic events play similar roles, their ranking
according to the MIF will be close, even if their prob-
abilities differ by orders. The critical importance factor
(CIF), denoted by CIF(s,E), is an attempt to correct
this drawback. It has been introduced by Lambert.8 It
is defined as follows

CIF(s,E)=
def PrfEg3MIF(s,E)

Prfsg

By equality (5), PrfEg3MIF(s,E)=Prfcrit(s,E)g.
Moreover, the denominator Prfsg will be the same for
all basic events and therefore play no role in the raking
of components of a same model. It should be seen as a
way to normalize results over different models. CIF(s,E)
is directly a measure of criticality of the component E.

It can be approximated via MCS using MCUB as
follows

CIF(s,E)’

P
E�p2MCS(s)

PrfE � pgP
p2MCS(s)

Prfpg ð7Þ

Diagnostic importance factor

The diagnostic importance factor (DIF) does not
attempt to measure the criticality of components but
rather to determine which component should be looked
at first when the system is failed in order to repair it.
This notion is of interest in harsh environments where
sending a robot, or even worse a human operator, may
present serious difficulties. So, the faster one finds the
problem the better.

The DIF, denoted by DIF(s,E), has been introduced
by Vesely and Fussel.9 It is defined as follows

DIF(s,E) =
def

PrfEjsg

By conditional probability rule, the following equal-
ity holds

DIF(s,E)=
PrfE � sg
Prfsg
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In other words, DIF(s,E) is the fraction of the sys-
tem unavailability (or risk) that involves the component
failure. Again Prfsg should be seen as a normalization
factor.

DIF(s,E) can be approximated via MCS using
MCUB as follows

PrfsjEg’
X

E�p2MCS(s)

Prfpg+
X

p2MCS(s),E 62p

Prfpg

DIF(s,E)’
PrfEg3PrfsjEgP

p2MCS(s)

Prfpg

Vesely–Fussel importance factor

As mentioned above, the DIF is often called Vesely–
Fussel importance factor after its authors. In some text-
books, however, it is defined as follows (we denote it
VF(s,E) for Vesely–Fussel)

VF(s,E) =
def

Pr
P

E�p2MCS(s)

E � p
( )

Pr
P

p2MCS(s)

p

( )

At a first glance, such a definition seems very close
to those we have already seen. In particular, it looks
pretty much the same as the interpretation of CIF(s,E)
(and not DIF(s,E)) in terms of MCS (using equation
(7)). It turns out, however, that VF(s,E) is equivalent
to neither CIF(s,E) nor DIF(s,E) as illustrated by the
following example.

Example (VF(s,E)). Let s=A �B �C+A �B �D+C �D.
We have

crit(s,A)=A � B � C � �D+A � B � �C �D
A � s=A � B � C �D+A � B � C � �D

+A � B � �C �D+A � �B � C �DX
A�p2MCS(s)

A � p =A � B � C �D+A � B � C � �D

+A � B � �C �D

Therefore, in that case

CIF(s,E)\VF(s,E)\DIF(s,E)

The point is that the indicator VF(s,E) has no physi-
cal meaning! Its value may vary from CIF(s,E) to
DIF(s,E) depending on s and E. MCS are just a calcu-
lation artifact. They cannot be used to describe states
of the system!

Risk achievement worth and risk reduction worth

The two other main importance factors, widely used in
nuclear probabilistic safety assessment (PSA), are the
risk achievement worth (RAW) and risk reduction

worth (RRW) (also called risk increase factor and risk
decrease factor,20 respectively). They are defined as
follows

RAW(s,E) =
def PrfsjEg

Prfsg

RRW(s,E) =
def Prfsj �Eg

Prfsg

RAW measures the increase in system failure prob-
ability assuming the worst case of failing component. It
is an indicator of the importance of maintaining the
current level of reliability for the component.4 In Wall
and Worledge,2 it is argued that RAW should be used
with care, for it is rather rough.

RRW represents the maximum decrease in the risk
that may be expected by increasing the reliability of the
component. Therefore, this quantity may be used to
select components that are the best candidates for
efforts leading to improving system reliability. Note
that RRW is sometimes defined as Prfsg=Prfsj �Eg, that
is, the inverse of the above definition (e.g. in
RiskSpectrum20). Taking one definition or the other
does change anything but the presentation of the
results.

None of these importance factors take into account
the probability of failure of the component and both
are normalized with the denominator Prfsg. Using
MCUB, they can be approximated via MCS as follows

PrfsjEg’
X

E�p2MCS(s)

Prfpg+
X

p2MCS(s),E 62p

Prfpg

RAW(s,E)’
PrfsjEgP

p2MCS(s)

Prfpg

RRW(s,E)’

P
p2MCS(s),E 62p

PrfpgP
p2MCS(s)

Prfpg

Algorithms

In this section, we shall discuss calculation algorithms
and potential problems. As mentioned previously, there
are mainly two technologies to assess reliability indica-
tors from fault trees: MCS and BDDs. We shall there-
fore examine these two technologies in turn.

BDDs

We assume that the reader has basic knowledge about
BDDs. Rauzy14 provides a rather extensive introduc-
tion to the use of BDD for both qualitative and quanti-
tative assessments of fault trees.

Recall that a BDD is a directed acyclic graph whose
internal nodes are labeled with basic events and termi-
nal nodes are labeled with Boolean constants (i.e. either
0 or 1). Each internal node has a 0-outedge and a
1-outedge. A total order is chosen over basic events so
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that a node m labeled with the basic event A is pointing
to a node n labeled with the basic event B, then A is
smaller (according to the chosen order) than B. Each
internal node n= hE, n1, n0i encodes the Boolean func-
tion s=E � s1 + �E � s0, where s1 and s0 are the func-
tions encoded by nodes n1 and n0 (pointed by 1- and 0-
outedges), respectively. The leaves encode the Boolean
constants they are labeled with. The BDD encoding the
function s3 =A � B � C+A � B �D+C �D for the lexi-
cographic order is shown in Figure 2 (left).

Thanks to the recursive semantics of BDD, algo-
rithms to calculate probabilistic indicators can be
described by means of simple recursive equations. The
recursive equations to calculate the Prfsg are as follows

Prf0g=0

Prf1g=1

PrfhE, n1, n0ig=PrfEg � Prfn1g+(1� PrfEg) � Prfn0g

Their correctness follows directly from the Shannon
decomposition and the definition of these quantities.
There is a subtlety, however, to ensure a linear com-
plexity (in the size of the BDD), results of intermediate
computations must be cached: each time the result for a
node is to be computed, the algorithm first look up the
cache. If the result is already cached, then it is directly
returned. Otherwise, it is computed and added to the
cache (see Rauzy14 for more details). The actual algo-
rithm to calculate Prfsg is shown in Figure 3.

The recursive equations to calculate PrfsjEg are as
follows

Prf0jEg=0

Prf1jEg=1

PrfhE, n1, n0ijEg=Prfn1g
PrfhF, n1, n0ijEg=PrfFg � Prfn1jEg

+(1� PrfFg) � Prfn0jEg ifF\E

PrfhF, n1, n0ijEg=PrfhF, n1, n0ig ifF.E

Finally, the recursive equations to calculate
MIF(s,E) are as follows

MIF(0,E)=0

MIF(1,E)=1

MIF(hE, n1, n0i,E)=Prfn1g � Prfn0g
MIF(hF, n1, n0i,E)=PrfFg �MIF(n1,E)

+ (1� PrfFg) �MIF(n0,E) ifF\E

MIF(hF, n1, n0i,E)=0 ifF.E

It is worth to notice that algorithms to compute
Prfsg, PrfsjEg, PrfsjEg and MIF(s,E) are linear in the
size of the BDD. The other importance factors are com-
puted from these four ones using equalities given in the
previous section. Moreover, values of Prfsg, PrfsjEg,
PrfsjEg and MIF(s,E) can be cached so that all the
importance factors of a component can be calculated at
once in linear time.

MCS

As shown in the previous section, importance factors
can be approximated by means of MCS (using
MCUB). There are two main ways to encode a set of
MCS: as a sparse matrix or by means of a zero-
suppressed binary decision diagram (ZBDD). Sparse
matrices (or similar encodings) are rather favored by
top-down algorithms,20,21 while ZBDDs are favored by
bottom algorithms.22

A sparse matrix for the MCS A � B+A � C+B � C
is shown in Figure 4. The idea is to have each MCS
encoded as a list of basic events and for each basic event
the list of occurrences in the MCS. This double chaining
makes it possible to access quickly to MCS containing a
basic event.

Figure 2. BDD encoding s = A � B � C + A � B � D + C � D (left) and
ZBDD encoding MCS(s) (right).

BDDPr(n : BDD)
if n == 0 then return(0)
if n == 1 then return(1)
if cache.HasEntry(n) then return( cache.GetEntry(n) )
pr = Pr{n.variable}.BDDPr(n.outEdge1) + (1 − Pr{s.variable}).BDDPr(n.outEdge0)
cache.AddEntry(n, pr)
return(pr)

Figure 3. BDD algorithm to calculate Prfng.
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Therefore, the calculations described in the previous
section can be implemented efficiently. For instance,
the algorithm to compute MIF(s,E) is shown in
Figure 5.

Sparse matrices have, however, a drawback: their
size is proportional to the number of MCS, or to be
more precise, to the number of occurrences of basic
events in MCS. Minato’s ZBDDs23 are like regular
BDD but with a different interpretation of internal

nodes: a node n= hE, n1, n0i encodes the disjunction
(of MCS) s=E � s1 + s0, where s1 and s0 are the func-
tions encoded by nodes n1 and n0, respectively. ZBDD
can therefore typically be used to encode sets of MCS.
The ZBDD encoding the MCS of the function
s3 =A � B � C+A � B �D+C �D for the lexicographic
order is shown in Figure 2 (right).

The algorithms to compute probability and impor-
tance factors from ZBDD are indeed quite similar to
those for BDD, including for what concerns the caching
mechanism. Similarly, they can be described by means
of recursive equations. Recursive equations describing
the algorithm to compute MCUB approximation of
Prfsg are as follows

MCUB(0)=0

MCUB(1)=1

MCUB(hE, n1, n0i)=PrfEg �MCUB(n1)+MCUB(n0)

Discussion

Classification

At this point, we can organize importance factors for
coherent systems according to the set of minterms (or
states) they intend to capture:

� The states in which both the component and the
system are failed, as for the DIF and the RAW;

� The states in which the system is failed but the com-
ponent is working, as for the RRW;

� The critical states, as for the MIF and the CIF.

These sets are illustrated in Figure 6.
There are two other axes to classify importance

factors:

Whether they are normalized using Prfsg as a denomi-
nator, as for the CIF, the DIF, the RAW and the
RRW;
Whether they take into account the probability of fail-
ure of the components, as for the CIF and the DIF.

The overall classification is summarized in Table 1.

Figure 4. The sparse matrix to encode minimal cutsets
A � B + A � C + B � C.

MCSMIF(s:SparseMatrix,E:BasicEvent)
mif = 0
forall c in s.CutsetList(E) do

pr = 1
forall F ∈ c do

if F = E then pr = pr × Pr{F}
mif = mif + pr

return(mif)

Figure 5. Sparse matrix algorithm to calculate MIF(s, E).

Figure 6. Minterm set described by importance factors (a) crit(s, E), (b) s � E, (c) s � �e = crit(s, �E).
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Indicators crit(s,E), sjE, sj �E, s � E and s � �E are not
used in practice. Note also that Table 1 contains two
empty cells. First, there is no normalized MIF. Second,
there is no indicator measuring s � �E and taking into
account the probability of the component. In coherent
systems, such an indicator would give either
Prfs � �Eg=Prfsg=Prf �Ejsg if RRW(s,E) is multiplied
by Prf �Eg or Prfcrit(s,E)g if RRW(s,E) is multiplied by
PrfEg.

Eventually, the picture is as follows:

� s � E and DIF(s,E), and to a lesser extent
RAW(s,E), measure the proportion of failure states
in which the component is failed as well. The higher
this proportion, the more the component contri-
butes to the risk. DIF(s,E) is probably the more
direct way to assess the risk significance of the
component.

� MIF(s,E) measures the probability to be in a
‘‘swing state,’’ that is, a state in which flipping the
state of the component flips the state of the system.
CIF(s,E) measures the proportion of failure states
in which repairing the component repairs the sys-
tem. Note that the proportion of working states in
which the failure of the component causes the fail-
ure is obtained by the following formula

(1� PrfEg)3MIF(s,E)

1� Prfsg

� Finally, RRW(s,E) measures the maximum
improvement in the reliability of the system one
may expect by improving the reliability of the com-
ponent. To be fully informative, this measure
should be considered together with the feasibility
and the cost of improving the component. It is not
immediately intuitive that RRW(s,E) measures also
the proportion of failure states in which the state of
the component does not matter. The following
equality holds (for coherent systems)

RRW(s,E)=1� CIF(s,E)

So, for coherent systems, RRW(s,E) and CIF(s,E)
are the two faces of the same medal.

Example (a simple series/parallel system). Let
s=A+B � C. We have

crit(s,A)=A � B � �C+A � B � C+A � B � �C

crit(s,A)=A � B � C
crit(s, �A)= �A � B � C
crit(s,B)= �A � B � C
crit(s,B)=A � B � C+A � B � �C

crit(s, �B)=A � �B � C+A � �B � �C

crit(s,C)= �A � B � C
crit(s,C)=A � B � C+A � �B � C
crit(s, �C)=A � B � �C+A � �B � �C

Assume PrfAg=5:00e� 6, PrfBg=5:00e� 3 and
PrfCg=1:00e� 2. This example is interesting for the
following reasons:

� Although A is very critical (the failure of A implies
the failure of the whole system), its probability of
failure is 10 times lower than the probability of the
joined failures of components B and C;

� Components B and C play a symmetrical role, but
the probability of failure of C is five times the one
of B.

The top event probability calculated from BDD is
5:4999753 10�5 and 5:53 10�5 from MCS (in this
example, for all indicators, values calculated from MCS
are very close to the exact values).

Table 2 presents reliability indicators calculated for
system s=A+B � C and the ranking of elements they
induce. We put numbers only with a significant decimal
digit, but calculations are indeed performed with a
much higher precision able to capture even small
differences.

Structurally, components B and C play a similar
role. As a consequence, they cannot be distinguished
really by the DIF (although B is twice as much reliable
than C). Their DIF is about 10 times higher than the
one of A which reflects the relative weights of failure
states in which A is failed and B and C are jointly
failed.

In almost all states (namely, all states but A � B � C
and �A � B � C), flipping the state of A flips the state of
the system. Therefore, MIF(s,A) is very high, although
the real contribution of A to the risk is low. Note also
that MIF ranks B and C in inverse order of their
probabilities.

Finally, RRW(s,A) is higher than RRW(s,B) and
RRW(s,C). This is expected for improving the reliabil-
ity of A and has a greater impact of system reliability
than improving the reliability of B and C. Note, how-
ever, that RRW does not make it possible to distinguish
B and C.

This example shows that there is no such thing as
‘‘the’’ good importance measure. All of them can and
probably should be used, but with much care. We shall
look at the next section the independently of calcula-
tion issues.

Table 1. Classification of importance factors for coherent
systems.

Prfsg No Yes
PrfEg No Yes No Yes
crit(s, E) MIF(s, E) crit(s, E) CIF(s, E)
s � E s Ej s � E RAW(s, E) DIF(s, E)
s � �E s �E

�� s � �E RRW(s, E)
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Calculation issues

For large models (e.g. nuclear PSA), it is not possible to
extract all the MCS (and even less to compute the
BDD). Cutoffs are therefore applied to ‘‘select’’ only
the most probable MCS. Such truncations are safe most
of the time for what concerns the calculation of the top
event probability, that is, to estimate the global risk.24

However, importance factors can show a chaotic beha-
vior as the cutoff varies. These phenomena have been
first observed by Epstein and Rauzy on American and
Japanese PSA25 and then confirmed by Duflot et al.26,27

on a reference French PSA. Figure 7 illustrates the
effects of truncation threshold on the importance of
one of the basic events of a French reference PSA. For
a cutoff over 10�13, the basic event does not show up in
the MCS, so its risk significance is 0. As the cutoff value
decreases, its importance grows dramatically.

To reach very low cutoff values, one has to break the
problem into pieces. The Shannon decomposition can

be used to do so (this is basically what is proposed in
Duflot et al.27). Note that this technique has also been
proposed to calculate BDD by pieces28 and that Rauzy
proposed recently an efficient algorithm to extract
MCS based on the Shannon decomposition.21

Conclusion

In this article, we review mathematical and algorithmic
foundations of importance factors of coherent systems.
We showed that each importance factor characterizes
the probability of a set of minterms. This algebraic
interpretation clarifies greatly their physical interpreta-
tion. It makes it possible also to discard unsuitable
indicators such as the so-called Fussel–Vesely impor-
tance factor.

Extensions to complex components and groups of
components,29,30 to noncoherent systems,31 to time-
dependent systems32,33 or to multi-state systems34 are

Table 2. Reliability indicators for the system s = A + B � C.

A B C Ranking

PrfEg 5:00e� 6 5:00e� 3 1:00e� 2 A \ B \ C

MIF(s, E) 10:00e� 1 10:00e� 3 5:00e� 3 A . B . C

PrfsjEg 1:00 1:00e� 2 5:00e� 3 A . B . C

Prfsj�Eg 5:00e� 5 5:00e� 6 5:00e� 6 A . B = C

crit(s, E) 5:00e� 6 5:00e� 5 5:00e� 5 B = C . A

Pr (s � E) 5:00e� 6 5:00e� 5 5:00e� 5 C’B . A

Pr (s � �E) 5:00e� 5 4:98e� 6 4:95e� 6 A . B’C

MIF(s, E)= PrfEg 1:82e4 1:82e2 9:09e1 A . B . C

RAW(s, E) 1:82e4 1:82e2 9:10e1 A . B . C

RRW(s, E) 9:09e� 1 9:09e� 2 9:09e� 2 A . B = C

CIF(s, E) 9:09e� 2 9:09e� 1 9:09e� 1 B = C . A

DIF(s, E) 9:09e� 2 9:10e� 1 9:10e� 1 C’B . A

crit(s, E) 9:09e� 1 9:05e� 2 9:00e� 2 A . B’C

Figure 7. Importance of one of the basic events of a French reference PSA depending on the chosen cutoff.
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out of scope of this article. But we believe that the
framework we propose here is a good starting point to
analyze them.
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