Reliability Engineering and System Safety 140 (2015) 191-199

Contents lists available at ScienceDirect

Reliability Engineering and System Safety

journal homepage: www.elsevier.com/locate/ress

E RELIABILITY
ENGINEERING

& SYSTEM
SAFETY

Comparison of modeling formalisms for Safety Analyses:

SAML and AltaRica

@ CrossMark

Michael Lipaczewski®, Frank Ortmeier °, Tatiana Prosvirnova b Antoine Rauzy®,

Simon Struck*?

2 Otto-von-Guericke University Magdeburg, Computer Systems in Engineering, Magdeburg, Germany

P LIX - Ecole Polytechnique, route de Saclay, 91128 Palaiseau cedex, France

ARTICLE INFO ABSTRACT

Article history:

Received 18 November 2013
Received in revised form

1 August 2014

Accepted 28 March 2015
Available online 8 April 2015

Keywords:

Model-Based Safety Analysis
SAML

AltaRica

Many states/transitions formalisms have been proposed in the literature to perform Safety Analyses. In
this paper we compare two of them: SAML and AltaRica. These formalisms have been developed by
different communities. Their “look-and-feel” are thus quite different. Yet, their underlying mathematical
foundations are very similar: both of them rely on state automata. It is therefore of interest to study their
ability to assess the reliability of systems, their respective advantages and drawbacks and to seek for
opportunities of a cross fertilization.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Model based approach for safety analysis is gradually wining the
trust of safety engineers but is still a wide domain of research.
“Traditional” risk modeling formalisms, such as Fault Trees (FT) [1],
Markov Processes, and Generalized Stochastic Petri Nets (GSPN) [2]
are well known and widely used by safety engineers; and efficient
algorithms and tools are available to study these models. However,
despite of their qualities, these formalisms share a major drawback:
models designed with these formalisms are far from the functional
architecture of the system under study. As a consequence, models are
hard to design and to maintain throughout the life cycle of systems. A
small change in the specifications may require a complete revisit of
the safety models, which is both resource consuming and error prone.
The high-level modeling languages AltaRica [3,4] and SAML [5] have
been created to tackle this problem.

SAML was designed as a tool independent formal system specifi-
cation and modeling language [5]. A SAML model is expressed in
terms of finite stochastic state automata. A model may consists of
more than one automata, which are all executed in discrete time with
parallel composition. Besides technical systems with deterministic
behavior SAML may also denote failure models with stochastic
behavior and system environments which often have non-
deterministic behavior. Due to the combination of stochastic and

* Corresponding author.
E-mail addresses: frank.ortmeier@ovgu.de (F. Ortmeier),
prosvirnova@lix.polytechnique.fr (T. Prosvirnova),
rauzy@lix.polytechnique.fr (A. Rauzy), simon.struck@ovgu.de (S. Struck).

http://dx.doi.org/10.1016/j.ress.2015.03.038
0951-8320/© 2015 Elsevier Ltd. All rights reserved.

non-deterministic specification, the semantics of a SAML model is
defined as Markov decision process.

AltaRica [3,4] has been designed with engineering perspective.
AltaRica models are made of hierarchies of reusable components.
Graphical representations are associated to components, making
models visually very close to Process and Instrumentation Dia-
grams. AltaRica is used as internal representation language by
several Safety Analyses workshops: Cecilia OCAS (Dassault Avia-
tion), Simfia (EADS Apsys), Safety Designer (Dassault Systémes)
and AltaRica Studio (LaBRI). AltaRica is a formal modeling lan-
guage. Efficient algorithms have been developed to assess AltaRica
models: compilation to Fault Trees, stochastic simulation, model-
checking, generation of Markov chains, etc.

It is of interest to compare both formalisms in order to study
their ability to assess the reliability of systems, their respective
advantages and drawbacks and to seek for opportunities of a cross
fertilization. These two formalisms are compared according to the
following axes:

® the high-level structural constructs;
® the underlying finite state automata;
® the representation and interpretation of time.

To illustrate our comparison we use a case study: a power
supply system. We present some qualitative and quantitative
results obtained with both formalisms and the advantages and
drawbacks of both formalisms.

The remainder of this paper is organized as follows. Sections 2 and
3 introduce respectively SAML and AltaRica modeling languages.

192 M. Lipaczewski et al. / Reliability Engineering and System Safety 140 (2015) 191-199

Section 4 gives an overview of the related works. Section 5 describes a
case study, a power supply system that will be used to illustrate both
formalisms. Section 6 presents SAML model and AltaRica model of the
power supply system. Section 7 gives some qualitative and quantita-
tive results obtained with SAML and AltaRica models. Section 8
compares both formalisms and, finally, Section 9 concludes this paper.

2. SAML
2.1. The language

This section provides a brief introduction to SAML. An extensive
explanation of the semantics is out of scope of this paper. The
interested reader is referred to Giidemann et al. [5]. In addition we
evolved the language in the mean time. Thus we present the
model in the currently most up to date version.

Semantically, a SAML model denotes a Markov Decision Process
(MDP). This allows the modeling of time and value discrete
systems with deterministic, probabilistic and non-deterministic
aspects. For a formal definition of MDP see e.g. [6].

From a syntactical point of view SAML consists of a set of
components. Every component may contain additional components
and/or state automaton. Every automaton is defined by one ore more
state variables and a set of update rules. The state variables are
bounded integer variables. The update rule consists of an activation
condition in propositional logic and a set of states reachable if the
activation condition is true. The set of reachable states is specified as a
set of non-deterministic choices. Within each choice a probability
distribution may be denoted. The initial state of the automaton is
specified with the initial value of the state variables. Constants, formulas
and enums can be used to increase the readability of the model.
Formulas are named abbreviations for propositional logic expressions.
Enums are primarily used to label system states with handy names.

Multiple automata are combined in terms of synchronous
parallel composition. This means that all automata in the model
move exactly one step at every time step.

2.2. Tools and analysis

SAML was designed as tool-independent modeling language. Rather
than implementing dedicated SAML centric analysis tools we use
automatic semantic-preserving model transformations to transform
SAML models into the input language of state-of-the-art verification
engines. Integrating as much model checkers as possible allows the user
to choose the most appropriate one for the problem at hand. So far there
are transformations for NuSMV [7] and PRISM |[8]. These transformations
are semantic preserving and fully automatic [5]. With PRISM as an
intermediate converter it is also possible to use MRMC [9] and we are
currently busy with a converter to UPPAAL' Note that none of the
proposed analysis tools is limited to safety analysis.

We use NuSMV for symbolic model checking of SAML models.
Due to the qualitative nature of NuSMV, the transformation from
SAML into the NuSMV input language replaces all probability
distributions with appropriate non-deterministic choices. The
symbolic model checking approach allows the verification of SAML
models against arbitrary CTL [10] properties. This solves questions
like, “Is a certain (dangerous) state reachable” or “When ever X is
true in one state, Y is true in the next state”.

For qualitative safety analysis we use the deductive cause
consequence analysis (DCCA) [11] to compute all minimal cut-
sets (i.e. critical failure combinations). It is a structured approach
to search the space of failure combinations and uses model

12013-03-21: http://www.uppaal.org.

checking to test whether a hazardous state is reachable if a certain
failure combination occurs. The DCCA approach is optimized to use
only a minimal number of model-checking runs to exploit the
complete search space. In addition to the minimal set of critical
failure combinations, every combination is demonstrated by an
example (i.e. sequence of states) leading to the hazard.

In addition to NuSMVs qualitative analysis, PRISM is a probabilistic
model checker that exploits the stochastic information in the model.
It can perform quantitative analysis like “How likely is it in the worse-
case that a certain (dangerous) state is reached”. It can analyze any
kind of pCIL [6] formula. Rather than calculating sets of failure
combinations, the pDCCA calculates the overall hazard probability.
The calculation is based on the occurrence probabilities of all discrete
failures as well as the functional behavior of the model. In case of
non-deterministic model components, the result is either a worse-
case or best-case analysis.

3. AltaRica

This section gives an overview of AltaRica modeling language
and of the associated assessment tools.

3.1. The language

AltaRica is a high level modeling language dedicated to Safety
Analyses. The first version of AltaRica was developed in LaBRI in
1990s [12,3]. A few years later, a second (Data-Flow) version has
been developed to handle industrial scale models. A number of
assessment tools have been developed for AltaRica such as
compilers to Fault Trees, compilers to Markov chains, generators
of critical sequences, stochastic simulators and model-checkers.
Several Integrated Modeling and Simulation Environments use
AltaRica as their internal representation language. Successful
industrial applications have been reported [13,14].

The third version (AltaRica 3.0) is still under specification.
AltaRica 3.0 will be a major evolution of the language (and the
processing tools). This new version integrates notions of object-
oriented programming languages, such as inheritance and proto-
types. It improves the reusability of components and knowledge
capitalization. It adds also the ability to handle looped systems and
to define acausal components. The models presented in this paper
are written in AltaRica 3.0.

AltaRica is an event-centric language because the primary objec-
tive of Safety and Reliability studies is to detect and quantify the most
probable sequences of events (failures) leading the system from a
nominal state to a degraded state (accident). In AltaRica, the behavior
of components is described by means of Guarded Transition Systems
[15,16]. Guarded Transition Systems generalize widely used formal-
isms such as Reliability Block Diagrams, Markov chains and General-
ized Stochastic Petri nets. The state of a component is represented by
variables (so-called state variables) and their values. The changes of
state are possible when, and only when, an event occurs. The
occurrence of an event updates the values of variables. Deterministic
or stochastic delays can be associated with events in order to obtain
(stochastic) timed models. Components can be assembled into
hierarchies, their inputs and outputs can be connected and their
transitions can be synchronized. So, an AltaRica model can be seen as
a hierarchy of interconnected components that can be “flattened” into
a unique Guarded Transition System.

3.2. Analysis

The semantics of a Guarded Transition System is a Kripke structure
(a reachability graph) that can be interpreted as a Continuous-Time

M. Lipaczewski et al. / Reliability Engineering and System Safety 140 (2015) 191-199 193

Markov Chain, under the condition that delays associated with transi-
tions are exponentially distributed, or compiled into a Fault Tree.

A number of efficient assessment tools have been developed for
Data-Flow Guarded Transition Systems, such as compilers to Fault Trees
[17], compilers to Markov chains, generators of critical sequences of
events, stochastic and stepwise simulators and model-checkers.

All the underlying algorithms can be extended to a general case of
Guarded Transition Systems (without Data-Flow condition). Guarded
Transition Systems make it possible to handle systems with instant
loops and to define acausal components, i.e. components for which the
input and output flows are decided at run time (e.g. electrical systems).

Fault Tree compiler: Fault Trees are widely used to perform
Safety Analyses and some regulation authorities require to use
them to support the certification process. Since high-level model-
ing greatly improves the design, the sharing and the maintenance
of models, it is of interest to use them to automatically generate
Fault Trees. In many cases high-level models can be efficiently
compiled into Fault Trees. The generated Fault Tree can be then
assessed with calculation engines, such as XFTA [18], in order to
calculate minimal cutsets, probabilities of failures, importance
factors and other reliability indicators.

Markov chain generator: The compilation into Markov chains
requires all the transitions to be either with exponential delays or
immediate. Immediate transitions are just collapsed using the fact that
an exponential delay with rate A followed by an immediate transition
of probability p is equivalent to a transition with an exponential delay
of rate pA. The problem of such a compilation is indeed the combina-
torial explosion of the number of states and transitions.

Stepwise simulator: Stepwise simulator enables to perform an
interactive step by step simulation of the model. This interactive
tool can be very useful to debug models, to play different failure
scenarios, etc. The stepwise simulator can be coupled with a
graphical simulator as illustrated in [19]. Graphical simulation of
models can be used to perform virtual experiments on systems, via
models, helping to better understand the system behavior.

Stochastic simulator: Stochastic (Monte-Carlo) simulation is
used when other assessment methods fail. The principle is to
run many histories drawing at pseudo-random the delays of the
transitions and to make statistics on these histories. Two types of
observers can be defined to calculate reliability indicators: obser-
vers on formulas (e.g. the average number of times a formula takes
a given value) and observers on events (e.g. the average number of
times an event has been fired). The only limit of stochastic
simulation is the number of histories and the length of histories
that are necessary to stabilize the measures.

Generator of critical sequences of events: A critical sequence is a
sequence of events leading from the initial state to a critical state.
In some cases, the order of occurrences of events does matter and
thus the approximation consisting in extracting minimal cutsets
(through a compilation of the model into a Fault Tree) is not
suitable. In that case, minimal sequences can be extracted.

4. Related works

Many other high-level modeling languages for Safety Analyses
have been defined. Two approaches for (high-level) Model-Based
Safety Assessment can be found. The first one consists in creating
extensions of high-level modeling languages used in other domains.
The second approach consists in defining domain specific languages,
dedicated to Safety Analyses. In this section we will cite some of them.

In the first category, we can find [20] who added an Error
Model annex to AADL specifications, the modeling formalism for
embedded real-time systems.

In the same way the HiP-HOPS workbench [21] enables the
addition of reliability data to models imported from different

modeling tools: Matlab/SIMULINK, Eclipse-based UML tools, etc.,
and then to automatically generate Fault Trees, FMEA tables,
Temporal Fault Trees [22] and also to perform architecture
optimization [23] and SIL allocation [24].

Similarly, translations have been defined from specialized UML
or SysML models to Fault Trees or Petri nets (see e.g. [25] or [26]).
In [27], functional design phase, using SysML, is combined with
commonly used reliability techniques (i.e. FMEA and construction
of AltaRica Data-Flow models).

In the second category, we can find Figaro [28], developed by
EDF R&D. It is a textual modeling language dedicated to depend-
ability assessment of complex systems. It combines object-
orientation languages features, such as inheritance and first order
production rules (interaction and occurrence rules). It is used as a
description language to create knowledge bases for the workbench
KB3 [29] to automatically perform systems dependability assess-
ment: Monte-Carlo simulation, Markov Chain generation, quanti-
fication and generation of critical sequences, etc.

5. The case study

The case study comprises of a power supply system. We adopted
the case study from [30]. The model is depicted as block diagram
in Fig. 1. It features redundant supply lanes to avoid total system
failure. In normal mode, the energy is provided from the grid via the
first transformer (TR;) and the first switch (SW;). In case of a failure,
the switch SW; is closed and the energy is provided via the second
transformer (TR,). If the grid or the second lane fails, the diesel engine
(D) is started and the switch SWj is closed.

All components of the system may fail. The transformers are
modeled with a per time failure. All three switches are modeled
with an on-demand failure. This means that the switches can only
fail to close in the instant moment where they are requested to
close. Only the diesel engine is modeled with a failure rate and an
on-demand failure. The failure rates and on-demand failure
probabilities are denoted in Table 1. For all components, a repair
rate of 1071 /h is specified.

The three lanes are used according to their priority, where the
first lane (TR; and SW;) has the highest and the third lane (D and
SW3) has the least priority. This means that whenever a compo-
nent with a higher priority is repaired the corresponding lane is
used immediately after repairing.

As the case study is from the safety analysis domain, we
analyze the reachability of hazardous system states. A hazard in
this case is if the system fails to provide power to the Busbar.

6. Modeling the system
6.1. SAML model
Our SAML model consists of 13 modules. Eight of them are

dedicated to the error modes of the components. The transformers
have no internal state, so that their complete behavior is already

[7 —

| TR, |—| SW) |——| BusBar |- Out

N —

Fig. 1. Block diagram of the power supply system. The arcs denote the energy flow
and the blocks denote system components.

194 M. Lipaczewski et al. / Reliability Engineering and System Safety 140 (2015) 191-199

Table 1
Specification of the component failures.

Component Failure rate On-demand probability
Grid 10~*1/h -

TR 107*1/h -

TRy 10-*1/h -

SW, - 103

SW, - 1073

SWs - 103

D 10741/h 1072

covered by the failure modules. Four modules are reserved for the
state of the three switches (i.e. open or closed) and the diesel engine
(i.e. idle or running). The Busbar has no internal state, neither can it
fail. This leaves one remaining module, which we explain later on.
Besides the modules, our model heavily exploits formulas, denoting if
a component is demanded or if certain lanes are in fail state.
Constants are used for the failure and repair probabilities.

An extract of the complete SAML model is listed in Fig. 2. Note
that due to page limitations we listed only a minimal summary
that shows the principal of the model. The formulas state elemen-
tary propositions and are mainly used to increase the maintain-
ability and readability of the model. As there are many similar
propositions for the three lanes or redundant components only
some of them are listed in Fig. 2.

Following the formulas, Fig. 2 lists three modules: sw1, tra-
fol_err and swl_demand_err. These modules were chosen,
because they all three are characteristic for different types of
modules. The sw1 module represents functional behavior of the
system. It has two states (representing opened and closed). It
closes if is_I1_demand evaluates to true and if the switch does not
suffer from on-demand error (is_sw1_demand_fail).

The module trafo_err represents a repairable (transient) per-time
failure. It has two states which describe if the failure occurs or not. If
in the operational state, it turns to failure state with a probability of
f_trafol. Otherwise it stays in the operational state. The behavior in
the failed state is similar, but with a different probability.

The third module (swl_demand_err) covers an on-demand
failure automaton. This is slightly more complicated than the
per-time failure. This remains from the following situation. The
on-demand failure automaton is only allowed to change its state if
the corresponding component is demanded. At the same time the
component reacts on the demand. Due to parallel composition and
discrete time modeling the component in question and the failure
automaton change at exactly the same time. Thus the component
can only react on the changing of the failure automaton one step
after the demand. The solution is to move the failure automation
exactly once some time before it is required. This requires the
model to have a zeroed time step where the on-demand failure
modules are initialized. That is why the on-demand failure module
has three states (initial, failure and operational). A detailed
explanation of failure modeling in SAML is provided in [5]. A more
detailed discussion about the initial step can be found in [31].

To comply with the discrete time semantics of SAML we
assigned a time of 1 min to every step (At =1 min). This affects
the conversion from failure rates in the system specification to
per-step probabilities in the model.

The formula is_no_power denotes if the system fails to provide
power to the BusBar. However it is not sufficient to analyze
whether the system may reach such a state. Because SAML uses
a discrete timed semantics, an information needs some time to
propagate throw the component structure. For the presented case
study, the redundant power lanes can only react after the system
has failed. Thus a single powerless state is not considered a

component main

constant double f_trafol := 10E-12; // 1/min
constant double r_trafol := 6E-12; // 1/min
constant double f_swl_demand := 10E-12; // 1/min
constant double r_swl := 6E-12; // 1/min

[..]

formula is_l1_demand := !is_11_fail
formula is_swl_demand :=
(is_11_demand & is_swl_open);
formula is_trafol_fail := trafol_e = 1;
formula is_swl_demand_fail := swl_demand_e = 1;
formula is_11_fail :=
(is_grid_faillis_swil_open|is_trafol_fail);
formula is_no_power :=
(is_11_fail & is_12_fail & is_13_fail);
[..]

component swil
enum SW_STATE := [OPEN, CLOSE];
swi_s : SW_STATE init CLOSE; // OPEN, CLOSE

swl_s=0PEN & (!is_swl_demand | is_swl_demand_fail) ->
choice: (1:(swil_s’= OPEN));
swl_s=0PEN & is_swl_demand & !is_swl_demand_fail ->
choice: (1:(swl_s’= CLOSE));
swl_s=CLOSE & 'is_11_demand -> choice:(1:(swl_s’= OPEN));
swl_s=CLOSE & is_11_demand -> choice:(1:(swl_s’= CLOSE));
endcomponent

component trafol_err
enum ERR_STATE := [0K, FAIL];
trafol_e : ERR_STATE init OK; // 0K, FAIL

trafol_e=0K -> choice: (f_trafol: (trafol_e’=FAIL) +
(1-f_trafol): (trafol_e’=0K));
trafol_e=FAIL -> choice: (r_trafol: (trafol_e’=0K) +
(1-r_trafol): (trafol_e’=FAIL));
endcomponent

component swl_demand_err
enum DEMAND_STATE := [OK, ERR, INI];
swl_demand_e : DEMAND_STATE init INI; // OK, ERR, INIT

swl_demand_e=INI -> f_swl_demand: (s’=DE_E.ERR) +
(1-f_swl_demand) : (s’=DE_E.OK) ;
swl_demand_e=0K & !is_swl_demand ->
choice: (1:(swl_demand_e’=0));
swl_demand_e=0K & is_swl_demand ->
choice: (f_swl_demand: (swl_demand_e’=ERR) +
(1-f_swl_demand) : (swl_demand_e’=0K));
swl_demand_e=ERR -> choice:(r_swl:(swl_demand_e’=0K) +
(1-r_swl): (swl_demand_e’=ERR));
endcomponent

[..]

endcomponent

Fig. 2. Extract of the SAML model.

hazardous state. To compensate this effect, a last module was
introduced. This module counts the subsequent steps where the
system fails to provide power. A failure occurs whenever the
counter reaches two. The counter has the state variable obs_s.
Therefore the hazard is defined as H:=obs_s = 2.

6.2. AltaRica model

The power supply system is composed of 4 types of components:
a grid, a transformer, a switch and a diesel engine. As discussed in
Section 5, we shall consider the following failure modes:

® 3 grid and a transformer can only fail in operation (stochastic
exponentially distributed event with a failure rate A);

® 3 switch can fail on demand (with a probability y) or be turned
on successfully;

® a diesel engine can either fail in operation or on demand.

M. Lipaczewski et al. / Reliability Engineering and System Safety 140 (2015) 191-199 195

ldemanded

demanded ? failure (1)

input output

state = WORKING state = FAILED

output = false

output = input

repair ()

A. Repairable component

demanded

not demanded ? stop
e

7
)

output

input
state = OFF
— -
output = false

~. state = FAILED
output = false

repair (p)

B. On demand component

ldemanded

not demanded ? stop
e

/

l
state = OFF
—
output = false

/
demanded ? start (14) failure (1)

output

demanded ? failEfeQnDemand (y)
~

S state = FAILED
output = false

repair (p)

C. Spare component

Fig. 3. Patterns of Guarded Transition Systems.

domain SpareComponentState { ON, OFF, FAIL }

class SpareComponent
SpareComponentState state (init = OFF);
Boolean demanded (reset = false);
Boolean input (reset = false);
Boolean output (reset = false);
Boolean failed (reset = false);
event start (delay = 0, expectation = 1 - gamma);
event failureOnDemand (delay = O,
expectation = gamma);
event failure (delay = exponential(lambda));
event repair (delay = exponential(mu));
event stop (delay = 0);
parameter Real gamma = 10e-3;
parameter Real lambda = 10e-4;
parameter Real mu = 10e-1;
transition
start: state==0FF and demanded — state := O0ON;
failureOnDemand:state==0FF and demanded —

state := FAILED;

failure: state==0N — state := FAIL;

repair: state==FAIL — state := OFF;

stop: state==0N and not demanded — state := OFF;
assertion

output := if state==0N then input else false;

failed := (state==FAIL);
end

Fig. 4. The AltaRica code for the finite state automaton modeling a spare
component.

The behavior of these components can be represented by different
modeling patterns of Guarded Transition Systems, pictured in
Fig. 3. The AltaRica code corresponding to the finite state machine
of a spare component (representing a diesel engine) is given in
Fig. 4.

6.2.1. States

The internal state of the SpareComponent is represented by
means of the state variable state. state takes its values in the
domain SpareComponentState declared upfront. The initial
values of state variables are specified by means of the attribute
init.

6.2.2. Events

The state of the component changes under the occurrence of an
event. Events are introduced with the keyword event. A delay is
associated with each event by means of the attribute delay. Delays of
events failure and repair are random variables exponentially
distributed with respective rates 1ambda and mu. Events start and
failureOnDemand are instantaneous (their delay is 0). Both are
fireable when the component is OFF. start has the probability 1 -
gamma to be fired while failureonDemand has a probability gamma
to be fired in this state. This probability is given through the attribute
expectation. The expectation of the event e is used to determine
the probability that the transition labeled with e is fired in case of
several transitions are fireable at the same date. When transitions
labeled with eq,e,,...,e; are scheduled at the same date, the
probability p(e;) to fire the transition labeled with e; (1 <i<k) is
defined as follows:

expectation(e;)
31 < j < kEXpectation(e;)

p(e) =

6.2.3. Transitions

A transition is a triple (e, G, P), also denoted e : G— P, where e is
an event, G is a Boolean expression, so-called the guard (or the
pre-condition) of the transition, P is an instruction, so-called the
action (or the post-condition) of the transition. Transitions are
described in the clause transition. If the state of the component
is OFF, then two transitions are fireable: the transition labeled
with the event start and the transition labeled with the event
failureOnDemand. These transitions are deterministic and
instantaneous because they are associated with a delay 0. The
transition labeled by failureonDemand has the probability to be
fired gamma and the transition labeled by start has the prob-
ability to be fired 1-gamma. If the transition labeled by fail-
ureOnDemand is fired, then its action is executed: state is
switched to rFaAIL. In Fig. 3 instantaneous transitions are
marked with dashed lines. Transitions failure and repair
are timed and stochastic. They obey typically exponential
distributions. In Fig. 3 timed transitions are marked with
plain lines. If the state of the component is on and the delay
drawn for the transition failure is the shortest, then this
transition is fired.

6.2.4. Parameters

Parameters are constant values that come with the definition of
the AltaRica class. When a class is instantiated, their values may be
changed. In the model above, there are three parameters gamma,
lambda and mu that define respectively the probability of failure
on demand and the failure and repair rates.

6.2.5. Flow variables and assertions
Variables demanded, input, output are Boolean flow variables.
The variable demanded is used to implement the command, i.e. to tell

196 M. Lipaczewski et al. / Reliability Engineering and System Safety 140 (2015) 191-199

class PowerSupplySystem

RepairableComponent Grid, TR1, TR2;

SpareComponent D;

OnDemandComponent SWi(s.init = CLOSE);

OnDemandComponent SW2, SW3;

Boolean lanel_failed(reset = false);

Boolean lane2_ failed(reset false);

Boolean lane3_failed(reset = false);

observer Boolean failed = lanel_failed and
lane2_failed and lane3_failed;

assertion

lanel_failed := Grid.failed or TR1l.failed
or SWi.failed;

lane2_failed := Grid.failed or TR2.failed
or SW2.failed;

lane3_failed := D.failed or SW3.failed;

Grid.demanded := not lanel_failed or
not lane2_failed;

TR1.demanded := not lanel_failed;

SW1.demanded := TR1.demanded;

TR2.demanded := lanel_failed and
not lane2 failed;

SW2.demanded := TR2.demanded;

D.demanded := lanel_failed and lane2_failed
and not lane2 failed;

SW3.demanded := D.demanded;
Grid.input := true;
D.input := true;
TR1.input := Grid.output;
SWil.input := TR1l.output;
TR2.input := Grid.output;
SW2.input := TR2.output;
SW3.input := D.output;

end;

Fig. 5. The AltaRica code for the whole system.

Table 2
Hazard probability.

1h 10h 100 h 10000 h

1.00e -9 1.36e—6 2.24e-5 247e-3

when to turn on and off the component. The variables input and
output represent the flow circulating through the component, and in
this case it is the electrical power. From a syntactic viewpoint, flow
variables are introduced (and distinguished from state variables) by
means of the attribute reset. Conversely to state variables, that are
initialized at the beginning of a run and then modified through actions
of transitions, the value of flow variables are recalculated after each
transition firing. This recalculation is performed by means of asser-
tions. Assertions are instructions just as actions of transitions. The
difference stands in that actions of transitions assign state variables
only while assertions assign flow variables only. Moreover, each
component has a unique assertion that is applied after each transition
firing.

Flow variables and assertions are used to model information
flows circulating through a system. They may represent physical
connections between components, control commands, fluid circu-
lation, electric power, etc. They offer an easy and elegant way to
express dependencies on external factors.

The AltaRica code for the SspareComponent and for the other
patterns (OnDemandComponent and RepairableComponent)
are quite similar.

6.2.6. Composition

Now we can consider the model for the whole power supply
system. AltaRica 3.0 is an object-oriented modeling language.
Therefore, the AltaRica class that describes the power supply
system embeds an instance of the class SpareComponent describ-
ing the diesel engine D, three instances of the class OnDemand-
Component representing the switches swi, sw2, sw3, and three
instances of the class RepairableComponent describing the grid
Grid and the transformers TR1, TR2, as illustrated in Fig. 5.

When the lane 1 is failed, the switch of the second lane sw2 is
attempted to turn on. If it fails then the diesel generator D is
attempted to start and the switch sw3 is attempted to turn on.
These rules are expressed in the assertion of the class
PowerSupplySystem.

6.2.7. Observers

Observers are like flow variables, except that they cannot be used
in transitions and assertions, i.e. they cannot be used to describe the
behavior of a system. Rather, as their name indicates, they are
quantities to be observed. They can be used or not by the assessment
tools. Observers are updated after each transition firing.

In the AltaRica code of the class PowerSupplySystem we
declared an observer failed that detects if the system is in the
hazardous state (when all the lanes are failed and, therefore, the
system cannot supply power to the Busbar).

7. Analyzing the system
7.1. SAML

We performed a DCCA on the SAML model, which lead to the
following minimal cut-sets:

® |’y = {grid_e,sw3_demand_e}

® |, = {grid_e,diesel_demand_e}

® |3 = {grid_e,diesel_e}

® |, = {trafol_e,sw2_demand_e,sw3_demand_e}
® ['s = {trafol_e, trafo2_e, sw3_demand_e}

® [= {trafol_e, diesel_demand_e, sw2_demand_e}
® [, = {trafol_e, diesel_e, sw2_demand_e}

® ['g = {trafol_e, trafo2_e, diesel_demand_e}

® ['g = {trafol_e, trafo2_e, diesel_e}

In addition to DCCA we use PRISM to perform a probabilistic
deductive cause consequence analysis (pDCCA) [5]. To analyze the
overall hazard probability we wused the pCTL property
Prnax — o[trueU({ = nobss = 2] where n denotes the number of steps
to analyze. According to At=1min, 1h leads to n=60, 2 h to
n=600 and so forth. The results of the PRISM based analysis are
listed in Table 2.

7.2. AltaRica

In order to perform different types of analyses, the AltaRica
model given in Fig. 5 is first of all “flattened” into a unique
Guarded Transition System (GTS). For the obtained GTS it is
possible to generate a Reachability graph that can be explored in
order to compute reliability indicators. In this paper we focus on
two types of model analyses:

® the generation of critical sequences of events;

® the compilation into a Markov chain in order to compute the
system unreliability P[T(t], the probability that the system fails
(the property failed = = true becomes verified) before the time t.

M. Lipaczewski et al. / Reliability Engineering and System Safety 140 (2015) 191-199 197

The generated critical sequences are:

. G.failure SW3.start D.failureOnDemand

. G.failure SW3.start D.start, D.failure

. G.failure SW3.failureOnDemand

. TR1.failure SW2.start TR2.failure SW3.start D.failureOnDemand
. TR1.failure SW2.start TR2.failure SW3.start D.start D.failure

. TR1.failure SW2.start TR2.failure SW3.failureOnDemand

. TR1.failure SW2 failureOnDemand SW3.start D.failureOnDemand
. TR1.failure SW2.failureOnDemand SW3.start D.start D.failure

. TR1.failure SW2.failureOnDemand SW3.failureOnDemand

OO g WN -

The generated Markov graph contains 72 states and 248
transitions. The obtained results are summarized in Table 3.

8. Comparison and evaluation

To compare safety modeling formalisms we have established
several comparison criteria. They are discussed below. An over-
view of this comparison can be found in Table 4.

Event based: The goal of Safety Analyses is to determine the
most probable failure scenarios, i.e. sequences of events leading
from the nominal state to a failure/hazardous state. There are
potentially different types of events: stochastic, instantaneous,
timed deterministic, etc..

AltaRica 3.0 is an event based modeling language: it is possible
to explicitly name events and associate them to transitions. Events
can be stochastic (e.g. events failure and repair in the model Fig. 4)
and instantaneous (e.g. events failureOnDemand, start and stop in
the model Fig. 4).

In the sense of SAML, all continuous functions are sampled and
processed in discrete time steps. Though, the subsequent state of a
SAML model is solely based on the current state and the decision
of non-deterministic and probabilistic choices. Events that occur in
between two time steps are cumulatively processed when forming
the next state.

Composition: Models of systems should be obtained by composing
models of subsystems. States of the system should be given in a
implicit way to avoid the user to enumerate all of them and to allow
approximations, based on the most probable scenarios/states.

AltaRica 3.0 and SAML are both compositional and represent
implicitly state graphs of modeled systems. A SAML model is
composed of several components that are all executed in parallel.

Recently, templates have been added to SAML.: it allows us to create
component instances based on a pattern. They not only greatly
improve the reusability of models but allow the convenient modeling
of equal components. In AltaRica 3.0 each system component is
represented by a class; a system model is obtained by instantiating
previously defined classes, connecting their inputs and outputs and
synchronizing their events (see e.g. the model of the case study Fig. 5).
Unlike SAML, in AltaRica only one transition can be fired at a time.

Hierarchy: Models of systems should be obtained by composing
models of subsystems or different views of the system into
hierarchies.

AltaRica 3.0 integrates notions of object-oriented programming
languages such as inheritance and prototypes. It offers constructs
to structure models into hierarchies of reusable components. An
AltaRica 3.0 model can be seen as a hierarchy of interconnected
components (see e.g. the model of the case study Fig. 5).

Recently, the notion of nested component has been added to
SAML. A SAML model can be represented as a hierarchy of nested
components.

Remote interactions: It should be possible to describe easily
remote interactions between components, i.e. flows of matter or
information circulating through the system (without enumerating
them explicitly).

In AltaRica 3.0 remote interactions are represented by flow
variables and assertions. In the example Fig. 5 the assertion
calculates system flow variables. The principle is explained in
Section 6.2. The assertion is recalculated after each transition
firing. Remote interactions can be also expressed by synchroniza-
tions of events. Examples can be found in [32].

In SAML the remote interactions can be represented by means of
shared variables. In general, every state variable in SAML is globally
readable so the current state of one component is implicitly distrib-
uted to all others. To increase readability of the model, we use
formulas to assign names to relevant (sets of) states. For example, in
the model, given Fig. 2 the formulas are used for that purpose.

Graphical representation: Graphical representation of models has
its own interest. One should be able to represent graphical models, at
least partly, for communication and animation purposes.

It is not possible to have a unique graphical representation of
an AltaRica 3.0 model. At least three different graphical views can
be used to represent it:

1. Representations, like Process & Instrumentation Diagrams or
Block Diagrams (see Fig. 1), can be used to capture the
hierarchy, the connections between components and the cir-
culating flows of AltaRica 3.0 models.

Table 3
Unreliability. 2. State diagrams, like those given Fig. 3, can represent the
internal behavior of each AltaRica 3.0 class.
1h 10h 100h 10000 h 3. Thus events in AltaRica 3.0 can be synchronized, diagrams, like
2.06e—5 21le—4 212e—3 191e—1 UML sequence diagrams, can be used to represent
Syl‘lChI‘OI‘llZ&thl‘lS.
Table 4
Comparison of safety formalisms: SAML and AltaRica 3.0.
Comparison SAML AltaRica 3.0
criteria
Event based No Yes
Composition Templates Object-oriented
Hierarchy Nested components Object-oriented
Remote Shared variables Flow variables and assertion, synchronizations
interactions
Graphical State charts State, sequence and block diagrams
Assessment tools ~ Model-checking, probabilistic model-checking, stochastic Compilation to Fault Trees and Markov graphs, stochastic and stepwise
simulation simulation
Time Discrete Triggered by events

198 M. Lipaczewski et al. / Reliability Engineering and System Safety 140 (2015) 191-199

1-p_fails

p_fails

no

true
true

Fig. 6. Graphical representation of transient failure automaton.

Each of these graphical representations gives a partial view of an
AltaRica 3.0 model.

SAML naturally maps to state charts. An example for a transient
failure module is given in Fig. 6. The combination of non-
deterministic and probabilistic choices leads to a slightly more
extensive notation. Every probability distribution is denoted by
dashed arrows leaving the same black dot. Possible non-
deterministic choices can then be expressed by multiple arrows
with the same guard and leaving the same state.

Available assessment tools: Prototypes of a set of assessment
tools for the new version of AltaRica are currently developed. They
include a Fault Tree compiler, a Markov chain generator, a stepwise
and a stochastic simulators. These assessment tools will be
distributed under a free licence.

At the current state, there exist three assessment tools for
SAML. For one there are the NuSMV and Prism model checkers
(described in Section 2). In addition the VECS? [33] tool contains a
step by step simulator. Besides the existing tools, the framework is
designed in a flexible way, so that additional tools can be
integrated easily.

Interpretation of time: Time in AltaRica and SAML is interpreted
differently. SAML is synchronous. It uses a discrete time model. The
state of all automaton in the model is updated only at discrete time
steps. The successive state solely depends on the current state.

The time in AltaRica is triggered by events. It is an intermediate
model between discrete and continuous time. A delay is associated
with each event. It can be deterministic or stochastic and may
depend on the state. When the transition labeled with the event
gets fireable at time t, a delay d is calculated, and the transition is
actually fired at time t+d if it stays fireable from ¢ to t+d. The
semantics of AltaRica model is a Kripke structure (a reachability
graph) that can be interpreted as a continuous-time Markov chain,
under the condition that delays associated with transitions are
exponentially distributed.

9. Conclusion and outlook

In this paper we compared SAML and AltaRica. Both are formal
modeling languages for Model-Based Safety Analysis. On the
syntactical level the set of language constructs in SAML appeared
to be smaller than the one in AltaRica. On the one hand this
simplifies the models but on the other hand also makes it more
difficult to express large and/or complex systems.

On the semantic level the two languages chose fundamentally
different approaches. SAML uses a discrete time model with
equidistant time steps. AltaRica is based on continuous time with
discrete events. In practice this means that in SAML all automata
perform exactly one transition at the same time. In AltaRica only
one transition is fired at one time.

2 The tool was formerly named S3E.

In future work we will evaluate the conversion between
AltaRica and SAML. Even though not trivial, an automatic conver-
sion between the two languages extends their set of available
analysis tools. The main challenge for such a transformation is for
sure the different time-model in the two languages.

For SAML we are currently busy with the evaluation of a data-
flow based modeling approach like in AltaRica. The case-study we
used in this paper mostly consists of data-flow, which was rather
difficult to express in SAML. Nevertheless, the SAML language
should remain as simple as possible.

References

[1] Andrews J, Moss T. Reliability and risk assessment. John Wiley & Sons; 1993
[ISBN 0-582-09615-4].

[2] AjmoneMarsan M, Balbo G, Conte G, Donatelli S, Franceschinis G. Modelling
with generalized stochastic Petri Nets. Wiley series in parallel computing. John
Wiley and Sons; 1994.

[3] Arnold A, Griffault A, Point G, Rauzy A. The AltaRica language and its
semantics. Fundamenta Informaticae 2000;34:109-24.

[4] Boiteau M, Dutuit Y, Rauzy A, Signoret J-P. The AltaRica data-flow language in
use: assessment of production availability of a multistates system. Reliability
Engineering and System Safety 2006;91:747-55.

[5] Gidemann M, Ortmeier F. A framework for qualitative and quantitative
model-based safety analysis. In: Proceedings of the 12th high assurance
system engineering symposium (HASE 2010); 2010. p. 132-41.

[6] de Alfaro L, Faella M, Henzinger TA, Majumdar R, Stoelinga M. Model checking
discounted temporal properties. Theor Comput Sci 2005;345:139-70.

[7] Cimatti A, Clarke E, Giunchiglia E, Giunchiglia F, Pistore M, Roveri M, et al.

NuSMV version 2: an opensource tool for symbolic model checking. In:

Proceedings of the 14th international conference on computer aided verifica-

tion (CAV 2002). Lecture notes on computer science, vol. 2404. Springer;

Copenhagen, Denmark, 2002.

Kwiatkowska M, Norman G, Parker D. Probabilistic symbolic model checking

with PRISM: a hybrid approach. In: Proceedings of the 8th international

conference on tools and algorithms for the construction and analysis of
systems (TACAS 2002). Lecture notes on computer science, vol. 2280. Springer;

Grenoble, France, 2002.

Katoen J-P, Khattri M, Zapreev I. A Markov reward model checker. In:

Proceedings of the 2nd international conference on quantitative evaluation

of systems (QEST 2005). IEEE Computer Society; Torino, Italy, 2005.

[10] Clarke E, Grumberg O, Peled D. Model checking. MIT Press; 2000.

[11] Giidemann M, Ortmeier F, Reif W. Computing ordered minimal critical sets. In:
Schnieder E, Tarnai G, editors. Proceedings of the 7th symposium on formal
methods for automation and safety in railway and automotive systems
(FORMS/FORMAT 2008); 2008.

[12] Point G, Rauzy A. AltaRica: constraint automata as a description language.
Journal Européen des Systémes Automatisés 1999;33(8-9):1033-52.

[13] Bernard R, Aubert J-], Bieber P, Merlini C, Metge S. Experiments in model-
based safety analysis: flight controls, In: Proceedings of IFAC workshop on
dependable control of discrete systems. Cachan; 2007.

[14] Bernard R, Metge S, Pouzolz F, Bieber P, Griffault A, Zeitoun M. AltaRica
refinement for heterogeneous granularity model analysis. In: Actes du congrés
Lambda-Mu 16, Avignon; 2008.

[15] Rauzy A. Guarded transition systems: a new states/events formalism for
reliability studies. J Risk Reliab 2008;222(4):495-505.

[16] Prosvirnova T, Rauzy A. Guarded transition systems: pivot modelling formal-
ism for safety analysis. In: Barbet], editor. Actes du congrés Lambda-Mu
18; 2012.

[17] Rauzy A. Modes automata and their compilation into fault trees. Reliab Eng
Syst Saf 2002;78:1-12.

[18] Rauzy A. Anatomy of an efficient fault tree assessment engine. In: Virolainen R,
editor. Proceedings of international joint conference PSAM'11/ESREL'2012;
2012.

[19] Perrot B, Prosvirnova T, Rauzy A, d’lzarn J-PS, Schoening R. Expériences de
couplages de modéles AltaRica avec des interfaces métiers. In: Fadier E, editor.
Actes du congrés Lambda-Mu 17 (actes électroniques), IMdR; 2010.

[20] Feiler P, Rugina A. Dependability modeling with the architecture analysis and
design language (AADL). Technical report. Carnegie Mellon University; 2007.

[21] Pasquini A, Papadopoulos Y, McDermid]J. Hierarchically performed hazard
origin and propagation studies. In: Computer safety, reliability and security.
Lecture notes in computer Science, vol. 1698; 1999. p. 688.

[22] Walker M, Papadopoulos Y. Qualitative temporal analysis: towards a full imple-
mentation of the fault tree handbook. Control Eng Pract 2009;17:1115-25.

[23] Papadopoulos Y, Walker M, Parker D, Riide E, Hamann R, Uhlig, U., et al.
Engineering failure analysis and design optimisation with HiP-HOPS. In:
Fourth international conference on engineering failure analysis, part 1, vol.
18(2); 2011. p. 590-608.

[24] Papadopoulos Y, Walker M, Reiser M-O, Weber M, Chen D, Térngren M, et al.
Automatic allocation of safety integrity levels. In: Proceedings of the 1st
workshop on critical automotive applications: robustness and safety
(CARS'10). New York, USA: ACM; 2010. p. 7-10.

[8

[9

M. Lipaczewski et al. / Reliability Engineering and System Safety 140 (2015) 191-199 199

[25] Xiang], Yanoo K, Maeno Y, Tadano K. Automatic synthesis of static fault trees
from system models. In: Conference on secure software integration and
reliability improvement; 2011. p. 127-136.

[26] Bernardi S, Donatelli S, Merseguer]J. From UML sequence diagrams and
statecharts to analyzable petri net models. In: Proceedings of the third
international workshop on software on performance; 2002.

[27] David P, Idasiak V, Kratz F. Reliability study of complex physical systems using
SysML. Reliab Eng Syst Saf 2010:431-50.

[28] Bouissou M, Bouhadana H, Bannelier M, Villatte N. Knowledge modelling and
reliability processing: presentation of the figaro modelling language and
associated tools. In: Proceedings of Safecomp'91; 1991.

[29] Bouissou M. Automated dependability analysis of complex systems with the
KB3 workbench: the experience of EDF R&D. In: Proceedings of the interna-
tional conference on energy and environment; 2005.

[30] Bouissou M, Bon J-L. A new formalism that combines advantages of fault-trees and
Markov models: Boolean logic driven Markov processes. Reliab Eng Syst
Saf 2003;82(2):149-63. http://dx.doi.org/10.1016/S0951-8320(03)00143-1 URL
(http://www.sciencedirect.com/science/article/B6VAT-49DFH1M-1/2/
bd15510dc655e0bbc55f3e5758bdeb42).

[31] Gudemann M. Qualitative and quantitative formal model-based safety analysis
[Ph.D. thesis]. Otto-von-Guericke-Universitd Magdeburg, Germany; 2011. URL
(http://nbn-resolving.de/urn:nbn:de:gbv:ma9:1-385).

[32] Kloul L, Prosvirnova T, Rauzy A. Modeling systems with mobile components: a
comparison between AltaRica and PEPA nets.] Risk Reliab 2013;227(6):599-613.

[33] Lipaczewski M, Struck S, Ortmeier F, SAML goes eclipse-combining model-
based safety analysis and high-level editor support. In: Proceedings of the 2nd
international workshop on developing tools as plug-ins (TOPI). IEEE;Zurich,
Switzerland, 2012. p. 67-72.

