
Original Article

Proc IMechE Part O:
J Risk and Reliability
227(6) 599–613
� IMechE 2013
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1748006X13490497
pio.sagepub.com

Modeling systems with mobile
components: a comparison between
AltaRica and PEPA nets

Leila Kloul1,2, Tatiana Prosvirnova2 and Antoine Rauzy2

Abstract
Assessing the reliability of systems with mobile components, that is components whose locations and interactions
change during the mission of the system, raises a number of specific modeling issues. In this article, we compare two can-
didate modeling formalisms to do so: AltaRica and PEPA nets. We study their respective advantages and drawbacks and
we show benefits of a cross fertilization.

Keywords
Model-based safety analysis, modeling formalisms, mobility modeling, PEPA nets, AltaRica

Date received: 27 November 2012; accepted: 26 April 2013

Introduction

Many industrial systems embed mobile components,
that is components whose locations and interactions
change during the mission of the system. Systems of sys-
tems, like battlefields or mobile phone networks, enter
obviously into this category. But mobile components
can also be found in simpler systems, such as production
chains. Assessing the reliability of systems with mobile
components raises a number of specific modeling issues.

As an illustration, we consider in this article a simple
plant that produces different types of goods within the
same production chain. To calculate the reliability and
other performance indicators on this system, one must
be able to follow products individually, i.e. to capture
dynamic behaviors such as dynamic change of loca-
tions of products and dynamic change of interactions
between products and processing units.

We compare two candidate modeling formalisms to
do so: PEPA (Performance Evaluation Process
Algebra) nets1 and AltaRica.2,3 These two formalisms
have been developed by two different communities.
Their ‘‘look-and-feel’’ are thus quite different. Yet,
their underlying mathematical foundations are very
similar: both rely on state automata and can be used to
generate continuous-time Markov chains. It is there-
fore of interest to study their ability to assess the relia-
bility of systems with mobile components, their
respective advantages and drawbacks and to seek for
opportunities of a cross fertilization.

PEPA nets combine the stochastic process
algebra PEPA (Performance Evaluation Process
Algebra)4 with stochastic colored Petri nets.5

Components are described as processes just as in
PEPA, but they can additionally migrate from one
place of the net to another, just as tokens in a
colored Petri net. Components can interact (through
synchronization of their actions) only if they are
located in the same place. Operators behind PEPA
nets remain simple to implement for dynamic cre-
ation/deletion of processes is not allowed. Any
PEPA net model can be eventually compiled into a
continuous-time Markov chain. The elegance of
PEPA nets comes from its mathematical purity: only
a very limited number of operators is sufficient to
describe complex behaviors.

AltaRica has been designed with an engineering
perspective. In AltaRica, the behavior of compo-
nents is described by means of Guarded Transition
Systems (GTSs).3,21 GTSs generalize widely used
formalisms such as reliability block diagrams (see
e.g. Andrews and Moss7) and stochastic Petri nets.8

Components can be assembled into hierarchies, their

1PRiSM, Université de Versailles, Versailles, France
2LIX, Ecole Polytechnique, Palaiseau, France

Corresponding author:

Tatiana Prosvirnova, LIX, Ecole Polytechnique, Route de Saclay, 91128

Palaiseau, France.

Email: Tatiana.Prosvirnova@polytechnique.edu

inputs and outputs can be connected and their tran-
sitions can be synchronized. Any hierarchical
description can be ‘‘flattened’’ into a unique GTS.
The semantics of a GTS is a Kripke structure (a
reachability graph) that can be interpreted as a
continuous-time Markov chain, under the condition
that delays associated with transitions are exponen-
tially distributed.

The richness of AltaRica makes it possible to
design and to maintain industrial scale models.9,10

However, the previous versions of AltaRica embed
no construct to model mobility. Since PEPA nets and
AltaRica rely on similar mathematical foundations,
it was worth establishing their respective strengths
and weaknesses. This study resulted in the incorpora-
tion in the new version of AltaRica (AltaRica 3.0,
still under specification) of the concept of guarded
synchronization. This new concept unifies and sim-
plifies previous AltaRica descriptions of transitions
and synchronizations and thus it eases modeling
mobile components.

The contribution of this article is multiple. First, we
examine, based on a simple example, the issues raised
by the modeling of systems with mobile components.
Second, we compare PEPA nets and AltaRica. We dis-
cuss their respective advantages and drawbacks. Third,
we present the extension of AltaRica with the concept
of guarded synchronization.

The remainder of this article is organized as follows.
‘‘Motivating example’’ presents the production system
we shall use as a redwire throughout the article.
‘‘Related works’’ is dedicated to the related works.
‘‘Overview of PEPA nets’’ and ‘‘AltaRica overview’’
present respectively PEPA nets and AltaRica, and illus-
trate their philosophies by modeling (parts of) the pro-
duction system. ‘‘Comparison of two approaches’’
compares the two approaches. ‘‘Experiments’’ presents
some experiences, performed to calculate reliability and
performance indicators. Finally, ‘‘Conclusion’’ con-
cludes the article.

Motivating example

The example described in this section will be used as an
illustration in the following sections.

Production system

We consider a production system made of two chains,
as illustrated in Figure 1. The system is supplied by a
source unit S. The upper chain, consisting of processing
units U1 and U2 in series, is the main chain. The lower
chain, consisting of processing units L1 and L2 in
series, is a spare chain. The spare chain is normally
used for other purposes, but products can be rerouted
to that chain in case the main chain is not available.
The whole system supplies itself a target unit T. Units
U1 and L1 on the one hand; U2 and L2 on the other
hand play symmetrical roles. When either U1 or U2

fails, the other unit in the same chain is stopped and
the lower chain is attempted to start. When both U1
and U2 are restarted (after their repair), the lower
chain is stopped (or at least goes back to its primary
purpose).

Production units

For the sake of simplicity, source and target units are
assumed to be perfect (and are never stopped). Each
processing unit (U1, U2, L1 and L2) is composed of a
machine M and a board B with a number kB of slots in
which products are inserted. Source and target units
can be seen simply as boards with slots.

All machines work (and fail) the same way. They
can process only one product at a time. A machine M
has a per hour failure rate lM (e.g. 1:0 10�3) when it is
working. It is assumed not to fail when it is in a standby
mode. When it is attempted to be turned on, it has a
probability to fail on demand gM (e.g. 0:02), and there-
fore a probability 1� gM to start correctly. It has a per
hour repair rate mM (e.g. 2:0 10�1). It is assumed to be
as good as new after a repair. When a machine fails,
the product it was processing (if any) needs to be repro-
cessed from scratch. Machines are not turned off when
they are processing a product. The finite state automata
modeling a machine is pictured in Figure 2. The
machine starts to process a product, i.e. loads it, as
soon as there is a non-already-processed product in a
slot. The time taken by the processing of a product
depends on the (type of the) product. On this figure,
timed transitions are pictured with thick plain lines,
while instantaneous transitions are pictured with thin
dashed lines. We shall keep this convention for subse-
quent figures.

The finite state automata modeling the board is pic-
tured in Figure 3. For the sake of simplicity, slots are
not distinguished. Two actions can be performed on
slots: pulling a product (from the previous unit) and
pushing a product (to the next unit). Pulling and push-
ing a product are actually the two faces of the same
action: transferring a product from one production unit
to the next one. This action takes some time. We can
assume, without a loss of generality, that the average
transfer time tB depends on the board B that ‘‘pulls’’

Figure 1. Production system.

600 Proc IMechE Part O: J Risk and Reliability 227(6)

the product. A board B has therefore a per hour pulling
rate uB =1=tB (e.g. uB =100).

Products

Products are transferred from one unit to the next one.
Once in the unit, a product can be either waiting to be pro-
cessed, in process or waiting to be transferred to the next
unit. The average processing time pP depends on the prod-
uct so we have a processing rate pP =1=pP (e.g. pP =10).
Figure 4 pictures the finite state automaton modeling a
product. This automaton does not show the location of the
product (which changes with the transition transfer).

Synchronizations/simultaneity

We have described so far individual behaviors of each
component of the system. To complete the description,
we need to describe which transitions are synchronized.
The sequence diagram pictured in Figure 5 shows syn-
chronizations (horizontal lines) occurring in a success-
ful processing sequence of a product. In this diagram,
timed transitions are represented with plain rectangles,
instantaneous transitions are represented with hatched
rectangles.

Figure 6 shows synchronizations occurring in a
sequence in which a failure occurs during the process-
ing of a product. Note that timed transitions may be
synchronized with instantaneous transitions, e.g. the
transition failure of the machine and the transition
unload of the product. In this case, the resulting transi-
tion is indeed timed. The instantaneous transition takes
place at the end of the timed action.

Wrap-up

We want eventually to study the expected production
of the system, throughout a given period of time and
possibly additional performance indicators such as the
mean down time of the main chain. All of the above
hypotheses may be not very realistic. We just tried to

Figure 2. The finite state automaton modeling a machine.

Figure 3. The finite state automaton modeling the board (of slots).

Figure 4. The finite state automaton modeling a product.

Kloul et al. 601

concentrate into a small example a number of modeling
issues.

� Products are mobile components. Some parameters,
such as the processing rate, depend on products.
Moreover, it may be worth observing the individual
trajectories of products.

� Products have to interact with processing units.
These interactions can take place only in some loca-
tions and circumstances.

� The state of a processing unit depends on the states
of other processing units, owing to the command
strategy of the system.

� Some transitions are instantaneous, some others
take time. Timed transitions have rates that differ
by orders of magnitude (the model is stiff).

The main modeling issue is to synchronize correctly
actions of machines, boards and products and to do

that for sufficiently many products while keeping the
model tractable.

Related works

Classical safety formalisms, such as reliability block
diagrams (RBDs), Markov chains and generalized sto-
chastic petri nets (GSPNs)8 are the most well known
and widely used formalisms to assess reliability indica-
tors of systems.

Boolean formalisms, such as RBDs, are event based,
naturally hierarchical and make it possible to describe
remote interactions between components, i.e. flows of
matter or information circulating through the system.
They can be easily transformed into fault trees and
assessed with very efficient algorithms (see e.g
Rauzy11,12). However, Boolean formalisms put very
strong constraints on events to be considered: they are
assumed to be statistically independent, thus, it is not

Figure 5. The sequence diagram for a successful processing of a product.

Figure 6. The sequence diagram for a sequence with a failure during the processing of a product.

602 Proc IMechE Part O: J Risk and Reliability 227(6)

possible to take into account the order in which events
occur any time.

States/transitions formalisms, such as Markov
chains and Petri nets, make it possible to capture depen-
dencies among components, such as cold redundancies,
resource sharing and sequences of actions. But it is
quite difficult to use them, on the one hand, to repre-
sent remote interactions between components, and on
the other, to compose components seamlessly into
hierarchies.

Currently, the modeling techniques that provide
modeling mechanisms for systems with dynamic beha-
viors are rare. Milner’s13 p-calculus is a paradigmatic
formalism designed to capture dynamic behaviors, and
probably one of the most widely studied. It has been
developed to model communicating and mobile agents.
It is very simple yet very powerful. However, its ability
to create and to delete objects comes with a significant
price in terms of assessment algorithms. This cost is so
high that it is reasonably arguable whether such power-
ful formalism can be used for performance analyses.
Like the p-calculus, PEPA-nets1,6,14,15 are a simple
modeling technique that makes possible the description
of migrations of components and of changes in their
interactions. However, unlike p-calculus, the operators
and the paradigms behind PEPA nets remain simple to
implement for dynamic creation/deletion of objects is
not allowed. As with all state-based modeling tech-
niques, PEPA nets formalism remains prone to the
problem of state space explosion. Moreover it does not
provide a modeling mechanism to capture remote inter-
actions among components.

Petri nets-based techniques may be considered can-
didates to dynamic systems modeling. However, sto-
chastic petri net (SPN) models are constructed without
explicit compositional structure, regardless of the struc-
ture of the system being modeled. Consequently, subse-
quent techniques, such as Donatelli’s superposed
GSPN16 and Sanders’ stochastic activity networks,17

have aimed to provide mechanisms to represent the
increasing complexity of the synchronization con-
straints of modern systems while retaining the composi-
tional structure explicitly within the model. However,
Petri nets-based techniques do not provide an appro-
priate mechanism to capture dynamic change of

interactions between objects as they do not allow the
distinction between different contexts.

An extension of (non-stochastic) Petri nets, which
provides modeling concepts similar to PEPA nets, is
Valk’s elementary object systems (EOSs).18 The tokens
in an elementary object system are themselves Petri nets
having individual dynamic behavior. However, like all
Petri nets-based formalism, EOS formalism suffers
from a lack of an explicit compositional structure.

AltaRica DataFlow modeling language generalizes
classical safety formalisms: it is a states/transitions
formalism that allows hierarchical structuring of mod-
els and represents remote interactions. Nevertheless it
would be quite difficult, from the practical modeling
perspective, to use states/transitions formalisms to
describe systems with mobile components, as presented
in ‘‘Motivating examples.’’

Table 1 summarizes this section.

Overview of PEPA nets

PEPA nets1 combine the stochastic process algebra
PEPA with stochastic colored Petri nets. This hybrid
formalism is motivated by the observation that, in
many systems, two distinct types of change of state can
be identified: the global and local changes of states. The
resulting formalism can be used to model applications
such as mobile code systems, where the PEPA terms
are used to model the program code moving between
the network hosts (the places in the net).

In the following, we first give an overview of the
modeling language PEPA, then present the hybrid
formalism PEPA nets.

PEPA

In PEPA,4 a system is described as an interaction of
components that engage, either singularly or multiply,
in activities. These activities represent changes of state
within a system. Each activity has an action type and a
duration that is represented by the parameter of the
associated exponential distribution: the activity rate.
This parameter may be any positive real number, or the
distinguished symbol T (read as unspecified). Thus each
activity is a pair (a, r) where a is the action type and r
is the activity rate. We assume a countable set of

Table 1. Comparison of safety formalisms.

RBD Markov chains GSPN p-calculus PEPA nets AltaRica DataFlow

Event based : s s s s s

Composition � j � � � s

Hierarchical s j j j j s

Remote interactions s j j : : s

Mobility modeling j j � s s :
Algorithm efficiency s � � j � �

j not suitable : acceptable � good s very good.

RBD: reliability block diagram; GSPN: generalized stochastic petri net; PEPA: performance evaluation process algebra.

Kloul et al. 603

components, denoted C, and a countable set, Y, of all
possible action types. We denote by Act � Y3R

+ , the
set of activities, where R

+ is the set of positive real
numbers together with the symbol T.

PEPA provides a small but expressive set of combi-
nators that allow expressions to be constructed defining
the behavior of components, via the activities they
undertake and the interactions between them.

Prefix (a, r):P: this is the basic mechanism for con-
structing a component behaviors. The component car-
ries out activity (a, r) and subsequently behaves as
component P.

Choice P+Q: the component may behave either as
P or as Q: all the current activities of both components
are enabled. The first activity to complete, determined
by the race condition, distinguishes one component, the
other is discarded.

Cooperation P ./
L
Q: the components proceed inde-

pendently with any activities whose types do not occur
in the cooperation setL (individual activities). However,
activities with action types in the set L require the
simultaneous involvement of both components (shared
activities). When the set L is empty, we use the more
concise notation P k Q to represent P ./

L
Q.

The published stochastic process algebras differ on
how the rate of shared activities are defined.19 In PEPA
the shared activity occurs at the rate of the slowest par-
ticipant. If an activity has an unspecified rate, denoted
T, the component is passive with respect to that action
type. This means that the component does not influence
the rate at which any shared activity occurs.

Hiding P=L: the component behaves as P except that
any activities of types within the set L are hidden, i.e.
they exhibit the unknown type t and can be regarded
as an internal delay by the component. These activities
cannot be carried out in cooperation with another
component.

Constant A=
def

P: Constants are components whose
meaning is given by a defining equation. A=

def
P gives

the constant A the behavior of component P. This is
how we assign names to components (behaviors).

The evolution of a PEPA model is governed by the
Structured Operational Semantics (SOS) rules of the lan-
guage. These rules define the admissible transitions or state
changes associated with each combinator. They give rise to
a multi-labeled transition system or derivation graph from
which a continuous-time Markov chain can be derived.

Example: Consider the upper train of the production
system described in ‘‘Motivating example.’’ If we want to
model the first processing unit, U1, one can use
two PEPA components, namely Machine1 and Product.
The first component models the behavior of the machine
in the processing unit, whereas the second one models the
items provided by the source, in order to be processed
by U1.

� Component Machine1: when the processing unit is
working properly, it first loads a new item if this

one is available. This is modeled using action type
load1, in which rate l1 is supposed to be as high as
the action of loading, is assumed to be instanta-
neous. Once the item is loaded, three different
events may occur: the processing of the item, a fail-
ure of the machine or the arrival of an order for the
machine to be switched off because U2, the other
processing unit in the main train, is in the failure
state. The three events are modeled using action
types process1, failure1 and turnOff1, respectively.
In the failure state Machine1 FAILED, the machine
can be either repaired (action type repair1), or
receive a turn off order that will not make the com-
ponent change state. When repaired, the machine is
stopped (state Machine1 OFF) until a switch on
order is received. This is modeled using activity
(turnOn1, 1� gu1), whereas the occurrence of a fail-
ure on demand is modeled using activity
(failureOnDemand1, gu1). The initial state of the
component is Machine1 ON. Thus, the complete
component is defined as

Machine1 ON =
def

(load, l1):Machine1 WORKING

+ (failure1, lu1):Machine1 FAILED

+ (turnOff1, s1):Machine1 OFF

Machine1 WORKING =
def

(process1,pp):Machine1 ON

+ (failure1, lu1):Machine1 FAILED

Machine1 FAILED =
def

(repair1,mu1
):Machine1 OFF

+ (turnOff1, s2):Machine1 FAILED

Machine1 OFF =
def

(turnOn1, s23(1� gu1)):Machine1 ON

+ (failureOnDemand1, s03gu1):

Machine1 FAILED

As loading a product to be processed is assumed to
be an instantaneous action and does not really make
the machine change state, we do not consider it in the
PEPA model. However, we have to take into account
the instantaneous events failure on demand, turn off
and turn on, because they make the machine change
states. For that we suppose that these actions occur at
the rates s0, s1 and s2, respectively.

� Component Product: this can be defined by the
loading and processing undertaken in unit U1 as

Product =
def

(load1,>):Product9
Product9 =

def
(process1,>):Product

In this component the rates associated with action
types load1 and process1 are unspecified; component
Machine1 specifies the rate at which the loading and
the processing occur.

� The behavior of the complete processing unit U1 is
modeled using the PEPA equation, which specifies
that components Machine1 and Product must coop-
erate (synchronize) on action types load1 and
process1.

604 Proc IMechE Part O: J Risk and Reliability 227(6)

U1 =
def

Machine1 ON ./
fload1, process1g

Product

PEPA nets

As PEPA nets combine PEPA with colored stochastic
Petri nets, two types of change of state are possible: the
transitions of PEPA components and the firings of the
net. Transitions of PEPA components will typically be
used to model small-scale (local) changes of state as
components undertake activities. Firings of the net will
be used to model macro-step (global) changes of state,
such as context switches or mobile software agents
moving from one network host to another.

A PEPA net is made up of PEPA contexts, one at
each place in the net. A context consists of a number of
static components (possibly zero) and a number of cells
(at least one). A cell is a storage area dedicated to stor-
ing a PEPA component of the specified type. The com-
ponents that fill cells are the mobile components and
can circulate as the tokens of the net. In contrast, the
static components cannot move.

The mobile components or tokens of a PEPA net are
terms of the PEPA stochastic process algebra, which
define the behavior of components via the activities
they undertake and the interactions between them.
Thus each token has a type given by its definition. This
type determines the transitions and firings that a token
can engage in. It also restricts the places in which it may
be, since it may only enter a cell of the corresponding
type.

As the firings, on the one hand, and the transitions,
on the other hand, are special cases of PEPA activities,
we differentiate the action types associated with each of
these. We denote by Yf the set of action types at the net
level and by Yt the set of action types inside the places,
such that Y=Yf [Yt. Similarly, we denote by
Actt � Yt3R

+ the set of activities undertaken by the
components inside the places and by Actf � Yf3R

+

the set of activities at the net level, such that
Act=Actf [Actt.

Definition 1. A PEPA net V is a tuple V=(P, T ,
I,O, ‘,p,FP,K,M0) such that:

� P is a finite set of places;
� T is a finite set of net transitions;
� I : T ! P is the input function;
� O : T ! P is the output function;
� ‘ : T ! (Yf,R

+ [f>g) is the labeling function,
which assigns a PEPA activity ((type, rate) pair) to
each transition. The rate determines the negative
exponential distribution governing the delay associ-
ated with the transition;

� p : Yf ! N is the priority function, which assigns
priorities (represented by natural numbers) to firing
action types;

� FP : P ! P is the place definition function, which
assigns a PEPA context, containing at least one cell,
to each place;

� K is the set of token component definitions;
� M0 is the initial marking of the net.

PEPA net behavior is governed by structured opera-
tional semantic rules. These consist of the original rules
for PEPA and some additional rules capturing the
meaning of a cell, as well as the enabling and firing
rules of the net level structure.1 The states of the model
are the marking vectors, which have one entry for each
place of the PEPA net. The semantic rules govern the
possible evolution of a state, giving rise to a labeled
transition system or derivation graph. The nodes of the
graph are the marking vectors and the activities (indi-
vidual, shared or firing activities) give the arcs of the
graph. This graph gives rise to a continuous time
Markov chain (CTMC), which can be solved to obtain
a steady-state probability distribution from which per-
formance measures can be derived.

The syntax of PEPA nets is given in Figure 7.
In the grammar, S denotes a sequential component

and P denotes a concurrent component that executes in
parallel. I stands for a constant that denotes either a
sequential or a concurrent component, as bound by
definition.

Example. Consider the sub-system composed of source
S, processing units U1 and U2, and the target unit T of
the production system described in ‘‘Motivating
example.’’ The PEPA net model of this sub-system con-
sists of four places: SOURCE, MAIN UNIT1,
MAIN UNIT2 and TARGET. The net structure of the
model is depicted in Figure 8.

� Place SOURCE: it models the source that supplies
unit U1 with the items to process. Thus we model
each of these items using component Product (see
‘‘PEPA’’), which now is a mobile component since
each item has to go through all the units of the sys-
tem to be completed. Thus the definition of compo-
nent Product is enriched with activities that model
the movements of the component between the
places. These activities label the firing transitions
on the net structure (Figure 8)

Product =
def

(transferS1,>):Product1
Product1 =

def
(load1,>):Product91

Product91 =
def

(process1,>):Product2
Product2 =

def
(transfer12,>):Product3

Product3 =
def

(load2,>):Product93
Product93 =

def
(process2,>):Product4

Product4 =
def

(transfer2T,>):Product

Place SOURCE consists solely of the items to pro-
vide to unit U1. Thus initially all the items are in this
place

Kloul et al. 605

SOURCE½ , . . . , �=def Product
½Product�jj . . . jjProduct½Product�

� Place MAIN UNIT1: it models the processing unit
U1. The behavior of the corresponding processing
machine is modeled using static component
Machine1 (see ‘‘PEPA’’).

The whole place is then modeled as the interaction
of Machine1 and mobile component Product on action
type process1. The maximum number of mobile compo-
nents in the place corresponds to the storage capacity
of unit U1, that is kU1

.

MAIN UNIT1½ , . . . , �Machine1 ON ./
fprocess1g

(Product½ �jj . . . jjProduct½ �)

� Place MAIN UNIT2: it models the behavior of pro-
cessing unit U2, which has the same behavior as
U1. Thus we use a similar component, namely
Machine2, to model the processing machine in U2

Machine2 ON =
def

(load2, l2):Machine2 WORKING

+ (failure2, lu2):Machine2 FAILED

+ (turnOff2, s
0
1):Machine2 OFF

Machine2 WORKING =
def

(process2,pp):Machine2 ON

+ (failure2, lu2):Machine2 FAILED

Machine2 FAILED =
def

(repair2,mu2
):Machine2 OFF

+ (turnOff2, s
0
2):Machine2 FAILED

Machine2 OFF =
def

(turnOn2, s
0
23(1� gu2)):Machine2 ON

+ (failureOnDemand2, s
0
03gu2)

:Machine2 FAILED

The complete place is then modeled as the coopera-
tion of Machine2 ON and Product on action types load2
and process2

MAIN UNIT2½ , . . . , � =
def

Machine2 ON ./
fload2, process2g

(Product½ �jj . . . jjProduct½ �)

Similarly toMAIN UNIT1, the maximum number of
components Product in MAIN UNIT2 is kU2

, the stor-
age capacity of unit U2.

� Place TARGET: it models the target unit and con-
sists solely of the finished items arriving from unit
U2. Initially, it is empty

TARGET½ , . . . , � =defProduct½ �jj . . . jjProduct½ �

Note that the maximum number of components
Product in places SOURCE and TARGET is defined
by storage capacity kS and kT, respectively.

AltaRica overview

AltaRica is a high level modeling language initially
dedicated to safety analysis. The first version of
AltaRica modeling language was developed in LaBRI
in the 1990s.20 A few years later, a second (data-flow)
version was developed to handle industrial scale models
that the first version, too expressive, was inefficient to
tackle. A number of processing tools have been devel-
oped for AltaRica, such as compilers to fault trees,
compilers to Markov chains, generators of critical
sequences, model-checkers and stochastic simulators.
Several integrated modeling environments use AltaRica
as their internal representation language.

The third version (AltaRica 3.0) is under specifica-
tion at the time we write these lines. AltaRica 3.0 will
be a major evolution of the language (and the pro-
cessing tools). This new version integrates notions of
object-oriented programming languages such as

Figure 7. The syntax of PEPA nets.

606 Proc IMechE Part O: J Risk and Reliability 227(6)

inheritance and prototypes. It improves the reusabil-
ity of components and knowledge capitalization. It
adds also the ability to handle looped systems. The
models presented below are written in AltaRica 3.0.
The formal semantics of AltaRica 3.0 is based on the
notion of GTSs—a states/events formalism defined in
Rauzy.3,21

GTSs

GTSs are input/output automata. The state space is
described implicitly as, for instance, in Petri nets. We
shall introduce here GTSs by means of an example.
Consider first the automaton for the machine pictured
in Figure 2. The AltaRica code for this automaton is
given in Figure 9.

Variables. The internal state of the machine is repre-
sented by means of the state variable state. State
takes its value in the domain MachineState declared
upfront. The initial values of state variables (there may
be several) are specified by means of the attribute
init.

Another variable is declared: demanded. This vari-
able is a Boolean flow variable. It is used to implement
the command, i.e. to tell when to turn the machine on
and off. Values of flow variables are reset after each
transition firing, then updated by means of an asser-
tion. This mechanism will be described latter. From a
syntaxic viewpoint, flow variables are introduced (and
distinguished from state variables) by means of the
attribute reset.

Events. The state of the machine changes under the
occurrence of an event. Events are introduced with
the keyword event. A delay is associated with each
event by means of the attribute delay. In our example,
delays of events failure and repair are random
variables exponentially distributed with respective
rates lambda and mu. In other words, they obey a
Markovian hypothesis. Events turnOn and
failureOnDemand are instantaneous (their delay is
0). Both are fireable when the machine is OFF.
turnOn has the probability 1 - gamma to be fired while
failureOnDemand has a probability gamma to be
fired in this state. This probability is given through the

attribute expectation. Delays of events load and
process are left unspecified.

Transitions. A transition is a triple he,G,Pi, also
denoted e : G! P, where e is an event, G is a Boolean
expression, so-called the guard (or the pre-condition)
of the transition, P is an instruction, so-called the
action (or the post-condition) of the transition.
Transitions are described in the clause transitions.
In the example above, if the state of the processing
machine is WORKING, then two transitions are fireable:
the transition labeled with the event failure and the
transition labeled with the event process. If the delay
drawn for the transition failure is the shortest, then
this transition is fired and its action is executed: state
is switched to FAILED.

Parameters. Parameters are constant values that come
with the definition of the GTS. When the GTS is instan-
tiated, their values may be changed. In the above exam-
ple, there are three parameters, gamma, lambda and
mu, that define respectively the probability of failure on
demand and the failure and repair rates.

Composition and synchronization

The AltaRica code for the automaton describing the
board (as pictured in Figure 3) is given in Figure 10.
This code deserves no additional explanation.

Now we can consider the model for a processing
unit. AltaRica 3.0 is an object-oriented language.
Therefore, the AltaRica class that describes a process-
ing unit embeds an instance of the class describing the
machine and an instance of the class describing the
board, as illustrated in Figure 11.

This combination is however not a mere product:
the machine cannot load a product if the board is
empty. This additional constraint is described by means
of synchronization. The transition load of the machine
M (M.load) is synchronized with an anonymous tran-
sition that just checks that B.count is positive and
does nothing (its action is the empty instruction skip).
This synchronization creates a new transition. This
transition is obtained by and-ing the guards of synchro-
nized transitions and composing their actions. In our

MAIN_UNIT1 MAIN_UNIT2

(transferS1, T)

(transfer12, T)

(transfer2T, T)

TARGETSOURCE

Figure 8. The PEPA net model.

Kloul et al. 607

case, the synchronization creates the following
transition

M:state=ON and B:count.0�.M:state

:= WORKING

A synchronization can involve any number of transi-
tions. Transitions involved in a synchronization cease
to exist individually. It is the case here for the transition
M.load. Since we do not want to create a fresh event
for the created transition, we use the event M.load.
Note finally that M.load is prefixed with an exclama-
tion mark (!). This modality indicates that the individ-
ual transition M.load is mandatory for the
synchronized transition to be fired. Anonymous transi-
tions are always mandatory. The modality ? makes it
possible to synchronize transitions only when they are
fireable. We will not describe it here fully for we shall
not use it in our model.

Flow variables and assertions

In the AltaRica code for the machine, given in Figure 9,
the flow variable demanded is used to guard the instan-
taneous transitions turnOn and turnOff. Conversely
to state variables, which are initialized at the beginning
of a run and then modified through actions of transi-
tions, the value of flow variables are recalculated after
each transition firing. This recalculation is performed
by means of assertions. Assertions are instructions just
as actions of transitions. The difference stands in that
actions of transitions assign state variables only while
assertions assign flow variables only. Moreover, each
component has a unique assertion that is applied after
each transition firing.

Most AltaRica models make a great use of flow
variables and assertions. They are used to model infor-
mation flows circulating through a system. They may

Figure 9. The AltaRica code for the finite state automaton modeling of a machine.

Figure 10. The AltaRica code for the finite state automaton
modeling of the board.

Figure 11. The AltaRica code for a processing unit.

608 Proc IMechE Part O: J Risk and Reliability 227(6)

represent physical connections between components,
control commands, fluid circulation, electric power,
etc. They offer an easy and elegant way to express
dependencies on external factors.

In our example, we shall use them to a limited
extent, in order to implement the command strategy.
The AltaRica code for the plant is pictured in Figure
12. This code composes four processing units. When
one of the two main units fails, the other one must
be stopped (possibly after finishing to process a prod-
uct) and the production must be switched to the spare
line. Conversely, both units of the main line are
attempted to start as soon as they are OFF, i.e. after
a repair.

Mobile components

It remains now to model products and to synchronize
them with the plant. The AltaRica code for products is
given in Figure 13. It implements the automaton pic-
tured in Figure 4.

Now, we have to synchronize the plant with a num-
ber of products. Figure 14 shows a part of the code to

do so. This code uses the same mechanism of synchro-
nization as previously, except that more transitions are
involved in synchronizations.

Comparison of two approaches

Both PEPA nets and AltaRica rely heavily on state
automata, but are quite different in the way they repre-
sent them. To some extent, whether to use a process
algebra style or a GTSs style is a matter of taste. GTSs
are probably more powerful and more compact, thanks
to the use of state variables. Aside the way automata
are encoded, there are two main differences between
the two formalisms.

� AltaRica embeds the concept of flow variables.
Flow variables (and assertion) make it possible to
describe remote interactions between components.
Modeling such interactions with PEPA nets is more
complex, although possible.

� PEPA nets provides a mechanism to describe com-
ponent locations, while such a mechanism has to be
modeled in AltaRica.

Figure 12. The AltaRica code for the plant.

Figure 13. The AltaRica code for the products.

Kloul et al. 609

In the remainder of this section, we shall examine
both issues.

Modeling remote interactions between components
in PEPA nets

In PEPA nets, there is no direct means to express beha-
vioral dependencies between components located in dif-
ferent places, for components can cooperate or
synchronize only if they are in the same place. Thus the
notion of flows does not exist as a such. However, it is
always possible to model systems with flows. To do so
we have to introduce in the model mobile components
that are, a priori, unnecessary, but that allow us to
express remote interactions between components. The
following example is a good illustration of that.

Example. Consider the system used in the example of
‘‘PEPA nets.’’ In order to complete modeling, the upper
train of the example, actions turnOff and turnOn have
to be synchronizing actions. Indeed both machine units
U1 and U2 must be stopped if one of them fails and
both must be restarted if the failure is repaired. Thus,
we assume that the production system has a control

center in charge of generating the stoppage/restart
orders. When a failure occurs at the upper train, the
control center has to send a stoppage signal to the
working unit in the main train, and a start signal to the
units in the spare train. Once the failed unit is repaired,
the control center has to stop the spare train while
starting the upper train again.

The net structure of the corresponding PEPA net
model is depicted in Figure 15. This structure consists
of the net structure in Figure 8, to which a new place,
namely CENTER, has been added. This place models
the control center of the production system.

In the new PEPA net model, the definitions of places
SOURCE and TARGET remain unchanged. However,
the definitions of places MAIN UNIT1 and
MAIN UNIT2 have to be changed in order to take into
account their interactions with the control center. In
the case of the interaction between MAIN UNIT1 and
CENTER, we use two mobile components, Signal 1
and Signal C. The role of the former is to inform the
control center about the state of the machine in U1
(failed, repaired). The reception of this information is
then acknowledged to U1, using the same mobile com-
ponent (Signal 1). The latter is sent by the control

Figure 14. The AltaRica code for the system.

(ack1, T)
(ack, T) (ack, T)

(ack2, T)

(transferS1,T) (transfer2T,T)

(transfer12,T)

(call_U1, T)

(call_U2, T)

(call_C, T)(call_C, T)

SOURCE CENTER TARGET

MAIN_UNIT1 MAIN_UNIT2

Figure 15. The net structure of the PEPA net model.

610 Proc IMechE Part O: J Risk and Reliability 227(6)

center to U1 in order to stop/start its machine in the
case of the failure/repair of the machine in U2. Thus
MAIN UNIT1 is defined as

MAIN UNIT1½ , . . . , �

=
def

((Signal C½ �jjSignal 1½Signal 1�)LMachine1 ON)

./
fprocess1g

(Product½ �jj . . . jjProduct½ �)

where L= fturnOn1, turnOff1, failureOnDemand1g and
mobile component Signal 1 has the following behavior

Signal 1 =
def

(failure1,>):Signal 11
Signal 11 =

def
(call C, e1):Signal 12

Signal 12 =
def

(failed1, e2):Signal 13

Signal 13 =
def

(ack1, e4):Signal 14

Signal 14 =
def

(repaire1,>):Signal 15
Signal 15 =

def
(call C, e1):Signal 16

Signal 16 =
def

(repaired1, e2):Signal 17

Signal 17 =
def

(ack1, e4):Signal 1

As specified in the equation of MAIN UNIT1, com-
ponent Signal 1 is initially located in place
MAIN UNIT1. The behavior of component Signal C,
which is initially located in place CENTER, is defined as

Signal C =
def

(failed2,>):Signal C1 + (repaired2,>):Signal C1

Signal C1 =
def

(call U1, e1):Signal C2

Signal C2 =
def

(turnOff, e2):Signal C3 + (turnOn, e3):Signal C3

Signal C3 =
def

(ack, e4):Signal C

Similarly, placeMAIN UNIT2 is changed in order to
include two mobile components, namely Signal 2 and
Signal9 C. These components are similar to Signal 1
and Signal C, respectively. Thus, place CENTER can
be modeled as the interaction between the four mobiles
components as

CENTER½ , . . . , � =def (Signal C½ Signal C � jj
Signal9 C½ Signal9 C �) ./

M
(Signal 1½ � jj Signal 2½ �)

where cooperation set M= ffailed1, repaired1, failed2,
repaired2g.

This example shows that it is always possible to
model remote interactions between components located
in different places. However, it comes at a certain price
as it requires the use of additional components, which
leads to the increase of the model size.

Modeling mobility with AltaRica

AltaRica provides no specific construct to model mobi-
lity. The location of a component can be modeled
as symbolic state variable. In the code presented in
Figure 13, the type of this variable is a user-declared
domain. It would be also possible to declare it just as
Symbol, the set of all symbolic constants. In this way,

the topography of the underlying network could be
changed without changing the code for products.

PEPA nets synchronize events on their names, so
that many components can be synchronized by means
of a single rule. AltaRica requires each synchronization
explicitly to be write down, as sketched in Figure 14.
Writing all synchronizations for all products by hand
would be both tedious and error prone, even if the con-
cept of guarded synchronization, introduced in
AltaRica thanks to the present study, greatly simplifies
the task. We are presently using scripts (typically writ-
ten in Python or Pearl) to automatically generate syn-
chronizations. In the future, some specific constructs or
some meta-modeling facilities should be added to the
language in order to avoid the use of external tools.

Table 2 summarizes this section.

Experiments

We have performed some experiments with AltaRica
and PEPA nets models of the motivating example.

A CTMC has been generated from the AltaRica
model. This generation is done in the following way.
First, the AltaRica model is flattened into a unique
GTS.3,21 Second, the corresponding reachability graph
is generated. Indeed, the semantics of a GTS is a
Kripke structure (a reachability graph) with nodes
defined by variable assignments (i.e. variables and their
values) and edges defined by transitions and labeled by
events. If the delays associated with the events are
exponentially distributed, then the reachability graph
can be interpreted as a CTMC. In the case when the
graph contains immediate transitions (delays associated
with labeling events are equal to 0), they are just col-
lapsed using the fact that an exponential delay with rate
l followed by an immediate transition of probability p
is equivalent to a transition with an exponential delay
of rate pl.

Similarly, we have generated a CTMC from the
PEPA nets model, using the PEPA workbench for
PEPA nets models.22 The semantic rules governing the
possible evolution of a state, give rise to a multi-labelled
transition system or derivation graph. The nodes of the
graph are the marking vectors and the activities (indi-
vidual, shared or firing activities) give the arcs of the
graph. This graph gives rise to a CTMC.

Table 2. Comparison of safety formalisms: AltaRica 3.0.

PEPA nets AltaRica
DataFlow

AltaRica 3.0

Event based s s s

Composition � s s

Hierarchical j s s

Remote interactions : s s

Mobility modeling s : �
Algorithm efficiency � � �

j not suitable : acceptable � good s very good.

PEPA: performance evaluation process algebra.

Kloul et al. 611

As it is shown in Table 3, the size of the generated
Markov chains grows exponentially with the number of
mobile products, and this in both cases. However, the
problem of exponential growth is more striking in the
case of PEPA nets models. Indeed for a model contain-
ing only one mobile product, the generated Markov
chain has almost one million states. For more than one
product, the PEPA workbench just could not generate
the associated Markov chain. This is owing to the fact
that flows cannot be represented implicitly with PEPA
nets; they have to be explicitly modeled using additional
components. In our model, four components, with
eight, five, eight and nine states, respectively, have been
added into the model, in order to take into account the
flows in the system. Moreover, unlike in AltaRica
model, we had to model explicitly the control center by
adding a place in the model, and consequently increas-
ing the model size.

The generation of Markov chains seems to be hardly
usable in case of such a complex model. It might be pro-
mising to generate an approximated Markov chain as
proposed in Brameret et al.23

The generated Markov chains can be assessed with
specific tools in order to calculate performance indica-
tors. Some results of system availability and reliability,
calculated for the AltaRica model, are given in Table 4.

It would be more interesting and efficient in our case
to perform stochastic simulations of models. Since the
model captures not only failures and repairs of compo-
nents, but also their functional behavior (e.g. pulling,
processing and loading of products), we need to focus
on short periods of time (e.g. 24 h against 10,000h in
traditional reliability studies) to calculate performance
indicators.

Conclusion

In this article, we showed that assessing the reliability
of systems with mobile components raises a number of

specific modeling issues. Most of these issues stand in
the modeling of interactions between components: these
interactions can take place only under certain condi-
tions, but many different components can exhibit the
same behavior.

We investigated the relationship between PEPA nets,
a performance modeling process algebra, and AltaRica,
an engineering-oriented modeling language for safety
analysis. These formalisms rely on very similar mathe-
matical foundations: they are based on finite state auto-
mata and they can be compiled into Markov chains.
Thus, we have sought to compare their expressiveness
at the modeling, rather than at the Markovian, level.
Our comparison revealed that AltaRica provides no
direct mechanisms for mobility modeling, in particular
it does not allow modeling location-dependent synchro-
nizations. Thus, we have enhanced AltaRica by incor-
porating this modeling construct and showed that it
offers increased flexibility to the modeler. On the other
hand, while the flow in a system can be naturally mod-
eled with AltaRica, PEPA nets provide no direct model-
ing mechanisms for it. The net structure prevents direct
modeling of remote interactions between components
located in different places.

Declaration of conflicting interests

The author declares that there is no conflict of interest.

Funding

This research received no specific grant from any fund-
ing agency in the public, commercial, or not-for-profit
sectors.

References

1. Gilmore S, Hillston J, Kloul L, et al. Pepa nets: a struc-

tured performance modelling formalism. Perform Eval

2003; 54(2): 79–104.
2. Boiteau M, Dutuit Y, Rauzy A, et al. The altarica data-

flow language in use: Assessment of production availabil-

ity of a multistates system. Rel Engng Sys Saf 2006; 91:

747–755.
3. Rauzy A. Guarded transition systems: a new states/

events formalism for reliability studies. Proc IMechE,

Part O: J Risk and Reliability 2008; 222(4): 495–505.
4. Hillston J. Tuning systems: from composition to perfor-

mance. Computer J 2005; pp. 385–400.

Table 3. Experiments.

Mobile products AltaRica PEPA nets

MC states number Running time MC states number Running time

1 155 0.01 sec. 982936 1159 sec.
2 2473 0.62 sec. — —
3 37379 257 sec. — —
4 — — — —

MC: Markov chain.

Table 4. Availability and reliability.

Mobile products Time Reliability Availability

1 24h 0.996656 0.999616
2 24h 0.992918 0.999156
3 24h 0.988702 0.998616

612 Proc IMechE Part O: J Risk and Reliability 227(6)

5. Jensen K. Coloured Petri nets, volume 1: basic concepts.
Springer-Verlag, 1992.

6. Bowles J and Kloul L. Synthesising pepa nets from iods
for performance analysis. In: Proceedings of the 1st

ACM SIGMETRICS/SIGSOFT joint WOSP/SIPEW

international conference on performance engineering,
San Jose, California, June 14–18, 2010. New York,
USA: ACM.

7. Andrews J and Moss T. Reliability and risk assessment.
John Wiley & Sons, 1993.

8. AjmoneMarsan M, Balbo G, Conte G, et al. Modelling

with generalized stochastic Petri nets. Wiley Series in Par-
allel Computing. John Wiley and Sons, 1994.

9. Adeline R, Cardoso J, Darfeuil P, et al. Toward a metho-
dology for the altarica modelling of multi-physical sys-
tems. In: Proceedings of european safety and reliability

conference, ESREL 2010, Rhodes (Greece), September

5–9, 2010, ESRA.
10. Bieber P, Blanquart J-P, Durrieu G, et al. Integration of

formal fault analysis in assert: Case studies and lessons
learnt. In: Proceedings of 4th European congress embedded

real time software, ERTS 2008, Toulouse (France),
January 2008, 29 January– 1 February 2008. Sur-
esnes, France, Sia.

11. Rauzy A. BDD for Reliability Studies. In: Misra K (ed.)
Handbook of performability engineering. Elsevier, 2008,
pp.381–396.

12. Rauzy A. Anatomy of an efficient fault tree assessment
engine. In: Virolainen R (ed.) Proceedings of international
joint conference PSAM’11/ESREL’12, 25–29 June 2012,
USA,Curran Associated Inc.

13. Milner R. Communicating and mobile systems: The pi-cal-

culus. Cambridge University Press, 1999.
14. Gilmore S, Hillston J and Kloul L. Pepa nets. In: Calzar-

ossa M and Gelenbe E (eds) Performance tools and appli-

cations to networked systems. LNCS, Springer-Verlag,
2004, vol 2965, pp.311–335.

15. Gilmore S, Hillston J, Kloul L, et al. Software perfor-

mance modelling using pepa nets. In: Proceedings of the

4th ACM SIGSOFT international workshop on software

and performance (WOSP’04), Redwood City, California,

31 October–5 November 2004, New York, USA, ACM.
16. Donatelli S. Superposed generalised stochastic petri nets:

Definition and efficient solution. In: Silva M (ed.) Pro-

ceedings of 15th international conference on application

and theory of Petri nets, 20–24 June 1994, Springer-

Verlag.
17. Sanders W and Meyer J. Reduced base model construc-

tion methods for stochastic activity networks. IEEE J

Selected Areas in Comms 1991; 9(1): 25–36.
18. Valk R. Petri nets as token objects-an introduction to ele-

mentary object nets. In: Proceedings of the 19th interna-

tional conference on application and theory of Petri nets,

Lisbon, 22–26 June 1998, vol. 1420 of LNCS, pp.1–25.

Springer Verlag.
19. Hillston J. The nature of synchronisation. In: Herzog U

and Rettelbach M (eds) Proceedings of 2nd process alge-

bra and performance modelling workshop, 1994.
20. Arnold A, Griffault A, Point G, et al. The altarica lan-

guage and its semantics. Fundamenta Informaticae 2000;

34: 109–124.
21. Prosvirnova T and Rauzy A. Système de transitions gar-

dées : formalisme pivot de modélisation pour la sûreté de

fonctionnement. In: Barbet J (ed.) Actes du Congrès

Lambda-Mu 18, 15–18 October 2012. France, IMDR.
22. PEPA tools. Available at http://www.dcs.ed.ac.uk/pepa/

tools/. (Date of creation: 14/03/1999, Last modified: 01/

12/2010)
23. Brameret P, Rauzy A and Roussel J. Assessing the

dependability of systems with repairable and spare com-

ponents. In: Barbet J (ed.) Actes du Congrès Lambda-Mu

18, 15–18 October 2012. France, IMDR.

Kloul et al. 613

http://www.dcs.ed.ac.uk/pepa/tools/

