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Abstract— Fault tree (FT) is the most used approach in 

reliability and safety studies. In most cases, the quantification 

of the FT top event is carried out either (i) without considering 

uncertainties associated with the basic events probability 

distribution parameters (assuming single-valued parameters) 

or (ii) using Monte Carlo analysis (MC) to account for that 

uncertainties (using probability density function (pdf)). 

However, MC approach is not suitable to characterize 

parameter uncertainties (epistemic uncertainty) for the case 

where the available data are poor. For that case, interval-

valued information (supplied by experts) related to the 

considered parameters is more appropriate than the MC 

approach. Within this framework, the present paper propose a 

new approach addressing epistemic uncertainty in FT based on 

coupling Dempster-Shafer Theory (DST, also known as 

Evidence Theory) and the Kleene Ternary Decision Diagrams 

(Kleene-TDDs). Indeed, DST is used to characterize epistemic 

uncertainty at basic events level, whereas Kleene-TDDs make 

it possible to propagate that uncertainty through the fault tree 

gates up to the top event.  

Keywords-Fault tree; epistemic uncertainty; evidence theory; 

Kleene-TDDs; Belief (Bel); Plausibility (Pl).  

I.  INTRODUCTION  

Fault tree (FT) [1] is the most used and recommended 
approach in reliability and safety studies. It displays the 
logical interrelationships of basic events that lead to a 
predefined undesired event (top event) [1, 2]. The top event 
quantification requires the prior determination of the 
parameters characterizing the related basic events probability 
models (failure rates, repair rates, etc.). These parameters are 
in general uncertain due to the lack of knowledge regarding 
the associated stochastic process. This kind of uncertainty is 
called parameter uncertainty, also known as epistemic 
uncertainty or subjective uncertainty [3-6]. However, the top 
event quantification is in most cases carried out without 
considering that uncertainty by assuming single-valued 
parameters. This non-consideration of uncertainty may be 
inappropriate and could therefore lead to erroneous results.    

In order to increase the results confidence, uncertainties 
should be accurately addressed. Among the existing 
approaches for uncertainty treatment,  Monte Carlo  analysis 
(MC) is the most commonly used one, where data 
uncertainty processing is based on a sampling performed 
according to probability density functions (pdfs) [7]. Still, 
this classical probabilistic technique is not suitable and can 

be misleading for the case where the available data are poor 
[8]. For that case, interval-valued information (vague or 
subjective information supplied by experts) related to the 
considered parameters is more appropriate than the MC 
sampling which requires assumptions about the different pdfs 
to be used. Therefore, a more suitable mathematical 
framework than the classical probabilistic one is required. 
For this end, several alternative approaches have been used 
to handle epistemic uncertainty under data shortcoming [9, 
10], namely: interval arithmetic, fuzzy sets [11] and 
Dempster-shafer theory (DST), also known as evidence 
theory [12]. In this paper the DST is used to address 
parameter uncertainty in FT quantification. A comprehensive 
survey on the application of this approach to the reliability 
field in general and to the FT in particular can be found in [8, 
13].      

The present paper propose a new approach addressing 
uncertainty in FT based on coupling DST and Kleene 
Ternary Decision Diagrams (Kleene-TDDs). Indeed, DST is 
used to characterize epistemic uncertainty at basic events 
level, whereas Kleene-TDDs make it possible to propagate 
that uncertainty through the FT gates up to the top event. It is 
worth noticing that Kleene-TDDs provide a natural and 
perfect framework for uncertainty propagation using DST 
due to its usefulness for logic representation in the presence 
of unknown inputs. Furthermore, the encoding of FT via a 
Kleene-TDD allows reducing the computational complexity 
encountered when applying adapted version of traditional 
techniques based on the determination of the minimal cut 
sets (MCS) or prime implicants, i.e. inclusion-exclusion and 
sum of disjoint products (SDPs).  

The remainder of this paper is organized as follows. 
Section 2 presents the key concepts related to DST relying 
on single component reliability. That presentation is limited 
to what is required regarding the scope of the paper. Section 
3 describes briefly BDDs and Kleene-TDDs techniques. 
Section 4 is focused on FT top event probability derivation 
from the associated Kleene-TDD. Finally, Section 5 offers a 
summary of the present work.     

II. DEMPSTER-SHAFER THEORY BASICS 

Dempster-Shafer theory (DST), also known as evidence 
theory or belief functions theory, was initiated by Arthur P. 
Dempster in 1967 [14] and completed later by Glenn Shafer 
in 1976 [12] to overcome many drawbacks in the traditional 
Bayesian probability theory. Therefore, DST can be 
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interpreted as a generalization of the Bayesian theory [8]. It 
is based on three basic measures, namely: the basic 
probability assignment (bpa or m), the belief measure (Bel), 
and the plausibility measure (Pl).   

The definition of these measures is based on the so called 
frame of discernment Ω  which represents the definition 
domain of a given variable. It consists of all mutually 
exclusive and exhaustive elementary propositions (for 
instance, all possible states of a system).  

           {
Ω = {𝐻1,  𝐻2, … , 𝐻𝑛}              

𝐻𝑖 ∩ 𝐻𝑗 = Ø, ∀𝑖, 𝑗 = 1,… , 𝑛.
                           (1) 

 2Ω  is the related power set that comprises all the 
possible subsets of Ω, including the empty set Ø. 

                         2Ω = {𝐴 | 𝐴 ⊆  Ω}                               (2) 

A. Basic Probability Assignment (bpa) 

A basic probability assignment (bpa), also called basic 
belief assignment (bba) or belief mass (m), is assigned to 

each subset A of the power set 2Ω. Formally:   

                     𝑚: 2Ω  → [0, 1]                                              (3) 

which satisfies: {
 𝑚(Ø) = 0            
∑  𝑚(𝐴) = 1𝐴∈2Ω

                                    (4) 

 
m(A) represents the amount of knowledge (available 

evidence) that supports the subset  A. Note that the 
probability distribution is defined on Ω and bpa on the power 

set 2Ω.   

B. Belief (Bel) and Plausibility (Pl) functions  

A belief function Bel on Ω  is a function 𝐵𝑒𝑙 ∶ 2
Ω →

 [0, 1]  defined as follows: 

               𝐵𝑒𝑙(𝐴) = ∑ 𝑚(𝐵)𝐵⊆A                                         (5) 

Bel(A) is obtained by summing the bpas of the 
propositions that totally agree with A (the proper subsets of 
the element A). The inverse formula called the Möbius 
transform of Bel is defined hereafter:  

            𝑚(𝐴) = ∑ (−1)|𝐴|−|𝐵|𝐵𝑒𝑙(𝐵)𝐵⊆A                         (6) 

A plausibility function Pl on Ω is a function 𝑃𝑙 ∶ 2Ω  →
 [0, 1]  defined as follows: 

            𝑃𝑙(𝐴) = ∑ 𝑚(𝐵)𝐵∩A≠Ø                                          (7) 

Pl (A) is obtained by summing bpas of propositions that 
agree totally or partially with A (the subsets that intersect 
with the element A).  

Bel (A) and Pl(A) are linked by : 

              {
 𝑃𝑙(𝐴) + 𝐵𝑒𝑙 (�̅�) = 1

𝑃𝑙(�̅�) + 𝐵𝑒𝑙 (𝐴) = 1
                                         (8) 

where �̅� = Ω − 𝐴. Bel(A) and Pl(A) can be seen as the 
lower and the upper bounds respectively of the interval that 
includes the true probability of A: 𝐵𝑒𝑙(𝐴) ≤ 𝑝(𝐴) ≤ 𝑃𝑙(𝐴).  

C. Single component reliability based on DST  

Let us consider a binary state component i. If xi denotes 
the associated basic event, the related frame of discernment 

Ω𝑖 = {�̅�𝑖 , 𝑥𝑖}.  The corresponding power set 2Ω𝑖 =
{Ø, {�̅�𝑖}, {𝑥𝑖}, {�̅�𝑖 , 𝑥𝑖}}. The associated bpas at a given time t 

are noted as follows (t is omitted on purpose):   

   {

                                                                                
𝑚({�̅�𝑖})(𝑡) = 𝑚(�̅�𝑖)                                                           

𝑚({𝑥𝑖})(𝑡) = 𝑚(𝑥𝑖)                                                           

𝑚({�̅�𝑖 , 𝑥𝑖})(𝑡) = 𝑚(�̅�𝑖 , 𝑥𝑖) = 1 − 𝑚(�̅�𝑖) − 𝑚(𝑥𝑖)      

 (9) 

The belief and plausibility for the component working and 

failed sates are obtained by using (5) and (7):    

{
 

 
𝐵𝑒𝑙 ({�̅�𝑖})(𝑡) = 𝐵𝑒𝑙(�̅�𝑖) =  𝑚(�̅�𝑖)                      

𝑃𝑙 ({�̅�𝑖})(𝑡) = 𝑃𝑙(�̅�𝑖) =  𝑚(�̅�𝑖) + 𝑚(�̅�𝑖 , 𝑥𝑖)     

𝐵𝑒𝑙 ({𝑥𝑖})(𝑡) = 𝐵𝑒𝑙(𝑥𝑖) =  𝑚(𝑥𝑖)                       

𝑃𝑙 ({𝑥𝑖})(𝑡) =  𝑃𝑙(𝑥𝑖) =  𝑚(𝑥𝑖) + 𝑚(�̅�𝑖 , 𝑥𝑖)     

         (10) 

 

For example, if we consider a non-repairable component, 

the associated probability model is: 1 − 𝑒−𝜆𝑡 . If 𝜆 ∈

[𝜆𝑚𝑖𝑛 , 𝜆𝑚𝑎𝑥] =  [𝜆, 𝜆], then:  

    {
𝐵𝑒𝑙(�̅�𝑖) =  𝑒

−𝜆𝑡  ;  𝑃𝑙(�̅�𝑖) =   𝑒
−𝜆𝑡               

 𝐵𝑒𝑙(𝑥𝑖) =  1 − 𝑒
−𝜆𝑡  ;  𝑃𝑙(𝑥𝑖) = 1 − 𝑒

−𝜆𝑡  
             (11) 

The different bpas 𝑚(�̅�𝑖) , 𝑚(𝑥𝑖)  and 𝑚(�̅�𝑖 , 𝑥𝑖)  can be 
then obtained via (10).  
 

III. KLEENE TERNARY DECISION DIAGRAMS  

Before introducing Kleene-TDDs, we will first provide a 
brief overview on Binary Decision Diagrams (BDDs). 

A. BDDs  

BDDs were originally introduced by Lee [15], and later 
by Akers [16]. In 1986, Bryant [17] introduced the reduced 
ordered BDD (ROBDD), allowing efficient representation 
and manipulation of Boolean functions. Commonly, a BDD 
is understood to mean the ROBDD. In system reliability, 
BDDs offer a fast, efficient and accurate way for analyzing 
coherent and non-coherent fault trees [18]. 

Let 𝐵 =  {0, 1} and let 𝑋 =  {𝑥1, 𝑥2, … , 𝑥𝑛}  be a set of 
Boolean variables. The mapping 𝑓 ∶  𝐵

n → 𝐵 is a Boolean 

function over the set X. The BDD representation is primarily 
based on Shannon’s decomposition (expansion) of  f: 

      𝑓 =  𝑥𝑖 ⋅ 𝑓|𝑥𝑖=1 + �̅�𝑖 ⋅ 𝑓|𝑥𝑖=0 = 𝑥𝑖 ⋅ 𝑓1 + �̅�𝑖 ⋅ 𝑓0            (12) 

where 𝑓1  and 𝑓0  are Boolean functions obtained by 
evaluating 𝑓 at 𝑥𝑖  = 1 and 𝑥𝑖  = 0, respectively. In terms of 
the ternary If-Then-Else (ITE) connective [19], (12) can be 
rewritten as: 

  𝑓 = 𝑥𝑖 ⋅ 𝑓1 + �̅�𝑖 ⋅ 𝑓0 = 𝑖𝑡𝑒 (𝑥𝑖 , 𝑓1, 𝑓0)                        (13)  
       



By choosing a total order over the variables and applying 
recursively the Shannon decomposition, any Boolean 
function can be graphically represented as a binary decision 
tree (for instance, see Fig. 2 for 𝑓 = (𝑥1 ⋅ 𝑥2) + 𝑥3). 

The nodes of the binary tree are either without outgoing 
edges called terminal (sink nodes, leaves) or non-terminal 
(non-sink or internal nodes). The terminal nodes are labeled 
with either 0 or 1 (i.e. representing the system being in an 
operational or a failed state, respectively). Each non-terminal 
node is labeled by a Boolean variable 𝑥𝑖 and has two 
outgoing edges: 1-edge (then-edge or high-edge) and 0-edge 
(else-edge or low-edge). Non-terminal nodes encode 
Boolean functions in the ITE format. Note that a path in the 
BDD from the root node to a terminal node represents an 
assignment of values to the variables. The value of the leaf 
node is the function value for that assignment.  

The binary tree is a very space consuming representation. 
Fortunately, it is possible to compact it by means of the 
following two reduction rules, which lead to the 
corresponding BDD. Both reduction rules are sketched in 
Fig. 1 [20].  

 Merging rule: this rule is applicable if there are nodes v 

and w with the same label, the same 0-successor, and the 

same 1-successor. We can redirect all edges leading to v 

to the node w and we can then delete v.  

 Deletion rule: deleting nodes v for which both outgoing 

edges lead to the same node w. It is obvious that we can 

redirect all edges leading to v to the node w and that we 

can delete v afterwards.   
The resulting BDD is therefore a directed acyclic graph, 

also called Reduced Ordered BDD (ROBDD). It gives 
unique form (canonical) to a Boolean function when the 
order of the input variables is fixed [17].  

Logical operations can be performed directly on BDD 
based on the ITE connective. In this way, the Shannon tree is 
never built then shrunk [19]. Thus, the BDD encoding a fault 
tree is obtained by composing the BDDs of its sub-trees. 
Starting at the bottom of the tree, a BDD is constructed for 
each basic event (a single-node BDD: ite (xi, 1, 0)) and then 
combined according to the logic defined by the gate. The 
BDDs related to the gates are then combined until the top 
event gate has been reached.  

 

    

Figure 1.  The deletion and merging rules. 

 

Figure 2.  From the binary tree to the BDD of 𝑓 = (𝑥1 ⋅ 𝑥2) + 𝑥3. 

The Shannon decomposition applies to probabilities as 
well. The corresponding algorithm, which is linear in the size 
of the BDD, is defined by the following recursive equations 
[21]:  

    {

𝑝(0) = 0                                                               

𝑝(1) = 1                                                               

𝑝(𝑓) = 𝑝(𝑥𝑖) ⋅ 𝑝(𝑓1) + (1 − 𝑝(𝑥𝑖)) ⋅ 𝑝(𝑓0)

       (14) 

 

where p(xi) stands for the failure probability related to the 
basic event xi. When xi is the root node of the entire BDD, 
𝑝(𝑓)gives the top event probability.     

B. Kleene-TDDs  

TDDs are similar to BDDs, except that each non-terminal 
node has three successors (children). A survey on TDDs is 
addressed in [22]. With connection to system reliability, 
TDDs are mainly used for studying phased-mission systems 
[23, 24] and non-coherent fault trees [18]. In this paper, only 
a particular kind of TDDs is presented and used for 
uncertainty propagation namely: Kleene-TDDs. They are the 
TDDs introduced by Jennings [25] and called as such in [26].  

Kleene-TDDs represent the Kleene function [27] 
ℱ: 𝑇n → 𝑇, 𝑇 = {0, 1, 𝑢}  of a two-valued logic function 
𝑓: 𝐵n → 𝐵, where u is the truth value showing an unknown 
input. Let 𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑛} be a ternary vector, where 𝑦𝑖 ∈
𝑇 . 𝐴(𝑌)denotes the set of all the binary vectors that are 
obtained by replacing all u with 0 or 1.  

       ℱ(𝑌) = {

0  𝑖𝑓 𝑓(𝐴(𝑌)) = {0}    

1  𝑖𝑓 𝑓(𝐴(𝑌)) = {1}     

𝑢  𝑖𝑓 𝑓(𝐴(𝑌)) = {0, 1}
                              (15) 

where 𝑓(𝐴(𝑌)) = {𝑓(𝑋)| 𝑋 ∈ 𝐴(𝑌)} 
 

In other words, if all the vectors in 𝐴(𝑌) are mapped to 0, 
then ℱ(𝑌) = 0 ; if all the vectors are mapped to 1, then 
ℱ(𝑌) = 1; and if some vectors are mapped to 0 and others 
are mapped to 1, then ℱ(𝑌) = 𝑢 . Note that f uniquely 
defines ℱ.  

A Kleene-TDD is easy to construct as shown in Fig. 3. 
[22]. The rightmost sub-graph represents the alignment of f0 
and f1. The alignment is a ternary operator defined by 
Kleene:  

      𝑥⨀𝑦 = {
 𝑥  𝑖𝑓 𝑥 = 𝑦      
𝑢   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

= 𝑖𝑡𝑒(𝑥 = 𝑦, 𝑥, 𝑢)        (16) 

where 𝑥, 𝑦 ∈ 𝑇. 
 

               
Figure 3.  Kleene-TDDs principle. 

Fig. 4 gives an example of constructing the Kleene-TDD 
related to the expression 𝑓 = (𝑥1 ⋅ 𝑥2) + 𝑥3 starting from its 
binary tree  given in Fig. 2. Note that we can directly use the 



corresponding BDD for deriving the Kleene-TDD. The 
topmost u-edge is generated and the sub-graph is created 
based on the two sub-trees related to the 0-edge (f0) and 1-
edge (f1) using the alignment operation. In the resulting sub-
tree a terminal node labeled with ‘u’ appears wherever the 
two corresponding original terminals do not match each 
other. The process is then repeated recursively down the 
entire tree. The u-successor (child) at any non-terminal node 
represents the alignment of the 0 and 1-successors for the 
same non-terminal node. By eliminating all the redundant 
nodes (deletion rule) and sharing all the equivalent sub-
graphs (merging rule), the resulting ternary decision tree is 
reduced to a directed acyclic graph: reduced ordered Kleene-
TDD (Kleene-TDD for short). Note that if we remove all the 
u-edges from the Kleene-TDD, we obtain the corresponding 
reduced ordered BDD. One may therefore understand that 
the Kleene-TDD is canonical for a given variable ordering.  

Kleene-TDDs are directed acyclic graph containing 
terminal and non-terminal nodes. Each non-terminal node is 
labeled with a variable (xi) and having three outgoing edges 
(0-edge, 1-edge and u-edge). A terminal nodes is labeled 
with a value ∈  {0, 1, 𝑢} that represents ℱ(𝑌𝑖), 𝑌𝑖  being the 
variables assignment from the root node to the corresponding 
terminal node.  

 

 
Figure 4.  Kleene-TDD construction for 𝑓 = (𝑥1 ⋅ 𝑥2) + 𝑥3. 

 

IV. TOP EVENT (TE) PROBABILITY QUNTIFICATION 

For a given top event (TE), we consider the frame of 

discernment ΩTE = {{TE̅̅̅̅ }, {TE}}. The corresponding power 

set is then: 2ΩTE = {Ø, {TE̅̅̅̅ }, {TE}, {TE̅̅̅̅ , TE}}. We describe in 

the following how to compute the probability of TE in terms 
of belief (Bel(TE)) and plausibility (Pl(TE)). These two 
measures characterize the interval in which lies the true TE 
probability: 𝑝𝑇𝐸 ∈ [𝐵𝑒𝑙(TE), 𝑃𝑙(TE)] . We recall that the 
associated basic event probabilities are uncertain: 𝑝(𝑥𝑖) ∈
[𝐵𝑒𝑙(𝑥𝑖), 𝑃𝑙(𝑥𝑖)].  

Once the Kleene-TDD is constructed, a similar approach 
to the BDDs one can be used to derive the TE probability 
measures, i.e. Bel(TE) and Pl(TE). It is worth noticing that a 
path (from the root) having a terminal node labeled with 1 
(resp. 0) represents a given assignment of variables leading 

to the TE (resp. TE̅̅̅̅ ). Moreover, if a terminal node for a path 
is labeled with u, then that path leads to an unknown state of 

the system, i.e. the set {TE̅̅̅̅ , TE} in 2ΩTE . Note that all the 
paths of the Kleene-TDD are disjoint. For the quantification 
process, the quantities associated with each 0-edge, 1-edge 
and u-edge leaving a non-terminal node labeled with the 
variable (basic event) xi are the bpas 𝑚(�̅�𝑖) =  𝐵𝑒𝑙(�̅�𝑖) =
1 − 𝑃𝑙(𝑥𝑖) , 𝑚(𝑥𝑖) = 𝐵𝑒𝑙(𝑥𝑖) and 𝑚(�̅�𝑖 , 𝑥𝑖) = 1 −
[𝐵𝑒𝑙(�̅�𝑖) + 𝐵𝑒𝑙(𝑥𝑖)] = 𝑃𝑙(𝑥𝑖) − 𝐵𝑒𝑙(𝑥𝑖), respectively (Fig. 
5). The bpas are derived using (9) and (10).    
 

 
Figure 5.         A Kleene-TDD node with bpa information 

According to the above statements, the fault tree TE 
belief, 𝐵𝑒𝑙(𝑇𝐸), can thus be simply calculated as the sum of 
bpas of all the paths from the root to terminal node 1, where 
the bpa of a given path is the product of the bpas involved in 
that path. Similarly, the fault tree TE plausibility, 𝑃𝑙(𝑇𝐸), 
can be given by the sum of bpas of all the paths from the root 
to terminal nodes 1or u. This quantification can be performed 
recursively by simply generalizing the algorithm provided in 
(15):     

   
𝑝(𝑓) = 𝑚(�̅�𝑖) ⋅ 𝑝(𝑓0) + 𝑚(𝑥𝑖) ⋅ 𝑝(𝑓1) + 𝑚(�̅�𝑖 , 𝑥𝑖) ⋅ 𝑝(𝑓𝑢) 

 
  = [1 − 𝑃𝑙(𝑥𝑖)] ⋅ 𝑝(𝑓0) + 𝐵𝑒𝑙(𝑥𝑖) ⋅ 𝑝(𝑓1) + [𝑃𝑙(𝑥𝑖) −
𝐵𝑒𝑙(𝑥𝑖)] ⋅ 𝑝(𝑓𝑢)                                                       
                                                                                            (17)                               

 where 𝑝(𝑓) represents either the belief or the plausibility 
measures depending on the exit condition of the recursive 
algorithm. According to what we have already mentioned, 
this condition can be defined as follows:     

{
 

 
𝑝(0) = 0                                        

𝑝(1) = 1                                        

𝑝(𝑢) = {
0   𝑖𝑓 𝑝(𝑓) = 𝐵𝑒𝑙(𝑓) 

1   𝑖𝑓 𝑝(𝑓) = 𝑃𝑙(𝑓)   
 

                                (18)       



when xi is the root node of the entire Kleene-TDD, 𝑝(𝑓) 
gives the TE belief or plausibility. It should be noted that the 
exit condition with respect to p(u) can be interpreted as a 
switching operation: a terminal node labeled with u becomes 
labeled with 0 for the belief measure, whereas it becomes 
labeled with 1 for the plausibility measure.  

In order to illustrate the algorithm defined by (17) and 
(18), let us consider again the Boolean function 𝑓 =
(𝑥1 ⋅ 𝑥2) + 𝑥3 as a fault tree TE. The corresponding Kleene-
TDD is depicted in Fig. 4. Starting from the root node 𝑥1, 
(17) yields the subsequent relations. 

      

𝑝(𝑓) = [1 − 𝑃𝑙(𝑥1)] ⋅ 𝑝(𝑓0) + 𝐵𝑒𝑙(𝑥1) ⋅ 𝑝(𝑓1) +
 [𝑃𝑙(𝑥1) − 𝐵𝑒𝑙(𝑥1)] ⋅ 𝑝(𝑓𝑢)  
  
𝑝(𝑓0) = [1 − 𝑃𝑙(𝑥3)] ⋅ 𝑝(0) + 𝐵𝑒𝑙(𝑥3) ⋅ 𝑝(1) +
                 [𝑃𝑙(𝑥3) − 𝐵𝑒𝑙(𝑥3)] ⋅ 𝑝(𝑢)   
 

𝑝(𝑓1) = [1 − 𝑃𝑙(𝑥2)] ⋅ 𝑝(𝑓10) + 𝐵𝑒𝑙(𝑥2) ⋅ 𝑝(1) +
[𝑃𝑙(𝑥2) − 𝐵𝑒𝑙(𝑥2)] ⋅ 𝑝(𝑓1𝑢)   
 

𝑝(𝑓10) = 𝑝(𝑓0)    
 

𝑝(𝑓1𝑢) = [1 − 𝑃𝑙(𝑥3)] ⋅ 𝑝(𝑢) + 𝐵𝑒𝑙(𝑥3) ⋅ 𝑝(1) +
[𝑃𝑙(𝑥3) − 𝐵𝑒𝑙(𝑥3)] ⋅ 𝑝(𝑢)   
 

𝑝(𝑓𝑢) = [1 − 𝑃𝑙(𝑥2)] ⋅ 𝑝(𝑓𝑢0) + 𝐵𝑒𝑙(𝑥2) ⋅ 𝑝(𝑓𝑢1) +
[𝑃𝑙(𝑥2) − 𝐵𝑒𝑙(𝑥2)] ⋅ 𝑝(𝑓𝑢𝑢)   
 

𝑝(𝑓𝑢0) = 𝑝(𝑓0)    
 

𝑝(𝑓𝑢1) = 𝑝(𝑓𝑢𝑢) = 𝑝(𝑓1𝑢)     
 

According to (18), the TE belief and plausibility are 
computed by setting p(u) equals to 0 and 1, respectively. For 
numeric application, we assume that the basic events x1, x2 
and x3 characterize failed states of non-repairable 
components. The corresponding uncertain failure rates (h-1) 
are 𝜆1 ∈ [0.002, 0.003] , 𝜆2 ∈ [0.0045, 0.0055] and 𝜆3 ∈
[0.0055, 0.007]. 𝐵𝑒𝑙(𝑥𝑖) and 𝑃𝑙(𝑥𝑖) are derived using (11). 
The TE instantaneous belief and plausibility are provided in 
Fig. 6. For instance, if t = 250 h, the TE probability 𝑝(TE) ∈
[0.8143,  0.8947].        
 

 
Figure 6.  TE belief and plausibility against time. 

V. CONCLUSION  

This paper deals with epistemic uncertainty (parametric 
uncertainty) encountered during FT top event probability 
assessment. More precisely, we considered the case where 
the FT basic events uncertainty, due to poor availability of 
reliability data, is handled using Dempster-Shafer Theory 
(DST), i.e. the basic event probability is given by an interval, 
where its lower and upper bounds are referred to as belief 
(Bel) and plausibility (Pl), respectively. We note that this 
approach is considered as one of the primary mathematical 
framework for knowledge representation under uncertainty. 
In order to propagate the uncertainty related to the different 
basic events input parameters to the FT top event probability, 
we proposed a new approach based on a specific kind of 
ternary decision diagrams (TDDs), namely Kleene-TDDs. 
We notice that Kleene-TDDs offer a perfect framework for 
uncertainty handling when basic events uncertainties are 
characterized using DST, for both coherent and non-coherent 
fault trees. A generalization of the BDD recursive algorithm 
for the top event probability is given so as to compute the top 
event belief (Bel(TE)) and plausibility (Pl(TE)). 
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