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Abstract

Since their introduction in the reliability analysis framework, Binary Decision Dia-
grams have proved to be the most efficient technique to assess fault trees. With BDDs,
not only the computation of the probability of the top event is accelerated (up to factor
1000) but also the obtained results are exact. This increases dramatically the interest of
Monte-Carlo simulation in order to study how uncertainties on parameters of probability
laws of terminal events propagate through the tree. The aim of this paper is to present
algorithms to do so and practical results we got on medium-size fault trees.

1 Introduction

Binary Decision Diagrams are the state-of-the-art data structure to encode and manipulate
boolean functions. They have been introduced by Akers [Ake78] and improved by Bryant
[Bry86, BRB90]. They are nowadays used in a wide range of areas (see [Bry92] for a survey
of BDDs and their applications). It has been shown that BDDs can be use to compute very
efficiently the exact probability of the top event of a fault tree from the probabilities of its
primary events [Rau93, Kri93, CM94, SA95, SA96]. Namely, such an evaluation is linear in
the size of the BDD [Rau93, Kri93].

It is sometimes of interest to study the relative importance of failures of the various com-
ponents a system is made of. Technically, this involves the computation, for each component
under study, of the conditional probabilities p(f = 1|g = 1) and p(g = 1|f = 1), where f
and g denote respectively the Boolean functions describing the failures of the whole system
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and the component from the failures of basic components. In this paper, we propose two
BDD algorithms to do so. The first one is simply derived from the well known equality
p(f=1g=1)=p(f=1Ag=1)/p(g =1). The second is one is dedicated to the case where
g is a terminal event (and is indeed more efficient than the former). By the way, we are able
to compute Vesely-Fussel’s importance factors [Fus75] from which many other importance
factors can derived [PG80, Vil88].

We then propose a technique to “compile” BDDs in order to achieve a significant improve-
ment of the efficiency of probability computations. It consists basically in duplicating BDDs
into arrays, so-called Binary Decision Arrays.

In general, probabilities of terminal events of fault trees vary through the time and are
given as probability laws. The well known exponential law F(t) = 1 — e~ is one of the most
popular examples of such laws. Often, the paramaters of the laws are known only up to an
uncertainty, i.e. that they themselves vary under certain laws. For instance, the lognormal
law is often chosen as a model of the variation for the paramater A of the exponential law.

So, it is of interest to perform Monte-Carlo simulations to have a more precise idea of how
this uncertainty on probabilities of terminal events propagates through the tree. Until the
introduction of BDDs in the reliability analysis framework, such computations were limited
to very small trees because of the cost of the basic computation: assessing the probability of
the top event. Moreover, the obtained results were only approximated ones. With BDDs, not
only this basic computation is accelerated (up to factor 1000) but also the obtained results
are exact. This increases dramatically the interest of Monte-Carlo simulation on Boolean
models of industrial systems. The aim of the paper is thus clear. We do not present new
mathematical results but we show by means of a number of examples that improvements on
efficiency of calculations produce a qualitative jump in what can be done for the treatment of
uncertainties. This holds not only for probability assessment, but also for importance factors
assessment.

2 Propogation of Uncertainties through Fault Trees

In a probabilistic safety study for any complex system, a failure of which may have significant
consequences, an important topic is the treatment and analysis of the uncertainties involved.
One of them is the parametric uncertainty which causes the end result, for instance the fault
tree top event probability, to become a distributed variable. This can be due to factors such
as the statistical uncertainty due to the fact that only small component test data are available
or because the data evaluation requires subjective interpretations of failure data.

Usually, the approach of the propagation by means of Monte-Carlo simulation is used to
analyze such a parametric uncertainty. The Monte-Carlo method is widely applicable, but
it requires a mathematical model from the system and a large amount of computer time to
reduce statistical fluctuations due to finite number of trials.

Let us put that in a more formal way. A fault tree defines the probability P of occurrence
of the event of interest as a function of the parameters X; that determine the probabilities of
existence of the basic events. Thus, one can write P = f(X1,...,X,). For the components of
interest in the quantitative risk assessment of complex systems, the parameters X; have large
uncertainties associated with them. In this paper, we consider that the X;’s vary through the
time according to exponential laws of the form: X; = 1 —e~*'*. Thus, the uncertainties stand
on the \;’s. We assume that the \;’s are distributed according to lognormal laws [PG80], and



that these laws are given by their mean values and their error factors.
So, each trial of a Monte-Carlo simulation is performed as follows.

1. The \A;’s are drawn at random according to a lognormal distribution (see [PTVF92] for
more details on this process).

2. For each instant ¢ of interest, first the X;’s are determined, and second P is computed.

This gives a sample from which several statistical parameters of interest can be computed:
mean, standard deviation, 90% confidence range, ...

In order to make such simulations meaningful, two conditions must be fulfilled. First, the
number of trials has to be sufficiently large, to reduce statistical fluctuations. Second, the
assessment of P from the X;’s must be precise, for obvious reasons. This is the reason why
BDDs outperform definitely other knowm methods: as we will see in the next sections, not
only they make the computation of P from the X;’s a very efficient process, but the obtained
values are exact.

3 Binary Decision Diagrams

To start with, we define Binary Decision Diagrams (BDDs) as introduced in [Bry86] (and
further improved in [BRB90, Bry92]).

Definition A BDD is a rooted directed graph with node set V' containing two types of
nodes. A non terminal node v has as attributes an index if(v) € {0,...,n} and two children
then(v) and else(v) € V. A terminal node has as attribute a Boolean value value(v) € {0, 1}.
In addition, for any non terminal node v, if then(v) (resp. else(v)) is a non terminal node,
then if(v) < if(then(v)) (resp. if(v) < if(else(v))). A BDD having this property is said
to be ordered. A BDD is reduced if it contains no node v with then(v) = else(v), nor does
it contain distinct nodes v and w such that the BDDs rooted by v and w are isomorphic.
In this paper, we consider only reduced ordered BDDs. We denote respectively by 0, 1 and
A(i,v1,v9) the two terminal nodes whose values are 0 and 1 and a non terminal node v with
if(v) =1, then(v) = v and else(v) = vyg.
BDDs are mainly designed for the description of Boolean functions. The function Shannon].],

that associates a Boolean function {0,1}"™ — {0,1}, over the variables x1, ..., z, to each
BDD, is defined by the following equations.

Shannon[0] L
Shannon[1] L
Shannon[A(i,v1,v)] o (x; A Shannon[vi]) V (—z; A Shannon]uv])

For a given variable ordering, the BDD representation of Boolean functions is unique, up to
an isomorphism. Moreover, it can be built efficiently (see [Bry86, BRB90]).

Probability The Boolean variables x1, ..., x, can be also interpreted as independent
random variables defined on the elementary events of the probability space @ = {0,1}. The
probability distribution that defines the probability that such a random variable has the value



1 is denoted by P.(z; = 1) and the probability that a Boolean function f built over the z;’s
yields the value 1 for a random argument depending on P, is denoted by P.(f = 1).

The point is that P.(f = 1) can be efficiently assessed when f is encoded by means of a
BDD [Rau93, Kri93]. The function P,[.] that computes P.(f = 1) from the P,.(z; = 1)’s is
defined by the following equations.

PJ0] < 0
Pl ¥
PAG, v, v0)] ¥ (Pr(zi = 1).PJui]) + (1 — Po(z; = 1)).P:[vo])

From an operational point of view, the efficiency of the function P, comes from the fact that
intermediate results are memorized into a hashcache (a hashtable without collision chain).
This table contains pairs (v, p) where v is the address of a BDD node and p is the probability
of the function encoded by the BDD rooted by v. Before computing P, [v], one consults first
the table. If it contains already a pair (v, p) then p is returned. Otherwise, P,[v] is actually
computed and then the pair (v, P.[v]) is inserted into the table. If during the process of
computing the probability of the function f encoded by the BDD F, there is no two BDD
nodes v and w of F with the same hashcode, the computational complexity of P,[.] is linear
in the number of nodes of F.

Conditional Probabilities, Importance Factors Recall that the Vesely-Fussel’s impor-
tance factor of a component whose faults are described by a Boolean function ¢ is defined as
the conditional probability P.(g = 1|f = 1), where f is the fault tree describing the system
under study. The only way to assess such a conditional probability is to use the well known
equality :

P, (g Nf= 1)
So, the process consists first in computing the BDDs encoding f and g A f, and second in
assessing, from these BDDs, the two right hand side probabilities. This is however othen the
case that g is reduced to a single variable x;, or in other words that the component whose
relative importance is to be assessed is a basic one. In such a situation, the computation of
the BDD encoding z; A f can be avoided by assessing P.(z; A f = 1) directly from the BDD
encoding f. This just requires to modify the equations as indicated below.

Ploli] = o
Pl € o1
PIAGv,00)li] % Pouilf]
P [AG v, w)li] € (Po(a; = 1).P[or]f]) + (1 — Pr(z; = 1)). P [wol])

Note that this can be extended to the case where g is a conjunction of literals. In practice, it
appears that this way of assessing P.(z; A f = 1) is more efficient that the first one.



4 Binary Decision Arrays

As said in the previous section, the efficiency of the procedure P,[.] comes from the memo-
rization of intermediate results. Several remarks can be done about this process.

1. The BDD encoding a formula is synthetized from the BDDs encoding its sub-formulae.
As a consequence, its nodes may be scattered in the computer memory, especially when
it is large. This means that the procedure requires, when applied on large BDDs, a
number of changes of the current memory page, which is costly.

2. The memorization is implemented by means of a hashcache, because a full hashtable
would be too expensive to manage. But this means that the memorization is not perfect.
Two nodes may have the same hashcode, especially when the BDD is large. Moreover,
looking up to the hashcache is a rather costly process.

Indeed, the two above remarks stand at a very low level and have nothing to do with mathe-
matical or even algorithmic aspects of the problem. However, computers are not mathematical
objects and there is a long road from algorithms to programs. Any improvement, even by
a small constant factor, of the implementation of P.[.] is good to take. Recall that this
procedure should be applied very large number of times in order to perform Monte-Carlo
Simulations.

The idea is thus to duplicate temporarily the BDD F under study into an array 1" of BDD
nodes. T is as large as F'. The nodes in T are arranged in such way that if a node v is a
descendant of a node w in F, then the copy of v in T is located at lower index than the copy
of w. In addition, each node of T' contains a cell to store a probability (note that it would
be too expensive to add such a cell to all of the BDD nodes). The implementation of P, [.]
on such an array T consists in traversing 7' from the first node to the one of highest index.
By construction, when the node w = A(i, w1, wq) is examined, the probabilities of w; and
wy are already computed and stored in the corresponding cells. This implementation is more
efficient than the regular one for the following reasons.

1. The recursive calls to the procedure are replaced by a traversal of the array.
2. Nodes of T" are less scattered into the computer memory than those of F'.

3. The memorization of intermediate results becomes a perfect and very cheap process, for
it does not involve hasching techniques.

An important point is that 7" can be built from F' in linear time. The algorithm works
in two passes. First, I is traversed in a depht-first way and nodes of F' are copied into T in
post-order. This means that to copy the BDD rooted by the node v one first copies the nodes
of the BDD rooted by then(v), then those of the BDD rooted by else(v), and finally the node
v is itself copied. During this process, then(v) is set to the copy w of v, then(w) and else(w)
are respectively set to v and the previous value of then(v). Then, T is traversed from the node
of highest index to the first node. For each node w of T', one gets the corresponding node v
of F' (the address of which is stored in then(w)). Then, one restores then(v) to its previous
value (which is stored in else(w)). Finally, one sets if(w), then(w) and else(w) respectively
to if(w), then(then(v)) and then(else(v)).



5 Experimental Results

In order to illustrate the approach described in this paper, we consider the fault trees baobabi,
baobab2 and baobab3 of the Aralia benchmark!. The following table reports the numbers of
variables and gates these trees are made of, their numbers of prime implicants, the number
of nodes of the BDDs encoding them, the running times to build these BDDs and the cor-
responding BDAs. The running times indicated (in seconds) below were obtained on a PC
486/33 with a 8 megabytes memory.

Names #var. #gates #P1 | |[BDD| | BDD | BDA
baobabl 61 84 (16 A, 59 V, 9 k-out-of-n) | 46188 | 7362 0.66s | 0.09s
baobab2 32 40 (5 A, 29 V, 6 k-out-of-n 4805 197 0.34s | 0.01s
baobab3 | 80 107 (46 A, 61 V) 24386 | 11789 | 1.07s | 0.18s

In this paper, we are not concerned with numerical values, but with the running times to
get these values. So, in order to test the algorithms presented above, we considered that the
probability of each terminal event follows an exponential law of parameter A and that this
parameter )\ is itself distributed according to a lognormal law of mean value 10™3 and error
factor 3. The table below reports running times to assess the probability of the top event
of each tree by means of Monte-Carlo simulations made of 10, 100 and 1000 trials. These
running times include the computation of the mean value, the standard deviation and 90%
confidence range for each of the simulations.

P,[BDD] P.[BDA]
Names 10 100 1000 10 100 1000
baobabl || 1.24s | 11.65s | 125.71s || 0.30s | 2.29s | 25.39s
baobab2 || 0.06s | 0.52s 5.03s 0.03s | 0.25s | 2.49s
baobab3 || 1.89s | 21.41s | 410.23s || 0.45s | 3.63s | 60.72s

The table below reports running times to assess the Vesely-Fusel’s importance factor of
each terminal event by means of Monte-Carlo simulations made of 10 and 100 trials. As
previously, these running times include the computation of the mean value, the standard
deviation and 90% confidence range for each of the simulations.

P.[BDD] P.[BDA]
Names 10 100 10 100
baobabl || 68.22s | 715.45s || 14.00s | 188.62s
baobab2 1.40s 11.20s 0.67s 3.95s
baobab3 || 159.41s | 1989s | 39.54s | 294.35s

A number of conclusions can be drawn from the above results.

1. Once the BDD encoding the fault tree has been computed, the assessment of the (con-
ditional) probability of its top event from the probabilities of its terminal events is
efficiently achieved. None of the classical methods based on cutsets would be able to
compute it so efficiently.

!The Aralia benchmark is constituted of real-life fault trees coming from various sources. It is freely
available upon request to A. Rauzy (rauzy@labri.u-bordeaux.fr).



2. On the contrary to these methods, the obtained results are exact. This makes Monte-
Carlo simulations significant.

3. When there is enough room in the computer memory, it is always interesting to compile
the BDD into a BDA. This process takes very few time and it improves the efficiency
of probability assessments by a factor five or even more.

4. It remains that Monte-Carlo Simulations are quite time consuming, and that any further
improvement would be welcome in order to handle very large fault trees and/or to
perform more trials per simulation.

6 Conclusion

In this paper, we presented BDD algorithms to perform Monte-Carlo simulations to assess
various quantities of interest in fault tree analyses. We showed that BDDs make it feasible
to study how uncertainties on parameters of probability laws of terminal events propagate
through the fault trees under study. Running times required to assess medium size fault trees
remain acceptable, even on a small personnal computer.

In should be noticed that all of the results reported in this paper were obtained with
brute trees. It is well known that BDD algorithms can be made far more efficient by using
good variable ordering heuristics and/or by rewriting the initial formula. Moreover, it has be
shown recently, by A. Rauzy, that it is also of interest to build truncated BDDs (from which
approximated probabilities can be computed).

It is clear today that the BDD technology outperforms the other known techniques, by
several orders of magnitude. Moreover, the previous remarks show that it remains many
things to do to improve it.
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