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Abstract: Binary decision diagrams (BDDs) are a well-known alternative to the minimal cut-
sets (MCS) approach to assess Boolean reliability models. While the application of fault tree
analysis can be considered to be consolidated, its application to the event trees involved in the
probabilistic safety assessment (PSA) studies of the nuclear industry require extended efforts.
For many real PSA models the full conversion procedure remains out of reach in terms of
computational resources owing to their size, non-coherency, redundancy, and complexity.
A potential solution to improve the quality of assessment methods is to design hybrid algo-
rithms that combine the information derived from the calculation of MCS with the BDD
methodology.
As a first step to develop this new approach, this paper explores various procedures and stra-

tegies based on this principle. First, a method is presented to reduce the fault tree model by
considering only the domain of themost relevantMCS of the system prior to the BDD conversion
and the impact on the final probability of the model is analysed. Second, several ordering
heuristics derived from the MCS and the structural information of the model are proposed and
compared, both in terms of their general performance and their sensitivity to the initial rewriting
of the model. This preliminary study is applied on a set of fault tree models belonging to a real
PSA study. The results obtained lead to some promising conclusions: it is shown that the topo-
logical information proves to be essential for the ordering and conversion procedures; it is also
revealed that the rewriting strategies should be considered when designing variable ordering
methods; and, finally, it is demonstrated that the reduction procedure provides a faster com-
putation process without affecting the final probability. The long-term objective, which has
motivated this work, is to apply this reduction procedure to quantify sequences of linked fault
trees, both static and dynamic, a task for which further work is required.

Keywords: probabilistic safety assessment, fault tree analysis, binary cecision diagrams,
minimal cutsets, variable ordering heuristics

1 INTRODUCTION

The fault tree/event tree methodology is widely
used in the nuclear industry to obtain response
models for probabilistic safety assessment (PSA)

studies. The classical methodology to assess these
models is based on the computation of the mini-
mal cutsets (MCSs) and bound approaches. Owing
to the complexity of the calculation and the large
size of the models, truncation cut-offs on prob-
ability and also on the order of the MCS have to
be applied to avoid ending up with too many
MCSs.

Bryant’s binary decision diagrams (BDDs [1]) are a
well-known alternative to the MCS approach to
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assess these models. Conversely to the classical
methodology, the BDD approach involves no
approximation in the quantification of the model
and is able to handle correctly negative logic (success
branches in the event trees). However, BDDs are
also subject to combinatorial explosion because the
BDD structure exponentially increases according to
the number of variables. Moreover, the final size
of the BDD is highly sensitive to the variable
ordering needed to convert the Boolean model into
a BDD.

After two decades of application, the BDD metho-
dology has been devoted mainly to fault tree analysis,
where it has been applied successfully to assess small
and medium-sized fault tree models (typically with
up to several hundreds of basic events). Recent works
have also tackled its application to event tree
assessment [2, 3]. Attempts to apply it to very large
models, however, such as the ones coming from PSA
studies of the nuclear industry, which include several
thousand basic events and logic gates, to the present
date remains out of reach in terms of computational
resources for many real cases. Although some
attempts have been successful [3], for such large
models it might not be possible to compute the BDD
within reasonable amounts of time and computer
memory without considering truncation or simplifi-
cation of the model. Therefore, a potential solution to
improve the quality of assessment methods is to
develop a hybrid approach and to design algorithms
and procedures that combine the calculation of MCS
with the BDD approach. This is the primary motiva-
tion for the current work.

As a first step to develop this new hybrid metho-
dology, the present paper presents a series of
numerical tests designed to explore this novel
approach concerning two important aspects in the
application of the BDD technology to assess relia-
bility Boolean models, which constitute the two main
contributions of this paper. The first aspect is to
explore the idea of reducing the model through
the information provided by the set of the most
relevant MCSs of the model, following the same
principle as the classical approach. The impact of this
approximation on the model quantification is eval-
uated. Second, with respect to the variable ordering
problem, several ordering methods based on the
information provided by the models are presented
and tested, by comparing both its general perfor-
mance and its sensitivity to the initial rewriting of the
model.

The case study selected as a basis for the different
numerical tests performed comes from a medium-
sized event tree belonging to a real Spanish PSA
study. It has 19 sequences, a total of 1649 basic
events and nine functional events defining the
branching points, fromwhich six are defined bymeans

of fault trees. The efficiency of this new hybrid
approach is tested over this set of real fault trees as a
preliminary step to validate its suitability to assess the
full sequences of linked fault trees, both static and
dynamic.

The remainder of the paper is organized to pre-
sent the main contributions, as previously men-
tioned, in the first two sections. Section 2 reviews
briefly the existing approaches for fault tree
assessment and presents the results obtained for
the first numerical test regarding the effect on the
quantification obtained by applying the reduction
to the model proposed in this hybrid approach.
Section 3 is focused on the variable ordering
topic. After a brief review of different approaches
existing within the literature, the results obtained by
applying several of these approaches are presented.
Finally, section 4 presents the conclusions and
future works.

2 HYBRID APPROACH TO ASSESS FAULT
TREES

This section is devoted to a brief review of the two
different existing approaches to assess Boolean
models in the context of PSA studies, and to present
the current proposed numerical approach to obtain a
hybrid method relying upon a MCS-based reduction,
which is described in the following sections.

2.1 MCS methodology

The majority of the assessment tools used for relia-
bility analysis implement the classical methodology.
This approach, broadly used and accepted, relies on
the computation of MCS. For a presentation of the
mathematical foundations of MCSs, the reader
should refer to reference [4]. Classical algorithms to
compute MCSs work either top-down or bottom-up
(e.g. see references [5] and [6]). Owing to the com-
plexity of the calculation and the large size of real
models, several approximations have to be con-
sidered when applying this methodology.

First, the model is simplified. Algorithms to com-
pute MCSs apply cutoffs on the probability and order
of the MCS to avoid combinatorial explosion in the
number of MCSs. In general, only a few thousand
cutsets are eventually kept. The choice of the correct
truncation value is the result of a trade-off between
accuracy and computational time efforts and mem-
ory space requirements. Second, approximations in
probability have to be considered. In order to assess
probabilistic quantities from the MCS, either the
rare event approximation, which corresponds to the
first term of the Sylvester–Poincaré development to
compute the probability of a union of events as

Proc. IMechE Vol. 223 Part O: J. Risk and Reliability JRR259

302 C Ib�a~nez-Llano, A Rauzy, E Meléndez, and F Nieto



expressed in equation (1), or the min-cut upper
bound approximations, are used.

pðE1 [ E2 � � � [ EkÞ ¼
X

16 i6 k

pðEiÞ

�
X

16 i<j6 k

pðEi \ EjÞ

þ � � � þ
1�kpðE1 \ ::: \ EkÞ

ð1Þ

This leads to a conservative approximation and
therefore to an unknown error bound. Another major
problem, which will not be considered here, is the
fact that this approach is not able to deal with nega-
tions, which comes to be especially important when
dealing with sequences of linked fault trees and suc-
cess branches.

2.2 Binary decision diagrams

In order to overcome the limitations of the classical
methodology, in the early 1990s Bryant’s BDDs [7, 8]
were introduced into reliability analysis in order to
have a more powerful tool to handle Boolean relia-
bility models.

Binary decision diagrams are the state-of-the-art
data structure to encode the truth tables of Boolean
functions. Their representation is based on the
Shannon decomposition of the function f defined in
terms of the ternary connective ite (if-then-else),
which allows the function to be divided into two
disjoint components, both of which do not depend
on the decision variable x

f ¼ iteðx; f jx¼1; f jx¼0Þ ¼ ðx ^ f jx¼1Þ _ ð�x ^ f jx¼0Þ
ð2Þ

By choosing a total order of all the variables and
applying Shannon decomposition recursively, the
truth table of the function can be represented by a
binary tree. This Shannon tree is, in general, not
compact, and contains redundant nodes and iso-
morphic subgraphs. It is, however, possible to apply

reductions rules for these nodes and obtain the BDD
associated with the formula.

A BDD is composed of terminal and non-terminal
nodes connected by branches. Each internal or non-
terminal node of the graph represents a variable of
the function, and has two outgoing labelled bran-
ches. They indicate either occurrence or non-occur-
rence of the variable: left or then branch, labelled
with 1, and represented by a solid line, points to the
son node encoding f (x¼ 1), and right or else branch,
labelled with 0, and represented by a dotted line,
points to the son node encoding f (x¼ 0). All paths
through the BDD start at the root vertex and terminate
at one of the two terminal nodes, labelled 0 and 1,
which represent the constant functions. Figure 1
shows an example of both Shannon tree and final
reduced BDD of the function f¼ x1 x2þ x3. For details
about those algorithms, the reader should refer to
references [9] and [10]. For details about issues rela-
ted to an efficient implementation of a BDD package,
see reference [1].

Fault tree analysis is a two-fold problem: it involves
both quantitative and qualitative aspects. The BDD
approach has made it possible to improve the effi-
ciency and the accuracy of both sides of analysis,
allowing exact probabilistic quantification, compact
encoding of the MCS, and correct handling of nega-
tive logic and non-coherent systems. In particular,
one of its major advantages is that the probability
of the top event can be obtained directly from the
BDD, as a sum of probabilities of the disjoint
paths. This is possible because paths through the
BDD are mutually exclusive. Thus, as a result of the
Shannon decomposition, the following equality can
be applied to calculate the probability of failure p(f )
of a system f, where p(x) stands for the probability of
failure of a basic component, x

pð f Þ ¼ pðxÞ p f x¼1f g
� �þ ð1� pðxÞÞ p f x¼0f g

� � ð3Þ

This equality induces a recursive algorithm, which
is linear in the size of the BDD and gives exact
values [10].

Fig. 1 An example of the Shannon tree and the final reduced BDD of the function f¼ x1 x2þ x3
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2.3 Hybrid approach: reduction of the model

Despite all its good properties and the improvements
that the BDD methodology offers to assess this kind
of model, it might not be possible to convert the full
model to the BDD when it consists of a large number
of basic events and gates, especially if many of the
events are repeated within the tree or sequence
structure.

In such cases the problem needs to be reduced to a
manageable size by discarding the less significant
failure modes and retaining only the most relevant
failure paths, following the same principle as the
classical MCS approach does. This approximation is
justified by the fact that these cutsets capture, in
general, the most relevant part of the model in terms
of the contribution to the top-event probability.
Several works propose the computation of the BDD
with some truncation limits to avoid the memory
explosion, namely, the truncated BDD [4, 11]. The
idea is that, even if truncation in the number of MCSs
is considered, the submodel derived from it could be
assessed exactly and more efficiently by means of the
BDD method.

An alternative procedure proposed in this work is
to consider the reduction and simplification of the
model before tackling the BDD conversion. Thus,
first the MCSs with some cut-off value are computed

by means of some classical algorithm, and then the
fault tree model is reduced by deleting from the logic
those variables and gates that are not involved in any
significant MCS. Finally, with the new reduced fault
tree model the BDD conversion and the probability
quantification can be performed. Since the number
of variables and gates appearing in the reduced
model is significantly lower than in the full model,
the BDD conversion can be more easily achieved.
The issue which needs to be studied is howmuch this
reduction affects the quantification result. To illus-
trate the procedure, consider the following example
of a simple fault tree model represented in Fig. 2 and
defined by the following set of equations

r1 ¼ g1 ^ g2

g1 ¼ g3 _ e1 _ e2 _ e3

g2 ¼ e4 _ e5 _ e6

g3 ¼ g4 ^ g5

g4 ¼ e7 _ e8

g5 ¼ g6 _ e9 _ e10 _ e11

g6 ¼ e1 ^ e9 ^ e12

This example will be used throughout the paper to
describe the suggested procedures and methods. The
set of formulae are rooted by an event called the top
event (in Fig. 2 it corresponds to r1). This system has a

Fig. 2 A simple fault tree model
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total number of six gates, 12 basic events or variables,
and 24 MCSs

fe2; e4g
fe2; e5g
fe2; e6g
fe7; e9; e4g
fe7; e9; e5g
fe7; e9; e6g
fe7; e10; e4g
fe7; e10; e5g
fe7; e10; e6g
fe7; e11; e4g
fe7; e11; e5g
fe7; e11; e6g

fe1; e4g
fe1; e5g
fe1; e6g
fe8; e9; e4g
fe8; e9; e5g
fe8; e9; e6g
fe8; e10; e4g
fe8; e10; e5g
fe8; e10; e6g
fe8; e11; e4g
fe8; e11; e5g
fe8; e11; e6g

Now, suppose that the 12 rightmost MCSs are dis-
carded for having a probability lower than a given
cut-off value. From the remaining set of MCSs, the
variables which are missing are e1 and e8, so they
have to be discarded from the fault tree model. This
implies eliminating gate g6 as well. The resulting
reduced model, having now ten basic events, is
shown in Fig. 3.

2.4 Model reduction: numerical results

The purpose of this section is to compare the original
model against the reduced model in terms of the size
of the model as well as in terms of the top event
probability. Concerning this last comparison,
another goal is also to compare the results obtained
with the BDD methodology with those of MCS-based
calculations.

In order to test the reduction procedure, the MCSs
of the six fault trees of the case study (F1 to F6) were
obtained by means of classical algorithms with two
different cut-off values. The cut-off used in practice
for the analysis of the event tree is around 10�12/
10�14. Considering that this test relates to each of the
fault trees defining its branching points, the values
selected to analyse these models were established in
10�10 and 10�11. These MCSs were used to obtain the
discarded variables in order to perform the reduction
procedure of each model. Table 1 presents the basic
statistics regarding the number of basic events and

Fig. 3 The reduced model after deleting variables e1, and e8, and gate g6

Table 1 Statistics of the fault trees for the complete and
reduced models of the case study (‘red.’ denotes
‘reduced’)

Fault tree Cut-off reduction
No. of basic
events No. of MCS

F1 Complete 275 45 055
Red. (10�11) 241 698
Red. (10�10 ) 202 418

F2 Complete 797 2.96· 1012
Red. (10�11) 577 94 111
Red. (10�10) 539 41 980

F3 Complete 767 6.10· 1012
Red. (10�11) 547 41 469
Red. (10�10) 420 16 861

F4 Complete 731 3.21· 1012
Red. (10�11) 461 20 975
Red. (10�10) 376 11 236

F5 Complete 79 534
Red. (10�11) 79 312
Red. (10�10) 79 249

F6 Complete 657 5.29· 1013
Red. (10�11) 236 4126
Red. (10�10) 161 891
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MCSs of each example, for both the full fault tree
model and the reduced models, as a measure to
describe its complexity. It can be seen that the bigger
the model is, the larger the reduction is, in terms of
the number of basic events considered as relevant in
the model. Table 2 presents the top event prob-
abilities computed with a classical tool [12] using the
MCS approach and the rare event approximation,
and the BDD approach. Notice that in the case of
fault tree F5, even if the number of MCSs decreases
when truncation is considered (fourth column of
Table 1), there are no discarded variables in the set of
relevant MCSs with any of the reductions (third col-
umn of Table 1). This is because the model is simple
enough to keep all the variables when computing the
MCSs, so the reduction was not performed.

Regarding the comparison of the classical and the
BDD approaches (third and fourth columns of
Table 2 respectively) the differences can be seen to be
very small, which confirms the validity of the classical
methodology. Additionally, when comparing the
results obtained with the BDDs for the full and the
reduced model, it can seen that the differences are
even smaller than the previous ones, almost negli-
gible, despite the significant decrease of the number
of variables involved in the reduced model in relation
with the total number of the complete model as
shown in Table 1. This means that the quantification
in terms of BDD of the reduced model gives more
exact results than the ones computed directly from
the MCSs. Moreover, as the model has been pre-
viously reduced, the conversion procedure to the

BDD is very fast and does not suffer from combina-
torial explosion.

3 VARIABLE ORDERING STRATEGIES

It is well known that the final size of the BDD, and
therefore the efficiency of the whole methodology,
depends heavily on the chosen variable ordering.
Already in the mid-1980s Bryant addressed the need
for a good ordering so as to consolidate the technol-
ogy [7]. Finding the optimal ordering is a NP-hard
(NP referring to non-deterministic polynomial time)
problem [13] owing to the combinatorial nature, so it
is computationally intractable [14]. In order to find
reasonably good orderings, research efforts have
been aimed at the design of suitable heuristic meth-
ods as well as good preprocessing strategies (mod-
ularization, rewritings, simplifications, etc.).

3.1 Review of existing approaches

Variable ordering heuristic methods can be classified
into two main groups: static heuristics and dynamic
heuristics. The former produce an initial variable
ordering prior to the BDD conversion and are based
on topological considerations. The latter, on the
other hand, are used to change variable ordering
during the BDD conversion process, and are based on
swapping and shifting groups of variables at some
points of the computation [15]. Dynamic reordering
is highly time-consuming. Thus, even if such meth-
ods may help to improve the final result, it is worth-
while to start with sufficiently good orderings given
by some static heuristic.

Static methods can also be divided into different
categories and approaches, but all of them are based
on extracting some structural information of the
formula under study (weights, redundancy, size of
the subformulae, etc.). Some of them are specially
designed for specific types of Boolean formulae, as,
for example, the sum-of-products formulae, where
the formula is basically a conjunction of disjunctions
(similarly products of sums or disjunction of con-
junctions).

Nevertheless, most of the proposed methods
within the literature fall into one of the following two
categories: structural methods or weighted methods.
Structural methods [16–19] are based on performing
a depth first traversal of the graph underlying the
formulae, possibly after some rearrangement of the
connective arguments. In practice, these heuristics
give rather good results because they tend to preserve
the structural locality of variables: variables that are
close in the formula tend to be not far in the ordering.
As they have not been outperformed by any other

Table 2 Top event probabilities computed with the MCS
approach and the BDD approach

Fault tree Cut-off reduction

Top probability

MCS approach BDD approach

F1 Complete – 3.577 745· 10�2

Red. (10�11) 3.5810· 10�2 3.577 745· 10�2

Red. (10�10) 3.5810· 10�2 3.577 744· 10�2

F2 Complete – 3.816 642· 10�3

Red. (10�11) 3.9370· 10�3 3.816 639· 10�3

Red. (10�10) 3.9370· 10�3 3.816 613· 10�3

F3 Complete – 2.336 591· 10�3

Red. (10�11) 2.3610· 10�3 2.336 589· 10�3

Red. (10�10) 2.3610· 10�3 2.336 510· 10�3

F4 Complete – 2.850 081· 10�3

Red. (10�11) 2.8650· 10�3 2.850 080· 10�3

Red. (10�10) 2.8650· 10�3 2.850 074· 10�3

F5 Complete – 1.819 709· 10�2

Red. (10�11) 1.8200· 10�2 1.819 709· 10�2

Red. (10�10) 1.8200· 10�2 1.819 709· 10�2

F6 Complete – 2.436 747· 10�6

Red. (10�11) 2.4480· 10�6 2.431 856· 10�6

Red. (10�10) 2.4220· 10�6 2.415 812· 10�6
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method proposed in the literature they are usually
taken as a comparison basis. The main drawback of
these methods, however, is that they are not at all
robust, as the final result is very sensible to the way
the formula is written, as pointed out in previous
studies [17, 20].

Weighted methods [21–23] assign different mea-
sures to each variable, leading to a complete rearran-
gement of the whole list of variables. In contrast with
the structural ones, these methods do not necessarily
preserve the structural locality of the variables,
although they are able to reduce the instability with
respect to the rewritings. There are many heuristics
proposed in the literature in this category, especially
for electronic circuits. They are not applied in the
reliability field, however, as they have not offered good
performance for fault tree formulae.

In the reliability engineering framework, the dis-
junctive normal form (DNF) of the Boolean expres-
sion, also called the sum-of-products form, is of
special interest because it represents the model
expressed in terms of the MCS. In that case, each
product pi corresponds to a MCS and is made up of a
conjunction of literals or basic events xi as expressed
in the following equation

Xn
i¼ 1

pi ¼
Xn
i¼ 1

Ym
j¼ 1

x
j
i

 !
ð4Þ

The idea that underlies this new approach is to
investigate the potential of designing hybrid algo-
rithms using the information given by the MCS, so
the authors have investigated in a previous work [24]
the use of the MCS to define different types of
weighted methods to be applied specifically over
sums-of-products instead of over the initial tree
expression. The objective was to study whether the
concept of connection between variables could be
advantageously defined as the participation in the
same MCS. Before explaining the methods, some
preliminary definitions will be introduced.

Let S be a sum-of-products. A hypergraph HG(S)
induced by this set of products can be derived where
the variables represent the vertices and the hyper-
edges represent the products. By creating an edge
between all pairs of variables occurring in the same
product, the hypergraph can always be transformed
to a simple graph G(S). Given S and G(S), several
measures can be defined for products or variables
using the information given by G(S) as follows.

First, the weight of a product is defined as a func-
tion, f, which should be inversely proportional to its
size

wðpÞ ¼ f ð pj jÞ ð5Þ
Second, the weight of a variable is defined as the sum
of weights of all products containing the variable

wðvÞ ¼
X
p:v2p

wðpÞ ð6Þ

With these two definitions the weight of an ordering
can be derived with the intent of measuring the
strength of this ordering with respect to the impor-
tance of the connections defined by the edges. The
aim of these definitions is to design heuristic meth-
ods close to those proposed in reference [25], which
pursue the following principles:

(a) variables appearing in the same product should
be close in the ordering;

(b) smaller products should have the priority.

Thus, the method proposed for the special case of
models expressed in terms of their MCSs, the so-called
MCS-weighted method (MCS-W) consists of assigning
weights to products and variables according to defini-
tions (5) and (6) respectively, and selecting variables
one by one. The propagation of the weights is dynamic
because each time a variable is selected it is removed
from all products containing it, and weights are
updated. The intention is to complete products and
therefore to order consecutively variables occurring in
the same cutset. The weight-based mechanism to
choose a variable can be defined in several ways. In
this paper two different mechanisms have been used
to define different methods of this group:

(a) MCS-W1 selects first the shortest product and,
within this product, selects the most frequent
variable;

(b) MCS-W2 selects directly the variable with the
highest weight.

The remainder of this section will be devoted to
presenting the result of different numerical tests
performed with several ordering heuristics: the basic
structural heuristic, the depth-first transversal, and
these MCS-weighted methods. The former are
applied over the tree structure, whereas the latter are
applied over the transformation of the model in
terms of its MCS. As the objective is to measure the
potential of the methods and to compare them with
each other, there were no limitations on running time
or memory space, and no special tuning of the BDD
tables was applied. All cases were run in a Pentium V
computer at 3.0GHz and 1GB RAM.

3.2 Structural methods: sensitivity to initial
formula writing

In this first test the BDD size was computed directly
from the tree structure and with the basic depth-first
heuristic, which is usually taken as a basis for com-
parison. As said previously, this heuristic depends on
the way the formulae are written initially. Therefore,
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the purpose of the test was to study the sensitivity to
the initial formula writing. For that reason, the
objective was to obtain the distribution of the BDD
size for different initial rewritings of the tree. To
achieve this, the following procedure was repeated
100 times.

1. Step 1 Random rewriting of the tree. First a unique
index is associated with each gate and basic event,
and then these indices are randomly shuffled.
Finally, the inputs of each gate are sorted
according to these new indices. To illustrate this
procedure consider the example already intro-
duced in section 2.3 and represented in Fig. 2. All
elements of the tree (except the top event) {e1, e2,
e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, g1, g2, g3, g4, g5, g6}
are assigned an index from 1 to 18 which are
randomly permuted, leading for instance to the
following set of new indices {6, 3, 16, 11, 7, 17, 14,
8, 5, 15, 1, 2, 4, 18, 13, 9, 10, 12}. Now, for instance
gate g1 is rewritten with the inputs in the following
order: e2, e1, g3, e6. The complete tree rewritten
using this permutation is shown Fig. 4.

2. Step 2 Variable ordering. Once the tree is rewrit-
ten, the depth-first heuristic is applied to obtain
the variable ordering. In the authors’ current
example this would be: e2<e1<e8<e7<e11<e9
<e12<e10<e3<e5<e4<e6.

3. Step 3. Finally the BDD is computed using the
previous ordering and the final size is recorded.

Table 3 shows the minimum, maximum, and mean
value of the BDD sizes for the 100 runs obtained in

Fig. 4 The tree model of Fig. 2 after random rewriting

Table 3 BDD sizes of the fault trees for the complete and
the reduced models with the depth-first heuristic

Fault
tree

Cut-off
reduction

|BDD| with depth-first method

Minimum
Relative
mean

Relative
maximum

F1 Complete 1623 2.78 7.26
Red. (10�11) 850 3.16 7.34
Red. (10�10) 731 2.32 5.91

F2 Complete 200 829 3.69 28.19
Red. (10�11) 96 201 2.93 9.63
Red. (10�10) 31 860 2.74 10.24

F3 Complete 344 889 2.91 10.53
Red. (10�11) 207 150 2.25 6.67
Red. (10�10) 24 438 2.21 5.76

F4 Complete 123 225 1.90 3.39
Red. (10�11) 32 009 2.07 3.75
Red. (10�10) 11 704 1.89 3.29

F5 Complete 125 1.69 2.59
Red. (10�11) – – –
Red. (10�10) – – –

F6 Complete 151 291 4.85 30.12
Red. (10�11) 5151 2.20 4.89
Red. (10�10) 1187 1.67 2.68
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the test for each of the fault trees (F1 to F6) for both
the complete model and the reduced models.

Recall that the BDDs were obtained directly from
the tree structure. In order to compare the deviation
between the different results the maximum and the
mean values were divided by the minimum value to
obtain the relative sizes. Results clearly prove the lack
of robustness of this structural method against ran-
dom rewritings, with factors up to 30 between the
maximum and the minimum values in some cases.
Thus, results confirm that the pure depth-first heur-
istic and in general the structural methods cannot be
applied without taking this issue into account.
Therefore, rewriting heuristics needs to be con-
sidered as part of the ordering methods, as elements
of more adaptable and complex strategies.

Additionally, by comparing the results of the com-
plete and reduced models for each case, a very
important decrease in the BDD size can be observed
for both reduced models (in some cases the reduc-
tion goes up to 90 per cent). This proves what was
previously mentioned: the conversion procedure to
the BDD from the reduced model is much more
efficient owing to the reduction of the model com-
plexity, so there exists a higher chance of obtaining
the BDD.

3.3 Weighted methods: performance and
comparison of MCS-based methods

In a second group of numerical tests, the objective
was to test and compare the performance of different
methods applied in this instance over the MCS
obtained for each model, instead of over the tree. For
each submodel derived from the MCS computation,
the two variants of the MCS-weighted methods

already exposed in section 3.1 were applied using
three different measures of the weight of a cutset.

w1ðpÞ ¼ 1; w2ðpÞ ¼ 1= pj j; w3ðpÞ ¼ e� pj j

Using w1 implies that no priority is given to small
products, as occurs with the basic depth-first heur-
istic, whereas w2 and w3 are intended to explore
ways to give priority to small products more or less
pronouncedly. Again, because these kinds of meth-
ods are not robust against rewritings, the sum-of-
products representation of the formula was randomly
rewritten to analyse the BDD size distribution
obtained. Thus, from each example expressed in
terms of MCS 100 different rewritings were derived.
In the same way as with the tree structure, variables
of the whole set of products were rearranged at ran-
dom as follows. First, a unique index was associated
at random with each variable. Then, variables inside
products were sorted according to these indices.
Finally, products were sorted inside the sum accord-
ing to the indices following the lexicographical order.

The results of these methods are presented in
Tables 4 and 5 respectively. Table 4 shows the mini-
mum, maximum, and mean BDD sizes obtained with
100 different rewritings for the MCS-W1 method,
whereas Table 5 shows a unique value as the method
MCS-W2 is independent of the rewriting. In order to
compare the results obtained from the MCS repre-
sentation with those obtained directly from the tree
on the same basis, all values have been normalized
by the minimum value obtained with the depth-first
heuristic applied directly to the tree structure of the
correspondent reduced model (third column in
Table 3).

Concerning the comparison of both tables the
results show that the first variant proposed, MCS-W1,
is in general better than MCS-W2, although it is

Table 4 BDD sizes of the MCS reduced models with the MCS-weighted W1 method

Fault tree Cut-off reduction

|BDD| with MCS-W1 method

w1 w2 w3

Min. Mean Max. Min. Mean Max. Min. Mean Max.

F1 Red. (10�10) 28.18 1036.79 5649.93 3.48 14.35 36.75 3.44 8.43 17.98
Red. (10�11) 21.49 285.20 1703.53 3.30 8.69 19.18 3.43 8.42 17.37

F2 Red. (10�10) OM* OM OM OM OM OM OM OM OM
Red. (10�11) OM OM OM OM OM OM OM OM OM

F3 Red. (10�10) OM OM OM OM OM OM OM OM OM
Red. (10�11) 11.24 234.76 1178.00 1.22 8.73 30.91 0.83 10.02 47.44

F4 Red. (10�10) OM OM OM 2.50 15.97 76.15 2.84 18.90 156.26
Red. (10�11) 17.85 893.51 2745.75 0.44 2.56 12.63 0.36 2.41 10.09

F5 Red. (10�10) 1.84 4.05 11.88 1.44 1.64 2.36 1.41 1.65 2.30
Red. (10�11) 1.82 4.18 10.67 1.42 1.73 2.73 1.43 1.74 2.51

F6 Red. (10�10) 4.92 85.28 312.70 1.23 4.68 10.16 1.23 5.35 17.92
Red. (10�11) 3.28 9.89 20.84 2.07 5.97 12.79 1.79 6.29 14.14

*OM denotes BDD computation out of memory.
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difficult to compare a complete distribution against a
unique execution.

Analysing the results of the MCS-W1method, it can
seen that using w1 presents very bad results, whereas
the variants which include w2 and w3 attain better
results (several factors corresponding to the relative
minimum value are close to 1). This corroborates the
idea that it is beneficial to start ordering the smallest
MCS rather than any of the whole set. Despite this
favourable fact, however, the results clearly show that
the weighted methods proposed for the special case
of the MCS representation of the model are in general
worse than those obtained using the structural
information of the tree. Two additional points have to
be considered. First, for a considerable number of
cases it was not possible to compute the BDD, as the
cases ran out of memory. Second, it has to be pointed
out that, although the ordering heuristics are per-
formed over the MCS representation of the model,
the computation of the BDD for the reduced models
was done from the simplified tree structure rather
than from the MCS, because this latter approach is
much more expensive in terms of computational
time. In other words, this means that the topological
information from the tree structure is an essential
piece of information that has to be taken into account
not only for the ordering, but for the conversion
process as well.

4 CONCLUSIONS

In this paper a new approach has been presented for
the assessment of PSA models by means of BDD. It is
based on a procedure to reduce the fault tree model
prior to the BDD conversion through the information
given by the most relevant MCSs of the model.
Additionally, several ordering methods based on the
idea of grouping variables that appear in the same

MCS were exposed. To assess and compare these
methods, several tests were performed over a set of
fault trees of a real PSA model.

From the set of tests presented the following con-
clusions can be obtained. The reduction procedure
allows the memory explosion to be controlled by
considering only the domain of the most relevant
MCSs of the model. Thus, there is a higher chance of
obtaining the BDD. Furthermore, from the initial test,
it was shown that the probability quantification is
almost unaffected by this reduction of the model in
the case of the isolated fault tree models of the pre-
sent case study, as the variables that are deleted are
those which occur in the less probable failure cutsets.
The advantage of this approach, however, is that it is
not required to eliminate all the variables from the
tree structure, only enough to be able to construct the
BDD. Moreover, once the tree is reduced up to a
certain point, the BDD conversion is much more
easily computed, achieving a significant reduction of
the BDD size. Hence, this new hybrid approach offers
a promising and feasible procedure to assess
sequences of event trees using the reduced BDDs,
overcoming both the difficulties of the memory
explosion (as they are large and complex models) and
the correct treatment of the negative logic (as they
include success branches).

Concerning the variable ordering heuristic, the
results have clearly shown that the orderings derived
from the MCS are not useful and that it is essential to
preserve the tree topology for both the ordering and
the conversion procedures, which reinforces the idea
that the model has to be reduced before the BDD
conversion, as proposed in the current work. Another
important conclusion, which has been confirmed by
the results, is that the existing methods are very
sensitive to the way the formulae are written; this
means that the heuristics should not be considered in
isolation and that the rewriting procedures need to
be included as part of the ordering strategies, as has
already been pointed out in previous studies.

Future development and extensions of PSA studies
are taking into account the dynamic interaction with
the accident scenario evolution in the framework of
the dynamic reliability methodologies. In the inte-
grated sequence analysis methodology [26], the
interaction with the dynamic evolution of the acci-
dent allows the generation by simulation of the
dynamic event tree [27]. Its delineation implies
devising an incremental algorithm that accumula-
tively builds and quantifies the sequences at each
branching point. The next important step to develop
this new hybrid approach fully is to extend it to the
full sequences assessment and to integrate it with the
incremental procedure required for dynamic event
trees quantification, which is the long-term goal of
the present authors’ work. The authors are working in

Table 5 BDD sizes of the MCS reduced models with the
MCS-Weighted W2 Method

Model name Type of model

|BDD| with MCS-W2 method

w1 w2 w3

F1 Red. (10�10) 10 950.52 2801.66 923.57
Red. (10�11) 7513.41 3245.21 941.06

F2 Red. (10�10) OM OM OM
Red. (10�11) OM OM OM

F3 Red. (10�10) OM OM OM
Red. (10�11) OM 366.20 181.91

F4 Red. (10�10) OM OM OM
Red. (10�11) OM OM 2092.32

F5 Red. (10�10) 2.03 2.46 2.63
Red. (10�11) 2.55 2.87 2.93

F6 Red. (10�10) 237.31 130.29 95.27
Red. (10�11) 17.53 10.55 9.57

OM: BDD computation out of memory
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this direction and the results for this further study
will be presented in a future publication.

� Authors 2009
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