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Abstract : The Fault Trees/Event Trees method is widely used in industry as the 

underlying formalism of Probabilistic Risk Assessment. Almost all of the tools 

available to assess event tree models implement the “classical” assessment 

technique based on minimal cutsets and the rare event approximation. Binary 

Decision Diagrams are an alternative approach, but they were up to now limited to 

medium size models because of the exponential blow up of the memory 

requirements. We have designed a set of heuristics which make it possible to 

quantify, by means of BDD, all of the sequences of a large event tree model coming 

from the nuclear industry. For one of the first times, it was possible to compare 

results of the classical approach with those of the BDD approach, i.e. with exact 

results. This article reports this comparison and shows that the minimal cutsets 

technique gives overestimated results in a significant proportion of cases and 

underestimated results in some cases as well. Hence, the (indeed provocative) 

question in the title of this article. 

Keywords: Probabilistic Risk Assessment, Event Trees, Minimal Cutsets, Binary 

Decision Diagrams. 
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1 Introduction 

The Fault Trees/Event Trees method is widely used in industry. Probabilistic Risk 

Assessment in the nuclear industry relies worldwide almost exclusively on this 

technique. Several tools are available to assess event tree models. Almost all of 

them implement what we call the “classical” approach: first, event tree sequences are 

transformed into Boolean formulae. Then, after possibly applying some rewriting 

rules, minimal cutsets of these formulae are determined. Finally, various probabilistic 

measures are assessed from the cutsets (including probabilities and/or frequencies 

of sequences, importance factors, sensitivity analyzes, …). This approach is broadly 

accepted. However, it comes with several approximations: 

– In order to assess probabilistic quantities from the cutsets, the rare event 

approximation is applied. 

– In order to minimize the number of cutsets, and therefore avoiding combinatorial 

explosion, probability truncation (hereafter referred to as simply truncation) is 

applied. 

– Finally, in order to handle success branches, various recipes more or less 

mathematically justified are applied. 

Since, up to now, all of the assessment tools rely on the same technology (with some 

variations indeed), it was not possible to verify whether the above approximations are 

accurate for large real-life models, especially since to compute error bounds, the 

exact solution is necessary 

In the beginning of the nineties, a new technology was introduced to handle Boolean 

models: Bryant’s Binary Decision Diagrams (BDD for short) [Bry86,Bry92]. One of the 

major advantages of the BDD technology is that it provides exact values for 

probabilistic measures [Rau93,DR00]. It does not need any kind of truncation or 

approximations. BDD are however highly memory consuming. Very large models, 

such as event trees of the nuclear industry, were beyond their reach. Nevertheless, 

the methodology can be improved by means of suitable variable heuristics and 

formula rewritings. 

Recently, we were given a rather large event tree model (coming from the nuclear 

industry). We designed a strategy, i.e. a sequence of rewritings that made it possible 

to handle all of the 181 sequences of the model within reasonable running times and 
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memory consumptions. For one of the first times, it was possible to compare results 

of the classical approach with those of the BDD approach, i.e. with exact results. 

We should not draw definitive conclusions from a single test case. But a single 

example suffices to ring the alarm bell: the classical approach gives wrong results in 

a significant proportion of cases. This is true for sequence frequencies and, although 

to a lesser extent in the problem under study, for component ranking via importance 

factors. 

The remainder of this article is organized as follows. Section 2 is devoted to 

terminology (Boolean formulae, event trees,…). Sections 3 and 4 present 

respectively the classical and the BDD approaches. Section 5 gives some insights on 

the test case we used for this study. Section 6 reports comparative results for the 

computation of sequence frequencies.  Section 7 extends the comparative analysis 

to importance factors.  Section 8 considers briefly the complexity, runtime, and space 

considerations when trying to solve large problems.  Finally, section 9 presents our 

putative conclusions. 

2 Terminology 

2.1 Boolean Formulae 

Throughout this article we consider Boolean formulae. Boolean formulae are built 

over a denumerable set of variables and the connectives and, or, not, k-out-of-n, and 

so on. Their semantics is defined, as usual, by means of the truth tables of 

connectives. We denote by var(F) the set of variables that occur in the formula F. In 

the example to be studied, F represents a top event and the variables represent 

component failures, or basic events. We use the arithmetic notation for connectives: 

F.G denotes the formula “F and G” and F+G denotes the formula “F or G”. The 

formula “not F” is denoted either by -F or by F .  

 

A formula is coherent if it does not contain negations. From a strict mathematical 

viewpoint, this definition is too restrictive, e.g. --F is coherent (assuming F is). 

However, it is sufficient for our purpose. 

 

A literal is either a variable or its negation. A product is a conjunct of literals. It is 

sometimes convenient to see products as sets of literals. A minterm of a formula F is 
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a product that contains either positively or negatively each variable of var(F). If n 

variables occur in F, 2n minterms can be built over var(F). In other words, minterms 

one-to-one correspond with truth assignments of variables of F. By abuse of 

notations, we shall write π(F) = 1 (resp. 0) if the truth assignment that corresponds to 

the minterm π satisfies (resp. falsifies) F. We shall say that π belongs to F when π(F) 

= 1. A formula is always equivalent to the disjunction of its minterms. 

 

Let π be a (positive) product and F be a formula. We denote by c
Fπ  the minterm of F 

built by adding to π all the negative literals built over the variables of F that do not 

occur already in π. For instance, if var(F)={a,b,c} and π=a, then cbac
F ..=π . We shall 

omit the subscript when the formula F is clear from the context.  

 

Let π be a positive product and F be a formula. π is a cutset of F if c
Fπ  satisfies F. A 

cutset π is minimal if no proper subset of π is a cutset. We shall denote by MCS[F] 

the set of minimal cutsets of F. The reader interested by a more thorough treatment 

of minimal cutsets should refer to [Rau01]. 

2.2 Event Trees 

The Fault Tree/Event Tree method is probably the most widely used for risk 

assessment, especially in the nuclear industry. We assume the reader is familiar with 

this method (see [KH96] for a good introduction). 

 

Fig. 1 (left) represents an event tree. As usual, upper branches represent successes 

of the corresponding safety systems, lower branches represent failures. In the fault 

tree linking approach (the one we consider here), each sequence is compiled into the 

conjunct of the top events (for failure branches) or negation of top events (for 

success branches) encountered along the sequence. The Boolean formulae 

associated with the sequences of the above event tree are given on the same figure 

(right), assuming that the failures of each safety system are described by means of a 

fault tree whose top event has the same name as the system. 

 

It is worth noticing that the above compilation is an approximation. In our example, 

safety systems F, G and H probably don’t work simultaneously, but are rather called 
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in sequence. We shall not consider this issue here. The reader interested by 

mathematical foundations of event trees should refer to Papazoglou’s important 

article [Pap98]. 

3 The classical approach to assess event trees 

3.1 Principle 

By construction, sequences of event trees are mutually exclusive. Therefore, they 

can be treated separately, at least for what concerns the computation of their 

probabilities. 

 

The classical approach to assess event trees works as follows. 

– First, sequences are compiled as explained above. 

– Second, some rewriting is performed on the formula associated with each 

sequence (e.g. modularization) in order to facilitate their treatment. 

– Third, minimal cutsets of each sequence (or group of sequences) are determined. 

Classical algorithms to compute the minimal cutsets work either top-down (e.g. 

[FV72, Rau03]) or bottom-up (e.g. [JK98,JHH04]). 

– Fourth, probabilities/frequencies of sequences are assessed from the cutsets. 

More generally, cutsets are used to get various measures of interest such as 

importance factors of components, sensitivity to variations in basic event 

probabilities, … 

 

In this process, three kinds of approximations are used: 

– Sequences, including success branches, are quantified by means of minimal 

cutsets (which, by definition, do not embed negations). 

– Truncation is applied to limit the process, and therefore reduce the possibility of 

combinatorial explosion. 

– Probabilities are evaluated using one of two first order approximations: the rare 

event approximation or min-cut upper bound. 

 

In the remainder of this section, we shall discuss the consequences of these three 

kinds of approximations.  
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3.2 The rare event approximation 

Let us assume, for a while, that minimal cutsets represent exactly the sequence. The 

rare events approximation is used to assess the probability of the sequence. Namely, 

for a sequence S (or more exactly the Boolean formula S that represents the 

sequence), the probability of S is assessed as follows. 
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The rare event approximation is actually the first term of the Sylvester-Poincaré 

development to compute the probability of a union of events: 
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The rare event approximation gives an upper bound of the probability, it is therefore 

conservative. By computing the second term of the development, one gets a lower 

bound of the probability (these two values constitute the first pair of so-called Boole-

Bonferroni bounds): 
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When the number of cutsets is large, the computation of more terms is intractable. 

The rare event approximation gives accurate results when the probabilities of basic 

events are low. In the presence of relatively high probabilities (say >10-2) and/or 

many minimal cutsets, the approximation is no longer valid. Consider for instance a 

3-out-of-6 system S, with p(e)=0.1 for each basic event e. The exact probability of S 

is 0.01585. The Boole-Bonferroni bounds given by equation (3) are respectively 

0.01009 and 0.02, a rather rough approximation in both cases. 
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3.3 Truncation in minimal cutsets determination 

In general, sequences of large event trees admit huge numbers of minimal cutsets. 

Therefore, only a subset of the latter’s can be considered (the most important ones, 

in terms of probability, one expects). Algorithms to compute minimal cutsets apply 

truncation to keep only few thousands cutsets (beyond computations are intractable). 

The choice of the right truncation value is a result of trade-offs between accuracy of 

the computation and resource (time and memory) consumption. Expert knowledge 

about the expected probability of the sequence plays also an important role in that 

choice. This issue is discussed in details in reference [Cep04]. 

It remains that, by applying truncation, one gets an optimistic approximation. 

Moreover, there is no way to ensure that this approximation is accurate. For instance, 

if we keep a thousand cutsets of probability 10-9 and by the way we ignore a million 

cutsets of order 10-11, then we underestimate the risk by a factor 10. This problem is 

largely ignored by most of the practitioners. 

3.4 Quantification of success branches 

But the main problem in the classical approach stands in the way success branches 

are (badly or even not at all) taken into account. None of the classical algorithms are 

actually able to deal with negations, for two main reasons. First, by definition, minimal 

cutsets do not contain negative literals. Therefore, the functions they encode are 

coherent. The notion of minimal solutions of general (coherent or non-coherent) 

functions exists (this is the notion of prime implicants), but that’s another (very 

different) story. Second, truncation and minimality tests and reduction rules used by 

classical algorithms are not compatible with negations. The interested reader should 

see [Rau01] for a detailed discussion on that topics, including theoretical 

computational complexity arguments. 

Event trees assessment tools take into account success branches in various ways. 

Let nm GGFFS ....... 11=  be a sequence. 

The first approximation consists in ignoring success branches. Pure and simple. 
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The second approximation consists in correcting the approximation (4) by introducing 

a negative factor. E.g. 
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The second term of approximation (5) is sometimes replaced by the product of the [1-

RE1(Gi)]’s, which is certainly not better. 

 

The third and more serious approximation consists in removing (known as delete 

terming) from MCS[F1…Fn] the cutsets π such that c

Sπ  satisfies G1+…+Gn. It can be 

shown that, provided the Fi’s and the Gj’s are coherent, this operation gives actually 

the minimal cutsets of S. 
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Some authors propose process success branches as follows. First, negations are 

pushed down toward variables, using de Morgan’s Laws. Second, new variables are 

introduced to represent negative literals. Third, minimal cutsets of the rewritten 

formula are computed. Finally, those that contain both a variable and its (encoded) 

negation are eliminated. This attempt is interesting. However, it cannot work correctly 

because of truncation. Consider for instance the formula F=not-a.not-b.(c+d). If we 

apply truncation to eliminate cutsets whose order is greater than 2, then we get no 

cutset at all for F, which is indeed incorrect. Another problem is exemplified by the 

formula HGF .=  where G=(a1.b1)+…+(an.bn) and H is any formula that possibly 

depends on the ai’s and the bj’s. not-G  = (not-a1 +not-b1) …(not-an+not-bn) has 2n 

cutsets, which indeed explodes the solution space, whatever the cutsets of F may be. 

For these reasons, we shall not consider this idea here, which is far too dangerous. 

 

Approximations RE1(S), RE2(S) and RE3(S) may also give incorrect results as 

exemplified by the following example. 
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with p(ai)=p(bj)=p(dk)=0.1 and p(cl)=0.001. It is easy to verify that p(S)=0.00043 

RE1(S)=0.0069, RE2(S)=0.0039, RE3(S)=0.001 (note that these results remain the 

same if further terms of the Sylvester-Poincaré development are considered). 

 

This example is indeed somewhat artificial. However, the same kind of problems do 

occur in real-life PSA, as we shall see. It is worth noticing that if success branches 

and failure branches are independent then RE2 gives a correct answer (if indeed 

computations for coherent parts is correct) while RE1 and RE3 are accurate only if the 

probability of success branches (taken altogether) is close to 1. In practice however, 

such independence is seldom achieved, leaving entire the problem. 

4 The BDD approach to assess event trees 

Bryant’s Binary Decision Diagrams [Bry86], BDD for short, are now a well-known and 

widely used technique [Bry92]. In this section, we recall briefly the basics of this 

technique and we discuss its use to assess event trees (J. Andrews initiated this 

work in [AD00]). 

4.1 Binary Decision Diagrams 

The Binary Decision Diagram of a formula is a compact encoding of the truth table of 

this formula. From a BDD, it is possible to perform efficiently all of the probabilistic 

quantifications (top event probability, importance factors,…). The BDD representation 

is based on the Shannon decomposition: Let F be a Boolean formula that depends 

on the variable v, then 

 

]0[.]1[. ←+←= vFvvFvF        (7) 

 

By choosing a total order over the variables and applying recursively the Shannon 

decomposition, the truth table of any formula can be graphically represented as a 

binary tree. The nodes are labelled with variables and have two out edges (a then-

out edge, pointing to the node that encodes F[v←1], and an else-out edge, pointing 

to the node that encodes F[v←0]). The leaves are labelled with either 0 or 1. The 

value of the formula for a given variable assignment is obtained by descending along 

the corresponding branch of the tree. The Shannon tree for the formula F ab ac= +  
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and the lexicographic order is pictured Fig. 2 (dashed lines represent else-out 

edges). 

 

Indeed such a representation is very space consuming. It is however possible to 

shrink it by means of the following two reduction rules. 

• Isomorphic sub trees merging. Since two isomorphic sub trees encode the same 

formula, at least one is useless. 

• Useless nodes deletion. A node with two equal sons is useless since it is 

equivalent to its son ( FvFvF .. += ). 

By applying these two rules as far as possible, one get the BDD associated with the 

formula. A BDD is therefore a directed acyclic graph. It is unique, up to an 

isomorphism. This process is illustrated on Fig. 2. 

Logical operations (and, or not) can be performed directly on BDD. In this way, the 

Shannon tree is never built then shrunk. The BDD of a formula is obtained by 

composing the BDD of its sub formulae. An efficient implementation of a BDD 

package is described in reference [BRB90]. 

4.2 Application to Fault Trees/Event Trees assessment 

Thanks to the Shannon decomposition, the probability of a formula F can be 

computed efficiently from the BDD that encodes F (and the probabilities of basic 

events). The following equality holds. 

p( 01 .. FvFv + ) =   p(v).p(F1)+ [1-p(v)].p(F0)    (8) 

 

It is easy to derive a recursive algorithm from equality (8) [Rau93]. This algorithm is 

linear in the size of the BDD and gives exact results. It needs no truncations and 

makes no approximation. Importance factors can also be computed efficiently and 

exactly from BDD [DR00]. 

By slightly modifying the semantics of nodes, BDD can also be used to compute and 

to encode minimal cutsets (see [Rau93, Rau01]). BDD that encode minimal cutsets 

are called ZBDD, from the name given by in its Minato’s seminal article [Min93]. 

Truncation can be applied to keep only the most relevant cutsets. 

 

Hence, the BDD approach to assess event trees works as follows.  
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– First, sequences are compiled as explained above. 

– Second, some rewriting is performed on the formula associated with each 

sequence in order to facilitate their treatment and to select a good variable 

ordering. We shall discuss this very important issue in the next section. 

– Third, the BDD that encode the sequence is computed. 

– Fourth, the exact value of the probability (or the frequency) of the sequence is 

computed from the BDD. More generally, importance factors of components, as 

well as sensitivity to variations in basic event probabilities are assessed from the 

BDD in an exact way.  

As a fourth or fifth step and for the sake of the verification of the model, minimal 

cutsets can be extracted. However, this is not necessary. Moreover, since minimal 

cutsets are used only for verification purposes, one need only consider very few of 

them. In fact, for an analyst to consider more than a few hundred cutsets may be 

cognitively infeasible. 

It is worth noticing again that all of the probabilistic assessments are very efficient 

once the BDD is built. This makes the BDD approach especially well suited to 

perform sensitivity analyses via Monte-Carlo simulations. 

4.3 Pre-processing and variable ordering 

It is widely known, since the very first uses of BDD [Bry86], that the chosen variable 

ordering has a strong impact on the size of BDD, and therefore on the efficiency of 

the whole methodology. The way formulae are written may also influence strongly the 

sizes of intermediate BDD [MJF99]. With very large models, such as sequences of 

nuclear PSA, this issue must be carefully addressed in order to avoid the exponential 

explosion of the BDD size. 

 

Finding the best ordering (or even a reasonably good one) is a very hard problem 

(namely, it is NP-complete [BW96]). Two kinds of heuristics are used to determine 

which variable ordering to apply. Static heuristics are based on topological 

considerations and select the variable ordering once for all (e.g. [FFK88, MIY90, 

BRKM91]). Dynamic heuristics change the variable ordering at some points during 

the computation. They are thus more versatile than the former, but the price to pay is 

a serious increase of running times. Sifting is the most widely used dynamic 
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heuristics [Rud93]. Event tree sequences involve in general far too many variables to 

make dynamic reordering feasible. 

 

For the purpose of this study, we designed a rewriting strategy made of five different 

heuristics applied in a row (using ideas of references [MJF96,FFK88, MIY90]. This 

strategy made it possible to handle all the sequences within reasonable times and 

memory consumptions. Without it, some of the sequences were intractable. The 

Aralia computation engine, designed by one of the authors, embeds many heuristics 

and makes it possible to program strategies. The design of good strategies for event 

tree processing is a major part of the LukeTreeWalker project [ER04]. 

4.4 Post-processing 

Solutions of realistic PSA are in general post-processed to take into account 

dependencies among human errors, process recovery actions and to delete 

physically impossible solutions. This is done by scanning the cutsets. It is sometimes 

argued that to scan the cutsets allows also the review and the documentation of the 

solutions. It is therefore of interest to see whether the BDD approach allows this post-

processing. Here, three remarks should be made. First, BDD encode solutions of 

Boolean equations. So, if a solution is infeasible for some physical reason it is always 

possible to delete it from the BDD. To do so, one has just to write the logical 

exclusion rules. It is worth noticing that, because of their ability to handle negations, 

BDD make it possible to embed these exclusion rules in the model itself, rather than 

as an outside extra-logical process. Second, the BDD approach does not exclude the 

use of cutsets (to debug, review or document models and solutions). It just removes 

the need of cutsets to perform probabilistic computations. Third, because BDD 

solutions are exact and defined in purely logical terms, it is possible to evaluate 

exactly which cutsets, events, groups of events or subsystems are contributing the 

most to the risk. With that respect, the BDD approach opens new perspectives to the 

engineering of PSA. 
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5 A Case Study 

5.1 The Model 

The basis of this study is an actual event tree coming from the nuclear industry. This 

event tree is made of 181 sequences, with a total of 2259 basic events. Broken down 

by sequence, the smallest is made of 78 gates and 158 basic events. The largest 

one is made of 1128 gates and 1745 basic events. The mean numbers of gates and 

basic events are respectively 857 and 1455 per sequence. Among the 181 

sequences, 171 lead to a core damage. Table 3 gives more details about the 

distribution of sequences according to their sizes. 

Ten fault trees, representing the top events of the event trees, are used to build the 

sequences (plus 8 individual events). The smallest of these fault trees is made 74 

gates and 155 basic events. The biggest one is made of 561 gates and 946 basic 

events. The mean numbers of gates and basic events are respectively 277 and 490. 

5.2 Efficiency of the BDD approach 

For each sequence, we computed (with the strategy discussed in section 4.3) the 

following data structures and quantities. 

– The formula rewritten by the strategy. 

– The BDD that encodes this formula. 

– The probability of the sequence computed from the BDD. 

– The minimal cutsets of the sequence. However, it is not possible to compute all of 

the minimal cutsets (for most of the sequences there are more than 109 of them). 

The BDD approach can efficiently count the minimal cutsets even though none 

need be listed.  

To limit the number of minimal cutsets generated, we used a probability truncation 

limit defined thusly: 

(Cutset Value) >= (BDD Value of the Sequence) * 10-4 

So if the probability of a sequence is 10-9, as calculated by BDD, we limited the 

cutsets to those whose probabilities are greater than 10-13.  
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It is worth noting that we used BDD to calculate the exact results as well as to create 

ZBDD, a data structure from which we can extract the cutsets  [Min93].  The cutsets 

we obtained are the same as those that would have been obtained with a classical 

bottom-up or a top-algorithm. However, to extract them from the ZBDD is much 

faster. 

6 Comparison between the classical and the BDD approaches 

6.1 Experimental protocol 

In this section, we compare the probabilities of sequences we obtained with the BDD 

approach with those that would have been obtained with a classical approach. The 

questions we aim to answer are the following. 

 

Question 1: In the classical approach, is it necessary to compute more than one term 

of the Sylvester-Poincaré development? 

 

Question 2: Is the approximation RE1 accurate (recall that RE1 consists in ignoring 

success branches)? 

 

Question 3: Is the approximation RE2 accurate (recall that RE2 consists in correcting 

RE1 by multiplying it with the probability of success branches)? 

 

Question 4: Is the approximation RE3 accurate (recall that RE3 consists in computing 

the probability of the sequence from its minimal cutsets). 

 

In order to answer questions 1 to 4, we computed, for each sequence, the following 

quantities: 

– The exact probability of sequence, computed from the BDD. 

– The first term of the Sylvester-Poincaré development (RE3) computed from the 

minimal cutsets of the sequence (recall that we keep only cutsets whose 

contribution is at least 10-4 times the probability of the sequence as calculated by 

BDD). 
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– The difference between the first and the second terms of the Sylvester-Poincaré 

development, still computed from the cutsets. 

– The exact probability of the conjunction of the failure branches of the sequence 

computed from the BDD that encodes this conjunction. It is worth noticing that this 

approximation should be better than RE1 as we defined it section 2. However, for 

the sake of the simplicity, we shall denote it RE1. 

– The exact probability of the conjunction of the failure branches times one minus 

the exact probability of the disjunction of the success branches (both obtained by 

the BDD that encode them). For the same reason as previously, this quantity 

should be a better approximation than RE2 but we shall denote it RE2. 

Except the first sequence, that contains only success branches and whose probability 

is 0.999817, probabilities of sequences range rather log-uniformly from 4.99 10-5 to 

2.87 10-18. It would be an error to concentrate on most probable sequences for each 

sequence corresponds to a different situation. The less frequent sequences may also 

be those with the most severe consequences for the environment. Table 5 gives a 

distribution of the sequences according to their probabilities (this distribution is a bit 

arbitrary for the reasons we just gave). 

6.2 Analysis of the results 

Question 1: the question 1 is easy to answer. the range given by the two first terms of 

the Sylvester-Poincaré development is narrow for all of the sequences. The relative 

difference second-term / first-term never exceeds 6%. This means that the rare event 

approximation is accurate, at least for what concerns the quantity it assesses. 

 

Question 2: To answer this question, we compute the relative difference RE1(S)-

p(S)/p(S) which represents the relative error one makes by considering RE1 (note 

that RE1 is always bigger than the exact probability). Table 6 gives the distribution of 

the sequences according to the values of this ratio. 

For only one sixth of the sequences RE1 is pessimistic by a factor less than 2! For 

half of the sequences, RE1 is pessimistic by at least two orders of magnitude! 

Sequence number 13 has the “gold medal” with a relative error of 6.53 107 for a 

probability 1.72 10-12. 
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Question 3:  Table 7 gives the distribution of the sequences according to the relative 

error made by the approximation RE2. 

RE2 corrects a bit RE1. However, it gives very pessimistic results for two thirds of the 

sequences and is still pessimistic by two orders of magnitude for half of the 

sequences. Sequence number 13 has again the “gold medal” with a relative error of 

3.98 106. 

 

Question 4: The answer to this question is a bit more complex for RE3 gives 

sometimes optimistic results. However, the greater the number of minimal cutsets 

considered, the less the expectation to be optimistic. So, on the one hand, one may 

argue that we didn’t take into account enough cutsets. On the other hand, the 

truncation has to be put somewhere in order to avoid prohibitive running times. By 

setting it to 10-4 the probability of the sequence, we adopted a quite conservative 

attitude. 

 

Table 8 gives the distribution of sequences according to the relative error made by 

RE3, when RE3 is optimistic.  

RE3 is thus optimistic in more than a quarter of the sequences. It is optimistic by a 

factor 2 in at least one sequence whose probability is around 10-9 and by a factor 4 

for at least one sequence whose probability is around 10-12. 

 

Table 9 gives the distribution of sequences according to the relative error made by 

RE3, when RE3 is pessimistic.  

RE3 is thus pessimistic by a factor 2 or more for 104 sequences among 181 and by a 

factor 10 or more for one third of the sequences. For instance, it is pessimistic by a 

factor 14 for the sequence number whose probability 7.42 10-6. 

 

In order to confirm these results, we calculated the cutsets whose contributions to the 

probability of the sequence is greater than 10-6 (rather than 10-4). Indeed, running 

times and numbers of cutsets increase quite a lot (running times are up to 20 minutes 

and for some of the sequences up to 200,000 cutsets show up). With such a low 

truncation, RE3 is pessimistic on all but 7 sequences. On the latter sequences, it is 

optimistic by at most 7%, which is quite acceptable. Table 10 gives the distribution of 

sequences according to the relative error made by RE3, when RE3 is pessimistic. It is 
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worth noticing that RE3 is now pessimistic by a factor greater than 10 for more than a 

third of the sequences and by a factor greater than 80 for 18 of them. 

 

Last, but not least: the sum of the probabilities of core damage sequences computed 

with the BDD approach is 2.27 10-5. With the classical approach we obtain, for both 

cut-offs (10-4 times the probability of the sequences and 10-6 times the probability of 

the sequences), 1.29 10-4. It has been pointed out by M. Barrett that just summing 

the probabilities obtained for each sequence may be incorrect because some cutsets 

may be duplicated (or even subsumed). With the BDD approach this problem does 

not exist since the sequences are exclusive to one another by construction. In order 

to confirm our observations, we performed the following experiment. For different 

absolute cut-offs, we computed the cutsets for each core-damage sequence, we 

collected all of these cutsets together, we removed those duplicated and subsumed, 

and then we computed the probability of a core damage from the resulting set. Table 

11 gives the results obtained for absolute cut-offs of 10-10, 10-11, 10-12 and 10-13
 (i.e. 

we kept only those cutsets whose probabilities are greater than the above cut-offs). 

For all of these cut-offs, the probability of a core damage is 1.21 10-4. Therefore, no 

matter which way it is applied, the classical approach overestimates by almost a 

factor 5 the likehood of core damage. 

7 Importance Factors 

Probabilities (or frequencies) of sequences are interesting per se. It is however also 

very important to rank basic events according to their contributions to the risk. This is 

in general done through the assessment of so-called importance factors. In this 

section, we present results for three importance factors that are widely used in the 

industry: the Critical Importance Factor, the Risk Achievement Worth and the Risk 

Reduction Worth. 

7.1 Definitions 

The critical importance factor of a basic event e (for a sequence S), denoted by 

CIF(S,e), is defined as follows. 
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The risk achievement worth, denoted by RAW(S,e), is defined as follows. 
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e|Sp
eSRAW =         (10) 

Finally, the risk reduction worth, denoted by RRW(S,e), is defined as follows. 
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e|Sp

Sp
eSRRW =         (11) 

Definitions (9) to (11) can be assessed either from cutsets or from BDD [DR00]. Note 

that our definitions are slightly different from those usually given (see e.g. [CPS98]). 

The physical meanings of these importance factors and their relationships are 

discussed in the two cited articles [CPS98,DR00]. 

7.2 Results 

We present below the results we obtained for sequence number 4. Results for the 

other sequences are similar. This sequence is made of 1744 basic events and 1128 

gates. It has 447 minimal cutsets whose probability is greater that 10-4 its probability, 

namely 2.23632 10-9. The rare events approximation applied on these cutsets gives 

1.19841 10-9. 

Tables 12, 13 and 14 give respectively the most important 20 basic events according 

to respectively their CIF, RAW and RRW (computed from the BDD). These tables 

show that not only the values computed from BDD and cutsets are different, but also 

the induced ranking is different. Table 11 shows many basic events whose RAW is 1. 

This just means that these basic events don’t show up in the cutsets. It is well known 

however that the RAW must be considered with care [WW96]. The BDD approach 

shows just how much care is required to achieve accurate RAW values. 

 

The difference in importance calculated from cutsets and BDD is extraordinarily 

important. To undertake risk informed maintenance, risk informed asset 

management, and outage/shutdown planning, the relative importance of components 

must be known with a high degree of accuracy to insure the safety of the populace, 

the safety of the environment, and the proper allocation of funds to achieve the 

former goals. 

 

Moreover, to calculate the importance of components, one usually combines the 

importance measures of the basic events which refer to these components 
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(remember that basic events are propositions about states of components, “Pump A 

fails to run;” , and not things in, and of, themselves, such as the object, Pump A).  

Importance measures of components cannot be combined linearly from importance 

measures of cutsets [BA01].  BDD, however, does not suffer from this limitation, and 

we can combine the importance measures of basic events calculated from the BDD 

structure to give an exact importance measure of the components. 

 

8 Runtime, Space, and Complexity 

This section describes the maximum and average running times for each category of 

sequences, details of which are in table 4. These results are obtained by 

accumulating the running times to rewrite the formula, to build the BDD, to compute 

the probability from the BDD and to build the ZBDD that encodes the minimal cutsets 

(with a 10-4
 relative cut-off). They were observed on a laptop computer running 

Windows 2000 with a processor speed of 1.8 GHz and with a 1 gigabyte of RAM. 

Table 4 shows that it takes at most 156.1 seconds to handle a sequence. All but 2 

sequences are treated in less than 75 seconds. On average it takes 16.03 seconds 

to fully quantify a sequence. These running times can surely be improved by using 

larger hash tables, a faster computer, or by improving the strategy. Also, the resulting 

BDD could be cached for subsequent quantification at a later time with different 

variable probabilities. It takes at most 4.27 seconds to compute the probability of a 

sequence from its BDD (and 0.81 seconds on average). The running time to assess a 

probability from a BDD doesn’t depend on the probabilities of basic events. 

 

It takes at most 4,86 millions nodes to build the BDD and the ZBDD that encodes the 

cutsets. On average these computations require 1,28 millions nodes. It other words, 

given the size of the hash tables, the most difficult sequence is handled within around 

200 megabytes. 

 

While all of this is well and good, it has also given us unrealistic notions of what 

runtimes and memory requirements should be when solving NP-hard problems, such 

as the one described in this article. Certainly computing from BDD will take longer 

and need more space than simple bottom-up algorithms with truncation.  But when 
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solving calculations to help us understand the risk to and safety of populations and 

environments, the runtime difference between 5 seconds and 50 seconds can 

rationally be ignored when the extra 45 seconds will produce exactly correct answers. 

 

Another interesting question is how one measures the complexity of an event tree 

made up of fault trees? Does one count the number of gates and basic events?  

Does one count the number of levels in the structure? How does one score the 

combination of operators so as to distinguish the difference in complexity between F 

= -a+b+(c*d) and G = -(a*(b+c) xor d)?  Does one count the number of independent 

sub-trees, the number of branches for each gate, the number of negations? This is 

not simply an academic question.  By understanding the complexity of the problem 

space, a set of heuristics can be chosen quickly, instead of randomly trying one after 

another. 

9 Conclusion 

There is no single development, in either technology or management technique, 

which by itself promises even one-order of magnitude improvement within a decade 

in productivity, in reliability, in simplicity. 

--- Fredrick P. Brooks, Jr., NO SILVER BULLET 

 

In this article, we have reported the results of a comparative study of two 

technologies to assess risk models: the classical approach, widely used and trusted, 

based on minimal cutsets and the BDD approach, improved by means of heuristics, 

that gives exact results. The study is based on a real-life linked-fault tree model  

representing an event tree coming from the nuclear industry. We used the Aralia 

computation engine which implements both approaches as well as many heuristics 

and formula rewriting strategies.  

Indeed, definitive conclusions cannot be drawn from a single example. However, our 

test case is sufficiently large and representative and the results are sufficiently clear 

to make the following observations. 

– The approximation that consists in taking into account failure branches only 

should be avoided. Our experiments show that, even corrected by a factor 
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obtained from success branches, this approximation overestimates, very often by 

orders of magnitude,  the probability of the sequence. 

– The assessment of the probabilities of the sequences through the minimal cutsets 

should be considered with care. In a significant number of cases, this 

approximation gives optimistic results, because of truncations. Such an 

underestimation of the risk is not acceptable. Moreover, the same truncation that 

gives an optimistic result in one sub-system may give a very pessimistic result in 

another sub-system, within the same top event!  With a truncation set to 10-4 

times the probability of the sequence, we observed, among the 181 sequences of 

our test case, results that are optimistic by a factor 4 together with results that are 

pessimistic by a factor 96. 

– Such variations make the ranking of sequences according to their contributions to 

the overall risk delicate, if not dubious.  

– The classical approach overestimates the likehood of a core damage by almost a 

factor 5. 

– Because of imprecision on the values of probabilities (when computed from the 

cutsets), the rankings of basic events induced by importance factors should be 

considered with care. This remark is especially important for the so-called risk 

achievement worth that can miss important basic events. 

 

The above observations do not mean that existing PRA studies based on event trees 

must be discarded. With that respect, we can answer the question of the title: yes, we 

do trust PRA. Nevertheless, the results presented here are a stone in the garden of 

the classical approach based on minimal cutsets. On the other hand, we don’t claim 

that Binary Decision Diagrams are the universal panacea. This technique still suffers 

from the exponential blow up of memory requirements. We have shown that 

heuristics can be designed which improve dramatically its efficiency. They are 

however hard to tune. More experiments, more efforts are necessary to make our 

approach able to deal with all the existing models. 

 

One final note:  as Fred Brooks’ quotation states at the beginning of this section, we 

should expect no silver bullet to slay the werewolf of complex computations.  What is 

important is that any solution is (1) productive, that it allows us to work orderly and 

rationally, (2) reliable, that it gives us the correct answers with explicit knowledge of 
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the error bounds, and (3) simple, that it allows us to confirm the problem we are 

solving and its solution.  This study is a step towards this goal. 
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Fig. 1. An event tree and Boolean formulae associated with its sequences. 
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Figure 2. From the Shannon Tree to the BDD. 
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Number of BE Number of gates Number of sequences 

from 158 to 161 from 78 to 80 7 
256 142 1 
769, 770 403,404 3 
from 1422 to 1424 from 805 to 837 65 
from 1546 to 1558 from 858 to 913 65 
1621, 1622 from 1020 to 1052 30 
1744, 1745 from 1097 to 1128 10 

 
Table 3. Distribution of sequences by size 

 
 
 

Number of BE Number of sequences max mean 

from 158 to 161 7 0.12 0.11 
256 1 0.17 0.17 
769, 770 3 0.95 0.94 
from 1422 to 1424 65 24.23 7.40 
from 1546 to 1558 65 124.91 19.62 
1621, 1622 30 45.55 22.16 
1744, 1745 10 156.1 46.47 

 
Table 4. Running times in seconds (distribution by number of BE of sequences) 

 
 
 

probability of the sequence number of sequences 

less that 10-12 100 

from 10-9 to 10-12 51 

from 10-5 to 10-9 29 

Table 5. Distribution of the sequences according to their probabilities 
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[RE1(S)-p(S)]/p(S) number of sequences 

less than 1 28 

between 1 and 10 28 

between 10 and 100 42 

between 100 and 1000 39 

beyond 1000 51 

Table 6. Distribution of the sequences according to the relative error made by the 
approximation RE1 

 
 
 
 

[RE2(S)-p(S)]/p(S) number of sequences 

less than 1 59 

between 1 and 10 38 

between 10 and 100 30 

between 100 and 1000 31 

beyond 1000 33 

Table 7. Distribution of the sequences according to the relative error made by the 
approximation RE2 

 

 

 

[p(S)-RE3(S)]/RE3(S) number of sequences 

less than 0.10 8 

between 0.10 and 0.50 19 

between 0.5 and 1 9 

between 1 and 3.10 15 

total 53/181 

Table 8. Distribution of the sequences according to the relative error made by the 
approximation RE3 when it is optimistic (with a 10-4 relative cut off). 
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[RE3(S)-p(S)]/p(S) number of sequences 

less than 0.10 15 

between 0.10 and 1 9 

between 1 and 10 44 

between 10 and 96.83 60 

total 128/181 

Table 9. Distribution of the sequences according to the relative error made by the 
approximation RE3 when it is pessimistic (with a 10-4 relative cut off). 

 

 
 

[RE3(S)-p(S)]/p(S) number of sequences 

less than 0.10 55 

between 0.10 and 1 22 

between 1 and 10 29 

between 10 and 78 50 

between 78 and 116 18 

total 174/181 

Table 10. Distribution of the sequences according to the relative error made by the 
approximation RE3 when it is pessimistic (with a 10-6 relative cut off). 

 

 

cut off 10-10 10-11 10-12 10-13 BDD (exact value) 

probability 1.21 10-4 1.21 10-4 1.21 10-4 1.21 10-4 2.27 10-5 

number of cutsets 978 3535 13172 51493  

number of BE 180 367 600 785 2259  

Table 11. Probability of a core damage computed with approximation RE3 and 
different absolute cut offs. 
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Rank CIF(S,e)/BDD CIF(S,e)/cutsets 

1 0.605467 0.81045 
2 0.441697 0.615231 
3 0.288971 0.172044 
4 0.141314 0.135865 
5 0.137265 0.223926 
6 0.137265 0.223926 
7 0.137265 0.223926 
8 0.0622317 0.041397 
9 0.0622317 0.041397 
10 0.0622317 0.041397 
11 0.0622284 0.041397 
12 0.0622284 0.041397 
13 0.0622284 0.041397 
14 0.0573555 0.0511157 
15 0.0573555 0.0511157 
16 0.0522112 0.0355426 
17 0.052187 0.0355426 
18 0.0429735 0.0302301 
19 0.0429735 0.0302301 
20 0.0429735 0.0302301 

 
Table 12. The 20 most important basic events according to their CIF for sequence 4 

sorted by the second column. 
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Rank RAW(S,e)/BDD RAW(S,e)/cutsets 

1 68803.5 92096.8 
2 6770.64 1 
3 6770.64 1 
4 6770.64 1 
5 6770.64 1 
6 6770.64 1 
7 4405.06 1 
8 4405.06 1 
9 2822.88 1 
10 2822.88 1 
11 827.259 795.395 
12 827.259 288.623 
13 827.259 288.625 
14 827.259 1 
15 827.259 265.348 
16 827.259 265.348 
17 827.259 265.348 
18 762.086 1 
19 762.086 1 
20 390.821 636.928 

 
Table 13. The 20 most important basic events according to their RAW for sequence 4 

sorted by the second column 
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Rank RRW(S,e)/BDD RRW(S,E)/cutsets 

1 2.53464 5.27566 
2 1.79114 2.59896 
3 1.40641 1.20779 
4 1.16457 1.15723 
5 1.15911 1.28854 
6 1.15911 1.28854 
7 1.15911 1.28854 
8 1.06636 1.04318 
9 1.06636 1.04318 
10 1.06636 1.04318 
11 1.06636 1.04318 
12 1.06636 1.04318 
13 1.06636 1.04318 
14 1.06085 1.05387 
15 1.06085 1.05387 
16 1.05509 1.03685 
17 1.05506 1.03685 
18 1.0449 1.03117 
19 1.0449 1.03117 
20 1.0449 1.03117 

 
Table 14. The 20 most important basic events according to their RRW for sequence 4 

sorted by the second column 
 
 

 


