
 - 1 -

Can We Trust PRA ?

Qui a vist Paris et noun Cassis, ren a vist.

If one has seen Paris, but not Cassis, one has seen nothing.

--- an old Provencal expression

S. Epstein(1) and A. Rauzy(2)

(1) ABS Consulting, Koraku Mori, Building, 1-4-14 Koraku Chome, Bunkyo-ku,

Tokyo, 112-0004, Japan, sepstein@absconsulting.com

(2) IML/CNRS, 163, Avenue de Luminy, Case 907, Marseille, 13288 Cedex 9,

France, arauzy@iml.univ-mrs.fr

Abstract : The Fault Trees/Event Trees method is widely used in industry as the

underlying formalism of Probabilistic Risk Assessment. Almost all of the tools

available to assess event tree models implement the “classical” assessment

technique based on minimal cutsets and the rare event approximation. Binary

Decision Diagrams are an alternative approach, but they were up to now limited to

medium size models because of the exponential blow up of the memory

requirements. We have designed a set of heuristics which make it possible to

quantify, by means of BDD, all of the sequences of a large event tree model coming

from the nuclear industry. For one of the first times, it was possible to compare

results of the classical approach with those of the BDD approach, i.e. with exact

results. This article reports this comparison and shows that the minimal cutsets

technique gives overestimated results in a significant proportion of cases and

underestimated results in some cases as well. Hence, the (indeed provocative)

question in the title of this article.

Keywords: Probabilistic Risk Assessment, Event Trees, Minimal Cutsets, Binary

Decision Diagrams.

 - 2 -

1 Introduction

The Fault Trees/Event Trees method is widely used in industry. Probabilistic Risk

Assessment in the nuclear industry relies worldwide almost exclusively on this

technique. Several tools are available to assess event tree models. Almost all of

them implement what we call the “classical” approach: first, event tree sequences are

transformed into Boolean formulae. Then, after possibly applying some rewriting

rules, minimal cutsets of these formulae are determined. Finally, various probabilistic

measures are assessed from the cutsets (including probabilities and/or frequencies

of sequences, importance factors, sensitivity analyzes, …). This approach is broadly

accepted. However, it comes with several approximations:

– In order to assess probabilistic quantities from the cutsets, the rare event

approximation is applied.

– In order to minimize the number of cutsets, and therefore avoiding combinatorial

explosion, probability truncation (hereafter referred to as simply truncation) is

applied.

– Finally, in order to handle success branches, various recipes more or less

mathematically justified are applied.

Since, up to now, all of the assessment tools rely on the same technology (with some

variations indeed), it was not possible to verify whether the above approximations are

accurate for large real-life models, especially since to compute error bounds, the

exact solution is necessary

In the beginning of the nineties, a new technology was introduced to handle Boolean

models: Bryant’s Binary Decision Diagrams (BDD for short) [Bry86,Bry92]. One of the

major advantages of the BDD technology is that it provides exact values for

probabilistic measures [Rau93,DR00]. It does not need any kind of truncation or

approximations. BDD are however highly memory consuming. Very large models,

such as event trees of the nuclear industry, were beyond their reach. Nevertheless,

the methodology can be improved by means of suitable variable heuristics and

formula rewritings.

Recently, we were given a rather large event tree model (coming from the nuclear

industry). We designed a strategy, i.e. a sequence of rewritings that made it possible

to handle all of the 181 sequences of the model within reasonable running times and

 - 3 -

memory consumptions. For one of the first times, it was possible to compare results

of the classical approach with those of the BDD approach, i.e. with exact results.

We should not draw definitive conclusions from a single test case. But a single

example suffices to ring the alarm bell: the classical approach gives wrong results in

a significant proportion of cases. This is true for sequence frequencies and, although

to a lesser extent in the problem under study, for component ranking via importance

factors.

The remainder of this article is organized as follows. Section 2 is devoted to

terminology (Boolean formulae, event trees,…). Sections 3 and 4 present

respectively the classical and the BDD approaches. Section 5 gives some insights on

the test case we used for this study. Section 6 reports comparative results for the

computation of sequence frequencies. Section 7 extends the comparative analysis

to importance factors. Section 8 considers briefly the complexity, runtime, and space

considerations when trying to solve large problems. Finally, section 9 presents our

putative conclusions.

2 Terminology

2.1 Boolean Formulae

Throughout this article we consider Boolean formulae. Boolean formulae are built

over a denumerable set of variables and the connectives and, or, not, k-out-of-n, and

so on. Their semantics is defined, as usual, by means of the truth tables of

connectives. We denote by var(F) the set of variables that occur in the formula F. In

the example to be studied, F represents a top event and the variables represent

component failures, or basic events. We use the arithmetic notation for connectives:

F.G denotes the formula “F and G” and F+G denotes the formula “F or G”. The

formula “not F” is denoted either by -F or by F .

A formula is coherent if it does not contain negations. From a strict mathematical

viewpoint, this definition is too restrictive, e.g. --F is coherent (assuming F is).

However, it is sufficient for our purpose.

A literal is either a variable or its negation. A product is a conjunct of literals. It is

sometimes convenient to see products as sets of literals. A minterm of a formula F is

 - 4 -

a product that contains either positively or negatively each variable of var(F). If n

variables occur in F, 2n minterms can be built over var(F). In other words, minterms

one-to-one correspond with truth assignments of variables of F. By abuse of

notations, we shall write π(F) = 1 (resp. 0) if the truth assignment that corresponds to

the minterm π satisfies (resp. falsifies) F. We shall say that π belongs to F when π(F)

= 1. A formula is always equivalent to the disjunction of its minterms.

Let π be a (positive) product and F be a formula. We denote by c
Fπ the minterm of F

built by adding to π all the negative literals built over the variables of F that do not

occur already in π. For instance, if var(F)={a,b,c} and π=a, then cbac
F ..=π . We shall

omit the subscript when the formula F is clear from the context.

Let π be a positive product and F be a formula. π is a cutset of F if c
Fπ satisfies F. A

cutset π is minimal if no proper subset of π is a cutset. We shall denote by MCS[F]

the set of minimal cutsets of F. The reader interested by a more thorough treatment

of minimal cutsets should refer to [Rau01].

2.2 Event Trees

The Fault Tree/Event Tree method is probably the most widely used for risk

assessment, especially in the nuclear industry. We assume the reader is familiar with

this method (see [KH96] for a good introduction).

Fig. 1 (left) represents an event tree. As usual, upper branches represent successes

of the corresponding safety systems, lower branches represent failures. In the fault

tree linking approach (the one we consider here), each sequence is compiled into the

conjunct of the top events (for failure branches) or negation of top events (for

success branches) encountered along the sequence. The Boolean formulae

associated with the sequences of the above event tree are given on the same figure

(right), assuming that the failures of each safety system are described by means of a

fault tree whose top event has the same name as the system.

It is worth noticing that the above compilation is an approximation. In our example,

safety systems F, G and H probably don’t work simultaneously, but are rather called

 - 5 -

in sequence. We shall not consider this issue here. The reader interested by

mathematical foundations of event trees should refer to Papazoglou’s important

article [Pap98].

3 The classical approach to assess event trees

3.1 Principle

By construction, sequences of event trees are mutually exclusive. Therefore, they

can be treated separately, at least for what concerns the computation of their

probabilities.

The classical approach to assess event trees works as follows.

– First, sequences are compiled as explained above.

– Second, some rewriting is performed on the formula associated with each

sequence (e.g. modularization) in order to facilitate their treatment.

– Third, minimal cutsets of each sequence (or group of sequences) are determined.

Classical algorithms to compute the minimal cutsets work either top-down (e.g.

[FV72, Rau03]) or bottom-up (e.g. [JK98,JHH04]).

– Fourth, probabilities/frequencies of sequences are assessed from the cutsets.

More generally, cutsets are used to get various measures of interest such as

importance factors of components, sensitivity to variations in basic event

probabilities, …

In this process, three kinds of approximations are used:

– Sequences, including success branches, are quantified by means of minimal

cutsets (which, by definition, do not embed negations).

– Truncation is applied to limit the process, and therefore reduce the possibility of

combinatorial explosion.

– Probabilities are evaluated using one of two first order approximations: the rare

event approximation or min-cut upper bound.

In the remainder of this section, we shall discuss the consequences of these three

kinds of approximations.

 - 6 -

3.2 The rare event approximation

Let us assume, for a while, that minimal cutsets represent exactly the sequence. The

rare events approximation is used to assess the probability of the sequence. Namely,

for a sequence S (or more exactly the Boolean formula S that represents the

sequence), the probability of S is assessed as follows.

∑
∈

≈
][

)()(
SMCS

pSp
π

π (1)

The rare event approximation is actually the first term of the Sylvester-Poincaré

development to compute the probability of a union of events:

)...(1...)()()...(1

1 1

1 n

k

ki kji

jiik EEpEEpEpEEp ∩∩++∩−=∪∪ −

≤ ≤<≤

∑ ∑
p

 (2)

The rare event approximation gives an upper bound of the probability, it is therefore

conservative. By computing the second term of the development, one gets a lower

bound of the probability (these two values constitute the first pair of so-called Boole-

Bonferroni bounds):

∑∑ ∑
≤≤ ≤<≤

≤∪∪≤∩−
ki

ik

ki kji

jii EpEEpEEpEp
pp 1

1

1 1

)()...()()((3)

When the number of cutsets is large, the computation of more terms is intractable.

The rare event approximation gives accurate results when the probabilities of basic

events are low. In the presence of relatively high probabilities (say >10-2) and/or

many minimal cutsets, the approximation is no longer valid. Consider for instance a

3-out-of-6 system S, with p(e)=0.1 for each basic event e. The exact probability of S

is 0.01585. The Boole-Bonferroni bounds given by equation (3) are respectively

0.01009 and 0.02, a rather rough approximation in both cases.

 - 7 -

3.3 Truncation in minimal cutsets determination

In general, sequences of large event trees admit huge numbers of minimal cutsets.

Therefore, only a subset of the latter’s can be considered (the most important ones,

in terms of probability, one expects). Algorithms to compute minimal cutsets apply

truncation to keep only few thousands cutsets (beyond computations are intractable).

The choice of the right truncation value is a result of trade-offs between accuracy of

the computation and resource (time and memory) consumption. Expert knowledge

about the expected probability of the sequence plays also an important role in that

choice. This issue is discussed in details in reference [Cep04].

It remains that, by applying truncation, one gets an optimistic approximation.

Moreover, there is no way to ensure that this approximation is accurate. For instance,

if we keep a thousand cutsets of probability 10-9 and by the way we ignore a million

cutsets of order 10-11, then we underestimate the risk by a factor 10. This problem is

largely ignored by most of the practitioners.

3.4 Quantification of success branches

But the main problem in the classical approach stands in the way success branches

are (badly or even not at all) taken into account. None of the classical algorithms are

actually able to deal with negations, for two main reasons. First, by definition, minimal

cutsets do not contain negative literals. Therefore, the functions they encode are

coherent. The notion of minimal solutions of general (coherent or non-coherent)

functions exists (this is the notion of prime implicants), but that’s another (very

different) story. Second, truncation and minimality tests and reduction rules used by

classical algorithms are not compatible with negations. The interested reader should

see [Rau01] for a detailed discussion on that topics, including theoretical

computational complexity arguments.

Event trees assessment tools take into account success branches in various ways.

Let nm GGFFS 11= be a sequence.

The first approximation consists in ignoring success branches. Pure and simple.

 ∑
∈

=≈
]...[

1

1

)()()(
mFFMCS

pSRESp
π

π (4)

 - 8 -

The second approximation consists in correcting the approximation (4) by introducing

a negative factor. E.g.

 







−×=≈ ∑∑

++∈∈]...[]...[

2

11

)(1)()()(
mm GGMCSFFMCS

ppSRESp
ππ

ππ (5)

The second term of approximation (5) is sometimes replaced by the product of the [1-

RE1(Gi)]’s, which is certainly not better.

The third and more serious approximation consists in removing (known as delete

terming) from MCS[F1…Fn] the cutsets π such that c

Sπ satisfies G1+…+Gn. It can be

shown that, provided the Fi’s and the Gj’s are coherent, this operation gives actually

the minimal cutsets of S.

∑
∈

=≈
][

3)()()(
SMCS

pSRESp
π

π (6)

Some authors propose process success branches as follows. First, negations are

pushed down toward variables, using de Morgan’s Laws. Second, new variables are

introduced to represent negative literals. Third, minimal cutsets of the rewritten

formula are computed. Finally, those that contain both a variable and its (encoded)

negation are eliminated. This attempt is interesting. However, it cannot work correctly

because of truncation. Consider for instance the formula F=not-a.not-b.(c+d). If we

apply truncation to eliminate cutsets whose order is greater than 2, then we get no

cutset at all for F, which is indeed incorrect. Another problem is exemplified by the

formula HGF .= where G=(a1.b1)+…+(an.bn) and H is any formula that possibly

depends on the ai’s and the bj’s. not-G = (not-a1 +not-b1) …(not-an+not-bn) has 2n

cutsets, which indeed explodes the solution space, whatever the cutsets of F may be.

For these reasons, we shall not consider this idea here, which is far too dangerous.

Approximations RE1(S), RE2(S) and RE3(S) may also give incorrect results as

exemplified by the following example.

[]
)()(

..)).().((

.

54321321

321332211

dddddaaaG

cccbababaF

GFS

+++++++=

++++=

=

 - 9 -

with p(ai)=p(bj)=p(dk)=0.1 and p(cl)=0.001. It is easy to verify that p(S)=0.00043

RE1(S)=0.0069, RE2(S)=0.0039, RE3(S)=0.001 (note that these results remain the

same if further terms of the Sylvester-Poincaré development are considered).

This example is indeed somewhat artificial. However, the same kind of problems do

occur in real-life PSA, as we shall see. It is worth noticing that if success branches

and failure branches are independent then RE2 gives a correct answer (if indeed

computations for coherent parts is correct) while RE1 and RE3 are accurate only if the

probability of success branches (taken altogether) is close to 1. In practice however,

such independence is seldom achieved, leaving entire the problem.

4 The BDD approach to assess event trees

Bryant’s Binary Decision Diagrams [Bry86], BDD for short, are now a well-known and

widely used technique [Bry92]. In this section, we recall briefly the basics of this

technique and we discuss its use to assess event trees (J. Andrews initiated this

work in [AD00]).

4.1 Binary Decision Diagrams

The Binary Decision Diagram of a formula is a compact encoding of the truth table of

this formula. From a BDD, it is possible to perform efficiently all of the probabilistic

quantifications (top event probability, importance factors,…). The BDD representation

is based on the Shannon decomposition: Let F be a Boolean formula that depends

on the variable v, then

]0[.]1[. ←+←= vFvvFvF (7)

By choosing a total order over the variables and applying recursively the Shannon

decomposition, the truth table of any formula can be graphically represented as a

binary tree. The nodes are labelled with variables and have two out edges (a then-

out edge, pointing to the node that encodes F[v←1], and an else-out edge, pointing

to the node that encodes F[v←0]). The leaves are labelled with either 0 or 1. The

value of the formula for a given variable assignment is obtained by descending along

the corresponding branch of the tree. The Shannon tree for the formula F ab ac= +

 - 10 -

and the lexicographic order is pictured Fig. 2 (dashed lines represent else-out

edges).

Indeed such a representation is very space consuming. It is however possible to

shrink it by means of the following two reduction rules.

• Isomorphic sub trees merging. Since two isomorphic sub trees encode the same

formula, at least one is useless.

• Useless nodes deletion. A node with two equal sons is useless since it is

equivalent to its son (FvFvF .. +=).

By applying these two rules as far as possible, one get the BDD associated with the

formula. A BDD is therefore a directed acyclic graph. It is unique, up to an

isomorphism. This process is illustrated on Fig. 2.

Logical operations (and, or not) can be performed directly on BDD. In this way, the

Shannon tree is never built then shrunk. The BDD of a formula is obtained by

composing the BDD of its sub formulae. An efficient implementation of a BDD

package is described in reference [BRB90].

4.2 Application to Fault Trees/Event Trees assessment

Thanks to the Shannon decomposition, the probability of a formula F can be

computed efficiently from the BDD that encodes F (and the probabilities of basic

events). The following equality holds.

p(01 .. FvFv +) = p(v).p(F1)+ [1-p(v)].p(F0) (8)

It is easy to derive a recursive algorithm from equality (8) [Rau93]. This algorithm is

linear in the size of the BDD and gives exact results. It needs no truncations and

makes no approximation. Importance factors can also be computed efficiently and

exactly from BDD [DR00].

By slightly modifying the semantics of nodes, BDD can also be used to compute and

to encode minimal cutsets (see [Rau93, Rau01]). BDD that encode minimal cutsets

are called ZBDD, from the name given by in its Minato’s seminal article [Min93].

Truncation can be applied to keep only the most relevant cutsets.

Hence, the BDD approach to assess event trees works as follows.

 - 11 -

– First, sequences are compiled as explained above.

– Second, some rewriting is performed on the formula associated with each

sequence in order to facilitate their treatment and to select a good variable

ordering. We shall discuss this very important issue in the next section.

– Third, the BDD that encode the sequence is computed.

– Fourth, the exact value of the probability (or the frequency) of the sequence is

computed from the BDD. More generally, importance factors of components, as

well as sensitivity to variations in basic event probabilities are assessed from the

BDD in an exact way.

As a fourth or fifth step and for the sake of the verification of the model, minimal

cutsets can be extracted. However, this is not necessary. Moreover, since minimal

cutsets are used only for verification purposes, one need only consider very few of

them. In fact, for an analyst to consider more than a few hundred cutsets may be

cognitively infeasible.

It is worth noticing again that all of the probabilistic assessments are very efficient

once the BDD is built. This makes the BDD approach especially well suited to

perform sensitivity analyses via Monte-Carlo simulations.

4.3 Pre-processing and variable ordering

It is widely known, since the very first uses of BDD [Bry86], that the chosen variable

ordering has a strong impact on the size of BDD, and therefore on the efficiency of

the whole methodology. The way formulae are written may also influence strongly the

sizes of intermediate BDD [MJF99]. With very large models, such as sequences of

nuclear PSA, this issue must be carefully addressed in order to avoid the exponential

explosion of the BDD size.

Finding the best ordering (or even a reasonably good one) is a very hard problem

(namely, it is NP-complete [BW96]). Two kinds of heuristics are used to determine

which variable ordering to apply. Static heuristics are based on topological

considerations and select the variable ordering once for all (e.g. [FFK88, MIY90,

BRKM91]). Dynamic heuristics change the variable ordering at some points during

the computation. They are thus more versatile than the former, but the price to pay is

a serious increase of running times. Sifting is the most widely used dynamic

 - 12 -

heuristics [Rud93]. Event tree sequences involve in general far too many variables to

make dynamic reordering feasible.

For the purpose of this study, we designed a rewriting strategy made of five different

heuristics applied in a row (using ideas of references [MJF96,FFK88, MIY90]. This

strategy made it possible to handle all the sequences within reasonable times and

memory consumptions. Without it, some of the sequences were intractable. The

Aralia computation engine, designed by one of the authors, embeds many heuristics

and makes it possible to program strategies. The design of good strategies for event

tree processing is a major part of the LukeTreeWalker project [ER04].

4.4 Post-processing

Solutions of realistic PSA are in general post-processed to take into account

dependencies among human errors, process recovery actions and to delete

physically impossible solutions. This is done by scanning the cutsets. It is sometimes

argued that to scan the cutsets allows also the review and the documentation of the

solutions. It is therefore of interest to see whether the BDD approach allows this post-

processing. Here, three remarks should be made. First, BDD encode solutions of

Boolean equations. So, if a solution is infeasible for some physical reason it is always

possible to delete it from the BDD. To do so, one has just to write the logical

exclusion rules. It is worth noticing that, because of their ability to handle negations,

BDD make it possible to embed these exclusion rules in the model itself, rather than

as an outside extra-logical process. Second, the BDD approach does not exclude the

use of cutsets (to debug, review or document models and solutions). It just removes

the need of cutsets to perform probabilistic computations. Third, because BDD

solutions are exact and defined in purely logical terms, it is possible to evaluate

exactly which cutsets, events, groups of events or subsystems are contributing the

most to the risk. With that respect, the BDD approach opens new perspectives to the

engineering of PSA.

 - 13 -

5 A Case Study

5.1 The Model

The basis of this study is an actual event tree coming from the nuclear industry. This

event tree is made of 181 sequences, with a total of 2259 basic events. Broken down

by sequence, the smallest is made of 78 gates and 158 basic events. The largest

one is made of 1128 gates and 1745 basic events. The mean numbers of gates and

basic events are respectively 857 and 1455 per sequence. Among the 181

sequences, 171 lead to a core damage. Table 3 gives more details about the

distribution of sequences according to their sizes.

Ten fault trees, representing the top events of the event trees, are used to build the

sequences (plus 8 individual events). The smallest of these fault trees is made 74

gates and 155 basic events. The biggest one is made of 561 gates and 946 basic

events. The mean numbers of gates and basic events are respectively 277 and 490.

5.2 Efficiency of the BDD approach

For each sequence, we computed (with the strategy discussed in section 4.3) the

following data structures and quantities.

– The formula rewritten by the strategy.

– The BDD that encodes this formula.

– The probability of the sequence computed from the BDD.

– The minimal cutsets of the sequence. However, it is not possible to compute all of

the minimal cutsets (for most of the sequences there are more than 109 of them).

The BDD approach can efficiently count the minimal cutsets even though none

need be listed.

To limit the number of minimal cutsets generated, we used a probability truncation

limit defined thusly:

(Cutset Value) >= (BDD Value of the Sequence) * 10-4

So if the probability of a sequence is 10-9, as calculated by BDD, we limited the

cutsets to those whose probabilities are greater than 10-13.

 - 14 -

It is worth noting that we used BDD to calculate the exact results as well as to create

ZBDD, a data structure from which we can extract the cutsets [Min93]. The cutsets

we obtained are the same as those that would have been obtained with a classical

bottom-up or a top-algorithm. However, to extract them from the ZBDD is much

faster.

6 Comparison between the classical and the BDD approaches

6.1 Experimental protocol

In this section, we compare the probabilities of sequences we obtained with the BDD

approach with those that would have been obtained with a classical approach. The

questions we aim to answer are the following.

Question 1: In the classical approach, is it necessary to compute more than one term

of the Sylvester-Poincaré development?

Question 2: Is the approximation RE1 accurate (recall that RE1 consists in ignoring

success branches)?

Question 3: Is the approximation RE2 accurate (recall that RE2 consists in correcting

RE1 by multiplying it with the probability of success branches)?

Question 4: Is the approximation RE3 accurate (recall that RE3 consists in computing

the probability of the sequence from its minimal cutsets).

In order to answer questions 1 to 4, we computed, for each sequence, the following

quantities:

– The exact probability of sequence, computed from the BDD.

– The first term of the Sylvester-Poincaré development (RE3) computed from the

minimal cutsets of the sequence (recall that we keep only cutsets whose

contribution is at least 10-4 times the probability of the sequence as calculated by

BDD).

 - 15 -

– The difference between the first and the second terms of the Sylvester-Poincaré

development, still computed from the cutsets.

– The exact probability of the conjunction of the failure branches of the sequence

computed from the BDD that encodes this conjunction. It is worth noticing that this

approximation should be better than RE1 as we defined it section 2. However, for

the sake of the simplicity, we shall denote it RE1.

– The exact probability of the conjunction of the failure branches times one minus

the exact probability of the disjunction of the success branches (both obtained by

the BDD that encode them). For the same reason as previously, this quantity

should be a better approximation than RE2 but we shall denote it RE2.

Except the first sequence, that contains only success branches and whose probability

is 0.999817, probabilities of sequences range rather log-uniformly from 4.99 10-5 to

2.87 10-18. It would be an error to concentrate on most probable sequences for each

sequence corresponds to a different situation. The less frequent sequences may also

be those with the most severe consequences for the environment. Table 5 gives a

distribution of the sequences according to their probabilities (this distribution is a bit

arbitrary for the reasons we just gave).

6.2 Analysis of the results

Question 1: the question 1 is easy to answer. the range given by the two first terms of

the Sylvester-Poincaré development is narrow for all of the sequences. The relative

difference second-term / first-term never exceeds 6%. This means that the rare event

approximation is accurate, at least for what concerns the quantity it assesses.

Question 2: To answer this question, we compute the relative difference RE1(S)-

p(S)/p(S) which represents the relative error one makes by considering RE1 (note

that RE1 is always bigger than the exact probability). Table 6 gives the distribution of

the sequences according to the values of this ratio.

For only one sixth of the sequences RE1 is pessimistic by a factor less than 2! For

half of the sequences, RE1 is pessimistic by at least two orders of magnitude!

Sequence number 13 has the “gold medal” with a relative error of 6.53 107 for a

probability 1.72 10-12.

 - 16 -

Question 3: Table 7 gives the distribution of the sequences according to the relative

error made by the approximation RE2.

RE2 corrects a bit RE1. However, it gives very pessimistic results for two thirds of the

sequences and is still pessimistic by two orders of magnitude for half of the

sequences. Sequence number 13 has again the “gold medal” with a relative error of

3.98 106.

Question 4: The answer to this question is a bit more complex for RE3 gives

sometimes optimistic results. However, the greater the number of minimal cutsets

considered, the less the expectation to be optimistic. So, on the one hand, one may

argue that we didn’t take into account enough cutsets. On the other hand, the

truncation has to be put somewhere in order to avoid prohibitive running times. By

setting it to 10-4 the probability of the sequence, we adopted a quite conservative

attitude.

Table 8 gives the distribution of sequences according to the relative error made by

RE3, when RE3 is optimistic.

RE3 is thus optimistic in more than a quarter of the sequences. It is optimistic by a

factor 2 in at least one sequence whose probability is around 10-9 and by a factor 4

for at least one sequence whose probability is around 10-12.

Table 9 gives the distribution of sequences according to the relative error made by

RE3, when RE3 is pessimistic.

RE3 is thus pessimistic by a factor 2 or more for 104 sequences among 181 and by a

factor 10 or more for one third of the sequences. For instance, it is pessimistic by a

factor 14 for the sequence number whose probability 7.42 10-6.

In order to confirm these results, we calculated the cutsets whose contributions to the

probability of the sequence is greater than 10-6 (rather than 10-4). Indeed, running

times and numbers of cutsets increase quite a lot (running times are up to 20 minutes

and for some of the sequences up to 200,000 cutsets show up). With such a low

truncation, RE3 is pessimistic on all but 7 sequences. On the latter sequences, it is

optimistic by at most 7%, which is quite acceptable. Table 10 gives the distribution of

sequences according to the relative error made by RE3, when RE3 is pessimistic. It is

 - 17 -

worth noticing that RE3 is now pessimistic by a factor greater than 10 for more than a

third of the sequences and by a factor greater than 80 for 18 of them.

Last, but not least: the sum of the probabilities of core damage sequences computed

with the BDD approach is 2.27 10-5. With the classical approach we obtain, for both

cut-offs (10-4 times the probability of the sequences and 10-6 times the probability of

the sequences), 1.29 10-4. It has been pointed out by M. Barrett that just summing

the probabilities obtained for each sequence may be incorrect because some cutsets

may be duplicated (or even subsumed). With the BDD approach this problem does

not exist since the sequences are exclusive to one another by construction. In order

to confirm our observations, we performed the following experiment. For different

absolute cut-offs, we computed the cutsets for each core-damage sequence, we

collected all of these cutsets together, we removed those duplicated and subsumed,

and then we computed the probability of a core damage from the resulting set. Table

11 gives the results obtained for absolute cut-offs of 10-10, 10-11, 10-12 and 10-13
 (i.e.

we kept only those cutsets whose probabilities are greater than the above cut-offs).

For all of these cut-offs, the probability of a core damage is 1.21 10-4. Therefore, no

matter which way it is applied, the classical approach overestimates by almost a

factor 5 the likehood of core damage.

7 Importance Factors

Probabilities (or frequencies) of sequences are interesting per se. It is however also

very important to rank basic events according to their contributions to the risk. This is

in general done through the assessment of so-called importance factors. In this

section, we present results for three importance factors that are widely used in the

industry: the Critical Importance Factor, the Risk Achievement Worth and the Risk

Reduction Worth.

7.1 Definitions

The critical importance factor of a basic event e (for a sequence S), denoted by

CIF(S,e), is defined as follows.

))((

))((

)(

)(
),(

ep

Sp

Sp

ep
eSCIF

∂

∂
×= (9)

 - 18 -

The risk achievement worth, denoted by RAW(S,e), is defined as follows.

)(

)(
),(

Sp

e|Sp
eSRAW = (10)

Finally, the risk reduction worth, denoted by RRW(S,e), is defined as follows.

)(

)(
),(

e|Sp

Sp
eSRRW = (11)

Definitions (9) to (11) can be assessed either from cutsets or from BDD [DR00]. Note

that our definitions are slightly different from those usually given (see e.g. [CPS98]).

The physical meanings of these importance factors and their relationships are

discussed in the two cited articles [CPS98,DR00].

7.2 Results

We present below the results we obtained for sequence number 4. Results for the

other sequences are similar. This sequence is made of 1744 basic events and 1128

gates. It has 447 minimal cutsets whose probability is greater that 10-4 its probability,

namely 2.23632 10-9. The rare events approximation applied on these cutsets gives

1.19841 10-9.

Tables 12, 13 and 14 give respectively the most important 20 basic events according

to respectively their CIF, RAW and RRW (computed from the BDD). These tables

show that not only the values computed from BDD and cutsets are different, but also

the induced ranking is different. Table 11 shows many basic events whose RAW is 1.

This just means that these basic events don’t show up in the cutsets. It is well known

however that the RAW must be considered with care [WW96]. The BDD approach

shows just how much care is required to achieve accurate RAW values.

The difference in importance calculated from cutsets and BDD is extraordinarily

important. To undertake risk informed maintenance, risk informed asset

management, and outage/shutdown planning, the relative importance of components

must be known with a high degree of accuracy to insure the safety of the populace,

the safety of the environment, and the proper allocation of funds to achieve the

former goals.

Moreover, to calculate the importance of components, one usually combines the

importance measures of the basic events which refer to these components

 - 19 -

(remember that basic events are propositions about states of components, “Pump A

fails to run;” , and not things in, and of, themselves, such as the object, Pump A).

Importance measures of components cannot be combined linearly from importance

measures of cutsets [BA01]. BDD, however, does not suffer from this limitation, and

we can combine the importance measures of basic events calculated from the BDD

structure to give an exact importance measure of the components.

8 Runtime, Space, and Complexity

This section describes the maximum and average running times for each category of

sequences, details of which are in table 4. These results are obtained by

accumulating the running times to rewrite the formula, to build the BDD, to compute

the probability from the BDD and to build the ZBDD that encodes the minimal cutsets

(with a 10-4
 relative cut-off). They were observed on a laptop computer running

Windows 2000 with a processor speed of 1.8 GHz and with a 1 gigabyte of RAM.

Table 4 shows that it takes at most 156.1 seconds to handle a sequence. All but 2

sequences are treated in less than 75 seconds. On average it takes 16.03 seconds

to fully quantify a sequence. These running times can surely be improved by using

larger hash tables, a faster computer, or by improving the strategy. Also, the resulting

BDD could be cached for subsequent quantification at a later time with different

variable probabilities. It takes at most 4.27 seconds to compute the probability of a

sequence from its BDD (and 0.81 seconds on average). The running time to assess a

probability from a BDD doesn’t depend on the probabilities of basic events.

It takes at most 4,86 millions nodes to build the BDD and the ZBDD that encodes the

cutsets. On average these computations require 1,28 millions nodes. It other words,

given the size of the hash tables, the most difficult sequence is handled within around

200 megabytes.

While all of this is well and good, it has also given us unrealistic notions of what

runtimes and memory requirements should be when solving NP-hard problems, such

as the one described in this article. Certainly computing from BDD will take longer

and need more space than simple bottom-up algorithms with truncation. But when

 - 20 -

solving calculations to help us understand the risk to and safety of populations and

environments, the runtime difference between 5 seconds and 50 seconds can

rationally be ignored when the extra 45 seconds will produce exactly correct answers.

Another interesting question is how one measures the complexity of an event tree

made up of fault trees? Does one count the number of gates and basic events?

Does one count the number of levels in the structure? How does one score the

combination of operators so as to distinguish the difference in complexity between F

= -a+b+(c*d) and G = -(a*(b+c) xor d)? Does one count the number of independent

sub-trees, the number of branches for each gate, the number of negations? This is

not simply an academic question. By understanding the complexity of the problem

space, a set of heuristics can be chosen quickly, instead of randomly trying one after

another.

9 Conclusion

There is no single development, in either technology or management technique,

which by itself promises even one-order of magnitude improvement within a decade

in productivity, in reliability, in simplicity.

--- Fredrick P. Brooks, Jr., NO SILVER BULLET

In this article, we have reported the results of a comparative study of two

technologies to assess risk models: the classical approach, widely used and trusted,

based on minimal cutsets and the BDD approach, improved by means of heuristics,

that gives exact results. The study is based on a real-life linked-fault tree model

representing an event tree coming from the nuclear industry. We used the Aralia

computation engine which implements both approaches as well as many heuristics

and formula rewriting strategies.

Indeed, definitive conclusions cannot be drawn from a single example. However, our

test case is sufficiently large and representative and the results are sufficiently clear

to make the following observations.

– The approximation that consists in taking into account failure branches only

should be avoided. Our experiments show that, even corrected by a factor

 - 21 -

obtained from success branches, this approximation overestimates, very often by

orders of magnitude, the probability of the sequence.

– The assessment of the probabilities of the sequences through the minimal cutsets

should be considered with care. In a significant number of cases, this

approximation gives optimistic results, because of truncations. Such an

underestimation of the risk is not acceptable. Moreover, the same truncation that

gives an optimistic result in one sub-system may give a very pessimistic result in

another sub-system, within the same top event! With a truncation set to 10-4

times the probability of the sequence, we observed, among the 181 sequences of

our test case, results that are optimistic by a factor 4 together with results that are

pessimistic by a factor 96.

– Such variations make the ranking of sequences according to their contributions to

the overall risk delicate, if not dubious.

– The classical approach overestimates the likehood of a core damage by almost a

factor 5.

– Because of imprecision on the values of probabilities (when computed from the

cutsets), the rankings of basic events induced by importance factors should be

considered with care. This remark is especially important for the so-called risk

achievement worth that can miss important basic events.

The above observations do not mean that existing PRA studies based on event trees

must be discarded. With that respect, we can answer the question of the title: yes, we

do trust PRA. Nevertheless, the results presented here are a stone in the garden of

the classical approach based on minimal cutsets. On the other hand, we don’t claim

that Binary Decision Diagrams are the universal panacea. This technique still suffers

from the exponential blow up of memory requirements. We have shown that

heuristics can be designed which improve dramatically its efficiency. They are

however hard to tune. More experiments, more efforts are necessary to make our

approach able to deal with all the existing models.

One final note: as Fred Brooks’ quotation states at the beginning of this section, we

should expect no silver bullet to slay the werewolf of complex computations. What is

important is that any solution is (1) productive, that it allows us to work orderly and

rationally, (2) reliable, that it gives us the correct answers with explicit knowledge of

 - 22 -

the error bounds, and (3) simple, that it allows us to confirm the problem we are

solving and its solution. This study is a step towards this goal.

10 Bibliography

[AD00] J.D. Andrews and S.J. Dunnett, Event Tree Analysis using Binary Decision

Diagrams, IEEE Transactions on Reliability, Vol 49, No 2, June 2000, pp230-

239.

[BW96] B. Bollig and I. Wegener. Improving the Variable Ordering of OBDD is NP-

Complete. IEEE Trans. on Software Engineering, 45(9):993–1001, Sep. 1996.

[BA01] E. Borgonovo and G.E. Apostolakis, A new importance measure for risk-

informed decision making Reliability Engineering and System Safety, Volume

72, Issue 2 , pp 193-212, May 2001.

[Bry86] R. Bryant. Graph Based Algorithms for Boolean Function Manipulation. IEEE

Transactions on Computers, 35(8):677–691, August 1986.

[BRB90] K. Brace, R. Rudell, and R. Bryant. Efficient Implementation of a BDD

Package. In Proceedings of the 27th ACM/IEEE Design Automation

Conference, pages 40–45. IEEE 0738, 1990.

[Bry92] R. Bryant. Symbolic Boolean Manipulation with Ordered Binary Decision

Diagrams. ACM Computing Surveys, 24:293–318, September 1992.

[BRKM91] K.M. Butler, D.E. Ross, R. Kapur, and M.R. Mercer. Heuristics to Compute

Variable Orderings for Efficient Manipulation of Ordered BDD. In Proceedings of

the 28th Design Automation Conference, DAC'91, June 1991.

[Cep04] M. Čepin. Analysis of Truncation Limit in Probabilistic Safety Assessment.

To appear in Reliability Engineering and System Safety.

[CPS98] M.C. Cheok, G.W. Parry, and R.R. Sherry. Use of importance measures in

risk informed regulatory applications. Reliability Engineering and System Safety,

60:213–226, 1998.

[DR00] Y. Dutuit and A. Rauzy. Efficient Algorithms to Assess Components and

Gates Importances in Fault Tree Analysis. Reliability Engineering and System

Safety, 72(2):213–222, 2000.

 - 23 -

[ER04] S. Epstein and A. Rauzy. LukeTreeWalker: Specifications. Technical Report

TR2004-01. ARBoost Technologies.

[FFK88] M. Fujita, H. Fujisawa, and N. Kawato. Evaluation and Improvements of

Boolean Comparison Method Based on Binary Decision Diagrams. In

Proceedings of IEEE International Conference on Computer Aided Design,

ICCAD'88, pages 2–5, 1988.

[FV72] J.B. Fussel and W.E. Vesely. A New Methodology for Obtaining Cut Sets for

Fault Trees. Trans. Am. Nucl. Soc., 15:262–263, June 1972.

[KH96] H. Kumamoto and E. J. Henley. Probabilistic Risk Assessment and

Management for Engineers and Scientists. IEEE Press. 1996. ISBN 0-7803-

6017-6.

[JK98] W.S. Jung and D.K. Kim. FORTE: a fast new algorithm for risk monitors and

PSA. Proceedings of the Fourth International Conference on Probabilistic

Safety Assessment and Management. New York, USA, p. 1221, 1998.

[JHH04] W. S. Jung, S. H. Han and J. Ha. A fast BDD algorithm for large coherent

fault trees analysis. Reliability Engineering and System Safety. Vol. 83, pp 369-

374, 2004

[MIY90] S. Minato, N. Ishiura, and S. Yajima. Shared Binary Decision Diagrams with

Attributed Edges for Efficient Boolean Function Manipulation. In L.J.M Claesen,

editor, Proceedings of the 27th ACM/IEEE Design Automation Conference,

DAC'90, pages 52–57, June 1990.

[Min93] S. Minato. Zero-Suppressed BDD for Set Manipulation in Combinatorial

Problems. In Proceedings of the 30th ACM/IEEE Design Automation

Conference, DAC'93, pages 272–277, 1993.

[MJF99] R. Murgai, J. Jain and M.Fujita, Efficient Scheduling Techniques for ROBDD

Construction, Proceedings of the International Conference on VLSI Design, pp

394-401, 1999.

[Pap98] I.A. Papazoglou. Mathematical foundations of event trees. Reliability

Engineering and System Safety, 61:169–183, 1998.

[Rau93] A. Rauzy. New Algorithms for Fault Trees Analysis. Reliability Engineering &

System Safety, 05(59):203–211, 1993.

 - 24 -

[Rau01] A. Rauzy. Mathematical Foundation of Minimal Cutsets. IEEE Transactions

on Reliability, volume 50, number 4, pages 389-396,2001.

[Rau03] A. Rauzy. Towards an Efficient Implementation of Mocus. IEEE Transactions

on Reliability, vol. 52:2, pp 175-180, 2003.

[Rud93] R. Rudell. Dynamic Variable Ordering for Ordered Binary Decision

Diagrams. In Proceedings of IEEE International Conference on Computer

Aided Design, ICCAD'93, pages 42–47, November 1993.

[WW96] I.B. Wall and D.H. Worledge. Some perspectives on risk importance

measures. In Proceedings of the international conference on Probabilistic

Safety Assessment, PSA'96, pages 203–207, 1996.

Acknowledgements:

The authors would like to thank K. Kawai, J. Sakaguchi, and K. Nishi from MHI for

their help, D. Johnson and D. Wakefield from ABS Consulting, R. Cooke from TU

Delft, K. Fleming from Technical Insights Inc., and M. Barrett from Duke Energy for

careful reviews of this article and their support, and A. Soma from ABS Consulting

Japan for her help.

 - 25 -

Fig. 1. An event tree and Boolean formulae associated with its sequences.

b

a

c

01

BDD

a

bb

cc

1 1 0 0 1 0 1 0

c c

Shannon Tree

Reduction Rules

Figure 2. From the Shannon Tree to the BDD.

 - 26 -

Number of BE Number of gates Number of sequences

from 158 to 161 from 78 to 80 7
256 142 1
769, 770 403,404 3
from 1422 to 1424 from 805 to 837 65
from 1546 to 1558 from 858 to 913 65
1621, 1622 from 1020 to 1052 30
1744, 1745 from 1097 to 1128 10

Table 3. Distribution of sequences by size

Number of BE Number of sequences max mean

from 158 to 161 7 0.12 0.11
256 1 0.17 0.17
769, 770 3 0.95 0.94
from 1422 to 1424 65 24.23 7.40
from 1546 to 1558 65 124.91 19.62
1621, 1622 30 45.55 22.16
1744, 1745 10 156.1 46.47

Table 4. Running times in seconds (distribution by number of BE of sequences)

probability of the sequence number of sequences

less that 10-12 100

from 10-9 to 10-12 51

from 10-5 to 10-9 29

Table 5. Distribution of the sequences according to their probabilities

 - 27 -

[RE1(S)-p(S)]/p(S) number of sequences

less than 1 28

between 1 and 10 28

between 10 and 100 42

between 100 and 1000 39

beyond 1000 51

Table 6. Distribution of the sequences according to the relative error made by the
approximation RE1

[RE2(S)-p(S)]/p(S) number of sequences

less than 1 59

between 1 and 10 38

between 10 and 100 30

between 100 and 1000 31

beyond 1000 33

Table 7. Distribution of the sequences according to the relative error made by the
approximation RE2

[p(S)-RE3(S)]/RE3(S) number of sequences

less than 0.10 8

between 0.10 and 0.50 19

between 0.5 and 1 9

between 1 and 3.10 15

total 53/181

Table 8. Distribution of the sequences according to the relative error made by the
approximation RE3 when it is optimistic (with a 10-4 relative cut off).

 - 28 -

[RE3(S)-p(S)]/p(S) number of sequences

less than 0.10 15

between 0.10 and 1 9

between 1 and 10 44

between 10 and 96.83 60

total 128/181

Table 9. Distribution of the sequences according to the relative error made by the
approximation RE3 when it is pessimistic (with a 10-4 relative cut off).

[RE3(S)-p(S)]/p(S) number of sequences

less than 0.10 55

between 0.10 and 1 22

between 1 and 10 29

between 10 and 78 50

between 78 and 116 18

total 174/181

Table 10. Distribution of the sequences according to the relative error made by the
approximation RE3 when it is pessimistic (with a 10-6 relative cut off).

cut off 10-10 10-11 10-12 10-13 BDD (exact value)

probability 1.21 10-4 1.21 10-4 1.21 10-4 1.21 10-4 2.27 10-5

number of cutsets 978 3535 13172 51493

number of BE 180 367 600 785 2259

Table 11. Probability of a core damage computed with approximation RE3 and
different absolute cut offs.

 - 29 -

Rank CIF(S,e)/BDD CIF(S,e)/cutsets

1 0.605467 0.81045
2 0.441697 0.615231
3 0.288971 0.172044
4 0.141314 0.135865
5 0.137265 0.223926
6 0.137265 0.223926
7 0.137265 0.223926
8 0.0622317 0.041397
9 0.0622317 0.041397
10 0.0622317 0.041397
11 0.0622284 0.041397
12 0.0622284 0.041397
13 0.0622284 0.041397
14 0.0573555 0.0511157
15 0.0573555 0.0511157
16 0.0522112 0.0355426
17 0.052187 0.0355426
18 0.0429735 0.0302301
19 0.0429735 0.0302301
20 0.0429735 0.0302301

Table 12. The 20 most important basic events according to their CIF for sequence 4

sorted by the second column.

 - 30 -

Rank RAW(S,e)/BDD RAW(S,e)/cutsets

1 68803.5 92096.8
2 6770.64 1
3 6770.64 1
4 6770.64 1
5 6770.64 1
6 6770.64 1
7 4405.06 1
8 4405.06 1
9 2822.88 1
10 2822.88 1
11 827.259 795.395
12 827.259 288.623
13 827.259 288.625
14 827.259 1
15 827.259 265.348
16 827.259 265.348
17 827.259 265.348
18 762.086 1
19 762.086 1
20 390.821 636.928

Table 13. The 20 most important basic events according to their RAW for sequence 4

sorted by the second column

 - 31 -

Rank RRW(S,e)/BDD RRW(S,E)/cutsets

1 2.53464 5.27566
2 1.79114 2.59896
3 1.40641 1.20779
4 1.16457 1.15723
5 1.15911 1.28854
6 1.15911 1.28854
7 1.15911 1.28854
8 1.06636 1.04318
9 1.06636 1.04318
10 1.06636 1.04318
11 1.06636 1.04318
12 1.06636 1.04318
13 1.06636 1.04318
14 1.06085 1.05387
15 1.06085 1.05387
16 1.05509 1.03685
17 1.05506 1.03685
18 1.0449 1.03117
19 1.0449 1.03117
20 1.0449 1.03117

Table 14. The 20 most important basic events according to their RRW for sequence 4

sorted by the second column

