Int. J. ITS Res. (2018) 16:163-172
DOI 10.1007/s13177-017-0146-2

@ CrossMark

Modeling the CBTC Railway System of Siemens with ScOLa

Melissa Issad '

- Leila Kloul® - Antoine Rauzy* - Karim Berkani?

Received: 31 March 2016 /Revised: 13 December 2016 / Accepted: 18 July 2017 /Published online: 27 July 2017

© Springer Science+Business Media, LLC 2017

Abstract Considering their increasing complexity, industrial
systems are, in general, specified in a natural language. In
railway systems, the design phase results an ambiguous and
laborious system specification. The objective of this paper is
to present ScOLa, a formal modeling language based on sce-
narios and built for railway system specifications. Its novelty
resides in its restriction to a small set of concepts and its
multiple representations (textual and graphical). The language
offers means to understand what the system is supposed to do
and to be as well as to support a dialog with experts so to be
sure that they got everything correctly. The language is
depicted on the railway automation solution Trainguard MT
CBTC of Siemens.

Keywords System engineering - ScOLa - railway systems

1 Introduction

The CBTC (Communication Based Train Control) is based on
the principle that trains determine their positions themselves
and transmit it to wayside equipments. CBTC assures that the

< Melissa Issad
melissa.issad @ecp.fr

LGl CentraleSupelec, Grande Voie des Vignes, 92290 Chatenay
Malabry, France

2 Siemens Mobility, 150 avenue de la République, Chatillon 92320,
France

3 DAVID, University of Versailles, 45 avenue des Etats Unis,
Versailles 78000, France

4 IPK, NTNU, Hogskoleringen 1, Trondheim 7491, Norway

space between trains is always safe [1]. Given the complexity
of these systems, their specifications are spread over thou-
sands of pages written in a natural language, which makes it
difficult for engineers to develop, validate and maintain.

In theory, according to the V-cycle (Fig. 1), complex sys-
tems must be defined in specifications, analyzed seeking for
system acceptance and then developed and integrated and
finally validated. But in practice, the system analysis phase
is often let to the very last steps of the design which leads to a
late detection of errors and ambiguities.

INCOSE [2] promotes multiple model-based system engineer-
ing (MBSE) methodologies. Its goal is to widen the use of models
instead of documents in the system engineering process. INCOSE
defines MBSE as the formalized application of modeling to sup-
port system requirements, design, analysis, verification and vali-
dation, beginning in the conceptual design phase and continuing
throughout development and later life cycle phases. It also pro-
motes the fact that modeling should be used at multiple levels of
the system (operational, system and component). But often,
modeling languages are used as a graphical notation of the spec-
ification (UML and SysML [3] are such modeling languages).

Mainly, two class of approaches for system modeling ap-
peared. On the one hand, the language centric approaches,
focusing on a specific modeling language, engineers will use
all the items provided by the language to model the system.
The result of these approaches is often redundant information.
On the other hand, system centric approaches, where engi-
neers modify the language to fit the system, results in a non-
generic methodology for system modeling.

Moreover, the use of natural language in system specifica-
tions provides an ideal vehicle for eliciting user requirements
and describing system functions. However, this method has
major drawbacks. Because the freedom of expression leads to
more freedom of interpretation, such descriptions provide a
non-structured input for system modeling approaches.

@ Springer


http://orcid.org/0000-0001-7886-5213
mailto:melissa.issad@ecp.fr
http://crossmark.crossref.org/dialog/?doi=10.1007/s13177-017-0146-2&domain=pdf

164

Int. J. ITS Res. (2018) 16:163-172

System Definition

Risk Analysis

g

System
Requirements

Apportionment of
requirements

Commissioning
and disposal

H

Operation and ]

System
Acceptance Maintenance

[ System Validation ]

Design and
Implementation

Installation ]

[ Manufacture ]

Fig. 1 Railway systems V-Cycle according to EN 50126

The purpose of the definition of ScOLa is to define a frame-
work that helps engineers communicate around a unique and
clear specification of the system. Therefore, we put scenarios
in the center of the system and safety modeling phases.

2 The TGMT CBTC Railway System

TGMT [4] (Trainguard Mass Transit) is a Siemens customized
CBTC system. A CBTC is a railway signaling system that
uses wired and wireless communications between the train
and the track equipments for the traffic and infrastructure con-
trol. It significantly improved the way trains were localized.

Old systems used the track occupancy to determine the
position of a train while CBTC equipped trains determine
independently their localization and forward it to the track
equipments.

The Trainguard MT CBTC system represents the operating
system of a train. It is composed of two subsystems: the on-
board and the wayside.

The on-board subsystem controls the train doors, the brak-
ing, the train position, its speed and the stop with the informa-
tion to the passengers. The wayside mainly determines the
train movement authority according to their speed and
position.

The specification of TGMT systems consists of a series of
documents of up to a thousand pages each. These aim at
describing as explicitly and precisely as possible the system.
Written in a natural language, these documents describe the
constituents of the system as well as its behavior in its differ-
ent phases.

@ Springer

3 ScOLa, a Scenario Oriented Language for Railway
Systems

Often models are used as graphical notation to depict systems.
ScOLa defines a system by means of concepts. An accurate
complex systems specification is composed of a description of
its system architecture as well as its behavioral description.

System architecture provides a description of the physical
parts (also called components) of the system. It consists of a
derivation of all the sub-components of the system. These
components are the ones realizing, individually or in cooper-
ation, the behavior of the system.

ScOLa is based on numerous concepts that allow modeling
the system architecture and its behavior. System architecture is
a set of components that build the structural part of the system.
For example, the system train is a component and it is com-
posed of two sub-components: the on-board and the wayside.
Thus, the system architecture in a ScOLa model is the hierar-
chy of components that belong and define the system.

3.1 Concept of Component

A component in C, the set of all components, executes sce-
narios and may receive and send data through these scenarios.
It may have interfaces to communicate with the other compo-
nents of the system.

A component can be either basic or complex:

—  Basic: it cannot be decomposed and is thus considered
as atomic.



Int. J. ITS Res. (2018) 16:163-172

165

— Complex: it can still be decomposed into sub-
components.

A component in the system architecture is unique. Still in
behavioral descriptions, one might need several instances of a
component to depict some situations. In the train systems, the
description of the communication between trains requires the
definition of two instances of the same train. Therefore, we
introduce the notion of block. It represents instances of com-
ponents from the system architecture. A system description
may contain several block descriptions; each one may be used
to define several behavioral models.

3.2 Concept of Scenario

The ScOLa behavioral model is a mathematically defined
model based on the concept of scenarios.

The use of scenarios is motivated by their efficiency in the
behavioral descriptions; they are operational instances of sys-
tem use. Moreover, they involve major system architecture
artifacts as the functional architecture (scenarios represent sys-
tem functions triggered by events and specific configurations).
Scenarios also include the physical architecture by allocating
the components, and also the requirements associated with
each scenario.

Furthermore, scenarios are used in multiple steps of the
system conception: the software development and the test
cases definitions.

The safety analysis phase is also based on the functional
scenarios. They are used when failure scenarios have to be
derived from the train potential accidents.

The ScOLa behavioral model is a set of scenarios S that
describe the system behavior at different abstraction levels. A
scenario can be decomposed into several sub-scenarios or a
set, A, of atomic actions that are realized by a set of compo-
nents C, either individually or in cooperation.

Formally, a scenario s € S can be defined as s = <Id,, L,
F(s)>, where:

— Id, is the unique identifier of the scenario;

— L, is the abstraction level of scenario s;

— F(s) is the set of sub-scenarios or actions composing s,
such that F(s) c S.

3.3 Concept of Action

Actions represent a description of a scenario at the lowest
abstraction level. While scenarios descriptions are used as a
mean to communicate and contain informal descriptions of the
system, actions provide the allocation of the system architec-
ture to the behavioral model. An action a in the set of all

actions A is formally represented by a tuple <Id,, C,, L,
T,>, where:

— Id, is the unique identifier of a.

—  C, is the set of components from the system architecture
allocated to a.

— L, is the corresponding abstraction level of a.

— T, is the corresponding type of a such as T, € {Simple,
Transfer, Question}.

The type of an action depends on the number of resources
and the input data it requires, and/or the results it produces as
follows:

—  Simple action: when it requires the resources of a single
component to be completed. Formally, if a € A, the set of
simple actions, then 3 ¢ € C such that a € A(c).

—  Transfer action: this is a shared action between two or
more components.

Such an action can be a data transmission between two
components of the system, and thus requires the cooperation
of both components. Let A, be the set of transfer actions. If a €
A, then 3 ¢;, ¢; €C such that a € A(c;) N A(c,).

—  Question action: it Allows the System to Choose
Between Two or More Alternative Behaviors

Typically, a question action can be a test on data in order to
choose which action to proceed within the next step. Formally,
if a € A, the set of question actions then 3a;,a; ...,a, €A such
that executing «a leads to the execution of a; or a, or ... or a,.

3.4 Concept of Refinement

Because the different views of the system architecture may
provide too detailed functions (functional view), components
(organic view) and events (event-based view). It becomes
necessary, during the system engineering process, to structure
this information and introduce a certain hierarchy between
them. In that purpose, ScOLa provides the concept of
refinement as one of the main modeling language concept.

This concept implies the possibility to synchronize the re-
finement of both components and scenarios.

It helps distinguishing between high-level scenarios that
can be useful; for example, to define the critical events during
safety analysis of the system. One might also need to refine
and have more details about the high-level scenarios and com-
ponents during the system validation and the description of
the hardware failures.

Moreover, ScOLa provides concepts that explain how sce-
narios are sequenced. They are the following:

@ Springer



166

Int. J. ITS Res. (2018) 16:163-172

3.5 Concept of Precedence

Since actions often require resources to be completed. Each
action in a sequence of actions must wait for the previous one
to finish. ScOLa provides the concept of precedence when the
execution order of the actions is already known.

Formally, given actions a;, a, € A. a; and a, follow a
precedence order if #y(ay) > t;(a;), t;(a;) being the starting
time of action a; and #)(a,) the end time of action a;.

3.6 Concept of Parallelism

In ScOLa, parallel actions occur when the sequence order is
unknown or irrelevant as these actions do not share resources.
Formally, in pure parallelism, if a;, a, € A, 3 [t;, t2] such
that 7p(a,), 1;(a;) € [ti,to], then f9(az), t;(az) € [t, to].
In ScOLa, parallelism represents a particular case of prece-
dence where #y(az) > t,(a;), or t;(a;) > ty(az).

3.7 Concept of Preemption

In ScOLa models, scenarios are triggered by events.
Sometimes, a choice has to be made between multiple scenar-
i0s or actions.

Preemption refers to the cases where the precedence order
is set by a choice between alternative actions triggered at the
same time.

The difference with parallelism is that only one action is
completed and the others discarded. Thus resource sharing
between these actions is possible in the context of the preemp-
tion concept.

Formally, given actions a, a;, a, € A, preemption concept is
defined as follows:

IfacA,

— ais followed by q; if a is true
— ais followed by a,, otherwise

4 Modeling a CBTC Scenario Using ScOLa

In this section, we explain how, starting from an informal
description of a CBTC scenario S = “The Speed-Dependent
Door Supervision Scenario”, we define a model ScOLa using
both textual and graphical representations.

In this scenario, the train is responsible for the train doors
opening and closing. It is also responsible for handling the
train speed. The train is allowed to open the doors if and only
if the train reaches a minimum speed. Hence, this scenario is a
number of interactions between the train’s sub-components.

A summary of the scenario would be as follows: when the
train is fully berthed at a Platform and stops, the train doors are

@ Springer

released and opened by the driver. Then, the train starts to roll
away. The emergency brake is applied when the train exceeds
a certain minimum speed.

The description of this scenario in the system specifications
is the list of the following steps:

Stepl: The train approaches the stopping point, it is al-
ready fully berthed. The on-board sub-system indicates
this to the HML

—  Step2: The train comes to a standstill; the on-board sub-
system releases the train doors at the correct side.

—  Step3: The driver initiates door opening. The on-board
subsystem opens the train doors.

—  Step4: The doors open. This is reported to the on-board
subsystem.

—  Step5: The on-board subsystem indicates the open doors
to the HML. It sets the recommended speed to zero.

—  Step6: The train starts to move, the configured minimum
speed for the door supervision is not yet exceeded. The
on-board subsystem reacts by revoking the door release.

—  Step7: While rolling, the train loses the fully berthed sta-
tus. The on-board subsystem revokes the fully berthed
indication to the HML.

—  Step8: The train exceeds the configured minimum speed

for the door supervision. The on-board subsystem applies

an emergency brake.

In the following, we present a reverse engineering method
to model this scenario in ScOLa. We start by the lowest ab-
straction level description and provide a multi-level
description.

a. System architecture

From the informal description, we retrieve the list of the
implied components. According to the eight steps of scenario
S, the components are the train, the on-board, the driver, the
HMI and the Platform. However, these components belong to
different abstraction levels (see Fig. 2). For example, the on-
board is a sub-component of the train. Thus, the description is
not uniform. Moreover, in some steps (Step 4), the use of the

b
[ 1 1

IOn—boardl |Wayside| | Driver |

I

12

Platform

Fig. 2 Architecture of the components involved in S



Int. J. ITS Res. (2018) 16:163-172

167

passive voice does not indicate the responsible for such oper-
ations. After a study of the system specifications, we introduce
the Wayside sub-component, composed by the WCU and ATS
sub-components. They are responsible for the train stop de-
tection and the speed supervision.

b. Definition of blocks

They represent the instances of the architecture that are
used in the scenario. S considers one instance of each element
of the architecture defined above (Train, On-board, Wayside,
Driver, OBCU, HMI, Platform, WCU and ATS).

c. Construction of a scenario using ScOLa

Considering the architecture definition, we consider three
levels of abstraction /,, /; and /,. The scenario as it is depicted
in the specifications, is at the lowest abstraction level, noted /5.

The formalization of such scenario using ScOLa concepts
starts with the following assumptions:

— S is decomposed step by step, each step is decomposed
with respect to the system architecture.

—  All the sub-scenarios of S are actions.

— A simple action requires only one component to be
completed.

— A transfer action requires two components. Both need to
have the same ancestor in the architecture.

— A question action is a condition or a test.

We note s;; a sub-scenario of S; where i is the corresponding
abstraction level and j is the sequencing number of S at ab-
straction level i. The words in bold represent the components
involved. At abstraction level /, the sub-components involved
in S with respect to the system architecture are the OBCU,
HMI, Platform, WCU, ATS and Driver.

We proceed to the construction of the abstraction level /, of
S using the following assumptions on the system
specifications:

— The OBCU is responsible for detecting the train berthed

— The OBCU is the sub-component of the On-board that
communicates with other sub-components.

—  The ATS is the sub-components responsible for the train
supervision. Thus, it is responsible for detecting the train
speed and communicates the information to the train.

For example, Step I is a sequence of two sub-scenarios.
The first one consists in the detection of the fully berthed state
of'the train. The OBCU is responsible for such operations. The
second one consists in the indication of the train state to the
HMI by the OBCU. We provide the same approach for the
remaining steps of S.

Thus, S is depicted as follows at abstraction level /5:

- Stepl:

— 5572 The OBCU detects that the train is fully berthed.

— 855 The OBCU sub-system indicates this to the HMI.

- Step2:

— 557 the OBCU releases the train doors at the correct side.

- Step3:

—  s5;. The Driver initiates door opening.

— 55, The OBCU opens the train doors.

- Step4:

—  85;. The ATS detects that doors are open.

— 855 The ATS reports the information to the OBCU.

- Steps:

—  85;. The OBCU indicates the open doors to the HMIL.

— 855 The OBCU sets the recommended speed to zero.

- Stepé6:

— §5;. The ATS detects that the configured minimum speed
for the door supervision is not yet exceeded.

— 855 The ATS transfers the information to the OBCU.

— 823 The OBCU reacts by revoking the door release.

- Step7:

— 557 The OBCU revokes the fully berthed indication to the
HMI.

- Stepé:

— 55;. If the ATS detects that the train exceeds the config-
ured minimum speed for the door supervision.

— 855 The OBCU applies an emergency brake.

S is composed of several simple and transfer actions. There
is a unique question action(s,;) in Step$§.

At abstraction level /;, S is performed by the On-board,
Wayside and the Driver as follows:

- Stepl:

— 5772 The On-board detects that the train is fully berthed.

- Step2:

—  s7;. the On-board releases the train doors at the correct
side.

- Step3:

— ;7. The Driver initiates door opening.

— ;2. The On-board opens the train doors.

- Step4:

— s;;. The Wayside detects that doors are open.

— §;2. The Wayside reports the information to the On-
board.

- Step5:

—  872. The On-board sets the recommended speed to zero.

- Step6:

— 5;;. The Wayside detects that the configured minimum
speed for the door supervision is not yet exceeded.

— ;2. The Wayside transfers the information to the
On-board

@ Springer



168

Int. J. ITS Res. (2018) 16:163-172

— 573 The On-board reacts by revoking the door release.

- Step7:

— 57 If the Wayside detects that the train exceeds the con-
figured minimum speed for the door supervision.

—  5;2. The On-board applies an emergency brake.

At abstraction level /;, several sub-scenarios from level /,
were discarded because they consist of interactions from ab-
straction level /, of the architecture.

Finally, the abstraction level /, description of § is as
follows:

sg;: The Train is fully berthed.

So2- the Train releases the train doors at the correct side.
Sp3. The Train initiates door opening.

s¢4+. The Train opens the train doors.

s¢s. The Train detects that doors are open.

sos. The Train sets the recommended speed to zero.

sp7. The Train detects that the configured minimum
speed for the door supervision is not yet exceeded.

sps. The Train reacts by revoking the door release.

Spo. If the Train exceeds the configured minimum speed
for the door supervision.

So10. The Train applies an emergency brake.

5 Textual and Graphical Representations of S

Graphical and textual representations of a model in ScOLa use
the idiomatic representations in Table 1.

The textual representation of S is composed of three as-
pects: the architecture, the blocks and the scenarios. The ar-
chitecture depicts the hierarchical decomposition of the sys-
tem’s physical parts. While scenarios use instantiations of
components defined in blocks.

Figure 3 depicts the textual representation of S. We start
by declaring the required components in the architecture.
After that, we define the block used for scenario S. Finally,
we describe the scenarios using the keyword Scenario, the

Table 1  Graphical and textual representations of ScOLa concepts
Concept Graphical representation Textual representation
Scenario
S Scenario S
Component @ Component C,
Basic-component C
Simple Action
<é> Action A By C
Transfer Action
@6 %D Transfer T from C, to C,
Choice Action .
If (Q) {Si} else {S;}
S1 S
Parallelism - . SISz
S1 - " Se
Precedence
Si S SI — S2

@ Springer



Int. J. ITS Res. (2018) 16:163-172 169

System TGMT {
Architecture TGMT {
Component Train {

Component Onboard {
Basic-Component 0BCU
Basic-Component HMI
Basic-Component Platform

¥

Component Wayside {
Basic-Component WCU
Basic-Component ATS

¥
Basic-Component Driver
¥
}
Block bl {

TGMT.Train.Onboard.HMI hmi;
TGMT.Train.Onboard.0BCU obcu;
TGMT.Train.Onboard.Platform platform;
TGMT.Train.Wayside.WCU wcu;
TGMT.Train.Wayside.ATS ats;
TGMT.Train.Driver driver;

}

Scenario S with bl {
Scenario s@1 = "The train is fully berthed"

{
Scenario s11 = "The on-board detects that the train is fully berthed”
{
Action s21 = "The obcu detects that the train is fully berthed" by bl.obcu ;
Transfer s22 = "The obcu sub-system indicates this to the hmi" from bl.obcu to bl.hmi;
Script s21 -> s22 ;
¥
Script s11;
}
Scenario s@2 = "The train releases the train doors at the correct side"
{
Scenario s11 = "The on-board releases the train doors at the correct side”
{
Action s21 = "The obcu releases the train doors at the correct side" by bl.obcu;
Script s21;
Script sl1;
¥
Scenario s@3 = "The train initiates door opening”
{
Scenario s11 = "The driver initiates door opening”
{
Action s21 = "The driver initiates door opening” by bl.driver;
Script s21;
¥
Script s11;
¥
Scenario s@4 = "The train opens the train doors”
Scenario s@5 = "The train detects that doors are open”
Scenario s@6 = "The train sets the recommended speed to zero"
Scenario s@7 = "The train detects that the configured minimum speed for the door supervision is not yet exceeded”
Scenario s@8 = "The train reacts by revoking the door release”
Test s@9 = "If the train exceeds the configured minimum speed for the door supervision” {
Scenario s@10@ = "The train applies an emergency brake" }
Script s@1 -> s@2 -> s@3 -> s@4 -> s85 -> s@6 -> s07 -> s88 -> s09 -> s09.s5010;
¥

}

Fig. 3 Textual representation of the Doors Supervision scenario

simple actions using the keyword Action and the transfer Figure 4 depicts the abstraction level /, graphical descrip-
actions with the keyword Transfer. At the end of each sce-  tion of the door supervision scenario, using the notation
nario, the script (Script) explains the relationship between  depicted in Table 1. Finally, Fig. 5 is the graphical represen-
scenarios. tation of sub-scenarios sy;, Sg> and sy;3.

@ Springer



170 Int. J. ITS Res. (2018) 16:163-172

Lo Lo Lo Lo Lo Lo

Lo Le Lo Lo

Fig. 4 Graphical representation
of Satly

L. S01

v

Lc A

Lo

L. so2

Sz

Fig. 5 Graphical representation of sub-scenarios sy, Sp> and sgp3

@ Springer



Int. J. ITS Res. (2018) 16:163-172

171

6 Related Work

Model-driven system engineering has been widely studied in
the past few years in industry and academy. The main objec-
tive is the introduction of the science of models in complex
systems modeling. Low-level formal modeling languages are
a powerful tool for specifying systems. They are often used at
the software development stage and allow a formal validation
of systems. For example, the B-method, for specifying, de-
signing and coding software systems based on B [5], is a tool-
supported formal method based around an abstract machine
notation. It is used in the development of programming lan-
guage code from specifications. Used in railway automation, it
has been used for the specification and validation of the me-
teor line of Paris [6]. Scade [7] is also a certified formal lan-
guage used for system development, used in multiple do-
mains. It has been certified by Cenelec EN50128 standard
[8]. However, the entry cost is high.

Provided that the main issue is to accurately model a
complete complex system starting from a natural-language
based system specification. Therefore, semi-formal model-
ing approaches are proposed. These approaches can be di-
vided into two main methodologies, some are language-
centric and others are system-centric. Language-centric
methodologies rely on a modeling language. SysML [3] is
the more often used in complex systems because it offers a
panel of diagrams that allow the graphical representation of
systems parts. This approach aims to use all or most of the
language properties to express some system views. Thomas
Krueger [9] establishes a modeling methodology using
SysML trying to represent the functional and organic views
of an aerospace system. He uses activity diagrams to model
the link between functions and components. This method-
ology realizes the link between simulation tools with the
system for automatic code generation needs. The main ad-
vantage is that it represents structural and behavioral views.
The inconvenient is in the lack of interaction between compo-
nents; the system is seen as an independent component which
is rarely the case for complex systems. Claver [10] also tried
to model astronomical systems by representing the require-
ments, the logical and physical views with internal and block
definition diagrams. The inconvenient is the lack of informa-
tion, the behavior is forgotten.

System centric methodologies extend or restrain the
modeling language they are based on. Wielkiens and
Lamm [11] focused on the functional behavior of a
complex system. Soares et al. [12] focused on the re-
quirements of the system, the advantage of these meth-
odologies is that the language becomes specific to the
system and is customized in order to respond to its
properties. The inconvenient is that some views are incom-
plete. The system is too specific; it cannot be used for formal
analysis with other tools.

7 Conclusion

In this paper we presented ScOLa, a Scenario Oriented
Language, it is a domain specific language for railway sys-
tems. We explain the importance of focusing on systems con-
cepts in order to have a coherent and non-redundant model,
that is, a trustworthy representation of a system specification.
We want the language to be simple but efficient using a small
set of concepts. We also focus on the importance to have both
textual and graphical representations, which is not the case of
the other formal languages. Instead of crossing by semi-
formal languages to build a bridge between informal and for-
mal models, we decided to simplify a formal description that
relies on a formal semantics.

Our next objective is to define a methodology to perform
safety analysis using the execution semantics of ScOLa pre-
sented in []. This semantics allows the use of simulation tools
to measure the system effects.

In railway systems, safety is still hand-made and relies on
the experience of experts. The need for formal methods is
important to discover dysfunctional scenarios and find mis-
matches in the system specifications.

References

1. 3.1-1999 - IEEE Standard for Communication Based Train Control
Performance Requirements and Functional Requirements (2004)

2. Friedenthal S., Griego, R., Sampson, M.: INCOSE Model Based
Systems Engineering (MBSE) Initiative INCOSE June 24-27 San
Diego (2007)

3. Friedenthal S., Moore, A., Steiner, R., A Practical Guide to SysML,
The Systems Modeling Language, MK/OMG Press, ISBN 978—0—
12-378607-4 (2009)

4. Trainguard MT CBTC: The moving block communications based
train control solutions, Siemens Transportation Systems

5. Abrial, J. R., & Abrial, J. R.: The B-book: assigning programs to
meanings. Cambridge University Press (2005)

6. Behm, P, Benoit, P, Faivre, A., & Meynadier, J. M: METEOR: A
successful application of B in a large project. In FM’99—Formal
Methods (pp. 369-387). Springer Berlin Heidelberg (1999)

7. Abdulla, P. A, Deneux, J., Stalmarck, G., Agren, H., & Akerlund,
O. Designing safe, reliable systems using scade. In Leveraging
Applications of Formal Methods (pp. 115-129). Springer Berlin
Heidelberg. (2004)

8. CENELEC, EN. 50128: Railway Applications: Software for
Railway Control and Protection Systems. European Committee
for Electrotechnical Standardization (1997)

9. Krueger, T.: Modeling of a complex system using sysml in a model
based design approach. In Proceeding of the ASTRA conference on
Automation and Robotics, Noordwijk, The Netherlands (2011)

10. Claver, C. F., Debois-Felsmann, G. P., Delgado, F., Hascall, P.,
Marshall, S., Nordby, M., ... & LSST Collaboration.: The LSST:
A System of Systems. In Bulletin of the American Astronomical
Society (Vol. 43, p. 25202) (2011)

11. Lamm, J. G., & Weilkiens, T. Functional Architectures in SysML.
Proceedings of the Tag des Systems Engineering (TdSE ‘10).
Munich (2010)

@ Springer



172

Int. J. ITS Res. (2018) 16:163-172

12.  Soares, M.D.S., Vrancken, J.: Model-driven user requirements
specification using SysML. Journal of Software. 3(6), 57-68
(2008)

@ Springer

Melissa Issad Graduate student
(CentraleSupélec, 2014),
Laboratory of Industrial
Engineering of CentraleSupélec
and Siemens Mobility. Master of
Science in design and manage-
ment of complex systems
(CentraleSupélec, 2013).
Engineering degree (Ecole
Supérieure d’Informatique,
Algeria 2012). Her research fo-
cuses on the model based sys-
tem engineering and safety anal-
ysis of railway systems.

Leila Kloul Assistant professor at
the University of Versailles St-
Quentin-en-Yvelines, within the
DAVID laboratory. Her research
interests include the development
of analytical solutions for the
problem of systems dimension-
ing, in particular systems with
mobile components. The objec-
tive of her works is to develop
formal methods and tools for per-
formance and reliability analysis
of these systems.

Antoine Rauzy Professor at the
Norwegian University of Science
and Technology, Department of
Production and Quality
Engineering. Head of the chair
Blériot-Fabre “Dependable
Embedded Systems” founded by
Safran at CentraleSupélec.
Member of the board of
International Conferences and
Journals (Reliability Engineering
and System Safety, Journal of
Risk and Reliability...).

Karim Berkani Engineer in the
Siemens company at Chatillon
(France). He develops soft-
ware processes and tools for
the Siemens company. He had
different experiences on soft-
ware and system safety analy-
sis. He worked on different
domains like telecommunica-
tions or railway systems. In
2003, he received a PhD the-
sis from the University of
Evry-Val D’Essonne (France),
under the supervision of
Pascale Le Gall. His PhD the-

sis proposes a method to discover and solve feature interactions in
telecommunication systems.



	Modeling the CBTC Railway System of Siemens with ScOLa
	Abstract
	Introduction
	The TGMT CBTC Railway System
	ScOLa, a Scenario Oriented Language for Railway Systems
	Concept of Component
	Concept of Scenario
	Concept of Action
	Concept of Refinement
	Concept of Precedence
	Concept of Parallelism
	Concept of Preemption

	Modeling a CBTC Scenario Using ScOLa
	Textual and Graphical Representations of S
	Related Work
	Conclusion
	References


