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a b s t r a c t 

In this article, we propose a new modeling methodology for production availability analyses. These analyses 

are typically carried out by means of flow network models and Monte-Carlo simulations. The design of flow 

network models is often delicate because the production of a unit may depend on the states of other units located 

downstream and upstream in the production line. 

We show here how to handle this problem by means of operators working on three flows: a capacity flow 

moving forward from source to target units, a demand flow moving backward from target units to source units, 

and finally a production flow moving forward from source to target units. The production depends on the demand 

which itself depends on the capacity. Models designed according to this scheme caneventually be seen either as 

flow networks or as an extension of (Dynamic) Fault Trees to production availability analyses. We present the 

AltaRica 3.0 library of modeling patterns we designed to represent the different operators. We report results of 

experiments we performed on models designed using this library. 

© 2017 Published by Elsevier Ltd. 
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. Introduction 

The production availability of a system is defined, according to ISO

0,815 standard [1] , as the ratio of the actual production of this system

o its planned production, or any other reference level, over a specified

eriod of time. Production assurance or production regularity has sim-

lar meaning [2–5] . Production availability analyses are typically car-

ied out in practice by means of flow network models and Monte-Carlo

imulations (see e.g. [6–8] ). One of the main difficulties of production

vailability modeling is that the actual production level of a unit may

epend not only on its internal state, but also on the production levels

and internal states) of units located downstream and upstream in the

roduction line. Such a situation induces circularities because the pro-

uction depends on the demand and vice-versa. In practice, this prob-

em is solved either by calculating production levels outside the model,

hich is obviously not a very sustainable solution, or by using ad-hoc

odeling gadgets, making models difficult to design, to understand and

o maintain. 

In this article, we propose a new modeling methodology to address

his issue. Namely, we introduce operators working on three flows: a

apacity flow moving forward from source to target units, a demand

ow moving backward from target units to source units, and finally a

roduction flow moving forward from source to target units. The pro-
∗ Corresponding author. 

E-mail addresses: Leila.Kloul@uvsq.fr (L. Kloul), Antoine.Rauzy@ntnu.no , antoine.rauzy@nt

ttp://dx.doi.org/10.1016/j.ress.2017.06.017 

eceived 29 March 2016; Received in revised form 24 April 2017; Accepted 12 June 2017 

vailable online 21 June 2017 

951-8320/© 2017 Published by Elsevier Ltd. 
uction depends on the demand which itself depends on the capacity.

odels designed according to this scheme can eventually be seen either

s flow networks or as an extension of (Dynamic) Fault Trees to produc-

ion availability analyses. For this reason, we call them Production Trees .

hey are made of two types of components: first, basic components,

.e. leaves of the hierarchical model, which represent production units;

econd, gates that compose behaviors and are used to represent behav-

ors of (sub-)systems. The numerical capacity/demand/production flow

cheme generalizes the Boolean availability/demand scheme introduced

n reference [9] to provide a sound semantics to both Dynamic Fault

rees [10] and Boolean Driven Markov Processes [11] . 

To support and test the above idea, we designed a library of AltaRica

.0 modeling patterns to represent basic components and gates. The high

evel modeling language AltaRica 3.0 (see e.g. [12–14] ) provides the two

asic features required to implement production trees: first, constructs

o represent states of components and changes of states under the occur-

ence of stochastic events such as failures and repairs as well as deter-

inistic events such as reconfigurations; Second, constructs to represent

ow propagation. The AltaRica classes of the Production Trees library can

e instantiated directly and adjusted for specific needs. This is the rea-

on why we prefer to call them modeling patterns (in the sense of design

atterns [15] ) rather than modeling components (see e.g. [14,16] for

iscussions about modeling patterns in AltaRica). 
nu.no (A. Rauzy). 
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Fig. 1. Simplified production plant. 

Table 1 

Reliability data for the case study. 

Units Capacity (%) Failure rate (per hour) Repair rate (per hour) 

HPS 55 8.91e-5 2.54e-3 

DEH 65 3.11e-5 3.95e-3 

CMP 52 3.50e-5 5.14e-3 

MPU 100 1.00e-6 1.00e-3 

 

a  

S  

t  

 

S  

t  

a  

t  

g  

m  

S

2

 

w  

t  

i

 

F  

t  

t  

C  

C  

g  

e  

c  

a  

i

 

d  

s  

f  

T

 

s  

E  

t  

p

 

i  

d  

u  

e  

o  

m  

s

3

 

a  

i  

[

3

 

A  

fi  

o

 

 

 

 

 

 

 

 

 

 

v  

w  

v  

c  

m

 

i  
The contribution of this paper is therefore twofold: first, it provides

 new methodological framework for production availability analyses.

econd, it presents an AltaRica library of modeling patterns dedicated

o production availability analyses and discusses its use on a case study.

The remainder of this article is organized as follows.

ection 2 presents the case study we shall use throughout the ar-

icle to illustrate the design of production trees. Section 3 recalls basics

bout guarded transition systems and AltaRica. Section 4 is the core of

he article: it introduces base modeling patterns of production trees and

ives their implementation in AltaRica. Section 5 proposes advanced

odeling patterns. Section 6 presents experimental results. Finally,

ection 7 concludes the article. 

. Case study 

As an illustrative example for our presentation of production trees,

e shall use a simple case study taken from Kawauchi and Rausand ’s ar-

icle [4] . This test case is much too simple to be realistic, but its purpose

s primarily to support the discussion. 

The system is a production facility consisting of eight units (see

ig. 1 ). Gas separated from the well fluid at upstream side is fed to

he facility, treated through separators ( 𝐻𝑃 𝑆 − 𝐴, 𝐵, 𝐶) and dehydra-

ors ( 𝐷𝐸𝐻 − 𝐴, 𝐵), and led to compressors ( 𝐶𝑀𝑃 − 𝐴, 𝐵). The Make-Up

ompressor (MUP) is a spare unit installed to enable both compressors

MP-A and CMP-B to discharge gas with full flow rate even if some of

as treatment units (HPS or DEH) are failed. The MUP is assumed to be

quipped with its own gas treatment units. The maximum production

apacity of units is provided in Fig. 1 . As only two out of the three sep-

rators are necessary to reach a full production The separator HPS-C is

n cold redundancy. 

Separators, dehydrators and compressors can fail and be repaired in-

ependently with known failure and repair rates. The make-up compres-

or has a probability of failure (for the period of time it used) obtained

rom operation log. Reliability data for the different units are given in

able 1 . 

Fig. 2 shows the functional breakdown of the simplified plant. We

hall use this decomposition to design our production availability model.

ach leaf of the tree is represented by a basic component and each in-
562 
ernal node by a gate. With that respect, the methodology to design

roduction trees is similar as the one for fault trees. 

Although this case study is easy to modularize, we shall consider it as

f it was not. We could have make the problem more complex by intro-

ucing dependencies between treatment units (e.g. common cause fail-

res, limited capacity of the repair crew, periodic inspections...). How-

ver, we preferred to keep the use case in its original form for the sake

f the clarity of the presentation. The forthcoming developments do not

ake any assumption about the independence of components and sub-

ystems. 

. AltaRica 

In this section, we give an overview of Guarded Transition Systems

nd the AltaRica modeling language upon which we built the model-

ng methodology we propose. For more details, we refer the reader to

12,14,17] . 

.1. Guarded transition systems 

Formally, a Guarded Transition System (GTS) is a quintuple ⟨V , E , T ,

 , 𝜄⟩ where V is a finite set of variables, E is a finite set of events, T is a

nite set of transitions, A is an assertion and 𝜄 is the initial assignment

f variables. 

• Each variable 𝑣 ∈ 𝑉 takes its value into a domain denoted by

𝑑𝑜𝑚𝑎𝑖𝑛 ( 𝑣 ) . Variables can be Boolean, integers, floating point num-

bers, members of finite sets of symbolic constants or anything con-

venient for the modeling purpose. 
• A variable assignment is a function from V to 

∏
𝑣 ∈𝑉 𝑑𝑜𝑚𝑎𝑖𝑛 ( 𝑣 ) . A

variable update is a function from 

∏
𝑣 ∈𝑉 𝑑𝑜𝑚𝑎𝑖𝑛 ( 𝑣 ) into itself, that is

a function that transforms a variable assignment into another one. 
• Each event e ∈ E is associated with a deterministic or stochastic de-

lay, as well as with a weight. 
• Each transition t ∈ T is a triple ⟨e , g , a ⟩ where e is an event in E , g is a

Boolean condition over the variables in V and a is an instruction over

the variables in V , that is a variable update. a is called the action of

the transition. We shall denote the transition ⟨e , g , a ⟩ by 𝑔 
𝑒 
←← ← ← ← → 𝑎 . 

• The assertion A is an instruction over the variables in V . 

Variables in V are separated into two groups: states variables whose

alues are modified only in the actions of transitions and flow variables

hose values are modified only by the assertion. The values of flow

ariables are fully determined by the values of states variables. The cal-

ulation of values of flow variables is achieved by means of a fixpoint

echanism. 

Let 𝜎 be a variable assignment and let 𝑡 ∶ 𝑔 
𝑒 
←← ← ← ← → 𝑎 be a transition which

s fireable in 𝜎, i.e. such that 𝑔( 𝜎) = 1 . Firing t updates 𝜎 into the assign-
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Fig. 2. A functional breakdown of the simplified production plant. 

Fig. 3. A partial view of the production facility fault tree. 
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ent 𝜌 = 𝐴 ( 𝑎 ( 𝜎)) , that is applying to 𝜎, first the update a (the action of

he transition) and then the update A (the global assertion). 

The semantics of a GTS is formally defined as the set of its possible

uns or executions. Each execution is a finite or infinite sequence of pairs

 d 0 , 𝜎0 ), ...,( d i , 𝜎i ), ...where the d i ’s are dates such that 0 = 𝑑 0 ≤ 𝑑 1 ≤

 2 … , and the 𝜎i ’s are states such that 𝜎0 = 𝜄 and 𝜎𝑖 +1 = 𝜌 = 𝐴 ( 𝑎 ( 𝜎𝑖 )) . Each

air is obtained from the previous one by firing a (fireable) transition.

ransitions are scheduled according to the delays associated with their

vent. Additional rules are applied, using weights, to select the transition

o be fired when two or more transitions are scheduled at the same date.

The semantics of GTS is actually similar to the one of Generalized

tochastic Petri Nets [18] . GTS is however much more powerful: tran-

itions do not need to be Markovian, states, pre- and post-conditions of

ransitions are also more general than those of Petri nets (and even Petri

ets with assertions and predicates [19] ). The fixpoint semantics of GTS

akes also possible to handle looped systems while keeping an excellent

lgorithmic efficiency [20] . 

As an illustration, consider the small fault tree pictured in Fig. 3 .

his is a partial view of the fault tree modeling the production facility

n Fig. 1 . 

A GTS that encodes this fault tree, written in AltaRica 3.0, is given

ig. 4 . It involves: three Boolean state variables SD , CMPA and CMPB (in-

roduced by the keyword init ) to represent the states of the basic com-

onents; two Boolean flow variables CMP and Plant (introduced by

he keyword reset ) to represent flows going out of the corresponding

ates; three events failureSD , failureCMPA and failureCMPB
o represent the failures of the basic components. The delays of these

vents are exponentially distributed. The corresponding transitions turn

tate variables from false to true . Finally, the assertion is made of two

quations defining each of the flow variables. 
563 
All the executions of this GTS are indeed finite because the compo-

ents are not repairable. 

.2. Structural constructs 

Guarded Transitions Systems provide a very powerful mathematical

ramework but can hardly be used directly to describe complex systems.

heir flat structure makes models very hard to design and even harder

o maintain. AltaRica provides thus a whole set of constructs to struc-

ure models. Models are built typically by instantiating and adjusting

omponents described in libraries of reusable components and patterns.

AltaRica 3.0 implements the so-called prototype-oriented paradigm

o describe structures [21] . It is actually the combination of GTS with

2ML, a domain specific language dedicated to the description of struc-

ures [14,22,23] . 

For the purpose of the present study, the idea is to design a library

f modeling patterns to represent basic events and gates. Fig. 5 pro-

ides an example of a possible AltaRica code for basic non repairable

omponents. Such a component has a given capacity set by default to

00, no matter the unit. It produces at its capacity if it is working (not

ailed) and 0 otherwise. Reusable modeling components are described

s classes using keyword class . 
We can similarly define classes for series (and) gates and parallel

or) gates (see Section 4 ). Then, basic components and gates are assem-

led (and connected) as illustrated in Fig. 6 . The parameters of compo-

ents can be changed while instantiating them. The hierarchical model

f Fig. 6 is automatically flattened into a GTS by the AltaRica compiler

rior applying assessment tools (such as the stochastic simulator). This

peration is nearly linear in the size of the model. 

.3. Graphical representations 

Both guarded transition systems and hierarchical models can be

raphically represented. For instance, Fig. 7 and Fig. 2 are graphical

epresentations of the guarded transition system in Fig. 5 and the hier-

rchical model of the whole plant, respectively. These graphical repre-

entations call for several remarks of general scope and interest. 

First, graphical representations are of a great help as a communica-

ion means between stakeholders. We use them as much as possible to

iscuss about AltaRica models. 

Second, it is worth standardizing graphical representations in order

o avoid as much as possible ambiguities. Graphical notations such as

ysML [24] are nothing but a standardization of a number of graphics.

he graphical representations presented in Fig. 7 and Fig. 2 are in this

ense standard for AltaRica. 
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Fig. 4. A GTS for the fault tree in Fig. 3 . 

Fig. 5. A class for basic non-repairable components. 
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Third, graphics are a communication means, and as a such, they

hould be kept simple. As soon as models get complex enough, and they

uickly get, no graphics can fully represent them. Models of complex

ystems are necessarily complex. Therefore, graphics cannot contain all

he information. Moreover, they are useful because they do not contain

ll the information. In a word, it is of primary methodological impor-

ance not to confuse the model and its graphical representation(s). 

Fourth, as sizes and positions of graphical elements are not relevant,

ut from an aesthetic point of view, it is better, when possible, to gen-

rate graphical representation automatically from the model. Unfortu-

ately, no universal algorithm exists to size and position graphical el-
Fig. 6. A hierarchical mo

564 
ments aesthetically even for very simple graphical notations such as

lock diagrams. Graphical representations have thus to be persistent

hich is a source of incoherence between the model and its representa-

ion(s). 

Fifth, hierarchy of components can be represented in (at least) two

ays: by means of nested boxes, like in (hierarchical) flow diagrams, or

y means of tree like representations as illustrated Fig. 2 . Eventually,

hese two types of representations are equivalent (like Reliability Block

iagrams and Fault Trees). The choice of one type rather than the other

epends on which aspect one wants to emphasize. It is to a large extent

 matter of taste. When graphical representations can be automatically

enerated from the model, it is possible to switch at will from one to the

ther. This another reason not to confuse the model and its graphical

epresentation(s). 

. Production trees 

.1. Flows in the hierarchical decomposition 

The production tree methodology assumes a hierarchical breakdown

f the system such as the one pictured Fig. 2 . Three types of flows are

irculating between the components of this hierarchical breakdown: a

apacity flow moving forward from source to target units, a demand

ow moving backward from target units to source units, and finally a

roduction flow moving forward from source to target units. The pro-

uction depends on the demand which itself depends on the capacity.

ig. 8 shows a hypothetical component with m parents and n children. 
del for a fault tree. 
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Fig. 7. Graphical representation of the GTS in Fig. 5 . 

Fig. 8. Flows circulating in and out a component. 
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Models designed according to this scheme are made of two types of

omponents: basic components and gates. The formers, which represent

roduction units, are the leaves of the hierarchical model. The latters ’

ompose behaviors and are used to represent behaviors of (sub-)systems.

.2. Modeling patterns 

In the following, we present the modeling patterns of the Production

rees library. We prefer the term pattern, in the sense of design patterns

15] , to the term reusable components because modeling elements pre-

ented here have sometime to be adjusted to the specifical needs of the

ystem under study. 

.2.1. Basic components 

Basic components represent production/treatment units. They play

 similar role as basic event in fault trees. There are several typical pat-

erns for basic components. We shall see in this section the base one.

ore advanced patterns will be presented in the next section. 

The base pattern represents a repairable component that can be ei-

her active or in standby. Using the hierarchical decomposition shown in

ig. 8 , this pattern involves a Boolean state variable failed and three

ow variables: outCapacity , inDemand and outProduction .
irst, the component exports its actual capacity, which is null if it is

ailed and its potential capacity otherwise. Second, the component re-

eives a demand which, in stabilized situations, should not exceed the

omponent capacity (there are intermediate situations however where

his can happen). Third, the component exports a production, which is

learly the minimum of its actual capacity and the demand. The com-

onent is considered in standby if the demand is null. The base pat-

ern presented here assumes that the component cannot fail when the

omponent is in standby. It is however easy to extend the pattern so to

epresent hot and warm redundancies. 
565 
This pattern can be used directly for all production units (HPS-x,

EH-y, CMP-z). It has to be adjusted for the MUP because it cannot be

epaired and has a failure probability rather than a failure rate. 

The AltaRica code of this pattern is given in Fig. 9 . 

.2.2. Combinatorial gates 

The second series of patterns involves two combinatorial gates ( min

nd plus ) and a splitter gate. The latter is a modeling element to split

he production. All these gates involve no event, and therefore no tran-

itions, only flow variables and assertions. 

The min -gate, denoted as ⊙, extends the and -gate of fault trees. It has

ne parent and any number of children. Its output capacity is minimum

f the output capacities of the children and of its intrinsic capacity. The

nput demand of the gate (coming from its parent) is propagated un-

hanged to its children. Finally, the output production of the gate is the

inimum of the output production of its children. In stabilized situa-

ions, the demand is always smaller than the capacity. Therefore the

roduction equals the demand. The min -gate pattern can be used for the

odes Plant and SDmain of the functional breakdown presented Fig. 2 . 

The plus -gate, denoted as ⊕, extends the or -gate. This extension is

lightly more difficult than the previous one. The output capacity of

he gate is the minimum of its intrinsic capacity and the sum of the

utput capacities of its children. Similarly to the min -gate, the input de-

and of the gate (coming from its parent) is propagated unchanged to

ts children. Finally, the output production of the gate is the sum of the

utput productions of its children. Except in the case where the output

apacity of the gate matches the sum of the output capacities of its chil-

ren, an allocation strategy is required to allocate the input demand to

he children. For instance, the demand can be allocated according to a

ro-rata of their capacities. Another choice is to allocate the maximum

roduction to the first child, then the maximum of the remainder to the

econd child and so on (priority policy). Other allocations policies are
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Fig. 9. A base pattern for repairable components. 

Fig. 10. The pattern for pro-rata plus -gate. 
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f course possible. As previously, in stabilized situations, the demand is

lways smaller than the capacity. Therefore the production equals the

emand. Fig. 10 shows the code for a binary plus -gate implementing the

ro-rata allocation policy. Nodes HPS, DEH and CMP of the functional

reakdown in Fig. 2 can be implemented according to this pattern. 

The composition of a main component (or subsystem) and a spare

omponent (or subsystem) can be represented to some extent with pri-

rity plus -gates. In this scheme, the main component produces at the

aximum of its actual capacity. The remainder of the demand, if any,

s allocated to the spare component. This pattern generalizes triggers of

DMP [11] or more exactly the scheme proposed in [9] to give them

 sound semantics. It can be used to model node SD of the functional

reakdown of Fig. 2 as we can assume that the MUP is used to achieve

 100% production in case of failure of the HPS-x and the DEH-y units.

This approach may however introduce a bias because it considers

hat the capacity of the whole system (main component plus spare com-

onent) is the sum of their individual capacities. To solve this problem

he solution consists in defining the intrinsic capacity of the gate as the

apacity of the main component when it is fully operational. In that way,

he input demand for the system never exceeds (in stabilized states) the

apacity of the system. 
566 
Note that min - and plus -gates strongly recall Simon ’s tropical alge-

ra (also called min-plus algebra) [25] . Notations ⊙ and ⊕ are inspired

rom this work. There is an important difference however, because in

roduction trees a basic unit or a gate can have more than one parent. 

Consider nodes HPSa and HPSb of the functional breakdown in

ig. 2 . The above pattern cannot be used, at least alone, to implement

hese nodes, because the HPS-C unit is a cold spare for both HPS-A and

PS-B. I.e. it can be substituted for either of HPS-A and HPS-B, but not

or both at the same time. The same production cannot be counted twice.

his problem does not arise in fault trees because of the idempotence of

oolean connectives ( 𝑓 ∨ 𝑓 = 𝑓 ∧ 𝑓 = 𝑓 for all f ). For production trees,

e have to introduce modeling elements to split the production of a

hild between its parents. For this reason we call them splitters. 

The situation is in some sense dual to the plus -gate. A splitter -gate,

enoted as ⊘, has one child and several parents. The input capacity of

he splitter is transmitted unchanged to its parents. The output demand

f the splitter is the sum of its input demands. The input production of

he splitter is split among its parents according to some policy that can

e a pro-rata policy, a priority policy or any other suitable policy. We

an use the priority splitter for the case study: node HPS-C is substituted

n priority to HPS-A. 



L. Kloul, A. Rauzy Reliability Engineering and System Safety 167 (2017) 561–571 

Fig. 11. Graphical representation of min -, plus -, and splitter -gates. 

Fig. 12. Tree-like representation of the model of the plant. 

Table 2 

Gates of the model. 

Element Type Policy Capacity Fanins 

Plant min -gate 100 SD, CMP 

SD plus -gate priority 100 SDMain, MUP 

SDMain min -gate 100 HPS, DMP 

HPS plus -gate pro-rata 100 HPAam, HPAbm 

HPSa plus -gate priority 55 HPS-A, SPLT(1st fanout) 

HPSb plus -gate priority 55 HPS-B, SPLT(2nd fanout) 

SPLT splitter -gate priority HPS-C 

DEH plus -gate pro-rata 100 DEH-A, DEH-B 

CMP plus -gate pro-rata 100 CMP-A, CMP-B 
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The necessary introduction of the splitter -gate denoted as explains in

urn why three flows (capacity, demand, production) are mandatory. 

Table 2 presents gates of the model in a tabular form. 

.3. Graphical representation 

Fig. 11 gives a possible graphical representation for min -, plus -, and

plitter -gates. 

The graphical representation for the whole model is obtained from

he functional decomposition of Fig. 2 by adding representations of

ates. The splitter -gates SPLT is not represented in the functional break-

own and must thus be added. The tree-like representation for the model

f the plant is given Fig. 12 . 

.4. Block diagrams 

Some analysts may prefer to represent the system by means a flow

etwork (block diagrams). In such diagram, the functional breakdown is

epresented by means of hierarchy of nested boxes. In our use case, the
567 
uter most box would represent the Plant and would have two nested

oxes in series SD and CMP. These two boxes would in turn contain

ested boxes (in series or in parallel) and so on. Intuitively, min -gates

nd plus -gates in a production trees correspond respectively to series and

arallel assemblies in block diagrams (and of course, basic components

n production trees correspond to basic blocks in block diagrams). 

The modeling patterns presented above require only minor adjust-

ents to describe block diagram representations. 

In block diagrams, basic blocks have an input. Therefore, we need

o add three flow variables to our pattern for basic components, namely

n inCapacity , an outDemand and an inProduction . The as-

ertion is modified accordingly: 

assertion 
outCapacity : = if failed then 0 else min (inCapacity, 

apacity); 
outDemand: = inDemand; 
outProduction: = min (outCapacity, 

nProduction); 
To represent basic blocks with no input, it suffices to set

nCapacity to the reference value (100 in our case), and

nProduction to outDemand . 
Now, let consider the series assembly of two (non necessarily ba-

ic) blocks A and B . The outCapacity of A is thus plugged on

he inCapacity of B . Therefore, the outCapacity of the as-

embly, which is the outCapacity of B , is the minimum of the

utCapacity of A and the intrisic capacity of B , just as what is ob-

ained by means of a min -gate. A similar reasoning can be applied to

emand and production flows. 

For parallel assemblies, the situation is even simpler as plus -gates can

e used directly. 

Block diagram and tree-like representations are thus equivalent, up

o minor adjustments. The choice between the two is to a large extent a

atter of taste. 
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Fig. 13. Splitter deceiver. 
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.5. Discussion 

The patterns for basic components, combinatorial gates and splitters

re thus sufficient to address our case study, which is relatively simple.

o complete the model, it suffices to plug the output capacity of the top

ode, in our case node Plant, to its input demand. The overall production

f the system will be then the output production of the top node. 

We shall see in the next section more advanced patterns to handle

ore complex systems. But even these advanced patterns are not suffi-

ient to warranty an optimal production in all case. In fact, no model in

hich decisions about demand splitting are made locally can. 

To illustrate this point, consider the model pictured Fig. 13 . We could

all this arrangement of basic components and gates a “splitter deceiver ”.

Assume that both basic components A and B can produce 50, so that

he expected production is 100. Moreover, assume that gate S is a pro-

ata splitter and that both gates G and T are pro-rata plus -gates. In this

ase, the two output capacities of S (50 each) are added up in the gate G

hose output capacity is thus 100. Added up with the output capacity

f the basic component B , the total output capacity of T is thus wrongly

valuated at 150. Considering this over-capacity, the top gate T then al-
Fig. 14. Advanced pattern f

568 
ocates a demand 100/150, that is, about 66 to gate G and the remainder

34) to the basic component B . But the basic component cannot produce

ore than 50. So, eventually, the maximum production will be evalu-

ted to 84 while it is actually 100. Thus the gate G deceives the splitter

 . 

This is a quite artificial construct, but the reader can convince her-

elf or himself that whatever local policy is chosen, there is always an

rrangement of components and gates that deceives it. This problem has

owever limited practical consequences if the analyst takes care not to

esign models with this kind of splitter deceiving arrangement of com-

onents and gates. 

To conclude, note that there exist algorithms to calculate maximum

ows in a network like the well known Ford-Fulkerson method [26] .

owever, the application of this type of algorithms at each step of a

onte-Carlo simulation would be prohibitive in terms of calculation re-

ources. 

. Advanced patterns 

In this section, we shall review some advanced patterns for both basic

omponents and gates. 

.1. Basic components 

The pattern for basic components proposed in Section 4.2.1 is rather

imple. It can be extended in several ways. For instance, it is possible

o introduce degraded states in which the component is still producing,

ut not at its full capacity. 

In the pattern, it is assumed that the component starts producing

hen it receives an input demand. However, some components, like

iesel generators, have a small but non null probability to fail on de-

and. Thus states and transitions can be introduced to capture failures

n demand. 

Moreover, the repair of the component may not start immediately

fter its failure, which is the case when the repair crew is busy with

nother component. Here again states and transitions can be introduced

o capture non immediate repairs. 

Fig. 14 shows the graphical representation of an advanced pattern

or basic components. 

The component in Fig. 14 may be in one of the four states represented

y symbolic constants STANBY , WORKING , FAILED and REPAIR .
or basic components. 
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Fig. 15. A gate implementing a round-robin controller. 
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tochastic transitions are pictured with plain arrows. Immediate tran-

ition, that is transitions with a null delay, is represented with dashed

rrows. 

Transitions may be conditioned not only by the value of the state

ariable s , but also by the value of the flow variable inDemand . These

onditions are represented by prefixing the event with a transition with

he condition followed by a question mark. 

Transitions failureOnDemand and turnOn have the same

uard. The weight of the former is 𝛾 (the probability of failure on de-

and) while the weight of the later is 1 − 𝛾. 

The transition that starts the repair is an immediate transition. It

ay be however synchronized with a transition of the GTS representing
 a  

569 
he repair crew so that the repair starts only when there is a repair crew

vailable. Synchronizations are a very powerful mechanism (in addition

o flow variables) to represent interactions between components. They

an be used also to represent common cause failures (see e.g. [17] ). 

.2. Switches 

The advanced pattern proposed in the previous section introduces a

orm of control in the model. Changes of states, typically from STANDBY
o WORKING and vice-versa, and from FAILED to REPAIR are control

ctions, that is the decisions are not made by the component itself, but
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Table 3 

Values of observers for a mission time of 10 years (87600 

hours). 

Observers Mean Standard deviation 

Plant.outProduction 99.3034 5.38 

HPS.outProduction 99.3026 5.10 

DEH.outProduction 99.3516 4.89 

CMP.outProduction 99.3523 5.56 

HPSC.outProduction 3.1915 12.22 

MUP.outProduction 0.6477 4.89 
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y an automated controller or a human operator, even though this con-

roller may not be explicitly modeled. 

Introducing control aspects into safety (and production availability)

odels gets mandatory because software plays an increasing role in all

ypes of industrial systems, as advocated for instance in [27] . 

Control actions may take place not only at component level, but also

t system and subsystems levels. For instance, in the case study, the

peration policy may consist in switching alternately between the high

ressure separators to treat the incoming gas (rather than to have HPS-

 as a cold spare). The idea is thus to implement a round-robin 𝐴𝐵 →
𝐶 → 𝐵𝐶 → 𝐴𝐵 … with a change every time period 𝜏. 

The corresponding controller can be represented in the production

rees framework by introducing a dedicated gate. This gate will embed

ome behavior, conversely to purely combinatorial gates we have seen

o far. A possible implementation of this gate is given Fig. 15 . Note that,

or the sake of the brevity, changes of modes due to failures of active

eparators have not been included. 

.3. Multi-flow 

In oil and gas production systems, the flow is a combination of oil,

as and water. Units like separators of our illustrative example are pre-

isely in charge of separating a mix of oil, gas and water. It is quite

asy to accommodate our modeling patterns to handle flows of dif-

erent physical nature. It suffices basically to create as many capac-

ty/demand/production flow variables as there are different physical

ows. Constraints can be added in assertions to ensure that the propor-

ion of each physical flow corresponds to the reality. 

. Experimental results 

We assessed the production tree model of the use case with the Al-

aRica 3.0 stochastic simulator (see [28] for a description of this tool).

his simulator works by defining observers, that is quantities on which

tatistics are made. For the test case, we defined the following observers:

• The total production of the system. 
• The productions of subsystems HPS, DEH and CMP. 
• The production of units HPSC and MUP. 

Defining these observers is very easy in our framework, since it suf-

ces to look at outProduction of the corresponding gates (or basic units).

Numerical results are not very important here. Nevertheless, Table 3

rovides values of observers obtained using a Monte-Carlo simulation

f 10 6 histories (which is completed in about 1 minute on a desktop

omputer) for a mission time of 10 years (87600 hours). These results

re in line with those obtained analytically by Kawauchi and Rausand

4] . 

. Conclusion 

In this article, we proposed a new modeling methodology for pro-

uction availability analyses. This methodology aims at combining the

implicity of fault trees with the expressive power of guarded transition

ystems and AltaRica 3.0. 
570 
The approach relies on the library Production Trees of AltaRica mod-

ling patterns we developed. These patterns can be used as on-the-shelf,

eusable modeling components. They can also be easily adjusted to par-

icular needs. The library can be extended with new patterns, typically

o describe advanced control policies for plant reconfiguration strategies

r maintenance strategies. Incorporating descriptions of controllers into

afety (or production availability) models becomes mandatory because

ndustrial systems embed more and more softwares. 

We showed by means of experiments on a small test case that very

nteresting insights about the system can be obtained from production

rees, beyond the expected production of the system as a whole through-

ut a given period of time. 

Beyond this study, we strongly believe that guarded transition sys-

ems (and AltaRica 3.0) provide a very powerful mathematical and al-

orithmic framework to assess performance of systems subject to uncer-

ainties (such as hazards, failures...). Moreover, the modeling patterns

pproach makes it possible to design, on top of this framework, efficient

ngineering methodologies. 
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