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a b s t r a c t

Importance Measures are indicators of the risk significance of the components of a system. They are
widely used in various applications of Probabilistic Safety Analyses, off-line and on-line, in decision
making for preventive and corrective purposes, as well as to rank components according to their
contribution to the global risk. They are primarily defined for the case the support model is a coherent
fault tree and failures of components are described by basic events of this fault tree.

In this article, we study their extension to complex components, i.e. components whose failures are
modeled by a gate rather than just a basic event. Although quite natural, such an extension has not
received much attention in the literature. We show that it raises a number of problems. The Birnbaum
Importance Measure and the notion of Critical States concentrate these difficulties. We present
alternative solutions for the extension of these notions. We discuss their respective advantages and
drawbacks.

This article gives a new point of view on the mathematical foundations of Importance Measures and
helps us to clarify their physical meaning.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Importance Measures are indicators of the risk significance of
the components of a system. They are widely used in various
applications of Probabilistic Safety Analyses, off-line and on-line,
in decision making for preventive and corrective purposes, as well
as to rank components according to their contribution to the
global risk. Presentations of these indicators and discussions about
their mathematical properties and their physical interpretations
can be found for instance in References [1–12].

Importance Measures are primarily defined for the case the
support model is a coherent Fault Tree and failures of components
are represented by basic events of this fault tree. In this article, we
study their extension to complex components, i.e. to components
whose failures are modeled by a gate and not just by a Basic Event.
Although quite natural, this extension has not received much
attention in the literature (see however [13,14]).

We proceed in two steps. First, we revisit definitions of the
main Importance Measures and we show that, in the case of
simple components, each of them characterizes the probability of
a set of minterms, i.e. of a set of global states of the system under
study. Namely,

� The states in which both the component and the system are
failed, as for the Diagnostic Importance Factor and the Risk
Achievement Worth.

� The states in which the system is failed but the component is
working, as for the Risk Reduction Worth.

� The Critical States, i.e. states in which failing/repairing the
component suffices to repair/fail the system, as for the Birn-
baum Importance Measure (also called Marginal Importance
Factor) and the Critical Importance Measure.

This new way of defining Importance Measures via minterms does
not mean that they need to be calculated via minterms. Calcula-
tions can actually be still performed by means of Minimal Cutsets
or Binary Decision Diagrams. Its interest stands in the soundness
of mathematical definitions, the independence of any calculation
means and the simplicity of physical interpretations.

Second, we show that this nice correspondence between the
probabilistic definition and the minterm interpretation does not
hold for complex components. The Birnbaum Importance Measure
and the notion of Critical States concentrate the difficulties.

So far, complex components have been studied in the literature
only via the extension of Importance Measures to groups of (simple)
components (see e.g. [6,10,12,14–19]). Several authors showed
already that the definition of the Birnbaum Importance Measure in
terms of a partial derivative is not suitable for groups of components
(see e.g. [20,21]). They proposed therefore to define the Birnbaum
Importance Measure as the difference between the conditional
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probability that the system is failed given that all components of the
group are failed and the conditional probability that the system is
failed given that none of the components of the group are failed. This
definition is actually equivalent to the partial derivative one in the
case the group is reduced to a single component. It could be applied
to complex components as well, as proposed for instance by Sutter
[14]. We show however that this indicator is much too coarse. First, it
does not allow us to distinguish components with different structure
functions (a parallel sub-system would be evaluated the same way as
a series sub-system). Second, it leads to consider as critical states,
states in which the system is failed but the component is working.
We show that finer extensions can be defined, but necessarily to the
price of losing the correspondence between the probabilistic defini-
tion and the minterm interpretation.

This article contributes therefore to establish more firmly the
mathematical foundations of Importance Measures and to clarify
their physical interpretation. It also gives hints to tool developers
about which indicators are worth to calculate from a safety model.

The remainder of this article is organized as follows:

� Section 2 introduces basic definitions and properties. It gives a
formal definition for the notion of coherence and Critical States.

� Section 3 revisits definitions and interpretations of Importance
Measures in the case the support model is a coherent Fault Tree
and failures of components are represented by Basic Events.

� Section 4 discusses extensions of Importance Measures to
complex components and groups of components.

� Finally, Section 5 concludes the article.

2. Basic definitions and properties

2.1. Boolean formulas and minterms

Throughout this article we consider Boolean formulae (Fault
Trees) built over a denumerable set E of variables and the usual
connectives “ � ” (and), ‘þ ‘” (or) and “�” (not). Variables are also
called Basic Events.

We use uppercase letters E, A, B, C, possibly with subscripts, to
denote Basic Events.

We use lowercase letters s, t, c, possibly with subscripts, to
denote Boolean formulae. We denote by varðsÞ the variables
occurring in the formula s.

Let s be a Boolean formula. A variable assignment of s is a function
from varðsÞ into f0;1g (0 and 1 stand respectively for False and True).
Variable assignments are lifted-up as usual into functions from for-
mulae into f0;1g using the truth tables of connectives. A Boolean
formula s is interpreted as the Boolean function 1sU, i.e. as the function
from variable assignments of s into 0;1, defined as follows: for any
variable assignment σ of s, 1sUðσÞ ¼ 1 if σðsÞ ¼ 1 and 0 otherwise.

In this paper, we do not need to distinguish between syntax
and semantics. Therefore, we shall assimilate the Boolean formula
s with its semantics 1sU.

A literal is either a variable E or its negation E . We use
uppercase letters L, I, J, possibly with subscripts to denote literals.
We denote by L the opposite of a literal L, given that L � L. Let L be
a set of literals, we denote by L the set of negations of literals of L,
i.e. fL; LALg.

A product is a conjunct of literals that does not contain both a
variable and its negation. Let s be a Boolean formula. A minterm of s
is a product that contains a literal built over each variable of varðsÞ.
We use lowercase Greek letters σ, τ π, and ρ, possibly with subscripts,
to denote products and minterms. We denote as MintermsðEÞ the set
of 2j E j minterms that can be built over a set of Basic Events E.

There is a one-to-one correspondence between variable assign-
ments and minterms (and therefore between Boolean functions
and sets or sums of minterms): the variable assignment σ one-to-
one corresponds with the minterm π such that π contains the
positive literal E if σðEÞ ¼ 1 and the negative literal E if σðEÞ ¼ 0. It
follows that any Boolean formula s is equivalent to the set of
minterms π such that πðsÞ ¼ 1. Minterms of MintermsðEÞ are the
atoms of the Boolean algebra built over E.

For the sake of the convenience, we shall use a set theory
notation, i.e. we shall note πAs when πðsÞ ¼ 1 and π =2s when
πðsÞ ¼ 0. Note also that π=2s if and only if πAs.

Example (Minterms). As an illustration, consider the two formu-
lae s1 ¼ A � BþA � CþB � C and s2 ¼ A � BþA � C. The minterms of s1
and s2 are as follows:

s1 � A � B � CþA � B � CþA � B � CþA � B � C
s2 � A � B � CþA � B � CþA � B � CþA � B � C

From a more practical perspective, assuming that the plant
under study is modeled by a Fault Tree, minterms just describe full
state vectors of the plant. Let s be the formula associated with the
Top-Event of a fault tree, then products π that satisfy s (πAs) are
the cutsets of s.

Let s be a Boolean function and L¼ fL1;…; Lkg be a set of literals
built over a subset of varðsÞ. We denote by sjL the Boolean function
built over varðsÞ{varðLÞ as follows:

sj fL1;…; Lkg ¼def fπ j L1:…:Lk � πAsg
For the sake of the simplicity, we write sj L1;…; Lk (instead of

sj fL1;…; Lkg). The notation sj L is intentionally close to the one used
for conditional probabilities because it is really what it means: s
given L.

Example ðsj LÞ. Considering the function s1 defined above, the
following equalities hold:

s1 jA� B � CþB � CþB � C ¼ BþC

s1 jA � B � C
s1 jA;B� C

s1 jA;B � C

2.2. Shannon decomposition and coherence

We can now state the Shannon decomposition.

Property 1 ((Logical) Shannon decomposition). Let s be a Boolean
formula and E a Basic Event of varðsÞ. Then, the following equivalence
holds:

s� E � sjEþE � sjE

Throughout this article, we shall assume that Basic Events are
independent from a statistical viewpoint. The above equivalence is
translated in terms of probability by the either of the two
equalities that will play an important role latter.

Property 2 ((Probabilistic) Shannon decomposition). Let s be a
Boolean formula and E a Basic Event of varðsÞ. Then, the following
equalities hold:

Prfsg ¼ PrfEg � PrfsjEgþ½1�PrfEg� � PrfsjEg ð1Þ

Prfsg ¼ PrfEg � ½PrfsjEg�PrfsjEg�þPrfsjEg ð2Þ
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In the framework on Safety and Reliability Analyses, Basic
Events represent in general failures of components of the
system under study. Therefore there is an asymmetry between
a positive literal that represents the occurrence of a failure and
its negation. The former has in general a much lower probability
then the latter.

This asymmetry induces a natural partial order amongst
minterms. The minterms σ is smaller that the minterms π,
which we denote by σ⊑π, if for any Basic Event E, EAσ implies
that EAπ. In other words, all components failed in σ are failed in
π as well.

A Boolean function s is coherent if for any two minterms σ and
π such that σ⊑π, σAs implies that πAs. In other words, in a
coherent system, the more there are components failed, the more
likely the system itself is failed. Or to put it the other way round,
the repair of a component cannot fail the system.

A formula built over only connective “ � ” and “þ” is coherent.

Example (Coherence). The above function s1 is coherent while s2
is not: A � B � CAs2, but A � B � C =2s2.

If a function s is not coherent, it is always possible to consider a
coherent upper approximation of s. Namely, the coherent envelope
of s, denoted as ⌈s⌉, which is the smallest coherent set of minterms
that contains s:

⌈s⌉¼def fπAMintermsðvarðsÞÞ; (σ;σ⊑π4σAsg

Obviously, for any function s, sD⌈s⌉ and s is coherent if and
only if ⌈s⌉� s.

Example (Coherence). Consider again s2 ¼ A � BþA � C.
s2 � A � B � CþA � B � CþA � B � CþA � B � C

⌈s2⌉� A � B � CþA � B � CþA � B � CþA � B � CþA � B � C
� A � BþC

The added minterm is boxed.

2.3. Critical States

The notion of Critical State is the core of the theory of
Importance Measures. Although this notion may sound familiar
to the reader, to our knowledge, the presentation we give here is
original and completes an interpretation sketched by Vaurio in
Ref. [22].

Let s be Boolean function and L be literal built over a basic event
of varðsÞ. We define Critical and Non-Critical States of s with
respect to L as follows:

critðs; LÞ ¼def fL � πAs; L � πAsg
critðs; LÞ ¼def fL � πAs; L � πAsg

Intuitively, a minterm L � π of s is critical with respect to the
literal L if by flipping the value of L we change also the value of s.

Example (Critical States). Consider again the function s1 ¼
A � BþA � CþB � C. We have

critðs1;AÞ ¼ A � B � CþA � B � C
critðs1;AÞ ¼ A � B � C
critðs1;AÞ ¼ 0

critðs1;AÞ ¼ A � B � C
critðs1 ;AÞ ¼ 0

critðs1 ;AÞ ¼ A � B � C

critðs1 ;AÞ ¼ A � B � CþA � B � C
critðs1 ;AÞ ¼ A � B � C

As suggested by the above example, the notion of criticality
separates the minterm space into 8 zones, according to the 3 binary
choices s=s, E=E and Critical=Critical. This separation is graphically
illustrated in Fig. 1.

This figure illustrates also two simple properties (that follows
immediately from the definitions):

E � s¼ critðs; EÞþcritðs; EÞ
E � s¼ critðs; EÞþcritðs; EÞ

Moreover, zones are paired by flipping the value of E, as
established by the following property.

Property 3 (Minterms zones). Let s be a Boolean function and E be a
Basic Event of varðsÞ. Then, the following equivalences hold:

critðs; EÞjE� critðs; EÞjE
critðs; EÞjE � critðs; EÞjE
critðs; EÞjE� critðs; EÞjE
critðs; EÞjE� critðs; EÞjE

Intuitively, the above property says that for any minterm E � π
of critðs; EÞ the minterm E � π belongs to critðs; EÞ and vice versa.

The above logical equivalences translate indeed into probabil-
ities: Prfcritðs; EÞjEg ¼ Prfcritðs; EÞjEg, ….

In the case s represents a coherent system, the repair of a
component cannot fail the system. Therefore, the following prop-
erty holds.

Property 4 (Minterms zones of coherent systems). Let s be a
coherent Boolean function and E be a Basic Event of varðsÞ. Then,
the following equalities hold:

critðs; EÞ ¼ critðs; EÞ ¼ 0

critðs; EÞjE¼ critðs; EÞjE ¼ sjE

We have now all the elements to revisit Importance Measures.

3. Importance Measures of simple components

Importance Measures have been introduced in the seventies
(e.g. [23–25]), i.e. at a time where the predominant, if not the only,

Fig. 1. Minterm zones.
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technology to assess Fault Trees consisted in calculating probabil-
istic measures from Minimal Cutsets (see e.g. [26,27]). For this
reason, most of Importance Measures are usually defined and
calculated in terms of Minimal Cutsets. In the nineties, a new
assessment technology for Fault Trees came into the play: Bryant's
Binary Decision Diagrams [28,29] (BDD for short). To the notice-
able exception of large models of the Nuclear Industry, BDD have
proved to outperform the Minimal Cutsets technology (see e.g.
[30] an overview of their use for risk analyses). Amongst other
advantages over the Minimal Cutsets approach, BDD make it
possible to calculate exact values of probabilistic measures for
they encode sets of Minterms. In 2001, the authors published an
article in which they proposed BDD based algorithms to calculate
Importance Measures [13] (a first step into this direction has been
done before by Andrews in [31]). To do so, we derived “pure”
mathematical definitions from actual definitions of Importance
Measures (in terms of Minimal Cutsets), therefore separating
mathematical concepts from calculation means. We follow here
the same line (a full discussion about the drawbacks of definitions
of Importance Measures in terms of Minimal Cutsets or Prime
Implicants can be found in [42]).

3.1. Birnbaum Importance Measure

In many scientific domains, parametric models are defined and
a central question is to measure the sensitivity of the model to
variations of its parameters. A way to do so is the so-called
Marginal Gain technique which consists in making each of the
parameter vary slightly in turn, and to observe, mutatis mutandis,
the variations induced on the measure(s) at stake.

This typical local sensitivity technique has been used by
Birnbaum in [23] to express the Importance Measure he proposed.
The Birnbaum Importance Measure (IB for short), denoted by
BIMðs; EÞ, is defined as follows:

BIMðs; EÞ ¼def ∂½Prfsg�
∂½PrfEg�

The Birnbaum Importance Measure can be assessed by calcu-
lating first Prfsg with the regular value of PrfEg, then with a slightly
modified value of PrfEg, e.g. PrfEgþϵ. But it is generally more
efficient and anyway more interesting to apply the second form of
the Shannon decomposition (Eq. (2)):

BIMðs; EÞ ¼def ∂½Prfsg�
∂½PrfEg�

¼ ∂½PrfEg � ½PrfsjEg�PrfsjEg��PrfsjEg�
∂½PrfEg�

¼ PrfsjEg�PrfsjEg ð3Þ
Now look at Fig. 1. When s is coherent, according to Property 4,

critðs; EÞ ¼ 0. Therefore, according to Property 3, PrfsjEg ¼
critðs; EÞjE ¼ critðs; EÞjE. Since sjE¼ s � EjE¼ ðcritðs; EÞþcritðs; EÞÞ
jE, the following property holds.

Property 5 (Birnbaum Importance Measure and Critical States). Let
s be a coherent Fault Tree and E be a Basic Event of s, then the
following equalities hold:

BIMðs; EÞ ¼ Prfcritðs; EÞjEg ð4Þ

BIMðs; EÞ ¼ Prfcritðs; EÞgþPrfcritðs; EÞg ð5Þ

As we shall see, Eqs. (4) and (5) play a central role in Imp-
ortance Measures theory.

3.2. Criticality Importance Measure

One on the inconvenience of the Birnbaum Importance Mea-
sure is that it does not take into account the probability of the
Basic Event. So, if two Basic Events play similar roles their ranking
according to the Birnbaum Importance Measure will be close, even
if their probabilities differ by orders. The Criticality Importance
Measure (CIM for short), denoted by CIMðs; EÞ, is an attempt to
correct this drawback. It has been introduced by Lambert [24]. It is
defined as follows:

CIMðs; EÞ ¼defPrfEg � BIMðs; EÞ
Prfsg

By equality (4), PrfEg � BIMðs; EÞ ¼ Prfcritðs; EÞg. Moreover the
denominator Prfsg will be the same for all Basic Events and
therefore play no role in the ranking of components of a same
model. It should be seen as a way to normalize results over
different models. CIMðs; EÞ is directly a measure of criticality of
the component E.

3.3. Diagnostic Importance Measure

The Diagnostic Importance Measure does not attempt to mea-
sure the criticality of components but rather to determine which
component should be looked at first when the system is failed in
order to repair it. This notion is of interest in harsh environments
where sending a robot, or evenworse a human operator, may present
serious difficulties. So the faster one finds the problem, the better.

The Diagnostic Importance Measure, denoted by FVMðs; EÞ, has
been introduced by Fussel and Vesely in Reference [25] (we name
it here after its authors). It is defined as follows.

FVMðs; EÞ ¼defPrfEj sg
By conditional probability rule, the following equality holds:

FVMðs; EÞ ¼ PrfE:sg
Prfsg

In other words, FVMðs; EÞ is the fraction of the system unavail-
ability (or risk) that involves the component failure. Again Prfsg
should be seen as a normalization factor.

3.4. Risk achievement worth and risk reduction worth

The two other main Importance Measures, widely used in
Nuclear PSA, are the Risk Achievement Worth (RAW for short)
and Risk Reduction Worth (RRW for short) (also called respectively
Risk Increase Factor and Risk Decrease Factor [32]). They are
defined as follows:

RAWðs; EÞ ¼defPrfsjEg
Prfsg

RRWðs; EÞ ¼defPrfsjEg
Prfsg

RAW measures the increase in system failure probability ass-
uming the worst case of failing component. It is an indicator of the
importance of maintaining the current level of reliability for the
component [6]. In Reference [4], it is argued that RAW should be
used with care, for it is rather rough.

RRW represents the maximum decreasing of the risk that may be
expected by increasing the reliability of the component. Therefore
this quantity may be used to select components that are the best
candidates for efforts leading to improving system reliability. Note
that RRW is sometimes defined as Prfsg=PrfsjEg, i.e. the inverse of
the above definition (e.g. in RiskSpectrum [32]). Taking one definition
or the other does change anything but the presentation of the results.

Y. Dutuit, A. Rauzy / Reliability Engineering and System Safety 142 (2015) 161–168164



None of these Importance Measures take into account the
probability of failure of the component and both are normalized
with the denominator Prfsg.

3.5. Discussion

At this point, we can organize Importance Measures for
coherent systems according to the set of minterms (or states) they
intend to capture. These sets are illustrated in Fig. 2:

� The states in which both the component and the system are
failed, as for the FVM and the RAW (Fig. 2(a)).

� The states in which the system is failed but the component is
working, as for the RRW (Fig. 2(b)).

� The critical failed states, as for the CIM (Fig. 2(c)) and the
critical failed and working states as for the BIM (Fig. 2(d)).

There are two other axes to classify Importance Measures:

� Whether they are normalized using Prfsg as a denominator, as
for the CIM, the FVM, the RAW and the RRW.

� Whether they take into account the probability of failure of the
components, as for the CIM and the FVM.

4. Importance Measures for complex components

In the previous section, we assumed that a component has a
single failure mode, represented by a Basic Event. We shall examine
now the case where the component is complex, i.e. that its failures
are represented by means of a formula. Such an extension is of
interest for at least two reasons. First, as pointed out for instance in
Ref. [33], it is in general difficult when evaluating the consequences
of a change in maintenance and operation policy to assume a
complete independence of events. Therefore considering only indi-
vidual contributions to the risk is often insufficient. With that
respect, the extension of Importance Measures to groups of compo-
nents is necessary. Cheok et al. [6] give Motor Operated Valves as a
typical example of such a group in Nuclear Power Plants. Second,
whether a component is considered as atomic or decomposed is to
some extent a choice of the analyst. Therefore, it should be possible
to calculate seamlessly the same measure whether the component is
atomic or complex.

In their article [6], Cheok et al. studied thoroughly the problems
raised by the extension of Importance Measures to groups of Basic
Events. We show here that these problems are deeply rooted from
an algebraic viewpoint and we propose some solutions.

4.1. Risk achievement worth and risk reduction worth

In the sequel, we shall assume that the failures of the system and
the component are modeled respectively by a coherent function s
and a coherent function c. Moreover, we assume without a loss of
generality that varðcÞDvarðsÞ and that c is not a module of s, i.e. it
shares some Basic Events with other parts (gates) of s.

We can first remark that it is still possible to calculate condi-
tional probabilities Prfsj cg and Prfsj cg using the central property
of conditional probabilities:

Pr sj cf g ¼ Prfs � cg
Prfcg

Pr sj sf g ¼ Prfs � cg
1�Prfcg

These calculations may require a significant overhead because
they require building a Binary Decision Diagram or extracting Min-
imal Cutsets of s � c and s � c (or at least one of those for
Prfs � cg ¼ Prfsg�Prfs � cg). Moreover, it is not possible to interpret
Prfsj cg and Prfsj cg as the probabilities of some sets of minterms.
As an illustration, consider the following example.

Example ðPrfsj cgÞ. Consider again the formula s¼ A � BþA � CþB �
C and let c¼ A � B. Assume that PrfAg ¼ PrfBg ¼ PrfCg ¼ 1=2 so that
all minterms have the probability 1/8. The following equalities
hold:

Pr sf g ¼ Pr A � B � CþA � B � CþA � B � CþA � B � C
n o

¼ 4=8

Pr cf g ¼ Pr A � B � CþA � B � C
n o

¼ 2=8

Pr cf g ¼ 1�Pr cf g ¼ 6=8

Pr s � cf g ¼ Pr A � B � CþA � B � C
n o

¼ 2=8

Pr s � cf g ¼ Pr A � B � CþA � B � C
n o

¼ 2=8

Pr sj cf g ¼ 2=8
2=8

¼ 1

Pr sj sf g ¼ 2=8
6=8

¼ 1=3

Since 1=3 is prime with 1=8, Prfsj cg cannot be interpreted as the
probability of set of minterms.

Note however that this does not prevent to keep as such the
definition of the Diagnostic Importance Measure.

Bearing that in mind, we can attempt to keep also the same
definitions for the Risk Achievement Worth and the Risk Reduc-
tion Worth:

FVMPrðs; cÞ ¼defPr cj sf g ¼ Prfs � cg
Prfsg

RAWPrðs; cÞ ¼def
Prfsj cg
Prfsg ¼ Prfs � cg

Prfcg � Prfsg
RRWPrðs; cÞ ¼def

Prfsj cg
Prfsg ¼ Prfs � cg

ð1�PrfcgÞ � Prfsg

Note first that it may be better to characterize states in which the
component is failed (respectively working) by using straight Prfs � cg
and Prfs � cg, possibly normalized with Prfsg, rather than RAWPrðs; cÞ
and RRWPrðs; cÞ that do not characterize any minterm set.

Moreover, there is another issue here: the Risk Reduction Worth
aims to capture the maximum decrease of risk one gets by ensuring
that component is working. But what does it mean in the case of a
complex component? The above definition just asserts that the com-
ponent is working, no matter how. As an alternative, we can consider
that the component is as good as new. Symmetrically (for the Risk

Fig. 2. Minterms set described by Importance Measures.
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Achievement Worth), we can consider that the component is com-
pletely failed rather than just failed no matter how. These extreme
cases would lead to the following alternative definitions for these
indicators:

RAWBEðs; cÞ ¼def
PrfsjvarðcÞg

Prfsg

RRWBEðs; cÞ ¼def
PrfsjvarðcÞg

Prfsg

where sjvarðcÞ and sjvarðcÞ denote respectively the function s with
all Basic Events of c set to 1 and to 0 (hence the index BE).

Indicators RAWBEðs; cÞ and RRWBEðs; cÞ are coarse in this sense
that they treat in the same way components with different structure
functions. As we shall see in the next section however, they are used
by most of the authors (and software tools) to handle groups of Basic
Events. Moreover, they do characterize sets of minterms, which a
priori eases to give them a physical interpretation.

Since both s and c are coherent, the following inequalities hold:

Prfsj cgrPrfsjvarðcÞg
Prfsj cgZPrfsjvarðcÞg

which translates immediately into the following inequalities:

RAWPrðs; cÞrRAWBEðs; cÞ
RRWPrðs; cÞZRRWBEðs; cÞ

4.2. Birnbaum importance measure

According to Section 3.5 and the above discussion, we have the
three following candidate definitions for the (extended) Birnbaum
Importance Measure:

BIM∂ðs; cÞ ¼def ∂½Prfsg�∂½Prfcg�
BIMPrðs; cÞ ¼defPrfsj cg�Prfsj cg
BIMBEðs; cÞ ¼defPrfsjvarðcÞg�PrfsjvarðcÞg

The indicator BIM∂ðs; cÞ is problematic. If the component c shares
Basic Events with other parts of the model, it is not possible to make
the probability of c vary mutatis mutandis, i.e. without impacting the
probability of these parts. That is the reason why some authors reject
it purely and simply (e.g. [20]). Moreover, since c depends on several
Basic Events, one should determine how the probabilities of these
Basic Events must vary in order to make Prfcg vary. In a word, it is not
clear how to calculate BIM∂ðs; cÞ.

For this reason, several authors (e.g. [21]) suggested to take
BIMPrðs; cÞ as the reference, leaving however open the question of
its physical interpretation, as illustrated by the example of the
previous section.

In her diploma thesis [14], Sutter proposed to use BIMBEðs; cÞ for
complex components. Again, this definition is coarse for it gives
the same results for components with different structure functions
but at least it does characterize a set of minterms. Since since s is
monotone, we have PrfsjvarðcÞgDPrfsjvarðcÞg. Therefore the fol-
lowing equality holds:

PrfsjvarðcÞg�PrfsjvarðcÞg ¼ PrfsjvarðcÞ � sjvarðcÞ g
The following example illustrates this equality.

Example (Set of minterms characterized by BIMBEðs; cÞ. Let
s¼ A � BþA � CþC � D and c¼ A � B. Then sjvarðcÞ ¼ sjA;B¼ C and

sjvarðcÞ ¼ sjA;B ¼ C � D. Therefore BIMBEðs; cÞ ¼ PrfC � C � Dg ¼
PrfC � Dg.

4.3. Critical States

In Section 3.1, we recalled that the Birnbaum Importance
Measure is strongly related to the notion of Critical State. Namely,
according to equality (5), the Birnbaum Importance Measure is the
probability to be either in a critical failure state or in a critical
working state w.r.t. the component (see e.g. [16,34]). In the case of
a simple component, this definition/property is clear. In the case of
a complex component, the above idea gives rise to three alter-
native definitions of critical failure states. Before introducing these
definitions, we need some additional notations.

Let σ be a minterm built over a set E of Basic Events and let G
be a subset of E. We denote by σ↓G , respectively σ↑G, the minterm
such that for any Basic Event E σ↓GðEÞ ¼ 0, respectively σ↑GðEÞ ¼ 1,
if EAG and σðEÞ otherwise.

Now, a state is a critical failure state if

(1) The system is failed in that state and there is a mean to repair
it by repairing some of the constituents of the component.
Since the system is coherent, this is equivalent to say that the
system is repaired by repairing all of the constituents of the
component. Formally

critf ;BEðs; cÞ ¼def fπAs;π↓varðcÞAsg

(2) Both the system and the component are failed in that state and
there is a mean to repair the system by repairing the
component. Formally

critf ;( ðs; cÞ ¼def fπAs � c;π↓varðcÞAsg

(3) Both the system and the component are failed in that state and
any repair of the component repairs the system. Formally

critf ;8 ðs; cÞ ¼def fπAs � c; 8σ⊏π;σAc ) σAsg

Symmetrically, there are three alternative definitions of critical
working state. A state is a critical working state if

(1) The system is working in that state and there is a mean to fail
it by failing some of the constituents of the component.
Formally

critw;BEðs; cÞ ¼def fπAs;π↑varðcÞAsg

(2) Both the system and the component are working in that state and
there is a mean to repair the system by failing the component.
Formally

critw;( ðs; cÞ ¼def fπAs � c;π↑varðcÞAsg

(3) Both the system and the component are working in that state
and any failure of the component fails the system. Formally

critw;8 ðs; cÞ ¼def fπAs � c; 8σ⊐π;σAc ) σAsg

The three definitions are ordered. Namely, the following inclu-
sions hold:

critf ;8 ðs; cÞDcritf ;( ðs; cÞDcritf ;BEðs; cÞ
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critw;8 ðs; cÞDcritw;( ðs; cÞDcritw;BEðs; cÞ
The result follows immediately from the definitions. The

inclusions can be strict, as shown by the following example.

Example (Strict inclusion of the three definitions Critical
States). Let s¼ A � B � CþA � D and c¼ A � B. We have

critf ;BEðs; cÞ ¼ A � B � C � DþA � B � C � DþA � B � C � D
þA � B � C � DþA � B � C � D

critf ;( ðs; cÞ ¼ A � B � C � DþA � B � C � DþA � B � C � D
critf ;8 ðs; cÞ ¼ A � B � C � D

The above example illustrates a quite surprising point:
critf ;BEðs; cÞ contains states in which the system is failed but the
component is not (e.g. A � B � C � D). The introduction of critf ;BEðs; cÞ
and critw;BEðs; cÞ is however justified by the following equality:

sjvarðcÞ � sjvarðcÞ ¼ critf ;BEðs; cÞþcritw;BEðs; cÞ ð6Þ

The proof is done by showing the inclusion in both directions.
The following property is directly derived from equality (6).

Property 6 ((Extended) Birnbaum Importance Measure and Critical
States). Let s and c be two coherent Fault Trees (varðcÞDvarðsÞ). Then
the following equality holds:

BIMBEðs; cÞ ¼ Prfcritf ;BEðs; cÞgþPrfcritw;BEðs; cÞg ð7Þ

The above equality is a sound generalization of equality (5), up
to a quite high price: first, one is not able to distinguish compo-
nents with different structure functions, and second one should
consider as critical failure (respectively working) states, states in
which the component is not failed (respectively working). This
problem has been so far unnoticed in the literature.

The indicator critf ;( ðs; cÞ does not solve the first problem, but it
solves the second one. It has probably only little practical value.
However, it was important to introduce it here to make a bridge
between definitions of critf ;BEðs; cÞ and critf ;8 ðs; cÞ.

The indicator critf ;8 ðs; cÞ solves both problems. To our feeling, it
is the one that corresponds the best to the intuitive notion of
Critical States. It could serve as a valuable alternative definition for
the Birnbaum Importance Measure:

BIM8 ðs; cÞ ¼defPrfcritf ;8 ðs; cÞgþPrfcritw;8 ðs; cÞg

This indicator may be however tedious to calculate.
To finish this section, let us remark that all alternative defini-

tions for the Birnbaum Importance Measure induce as many
alternative definitions for the Criticality Importance Measure and
that they all agree in the case the component is simple.

4.4. Groups of components

Assessing the risk significance of a group of components that
play a similar role, e.g. valves or pumps, raises similar difficulties
even if we assume that the components in question are simple
ones (i.e. represented by Basic Events), see e.g. [6]. It would be
convenient to assimilate the group as a complex component. But
which Boolean function should be used to gather failures of these
components? Should these failures and-ed, or-ed? Should the
formula depend on the calculated measure?

In Risk Spectrum [32] for instance, the Risk Achievement Worth
and Risk Reduction Worth of a group G of Basic Events are defined
as RAWBEðs;GÞ and RRWBEðs;GÞ respectively.

Regarding the Birnbaum Importance Measure (and thus the
Criticality Importance Measure), all of the authors we know (e.g.
[15–17,14,12]) take BIMBEðs;GÞ as reference.

Another idea has been proposed by Borgonovo et al. [35,36] and
Lemaire [37] independently. It consists in defining an additive
measure, i.e. a measure such as the contribution of a group is the
sum of the individual contributions of its components. The Differ-
ential Importance Measure (DIM for short) is defined as follows:

DIMðs;GÞ ¼def
P

Ei AG

∂Prs
∂PrfEig

dPrðEiÞ
P

Ei AE

∂Prs
∂PrfEig

dPrðEiÞ

In the case we consider a uniform change of the PrEi's
(dPrEi ¼ dPrEj for all i and j), this definition can be instantiated
as follows [10]:

DIMðs;GÞ ¼def
P

Ei AGBIMðs; EiÞP
Ei AEBIMðs; EiÞ

In the case of a proportional change of the PrEi's (dPrEi=
PrEi ¼ dPrEj=PrEj for all i and j), it can be instantiated by replacing
in the above equation BIMðs; EiÞ by CIMðs; EiÞ.

DIMðs;GÞ is clearly additive, i.e. DIMðs;GÞ ¼P
Ei AGDIMðs;EiÞ is

the fraction of change in system reliability due to a simultaneous
(and related) changes in probabilities of the components of the
group. He points out that this measure can be computed without
reassessing the model (under the condition that BIMðs; EiÞ's have
been calculated for all Basic Events Ei of the system).

Although this measure is of a great interest, it is not possible to
give it an interpretation in terms of states of the system, i.e. to
define it as the sum of the probabilities of the states of given
subset.

The vision in terms of scenarios or global states or minterms is
however of some help here too. When scenarios are of concerned,
then analysts might be interested in assessing the probability of
the following scenarios:

� The scenarios in which the system is failed and at least one
component of the group contributes to that failure, i.e. in
logical terms s �PEi AGEi or conversely none of the components
of group are involved in the failure, i.e. in logical terms
s �PEi AGEi . The Risk Reduction Worth, as defined in Risk
Spectrum, measures the probability of this last set (up to the
probability of

P
Ei AGEi Þ.� The set of states in which repairing one of the components of

the group suffices to repair the system, i.e. in logical terms
critðs;PEi AGEiÞ.

The scenarios in which all of the components of the group are lost
(and the system is lost), i.e. in logical terms s � πEi AGEi may be of
interest as well although only in some specific situations. The Risk
Achievement Worth as defined in Risk Spectrum characterizes this
last set, again up the probability of πEi AGEi. More complex scen-
arios could be scrutinized as well using other formulas such as k-
out-of-n.

Example (Group of components). As an illustration, let
s¼ g1 � g2, where gi ¼ ðAiþBiÞ:Ci for i¼1,2. Assume we want to
measure the importance of the Ai's, i.e. G¼ A1;A2. Clearly, there are
scenarios in which all of the Ai are failed and the system is not (if
none of the Bi's is failed) and some other where none of the Ai's is
failed while the system is (if both the Bi's and the Ci's are failed).
There are also scenarios a repair of any of the Ai's repairs the

Y. Dutuit, A. Rauzy / Reliability Engineering and System Safety 142 (2015) 161–168 167



system (e.g. A1 � B1 � C1 � A2 � B2 � C2) and some others where repair-
ing the Ai's has no effect (e.g. A1 � B1 � C1 � A2 � B2 � C2), and so on. If
we let s¼ 2=3ðg1; g2; g3Þ, the variety of situations even increases
and it may be worth to study for instance scenarios in which at
least two of the Ai's are failed.

These simple examples show that looking at importance of
components in terms of scenarios offers a rich variety of tools to
the analyst.

5. Conclusion

In this article, we studied the potential extensions of Impor-
tance Measures to complex components. We showed that the nice
correspondence between the probabilistic definition of these ind-
icators and their minterm interpretation that holds for simple
components cannot hold for complex ones. In the literature, this
correspondence is somehow artificially maintained for groups of
components by considering only the two extreme cases where
either all of the components of the group are failed or they are all
working. This idea cannot be applied to complex components
because it leads to an awkward definition of Critical States. The
correspondence must therefore be abandoned.

We believe that the framework we propose here is a good
starting point to study/revisit extensions of Importance Measures
to non-coherent systems (see e.g. [38,11]), time-dependent sys-
tems (see e.g. [15,39]) or multi-state systems (see e.g. [40,41]).
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