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Abstract: Binary Decision Diagrams are a well-known alternative to the minimal cutsets 

approach to assess Reliability Boolean models. They have been applied successfully to improve 

Fault Trees models assessment. However its application to solve large models, and in particular 

the Event Trees coming from the PSA studies of the nuclear industry remains to the date out of 

reach of an exact evaluation. For many real PSA models it may be not possible to compute the 

BDD within reasonable amount of time and memory without considering truncation or 

simplification of the model.  

This paper presents a new approach to estimate the exact probabilistic quantification results 

(probability/frequency) based on combining the calculation of the MCS and the truncation 

limits, with the BDD approach, in order to have a better control on the reduction of the model 

and to properly account for the success branches. The added value of this methodology is that it 

is possible to ensure a real confidence interval of the exact value and therefore an explicit 
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knowledge of the error bound. Moreover, it can be used to measure the acceptability of the 

results obtained with the traditional techniques. The new method was applied to a real life PSA 

study and results obtained confirm the applicability of the methodology and open a new 

viewpoint for further developments.  

 

Keywords: Probabilistic Safety Assessment, Binary Decision Diagrams, Event Trees, hybrid 

approach 

1. Introduction 

Probabilistic Safety Assessment is a well-established technique for integrating various 

Reliability models and to numerically quantify to the frequency of damage in nuclear facilities. 

Its use is now widespread in nuclear regulation as it complements traditional deterministic 

analysis, providing a comprehensive and structured approach to identifying undesired accident 

scenarios, computing its likelihood in terms of occurrence frequency, and assessing the 

consequences and mitigation strategies. In terms of the mathematical tools used, PSA studies 

rely on the Fault Tree/Event Tree (FT/ET) methodology to obtain the response model of the 

facility. 

The majority of the computational tools used to assess the FT/ET models have implemented 

what is called the “classical” approach, namely the kinetic tree theory [1]. This approach, 

broadly used and accepted, is based on the computation of the minimal cutsets (MCS for short) 

by means of Boolean reduction and of the use of probabilistic (frequency) cutoffs, owing to the 

complexity of the models. Truncation cutoffs on probability (or frequency) and also on the 

order of the MCS have to be applied to avoid MCS explosion. To avoid computational 

complexity, success (i.e. negated) logic is avoided in FT/ET evaluation. 

Bryant’s Binary Decision Diagrams (BDD) [2, 3] are a well-known alternative to the minimal 

cutsets approach to assess Boolean models. BDDs have the remarkable property of having 

complexity that is not related to the number of cutsets of the encoded Boolean formula. 

Conversely to the classical methodology, the BDD approach involves no approximation in the 

quantification of the model and is able to handle correctly negative logic (success branches) at 

low additional complexity cost. However BDDs are also subject to combinatorial explosion as 

the final size of the BDD is very sensitive to the variable ordering needed to convert the model 

into it.  
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After more than two decades of application, the BDD methodology has been applied 

successfully to improve fault tree assessment and its introduction in the field has permitted 

renewing its algorithmic framework. In the last years several works have as well undertaken its 

application to Event Tree Assessment [4-6]. However attempts to apply it to very large models, 

such as the ones coming from the PSA studies of the nuclear industry, which includes several 

thousand of basic events and logic gates, remains to the date out of reach of a full automatic 

treatment. Although some attempts have been successful [4] , for such large models it might be 

not possible to compute the BDD within reasonable amount of time and computer memory 

without considering truncation or simplification of the model. Consequently it is necessary to 

explore new approaches to the problem. A potential solution is to develop a hybrid approach 

that combines the calculation of the MCS with the BDD approach, which allows obtaining a 

better and more controllable bound approximation of the model. The motivation and the basis 

of this new approach is the principal contribution of the work presented in this paper. 

The remainder of this paper is organized as follows. Section 2 is devoted to introduce some 

basic terminology, to describe the particularities of the PSA models and to introduce the case 

study. Section 3 reviews the existing approaches for the FT/ET assessment, namely the 

classical approach and the BDD approach. Section 4 is specifically focused in the problem of 

model simplification that is performed with the classical approach. Section 5 presents the 

mathematical foundation of the hybrid approach. Finally, the experimental results and the 

conclusions are provided in sections 6 and 7 respectively.  

2. Description of PSA models 

This section is devoted to introduce the basic terminology and concepts needed to describe the 

Boolean models used in PSA studies and to present the case study. 

2.1. Terminology 

Let X ={x1,x2,…,xn} be a set of Boolean variables. We will briefly review some basic 

definitions concerning Boolean algebra. 

A Boolean formula, F, denoted here by upper case letters, is a term inductively constructed 

over the two Boolean constants, 0 and 1, a denumerable set of variables X, and the usual logic 

connectives: the disjunction, equivalent to the OR operator and denoted by + or ∨ , the 

conjunction equivalent to the AND operator and denoted by � or ∧  and the negation or NOT 
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operator, represented by the arithmetic symbol – or ¬ . A literal is either a variable v or its 

negation v . A product π  is a set of literals that does not contain both a literal and its opposite. 

Typically, it is assimilated with the conjunction of its elements.  

A miniterm on a set of variables X is a product that contains a literal built over each variable of 

X. For n variables, there exist 2
n
 miniterms that can be constructed on X. 

An assignmentσ of a set of variables X is a mapping from X to {0,1} that assign a value to each 

variable of X (true=1/false=0). There is a one to one correspondence between miniterms over a 

finite set of variables X and assignments. An assignment (equivalently a miniterm) satisfies a 

formula F if ( ) 1Fσ = . In that case we say that σ  belongs to F, i.e, Fσ ∈ , and that σ  is a 

solution of F.  

There exist a natural order over literals: v v< . This order can be extender to miniterms: π ρ≤  

iff for each variable of X, ( ) ( )v vπ ρ≤ . A formula F is monotone if for any pair of minitermsσ , 

ρ  that satisfy F such that σ ρ≤  then Fρ ∈ implies that Fπ ∈ . The monotonic Boolean 

functions are precisely those which can be defined only with AND, OR and K/N operators and 

do not contain negations. 

A product σ  that satisfies a function F is also called an implicant of F. An implicant of F is 

prime if no proper subset of it is an implicant of F. In the general case, if the function in not 

monotone, prime implicants may contain negated variables. Any formula is equivalent to the 

disjunction of its prime implicants, or equivalently to a set of miniterms that satisfy it, leading 

to a representation in terms of a disjunction of conjunctions also called sum of products. 

For any two formulae F and G, we say that F implies G if for any assignment satisfying F 

Fσ ∈ , then it satisfies G as well. This is denoted by |F G= . 

We denote by v eF ←  the function in which the value of v is substituted by the constant { }0,1e∈ . 

1vF ←  and 0vF ←  are the positive and negative cofactors of F w.r.t. the variable v. 

2.2. Boolean models 

Boolean models are commonly used in risk analysis of industrial facilities to develop a 

representation of the overall system in terms of logic diagrams. In the case of PSA studies, the 

technique used for the schematic representation of the facility are the combination of Fault 

Trees and Event Trees.  
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Fault Trees are deductive models used to identify the causes of failures of a system in terms of 

its subsystems and basic component failures. The basic events represent component failures 

and unavailabilities or human errors, to which a probability distribution is associated (i.e. 

events for which data are available). From a mathematical point of view a Fault Tree is a 

Boolean formula. Variables correspond to basic events of the tree, internal tree nodes or gates 

correspond to formula connectives, and the final equation of the formula represents the top 

event of the tree.  

Fault trees are classified according to their logic into coherent and non-coherent categories. In a 

coherent fault tree, each component in the system is relevant, and the structure function is 

monotonically increasing. A fault tree that contains only AND gates, OR gates, and/or 

independent events is always coherent. Whenever a NOT logic gate is introduced or directly 

implied into a fault tree, the latter is likely to become non-coherent. In non-coherent fault trees, 

the working or success states of components as well as their failures (negative and positive 

events respectively) contribute to the failure of the system. If the NOT logic can be eliminated 

from the fault tree, the fault tree is coherent. If the NOT logic cannot be eliminated from the 

fault tree, the fault tree is non-coherent. For a more precise definition of coherency based on the 

structure function of the fault tree, see [7]. 

Traditional solution of coherent fault trees involves the determination of the so-called minimal 

cut sets (MCS). They represent the minimal combinations of component failures leading to a 

failure. For coherent fault trees, this definition matches the formal notion of prime implicant 

and so the function can be expressed as a disjunction of all its MCS. However, this is not the 

case for non-coherent fault trees because these no longer have the monotone properties. For this 

later case, the notion of MCS should be replaced by the notion of prime implicants. The 

mathematical details of these concepts are expounded in  [8]. 

Event Trees constitute an inductive technique used to examine all possible responses to a 

potential hazardous initiating event (called initiator). It works forward in time considering all 

possible subsequent events until the consequences are known – either the system reaches a 

stable state or some level of failure or damage occurs. Branch points on the tree structure 

represent the success or failure of systems and operator actions designed to respond in order to 

mitigate the initiating event. In its graphical representation, upper branches represent successes 

of the corresponding safety system or event, while lower branches represent its failure. Note 

that the existence of the success branches makes the Event Trees intrinsically non-coherent. 
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Concerning the integration of the fault trees and event trees models, in the nuclear PSA studies, 

there has been traditionally two different modelling approaches: the fault trees linking approach 

and the event tree linking approach [9]. They both utilize a combination of fault trees and event 

trees to represent the model, although they differ in the degree of emphasis in the use of the 

models, and in the manner in which the system fault tree logic model are combined to represent 

the entire accident sequences. A large majority of PSA models worldwide uses the linked fault 

tree approach as the preferred modelling approach. Throughout this paper we will consider this 

approach. 

In the linked fault tree approach, the failure of each mitigating system is described by means of 

a fault tree whose top event is the failure of the system. Each path of the tree, starting at the 

initiating event and ending into a final consequence defines a sequence of the event tree. Of 

interest on the safety analyses are the sequences leading to a damage state of the system. Each 

individual accident sequence is obtained by first logically linking the FT logic models for the 

top events along the sequence path of interest. Those that are successful along the sequence 

path will appear negated at the top event. Because the modelling approach uses relatively small 

Event Trees to represent the accident scenarios, the fault trees models are developed to 

represent the same system under different initiating conditions. In addition, they are 

characterized for including common support systems. This causes that the Fault Trees have 

repeated subsystems thus sharing basic events, which becomes of crucial importance in its 

analysis. 

The sequences of the Event Tree are by construction mutually exclusive, so they can be 

analysed separately. The Boolean equation associated to the sequence corresponds to the 

Boolean product of each of the fault trees (or basic events) corresponding to each safety system 

defining a branching point. We will denote by S a sequence in which there are n failed and m 

success systems. All Fi and Gj are coherent: 1 1... ...n mS F F G G= ⋅ ⋅ ⋅ ⋅ ⋅ . 

Due to the strong dependencies among the fault trees, this equation is a non decomposable 

function so the sequence has to be treated entirely, as will be explained in the next sections. 

Moreover these logical connections between the fault tree models increase the degree of 

redundancy of the model and therefore its complexity. Additionally, reflecting the ET 

formulation, this equation is non-coherent despite of being constructed from a set of monotone 

formulae, as a consequence of the negations appearing at the top event of the success branches. 
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The use of NOT gates to represent the successful events also increases the complexity of the 

problem because the algorithms needed to analyse the system are more complicated. 

Summarizing, PSA models are made of large, complex, non decomposable and non coherent 

models. The concurrence of all these features makes the model especially difficult to deal with. 

2.3.  A case study 

The case study selected comes from a “medium-sized” Event Tree belonging to a real world 

PSA study corresponding to a Spanish Nuclear Power Plant as shown in Figure 1. It depicts the 

evolution of a large loss of coolant accident in a BWR plant. Following the initiator (I), several 

systems are needed to mitigate the accident. Firstly, the reactor trip function (E1) shuts down 

the reactor. Its failure leads to a different event tree (not addressed here). After the successful 

reactor trip, injection in the vessel is needed to cool the reactor core. Failure sequences include 

the failure of both the High Pressure Core Spray System, HPCS (F1), and the low-pressure 

injection systems (Low Pressure Core Injection, LPCI, and Low Pressure Core Spray, LPCS) 

(F2). Success of any of those still needs long-term cooling, RHR (F3), or containment spray, 

CS (F4), to maintain core conditions. If they are not effective, then containment venting, CV 

(F5), or suppression pool makeup, SP (F6), are needed to cope with the accident. Failure of the 

containment venting needs the recovery of RHR (E2) and inventory control with systems 

outside the containment, CI, to avoid damage (E3). Failure of containment venting also needs 

inventory control with systems outside the containment to avoid damage. Capital letters F 

corresponds to Fault Trees, while capital letters E correspond to basic events 

It has a total number of 1649 basic events and 9 functional events defining the branching points 

from which 6 of them are defined by means of Fault Trees besides an extra fault tree containing 

the conditions in which operation is prohibited by the plant’s Technical Specifications which 

has to be deleted from the final solution (F0). 

Table 1 presents some statistics regarding the number of basic events (#BE) and number of 

MCS (#MCS) of the Fault Trees, to reflect an idea of the size of the models. Although the level 

of the model complexity can be measured by its size, it is important to consider other aspects 

such as the dependencies among the systems and components, which influence as well the 

difficulty to solve it. As it happens with most of the PSA studies, strong dependencies exist 

between the Fault Trees of this Event Tree. Table 2 shows the matrix of shared variables for 

each pair of Fault Trees. Instead, the diagonal displays the total number of variables of the 
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model. A group of 4 fault trees (F2, F3, F4 and F6) have strong dependencies – the percentage 

of common variables with respect to the total size of the domain ranges from 68 to 88%. The 

same applies for the number of common gates. 

The model has a total number of 19 sequences, although only 6 of them are of interest in terms 

of the safety analysis as they lead to a core damage state for the system. The largest sequence 

has a total number of 1395 basic events ant the smallest 1115. In subsequent sections we will 

discuss the results for the sequences analysis in more detail. 

3. Current approaches for the PSA model assessment 

In this section we review the two different existing approaches to asses Boolean models in the 

context of PSA studies, namely the classical approach based on the computation of MCS and 

the most recent based on Binary Decision Diagrams. 

3.1. The classical PSA methodology  

The methodology used to quantify Event Trees has almost not changed since the conception of 

the technique back in the 1970s when it was successfully used in the WASH 1400 study. In fact, 

the majority of the commercial tools used for reliability analyses implement this classical 

approach, often referred as the MCS approach, since the methodology relies on the 

computation of the minimal cutsets of the Boolean equation which defines the model. 

As it was already mentioned, sequences of the Event Tree are by construction mutually 

exclusive, so they can be analysed separately to obtain the frequency of each scenario. 

However, analysing each sequence turns out to be more difficult. In the usual case, the Fault 

Trees defining the safety systems corresponding to the branch events of the Event Trees are not 

disjoint. Thus, quantifying the probability of each sequence is more complex than just finding 

the product of the frequency of the initiating event with the probabilities of passing along each 

branching point. On the contrary, when dealing with dependencies between the top events it is 

necessary to compile the Boolean equation of the whole sequence, which is obtained by 

combining the fault tree models appearing along the sequence path under a higher AND gate, 

leading to a master FT. It is important to recall that, since the sequence record may contain 

success branches, the resulting master FT corresponding to the sequence will be, in general, 

non coherent.  
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Owing to both the complexity of the calculation and the large size of the resulting equations for 

the real models, several approximations have to be considered when applying this methodology, 

namely,  

– the truncation in the MCS computation,  

– the approximation in the probability calculation and, 

– the treatment of the success branches and the negations.  

 

The remainder of the section is devoted to explain briefly these issues. 

3.1.1. Truncation of MCS 

It is well known that the number of MCS of a Boolean equation grows exponentially with 

respect to the number of variables. In the case of the Boolean equation extracted for PSA 

studies this number is by far too big to be computationally treated. Therefore, it is necessary to 

eliminate those minimal cut sets that make a negligible contribution to risk estimates and to 

keep only a subset of the whole set. A common practice is to truncate the MCSs. For this 

purpose, a truncation threshold is established to eliminate negligible parts of the equation 

during the development of the equations. Classical algorithms to compute minimal cutsets 

(which are based on working top-down [10, 11] or bottom-up [12] or both of them [13]) apply 

cutoffs on probability (or frequency) and order of the MCS to avoid combinatorial explosion in 

the number of MCS. In general, only a few thousand cutsets are kept. The choice of the right 

truncation value is a result of trade-off between accuracy and computational time efforts and 

memory space requirements. Current truncation values as suggested in the security procedures 

guides of the regulatory bodies range from 10
-8

/year to 10
-12

/year with respect to the core 

damage. However, since this truncation limit is subjectively or heuristically selected by the 

analyst, the top event probability will be underestimated due to the truncation, since a large 

number of MCS are discarded. The extent of the deviation might not be known if the exact 

value is not available. Thus, truncation is a factor contributing to the loss of accuracy in the 

quantification. This issue has always been of great concern in the nuclear related PSA studies. 

Consequently several methods have been proposed to estimate the truncation error and to 

determine the proper truncation limits to improve the efficiency and accuracy of the MCS-

based approach [14, 15]. Still, these works have been proposed mainly for coherent models, so 

it remains necessary to consider the problem in the context of the event tree models and for the 

treatment of success branches.  
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3.1.2. Approximation of probability 

Given a finite set of pairwise not disjoints events, the probability of the union of all the events 

is given by the exclusion-inclusion equation also known as the Sylvester-Poincaré development 

as expressed in (1) 

1 2 1

1 1

( ... ) ( ) ( ) ... 1 ( ... )k

k i i j k

i k i j k

p E E E p E p E E p E E−

≤ ≤ ≤ < ≤

∪ ∪ = − ∩ + + ∩ ∩∑ ∑              (1) 

When applied to a sufficiently large amount of MCS, which are non-disjoint in general, this 

equation quickly becomes intractable due to the exponential blow up of terms. Therefore, the 

probability of the union of the set of relevant MCS is obtained by approximating the above 

equation up to a given order. If only the first order terms are used, the approximation obtained 

is the so called Rare Event Approximation (REA), as it ignores the possibility that two or more 

rare events with low probabilities can occur simultaneously (Equation 2). The use of this 

approximation is fully justified since the number of basic events with high probability is limited, 

but becomes more questionable when events with high failure probability are considered. 

1 2

1

( ... ) ( )k REA i

i k

p E E E p p E
≤ ≤

∪ ∪ ≈ = ∑     (2) 

Another commonly used quantification approach which requires the same amount of 

computational resources as the previous one is the so called Min Cut Upper Bound (MCUB) 

approximation which is expressed in equation 3. 

1 2

1

( ... ) 1 (1 ( ))
k

k MCUB i

i

p E E E p p E
=

∪ ∪ ≈ = − −∏                        (3) 

In any case, both approximations are upper bounds of the exact results and therefore give 

conservative results. 

3.1.3. Treatment of success branches 

Another critical problem with the classical approach stands in the way success branches are 

taken into account for the quantification. None of the classical algorithms are able to deal with 

negations because, by definition, MCS does not contain negative literals.  

The rigorous way to treat these negations, which appear uniquely at the top gates of success 

branches, is to treat them as logical complements in generating minimal cutsets. However the 

use of negations dramatically slows the Boolean reduction process so it might be impractical in 

terms of computing time to generate minimal cutsets that account for the negations even with 

the fastest cutest generation algorithms. In practice current tools offer different workarounds to 
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take success branches into account [4]. The most simple and trivial consists in ignoring success 

branches, treating the sequence as if it was coherent. 

[ ]1 ,...

( ) ( )
nMCS F F

p S p
π

π
∈

≈ ∑                              (4) 

Another approximation consists in correcting the previous one by introducing a factor 

computing the probability of success: 

[ ] [ ]1 1... ,...

( ) 1 ( ) ( )
m nMCS G G MCS F F

p S p p
π π

π π
∈ + + ∈

   
≈ −         

∑ ∑     (5) 

A third and better approximation, used in most tools, is the delete-term approximation which 

consists in removing from the set of minimal cutest of the coherent sequence
1[ ,..., ]nMCS F F  

the cutsets contained in any cutset of the negated top events 1 ... mG G+ + . It can be shown that, 

provided that all F and G are coherent, this operation leads to the minimal cutsets of the 

sequence [ ]MCS S : 

[ ]

( ) ( )
MCS S

p S p
π

π
∈

≈ ∑   (6)  

However, truncation on the computations of the MCS of both the coherent and non coherent 

sections of the sequence might invalid this last result. 

Finally, it has to be highlighted that the effect of this set of approximations goes in different 

directions: while the MCS truncation derives in a optimistic approximation in what concerns to 

the coherent part of the model, the approximation on probability and the effect of the MCS 

truncation on the negated terms of the sequence lead to a over estimation of the exact value. 

Therefore, even if the final result might be close to the exact one, there is no warranty that it 

remains above or below the exact result as we are left with unknown error bounds in both 

directions. Moreover, over-conservative results may lead to wrong interpretations of risk 

importance measures as they are usually calculated from the resultant truncated MCSs. 

3.2. BDD methodology 

Binary Decision Diagrams are a compact data structure to encode and manipulate Boolean 

functions. Originally developed by Bryant [2, 3], they provide a compact way of representing 

the logic underneath a Boolean function. This section will briefly describe the basic concepts 

related with this technique and discuss its application to the assessments of FT and ET models. 
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3.2.1. Definition and properties 

Formally, a BDD is defined as a directed acyclic graph (DAG) derived from the binary decision 

tree induced by the Shannon decomposition of the structure function. Let f be a Boolean 

function, and x a variable included in its domain. Then, the Shannon decomposition of the 

function, which is expressed through the ite (if-then-else) connective, allows dividing the 

function into two disjoints components both of which do not depend in x: 

1 0 1 0
( , , ) ( ) ( )

x x x x
f ite x f f x f x f

= = = =
= = ∧ ∨ ¬ ∧            (7) 

By choosing a total order of all the variables and applying Shannon decomposition recursively, 

the truth table of the function can be represented by a binary tree. This Shannon tree is, in 

general, not compact, and contains redundant nodes and isomorphic sub-graphs. It is, however, 

possible to apply reductions rules: 

– Isomorphic sub-trees merging: identical formulae are eliminated as they encode the 

same formula. 

– Useless node deletion: a node with two equal sons is equivalent to itself (f=ite(x,f,f)). 

By applying these two rules exhaustively one get the BDD associated with the formula and 

guarantees the two most important properties of the BDD: the final representation is unique up 

to isomorphism, and is the most compact representation of the truth table of the function. A 

BDD is composed of terminal and non terminal nodes connected by branches. Each internal or 

non terminal node of the DAG represents a variable of the function, and has two outgoing 

labelled branches. They indicate either occurrence or non-occurrence of the variable: left or 

then branch, labelled with 1, and represented by a solid line, points to the son node encoding 

f(x=1), and right or else branch, labelled with 0, and represented by a dotted line, points to the 

son node encoding f(x=0). All paths through the BDD start at the root vertex and terminate at 

one of the two terminal nodes, labelled 0 and 1, which represent the constant functions. Paths 

leading to terminal node 1 give the assignments that satisfy the Boolean function. If the BDD is 

not minimal not all of those solutions will be minimal. Figure 2 shows the Shannon tree and the 

derived BDD of the function 1 2 3f x x x= ⋅ + . 

BDD construction is never done by reducing the previously built Shannon tree. Instead, the 

construction is done in a compositional way, by composing smaller BDD corresponding to its 

sub-formulae 

The Shannon decomposition defines a recursive procedure to the construct the BDD from a 

given Boolean expression, starting from the root node, and descending in the decision tree. 
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However, in practice BDD construction is never done by first building the Shannon tree and 

then applying the reduction rules. Instead, the construction of the BDD is done using a 

compositional approach by decomposing the Boolean expression into smaller sub-expressions, 

the BDDs of which are calculated and then combined with the appropriate connectives to create 

more complex BDDs. In this way, new nodes are incorporated to the graph in a bottom-up way. 

In the case of a fault tree model, individual BDDs are assembled sequentially from the bottom 

gate to the top gate of the tree. The use of a table of nodes (called ‘unique table’), guarantees 

the application of reduction rules while constructing the BDD. This way, each node is 

constructed only once. For more details about those algorithms, the reader should refer to [16-

18]. For details about issues related with an efficient implementation of a BDD package, see 

[19, 20]. 

3.2.2. Application to FT/ET assessment: improvements & drawbacks 

Fault Tree analysis is a two-fold problem: it involves both quantitative and qualitative aspects. 

The application of the BDD technique on the Reliability Engineering field has made it possible 

to improve the efficiency and the accuracy of both sides of analysis, allowing exact 

probabilistic quantification, compact encoding of the MCS, and correct handling of negative 

logic and non-coherent systems. In particular, one of its mayor advantages is that the 

probability of the top event can be obtained directly from the BDD, as a sum of probabilities of 

the disjoint paths through the BDD and without the need to evaluate the MCS as intermediate 

results. As a result of the Shannon decomposition, which divides the system logic into two 

disjoints parts at each node, the following equation holds: 

1 0
( ) ( ) ( ) (1 ( )) ( )

x x
p f p x p f p x p f

= =
= ⋅ + − ⋅           (8) 

This equality induces a recursive algorithm which is linear in the size of the BDD and gives 

exact values [17]. In fact, this method is extremely efficient because only one pass through the 

BDD structure is required to calculate all measures including importance factors [21]. 

Despite all its good properties and the improvements that the BDD method offers, there are 

some computational difficulties when working with BDD which are of special importance 

when dealing with large models such as the ones coming from the nuclear PSA studies. The 

methodology requires to build the BDD to be able to analyze the system it encodes (recall that 

in our case this stands for the equation of the whole sequence). To start the BDD codification 

an initial ordering of the variables on which the function depends has to be fixed. It is well 



 

14 

 

known that the final size of the BDD and therefore the efficiency of the method depends 

heavily of the chosen variable ordering, as pointed out by Bryant since the very beginning. As a 

result, the process, which might be very time and memory consuming, is, in addition, 

dramatically affected by the ordering selected. Choosing a bad initial ordering may lead to a 

blow up of the memory consumption and therefore to the impossibility to produce any BDD at 

all for large models. 

Finding the optimal ordering is a NP-hard (Non-deterministic Polynomial-time hard) problem 

[22] owing to its combinatorial nature, so it is computationally intractable [23]. In order to find 

reasonable good orderings, research efforts have been aimed to design suitable heuristic 

methods, including good pre-processing strategies.  Over the last 20 years many techniques 

have been proposed and a large number of articles have been published on those subjects. For a 

good review of the topic the following articles offers a more detail explanation and subsequent 

references [24-27]. In addition it has to be mentioned that there is no universal ordering scheme 

that can be successfully used to produce a minimal BDD for any fault tree model, which means 

that a specific strategy might work perfectly for particular model and be unsuccessful with 

other. 

3.2.3. BDD approach in PSA models 

Nowadays the BDD methodology can be considered a mature technology in the Reliability 

Engineering field. Up to now, most of the work has been applied to assess successfully small 

and medium size fault tree models, typically with up to several hundreds of basic events. This 

consolidation is demonstrated by the development of several software tools based on the BDD 

technology such as ARALIA, initially developed at Bordeaux University, ASTRA, developed 

by the EU-Joint Research Centre for security related applications, or FTRex, developed by the 

Korea Atomic Energy Research Institute. 

Over the last years several works have been dedicated to extend the BDD technique to the 

Event Tree assessment for both coherent and non-coherent systems in various fields of 

application [4-6, 27-29]. However, when considering PSA models coming from the nuclear 

field, this approach turns out to be more difficult due to the size and the complexity of the 

models. As was previously mentioned, current PSA models consist of a large number of basic 

events and gates and are characterized for having many of the events repeated within the tree or 

sequence structure. In most of the cases, for such large models, it becomes impossible to fully 

convert the model to a BDD due to the exponential blow up of the memory requirements. 
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Specific models have been assessed only by using different techniques developed to solve this 

particular models: in [4] a set of dedicate strategies based on pre-processing methods and 

different static heuristics allowed handling of the model within reasonable times and memory 

consumptions; in [5] it is proposed to combine several static and dynamic ordering techniques, 

some of which are applied locally to the common variables of the model, although the 

computational cost is extremely high. Despite these works, there is no guarantee of being 

successful in general.  

Although it is commonly accepted that current PSA tools need to be improved with more 

accurate and efficient algorithms and programming techniques in order to overcome some of its 

deficiencies (as was reviewed in section 3.1), doubtlessly current PSA models are too big and 

complex to be tackled by the BDD technology uniquely. Yet, application of BDD needs further 

improvements to adequate the technology for the correct treatment of such type of models. 

New approaches need to be propounded so as to consolidate the BDD technology as a feasible 

solution to improve PSA assessment tools in the nuclear field. 

4. Model pruning in the MCS approach 

Probabilistic analyses are performed with codes that produce results which have not been 

contrasted with alternative methodologies to validate them. The basis of the MCS approach is 

to reduce the model to a manageable size by discarding the less significant failure modes and to 

produce only the most relevant failure paths. This approximation is justified by the fact that 

these cutsets capture, in general, the most relevant parts of the model in terms of the 

contribution to the top event probability. Even so, it is important to draw attention to the 

manner in which the model is approximated with this type of approach. To illustrate this 

problematical issue, this section is devoted to present the results of the MCS approach obtained 

by means of the classical algorithms and to compare them with the exact results (when 

possible) in terms of the final probabilities as well as in the reduction performed in the model. 

First of all, several results are presented concerning the quantification of the isolated fault tree 

models of the case study as a first step to study the practicability of this approach. The MCS 

were obtained by means of classical algorithms with three different absolute cutoffs values (10
-

10
, 10

-11
& 10

-12
) [30]. Table 3 shows statistics regarding the size of the models such as the 

number of basic events and minimal cutsets for each example for the full model and with the 

different cutoffs. It can be seen that the bigger the model is, the larger the reduction is in terms 
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of the number of basic events considered as relevant in the model. For these models, it was 

possible to compute the BDD of the full fault trees, so it was possible to use the exact results to 

compare with the MCS-based results. Columns 5 and 6 of Table 3 shows the top event 

probabilities computed with the classical tools using the MCS approach and the first order 

approximation (i.e. the rare event approximation) and the probabilities computed with the BDD 

approach respectively. Regarding the comparison between both approaches, differences can be 

seen to be very small. Additionally, it can be seen that the final results with the MCS approach 

are conservative only thanks to the rare event approximation. This can be assured because the 

Fault Tree models are coherent functions. However, it could happen that results were not 

conservative if the cutoffs are not sufficiently low as it happens with F6.   

Only the sequences leading to core damage were quantified with the classical tools. Again, 

three different absolute cutoff values were employed (10
-12

, 10
-15

 & 10
-18

), both considering the 

success branches and not (“coherent” sequences). Results are given in Table 4. For each one of 

the cases, and for each cutoff value, the number of relevant MCS of the model, the number of 

basic events which appears on the relevant set of MCS, and the top probability obtained from 

the set of MCS, are presented. As with the previous results the BDD of the full model was 

undertaken to compute the exact values (final column of Table 4). Because it was only required 

to have the exact values mainly for comparison purposes, the cases were executed using 

dynamic variables reordering which turned out to be extremely time consuming. All cases were 

run in a computer with a Pentium Core Duo CPU at 3.16 GHz and 3.85GB RAM. For the cases 

that were finally solved it was required up to 120 hours of execution time. Moreover, even with 

this type of optimization techniques, for some of the complete sequences it was impossible to 

construct the BDD due to memory blow-up (memory resources were over 2 gigabytes for 

sequences 13 and 16). 

Several remarks can be done from the analysis of this table. First of all, it can be seen that the 

differences between both approaches are more significant than the ones obtained for the 

analysis of each of the Fault Trees, due to the fact that models are bigger and more complex 

and, above all, because they are non coherent. As was already stated these results confirm that, 

when models include negations, ignoring success branches leads to even more over-

conservative results. Secondly, the number of MCS and basic events that are actually used for 

the MCS-based calculations is extraordinarily small, although, with appropriate cut-off values 

the results given tend to be reasonably good.  
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Other experiments [4] reveal that this behavior is not particular of this model, and that, for most 

of the cases, only a modest fraction of the solutions of the model, and thus a small number of 

basic events, is actually used for the computations with the classical algorithms. Hence the 

MCS approach can be considered as a pruning process of the model. Because it tries to retain 

the most relevant solutions of the model in terms of its contributions to the final probability, it 

is normally considered an efficient way of pruning the model. However, there are some 

problems related with the pruning of the model performed by the MCS approach related mainly 

with the truncation process and also with the treatment of the success branches. First, small 

changes in the cutoff value often leads to the elimination of many MCS as their probabilities 

are usually clustered around a small subset of values. As a consequence the MCS computations 

process is too drastic and non smooth. Secondly, it is not model related in the sense that there is 

no control over the direct effect of the pruning process on the model during the MCS 

computation. Thirdly, as it was previously mentioned, success branches are badly taken into 

account because the truncation process is as well applied into the negative fault tree models 

before introducing them into the model computation.  

Although the unique means of overcome the truncation problems is to obtain the BDD of the 

full model, from a practical point of view and due to the sizes of the industrial PSA models, we 

cannot avoid the model reduction. Still it is necessary to improve this pruning process to be 

able to accurately control the final quantification results. Therefore, suitable pruning processes 

are required.  

5. Hybrid approach for ET assessment based on syntactical reduction 

As a result of what has been concluded in the previous section, the key issue is that the 

reduction process should be more understandable and better controlled than it is when the 

model is manipulated through the one based on the MCS expansion and truncation. Moreover, 

it is required to be compatible with the treatment of negative logical models. Several works 

have proposed hybrid methods to apply the reduction in the progress of the BDD construction 

using as well truncation limits, leading to a truncated BDD [8, 12].   

Instead, we propose that the reduction process should be applied directly to the model. This 

would allow obtaining a derived sub-model which could be quantified by means of the BDD 

technology, to take benefit of its good properties, that is, the exact assessment and, above all, 

the correct treatment of negations. In previous studies [30] the authors experienced that in order 
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to have an efficient transformation of the derived sub-model to a BDD encoding, it was 

essential to keep the topological information of the model, as the computation of the BDD from 

the MCS representation of the model was much more expensive. Therefore it is necessary to 

obtain a domain reduction by means of syntactical transformations which preserve the model 

topology. These transformations should always provide a domain reduction but may reduce or 

expand the model solution space depending on the purpose of the transformation. When 

achieving a reduction of the solution space, it could be used as a lower approximation of the 

model. On the other hand, when an expansion is performed the resulting derived model will be 

an upper approximation of the original one. Hence, it is needed to establish the mathematical 

basis of this approach as well as the practical implications, all of which is discussed in the 

following sections. 

5.1. Syntactical model transformation 

This section is devoted to state the mathematical grounds of the proposed syntactical 

transformations and thus some notation has to be introduced. Let F a monotone Boolean 

function. Let LF  be a derived sub-model of F obtained by eliminating part of its solutions, thus, 

constricting the solution space. The simplest process will be to fix the value of a set of variables 

to a constant value, 
0

L

VF F ←= . A priori the set V can be any subset of the domain of F; for the 

case of a fault tree model it will be obtained from the analysis of the fault tree using the 

classical MCS approach as will be detailed later, hence the name of hybrid approach. Then the 

following implications holds: |L
F F= , that is, that all satisfying assignment of LF  satisfy as 

well F, and conversely | LF F= . We call LF  the lower approximation or reduction of F. On the 

contrary, we denote by UF  another derived model of F obtained by expanding the solution 

space, so that | U
F F= , that is, where all the solutions of UF  are solutions of F. Just as 

previously, it holds that |UF F= . For instance, this expansion can be achieved by performing 

the following transformation: 1

U

VF F ←= . Notice that although the domain is reduced, the 

solution space is augmented.  

Now consider F and G monotone Boolean functions. Let H be defined as: H F G= ⋅  and define 

the following transformations of H: L U L
H F G= ⋅ , and U L U

H F G= ⋅ .  

Each term of these transformations of H has the following properties.  
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• If |U
F F=  and |L

G G= , then |U LF G F G⋅ = ⋅ , so L
H H⊆ , i.e. |L

H H= . 

• Conversely, if |L
F F=  and |U

G G= , then |L U
F G F G⋅ = ⋅ , so U

H H⊆ , i.e. | U
H H= . 

The conclusion says that the set of minimal solutions of function H is bounded by those of LH  

and UH , which in practice means that, in the quantification, the exact result lies within an 

interval that can be readily obtained. 

Now, consider the reduction transformation introduced at the beginning based on the constant 

substitution 0

L

VF F ←= . This transformation is equivalent to the MCS truncation process, if we 

set V to be the set of variables appearing in the discarded MCS. Considering what was 

presented in section 3.1, we recall that the MCS approach perform such a reduction process in 

all of the coherent functions of the sequence equation, to proceed afterwards to apply the delete 

term. Therefore, it can be assimilated with this third transformation of the model: A L L
H F G= ⋅ . 

Although AH  is neither a superset nor a subset of H in terms of the solution space, it can be 

considered a practical approximation of H in the context of the PSA models. Then, the 

transformations of H satisfy the following relations: 

H F G= ⋅ ≈

L U L
H F G= ⋅

U L U
H F G= ⋅

A L L
H F G= ⋅H F G= ⋅ ≈

L U L
H F G= ⋅

U L U
H F G= ⋅

A L L
H F G= ⋅

   

(9) 

The previous results can be generalized for the case of a model defined by a product of several 

coherent functions Fi and Gj. For the general case, some of these functions could appear 

negated, as it happens with the accident sequences of the PSA models.  

Thus, consider again S to be a general event tree sequence: 1 1... ...n mS F F G G= ⋅ ⋅ ⋅ ⋅ ⋅ . The 

practical application of these mathematical developments allows obtaining a bounding interval 

for the quantification results in terms of an upper and a lower approximation of the Boolean 

equation of S, and the approximation S
A
. Note that these developments are compatible with and 

formalize the current delete-term operation. In order to obtain an upper approximation of S a 

syntactical transformation is needed such that positive functions Fi are upper approximated 

while the negated functions Gj are lower approximated so that jG is also upper approximated. 

Conversely, to obtain a lower approximation of S the required syntactical transformations 
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should perform the opposite operations. In that case we would obtain the following upper and 

lower transformations of S : [ ] [ ] 11 1 1
... ... ... ...

U UU UU U U L L
mn n m

S F F G G F F G G   = ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅     

and [ ] [ ] 11 1 1... ... ... ...
L LL LL L L U U

mn n mS F F G G F F G G   = ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅    . Additionally, a third 

approximate estimation can be computed applying the lower transformation for all the models 

as previously: 
1 1

... ...A L L L L

n m
S F F G G= ⋅ ⋅ ⋅ ⋅ ⋅ . 

Finally an important comment is in order. This approach allows obtaining both an upper and a 

lower approximation of the model on a purely syntactical basis. Thus, both lower and upper 

bounds of the exact results, as well as approximate results can be computed. Not only this 

approach offers a formal process for the reduction of the model, it also has the added value of 

providing bounds in both directions. If appropriate transformation criteria are used, the results 

obtained can offer real knowledge of the final probabilities of the model and measure the error 

introduced by the MCS approach.  

Appendix A lists the mathematical results in a formalized way. 

5.2. Transformation criteria 

The idea behind the transformations of the model previously presented is to eliminate variables 

of the model so that the domain is reduced and the derived sub-model is more easily converted 

to its BDD. It has been shown that these approximations work correctly as long as the solution 

space of the derived model is either a subset or a superset of the original one. Therefore, a 

transformation is valid if it both fulfills this condition and it is based on syntactically 

manipulating the model. Although any criterion supporting these two properties is acceptable 

from a theoretical point of view, it is necessary to consider as well the practical implications to 

obtain suitable transformation criteria. Considering both the theoretical and the practical 

conditions this section offers different criteria for the syntactical transformation. Advantages 

and practical difficulties are as well mentioned.  

 

1. Constant propagation  

As it was mentioned previously, the simplest method to reduce the domain and simplify the 

model is to set some of its variables to a constant value, CP V xF F ←= . Let denote MCSk the 

minimal cutsets obtained with a truncation value k and consider V to be the set of variables that 

do not appear in these MCSk, which correspond to the discarded variables of the model. Then, 
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setting the variables of V to 0 is equivalent to the truncation process of the MCS but with the 

advantage that, although the less significant MCS have been discarded from the derived model, 

it is still defined in terms of logical gates and therefore the topological information is preserved. 

So, in order to obtain a lower approximation of the model (to reduce the solution space), 

variables of V have to be set to 0, 0

L

CP VF F ←= . On the other hand, to obtain the upper 

approximation (which expand the solution space) variables of V have to be set to 1, 1

U

CP VF F ←= . 

This latter approximation has, however, an inherent difficulty which cannot be easily overcome 

in practice and render it not very suitable for its practical implementation. Recall that the 

models are made of several coherent functions. As each function is monotonous, all variables 

appear in its positive form. Thus, there exists a big asymmetry of the logic between setting its 

components to failure or to success. While setting variables to 0 only eliminates certain failure 

scenarios, the operation of setting variables to 1 may lead to fail the whole system. It is 

sufficient that any combination of the set V that has to be substituted to 1 constitute a solution 

of the model. If this happens, the upper approximation of the model corresponds to the full 

solution space, which is a too coarse grain approximation. Moreover, even if the set V is 

filtered to avoid this problem, still the final probability of the system is dramatically sensitive to 

this type of substitution, because these models are designed to be highly reliable. Therefore it is 

necessary to refine this criterion to control the impact of the transformation into the probability, 

especially for the upper approximation.  

 

2. Merging 

It is clear that, in order to avoid the previous problems, it becomes necessary to avoid 

substituting the discarded variables to 1, but still it is needed to eliminate them from the model. 

Instead of substituting them to a constant value, a finer approach will be to apply a merging 

principle to collapse these variables to a smaller number of them. 

Different variants of the merging principle have been investigated and tested, although not all 

of them have given good results in practice. The idea of the general merging principle is to 

successively merge pairs of variables d1 and d2 from the set V of discarded variables in a new 

fictitious event, h, and to substitute the original pair by this new event in the model. This 

elementary process, which is repeated for any two pairs of discarded variables, is illustrated in 

Figure 3. It looks similar to the factorization stage of the Faunet reduction explained in [31], 

where pairs of events that always occur together in the same gate type are combined to form a 
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single event. However, in the merging principle suggested here, pairs do not appear together 

explicitly in the model, but are considered in order to manipulate and simplify it. If the new 

event is defined as the union of both variables, that is, as 1 2Uh d d= ∨ , then the transformed 

model will be an upper approximation of the original one. Instead, if the new event is defined 

as the intersection of both variables, 1 2Lh d d= ∧ , the transformed model will be a lower 

approximation. Because the pair of events merged does not show up any more in the model but 

under the new event h (i.e. hL or hU), once the substitution is performed, the event h can be 

considered as a module, and therefore can be treated as a basic event, by assigning to it the 

corresponding probability: 1 2 1 2( ) ( ) ( ) ( ) ( )Up h p d p d p d p d= + − ⋅ and 1 2( ) ( ) ( )Lp h p d p d= ⋅ . This 

general principle can be applied to successive pairs of variables of the set V. The new variables 

created by this merging principle can be considered as non-important variables of the model, so 

that they can also be included in the set V and merged. It is important to notice that, because the 

principle is applied in a pure syntactical base, it is guaranteed that they are upper and lower 

approximations respectively. 

The general principle can be applied in different ways. The most basic approach would be to 

apply it until all the variables have been globally merged into a single variable which collects 

all the information of the whole set of unnecessary variables. This can be called the pure global 

merging principle. However, it might be not necessary to merge all of them, or to merge all to a 

single variable. Instead, the principle could be applied to several subgroups of variables, 

obtaining a merging variable for each subgroup. Thus, different variants or refinements could 

be created.  

The pure global merging principle gives results similar to those of the constant propagation for 

the lower transformation of the model, so both of them can be used. Instead, in the case of the 

upper approximation, the global merging principle offers very bad results as the final results is 

dramatically sensible to this transformation, so it has to be refined. The reason is that the new 

“modules” created to merge all the variables and to substitute them is the result of an OR gate, 

the probability of which is obtained by adding the probabilities of the variables that are merged 

(assuming that the cross terms are discarded). Since there are big differences between the 

probabilities of all the variables of the model (they might be several orders of magnitude of 

difference), the substitution of events with low probability by the new event propagates to a 

high overestimation of the result so that very high bounds are obtained. Just as it happened with 

the upper approximation of the constant propagation criterion 1

U

CP VF F ←= , relatively small 
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modifications of the events that imply to decrease the reliability of some particular subsystems 

are propagated in the model with a great impact in the final probability.  

A refined approach to overcome this problem is to cluster the variables by its probability and 

restrict the merging principle to each cluster, where only variables with similar probabilities are 

merged. The larger the number of created cluster is, the better is the final result although there 

is a smaller reduction of the domain, and in addition, several new variables are added to the 

model. The application of this refinement decreases the value of the upper bound with respect 

to the pure global merging principle. However, as several redundant variables corresponding to 

the representatives of each cluster are created, the complexity of the model increases in a way 

such that it becomes much more difficult to obtain the BDD. Hence, it is necessary to obtain a 

tradeoff between the decrease in the number of variables and the increase of the redundancy 

which ultimately affects the complexity of the model. 

In order to obtain a more robust principle for the upper transformation of the model a third 

refinement has been devised, where the merging principle is applied locally at each gate of the 

model and only for the OR gates (as the new variables are defined to be this type of gates). So, 

instead of defining the groups according to the global clustering, they are defined as being part 

of the same gate, so that the topological relationships can be taken into account. For each 

different gate a new variable is created to substitute all of the discarded variables of the gate. 

Gates that are shared between different models are approximated by the same new variable, so 

that it is only created once and dependency relationships are maintained. Although the decrease 

in the number of variables is lower than with previous alternatives, this approach offers the best 

results in practice because the degree of redundancy added to the model is also lower, and 

therefore the tradeoff between simplification and redundancy is more balanced. 

As it has already been stated, the upper and lower approximations cannot be treated with the 

same criteria owing to the big asymmetry that exist when the space solution of this type of 

models is modified. In general, all the criteria used to obtain the lower approximation of these 

models, which are coherent, are less problematic than the ones required for obtaining the upper 

approximations. In addition, the number of negated models appearing in the sequences is 

usually smaller than the positives, so that the upper approximation of the whole sequence, 

which requires obtaining the upper transformations of the positive functions, becomes more 

complicated. For these reasons, the best approach is to combine the different criteria so that the 

final approximation is accurate enough. Thus, for each approximation of the sequence, the 
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criterion to be used to transform each coherent model depends on whether it is a failure branch 

or not. For the upper bound, failure branches require an upper transformation while success 

branches require a lower transformation, and conversely for the lower bound. The most 

efficient method to obtain the lower transformation of each function is to apply the constant 

propagation principle, as it reduces both the domain and the complexity of the model and has 

almost no impact in the final probability (as showed in section 4). On the contrary, for the 

upper transformation, the most effective method in practice is the merging principle restricted 

to each OR gate, because it is the one that better controls the impact of the approximation on 

the final probability. 

Additionally, the fact that the functions have common variables has to be taken into account 

explicitly, since the transformation procedures are applied in each of the coherent functions of 

the model, some of which appear in its positive form and others in its negative form. In the case 

of the negated coherent functions (a process that indeed transforms them into non-coherent 

functions) care must be taken in applying different criteria to the same variable if it appears in 

both the coherent and non-coherent functions. In order to keep the consistency of the whole 

model, it is necessary to first manipulate the models of different sign in order to make them 

disjoint. Recall that the reduction procedure is the same for all the functions having the same 

sign. Thus, it is only required to duplicate the common gates of the functions of one sign, for 

example, the ones that appear negated.  

6. Experimental results 

This section presents the numerical results obtained by applying this new hybrid approach to 

quantify linked fault tree models coming from PSA studies. This analysis considers four from 

the six accident sequences of the case study previously presented in sections 2.3. The other two 

sequences are not considered for being excessively trivial. The equations of these sequences are 

the following:  

5 0 1 1 3 4 5 6 3S F E F F F F F E= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  

8 0 1 1 3 4 5 2 3S F E F F F F E E= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  

13 0 1 1 2 3 4 5 6 3S F E F F F F F F E= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  

16 0 1 1 2 3 4 5 2 3S F E F F F F F E E= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  



 

25 

 

The three different approximations (S
L
, S

U
, S

A
) derived from the application of theorems 1 and 

2 for the case of a sequence S (equation (9)) and presented in the previous section haven been 

computed for each sequence and with a range of different cutoff values. In all the cases, the 

BDD have been obtained as follows. A cutoff value is selected to obtain the set of variables to 

be discarded in each of the Fault Tree models. These variables are the ones that do not show up 

in the MCS computed with this cutoff value. The Fault Trees are transformed using the criteria 

already explained depending on both the sign of the Fault Tree and the approximation chosen 

for the sequence. Each BDD is computed after the transformation of each Fault Tree model. 

Finally, all of them are composed by applying an incremental procedure as described in [27]. 

As a side comment, the first model F0 is not reduced in any case because its main function is to 

delete solutions that are prohibited by the technical conditions. Also, components defined as 

basic events (Ei) are only considered at the end to multiply the final result by its probability.  

Concerning the variable ordering issue, after transforming the Fault Tree models, but before 

computing its BDD, a total ordering of the variables that still belong to any of the models is 

obtained. To do this, a random rewriting of the model and the basic depth-first ordering scheme 

are applied. The procedure to rewrite the tree randomly is as follows. First, a unique index is 

associated randomly with each gate and basic event in the tree. Secondly, these indices are 

randomly sorted. Finally, the inputs of each gate are sorted according to these new indices. As 

it was mentioned previously, the basic depth-first traversal of the tree is one of the most 

popular heuristics and gives good results in many cases for it preserves the locality of the 

variables. However, they are very sensitive to the way the Boolean model is written, so it is 

necessary to take into account the aforementioned rewriting methods as part of the orderings 

[32]. In our experiment, a seed is generated to perform first a random rewriting to determine the 

order in which the Fault Trees are placed to be composed. In a second step, each Fault Tree 

model is rewritten as explained (rearranging the inputs of each gate).  

As it was previously mentioned the advantage of performing the model transformation prior to 

the BDD conversion is that the topological information can be fully exploited, both for the 

ordering and for the BDD computation. Additionally, as they are combined employing the 

incremental approach, the transformations can be applied to each Fault Trees individually. This 

allows having better control on the reduction performed on each model, hence providing more 

flexibility to the process. 
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In this case the same cutoff was used for all the Fault Trees of the sequence for simplicity. 

Further developments may consider selecting different cutoff values for each Fault Tree to 

adjust individually the accuracy of its transformation before their combination in the sequence. 

Besides, the range of cutoff values that has been tested depends on the model characteristics 

and its complexity, and has been obtained experimentally. Starting from a reasonable value, it 

has been decreased until it was not possible to obtain the BDD. This point is reached sooner 

with the upper approximation as it is the one that eliminate fewer variables so the domain 

reduction is minor. 

The aim of this experiment is to analyze the quantification results and to assess the precision of 

the bounds obtained, in order to determine if this approach provides an adequate interval which 

contains the exact value without computing it explicitly. In addition, the purpose of the 

experiment is to compare the results with the ones obtained with the MCS approach. 

Results shown in this section include the final sequence frequency and the number of variables 

for each test. The latter is a good indicator of the level of reduction achieved and the percentage 

of the model that is considered. Although all the criteria that have been explained in the 

previous section were tested, only the results of the most effective method in practice are 

shown. In addition, running times are not given because the aim of this experiment is to analyze 

the quantification results. Also, it has to be mentioned that due to the lack of robustness against 

rewritings and the sensitivity to the initial writing of the model, the authors experienced that it 

was fundamental to obtain a good rewriting of the model to start with the process, that is, a 

good initial seed. Consequently, it is fundamental to perform a preprocessing step that 

experimentally finds appropriate seeds for each particular model before initiating the bounds 

computation. 

All the experiments were run in an Intel Core Duo processor at 3.16 GHz and with 3.23 Gb of 

RAM. The results of the four sequences are shown in Tables 5-8, and are represented 

graphically in Figures 4-7 respectively, together with previous results of Table 4 (MCS 

approach and exact results). Results of this table (if they are known and non-zero) are drawn 

using horizontal lines. Additionally, a grey band has been drawn to represent the interval where 

the exact result must be, bounded by the more precise bounds of S
L
 and S

U
. Omitted values of 

the tables were not computed because the simplification was too large to be worth it (the 

uppermost rows of S
L
/S

A
) or because they were too complex and run out of memory (the final 

rows of S
L
/S

U
). In the case of sequence 8, because the results of the three approximations are 
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very close, its graphical representation has been restricted in the Y axes to a narrower band in 

order to appreciate them properly. This excludes the results of the MCS approach.   

In all the sequences except in sequence 13 it was possible to obtain a relatively small interval 

containing the exact result by applying the hybrid approach, thanks to the convergence of both 

approximations. For sequence 13 it was not possible to compute a better upper bound with any 

of the criteria studied. The difficulty may lay on the fact that this is the sequence with the 

smaller frequency, so it is more difficult to be quantified. In fact, in this case, it was possible to 

quantify it with the MCS approach only with the lower cutoff selected for our experiment     

(10
-18

), which is certainly lower than the values used in practice. 

On the contrary, for the remainder sequences the results offered by the hybrid approach 

demonstrate that the MCS approach is over estimating the real value. Moreover, when the 

cutoff is decreased, this over estimations becomes even bigger, which means that the MCS 

results does not converge to the exact value even though the cutoff is set to consider more MCS. 

This might be happening due to the effect introduced by the approximation in the probability 

(like the rare event approximation expressed in equation (2)) together with the incorrect 

treatment of the negated headers.  

Among all the sequences the one that is more interesting is sequence 16. In this case, not only 

the exact result was bounded very efficiently, but it is shown that the MCS with a cutoff of    

10
-15

 is underestimating the real value. In that case, the calculation of the lower bound can be 

used in addition to establish if the cutoff used in the classical approach is low enough to ensure 

that is, at least, above the exact result. 

Finally it has to be remarked that in all the cases the results of S
L
 are very similar to S

A
, 

although the advantage of the later is that it can be computed with lower cutoff values, because 

it allows eliminating more variables of the model. Thus, even if the approximation S
A
 cannot be 

considered from a strict mathematical point of view as a lower bound of the exact results, 

results confirm that it is a very good approximation from a practical point of view taking into 

account the special characteristics of these models. While the calculation of S
L
 and S

U
 offers a 

mechanism to compute the real interval where the exact result must be which is theoretically 

justified, the computation of S
A
 can be used to complement this analysis as a more practical 

estimator. 
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7. Discussion and conclusions 

Binary Decision Diagrams have proved to be of great interest from both a practical and 

theoretical point of view. In the reliability engineering framework it can be considered a mature 

technology. However, large models in general, and specifically some of the ones coming from 

the PSA studies of the nuclear industry, are still out of reach of an exact evaluation. The models 

are too large and complex to be fully mastered with any of the current existing approaches and 

tools. It can be argued that these models are too large and complex to be fully analyzed and that 

approximate results are good enough in practical applications. However, it is important to 

highlight that these results have not been yet contrasted to verify its validity. On the other hand, 

the use of PSA studies has started to become more widespread and models have become more 

detailed and complex. The extensive use of these models for current and future applications 

requires a better understanding of the limitations of its techniques and demand methods to 

estimate more precisely the error associated with the results obtained, especially when taking 

into account that the amount of the truncation error is more sensitive to the size and the 

complexity of the model, which is above all due to the existence both of  strong dependencies 

among the systems and of success branches (negative logic). 

This article presents a new approach to estimate the exact quantification results based in 

combining the information provided by the classical MCS approach using truncation limits 

with the BDD approach. Thereby, a better control on the reduction of the model and a proper 

account for the success branches can be achieved. The core of the methodology is to transform 

syntactically the model to reduce its complexity. An important remark is that once the model is 

transformed, the topological information is still available, which benefits the BDD codification. 

Another key issue is that the process is applied to each component of the master FT defining 

the sequence equation. This allows, on the one hand, applying the reduction more smoothly as 

each of the fault tree models are more manageable, and, on the other, treating the positive and 

negative elements separately. In fact, an advantage of this approach is that the sets V can a 

priori be any set of variables. Moreover, if the MCS are used to select the unimportant 

variables, a different cutoff value for each fault tree could be used as it was previously 

mentioned. This gives large flexibility to the analyst concerning the reduction process because 

of the possibility to examine each fault tree model and to analyze whether there are some 

variables or subsystems that are to be kept on the model for any physical reason.  
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Current methods to analyze FT/ET models consist in considering a subset of all the solutions, 

namely, in evaluating a derived model which is a lower approximation, and estimating the 

truncation error. In contrast with this perspective, the added value of this new approach is that it 

allows transforming the model not only to obtain a lower approximation, but also an upper 

approximation consisting in a derived model which contains all the solutions of the original 

model. This allows ensuring a real confidence interval of the exact value, if the cutoff has been 

appropriately adjusted, because both approaches converge to the exact value. Subsequently, an 

explicit knowledge of the error bound is obtained. 

The methodology presented here has been mathematically founded. In addition, the results 

confirm the applicability of the methodology to estimate the exact result. Besides this 

estimation, the results that are obtained can be used to measure the acceptability of the 

estimation obtained with the MCS approach. The results presented in this article for a real case 

study show that the curve obtained from the MCS approach does not necessary converge to the 

exact value when the cutoff is set to be inferior. This means that lowering the cutoff might lead 

to more overconservative results, while if it is set not low enough, the results could be under 

the exact result. With the approach exposed in this work, a formal method is offered to ensure 

this. First, the lower bound of the model allows validating if the cutoff selected in the current 

established analysis is low enough to guarantee that the result is not underestimated. In that 

case, it should be lowered until the results are at least above the lower bound of the model. On 

the other hand, the upper bound can be used to establish the effect of the overestimation on 

account of the approximation on the probability and the truncation or the suppression of the 

success branches. Although less relevant than the former, such an underestimation of the risk 

should not be acceptable either, because there is still an uncertainty of the error committed.  

The methodology presented in this article allows the computation of three different 

approximations of the model. Regarding the two approximations which are demonstrated to be 

real bounds of model, S
L
 and S

U
, the computation of the upper bound has proven to be more 

difficult to obtain. Sequences are mostly constructed with positive fault trees corresponding to 

the failure of the safety systems, which have to be upper approximated. In that case, and due to 

the special nature of these models, this is a more difficult task because the models are 

dramatically sensitive to a modification which implies making them less reliable. On the other 

hand, concerning the third approximation S
A
, even though it is not properly a bound of the 

model, the results have confirmed that it is a very good approximation in practice for this type 
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of models. First, its behavior has turned out to be very similar to the lower bound S
L
 but with 

the advantage that, as the domain is more reduced, it can be computed with lower cutoff values, 

allowing a more precise estimation of the model. Secondly, it can be assimilated with the 

process followed by the MCS approach when the delete term is applied to manage the success 

branches. However, the advantage of this approach lies in that it does not suffer from the 

problematic of the approximation of the probability. Also, because BDDs are more efficient to 

encode the model, a more significant portion of it can be considered.  

Future work should be directed to apply this methodology to bigger benchmarks to study the 

limitations of the approach, especially when considering the upper bound. In such cases there 

are still some experiments to be carried out regarding several aspects. One issue that has been 

already mentioned is the fine tune of the cutoff value for each fault tree model separately to 

optimize the reduction. A major issue where there is still room for improvement is the 

investigation of other transformation criteria that might be required to manage bigger models.  
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Appendix A 

Consider F and G monotone Boolean functions, and let H be defined as: H F G= ⋅ . The 

following syntactical transformations of H:  L U L
H F G= ⋅ , and U L U

H F G= ⋅ verifies the 

following properties: 

 

Theorem 1: The space solution of function H is bounded by LH  and UH  so: | |L U
H H H= = . 

 

The proof follows for the transformation properties of each term of H. If |U
F F=  and |L

G G= , 

then |U LF G F G⋅ = ⋅ , so 
L

H H⊆ , i.e. |L
H H=  . Conversely, If |L

F F=  and |U
G G= , then 

|L UF G F G⋅ = ⋅ , so U
H H⊆ , i.e. | U

H H= . 

 

Theorem 2: More generally, the transformations of H satisfy the following relations: 
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H F G= ⋅ ≈

L U L
H F G= ⋅

U L U
H F G= ⋅

A L L
H F G= ⋅H F G= ⋅ ≈

L U L
H F G= ⋅

U L U
H F G= ⋅

A L L
H F G= ⋅

   

(9) 
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