
Assessment of Redundant Systems

with Imperfect Coverage

by means of Binary Decision Diagrams

Albert F. Myers

Northrop Grumman Corporation

1840 Century Park East

Los Angeles, California 90067-2199

USA

Al.Myers@ngc.com

Antoine Rauzy

IML/CNRS,

163, avenue de Luminy,

13288 Marseille Cedex 09,

FRANCE

arauzy@iml.univ-mrs.fr

Abstract: In this article, we study the assessment of the reliability of redundant systems

with imperfect fault coverage. We term fault coverage the ability of a system to isolate

and correctly accommodate failures of redundant elements. For highly reliable systems,

such as avionic and space systems, fault coverage is in general imperfect and has a

significant impact on system reliability. We review here the different models of

imperfect fault coverage. We propose efficient algorithms to assess them separately (as

k-out-of-n selectors). We show how to implement these algorithms into a Binary

Decision Diagrams engine. Finally, we report experimental results on real life test cases

that show on the one hand the importance imperfect coverage and on the other hand the

efficiency of the proposed approach.

Keywords: Imperfect coverage of redundant systems, k-out-of-n systems, Binary

Decision Diagrams.

1. Introduction

Computer controlled systems used in life-critical applications often utilize redundancy to

meet the stringent levels of reliability required. An increasing interest in the development

of highly reliable systems has resulted in an extensive treatment of reliability models for

k–out–n systems in the literature. Only a much smaller portion of this literature,

however, addresses the modeling of imperfect fault coverage (IFC) for these redundant

systems [AM99, CAK02, ADM99, DDP95, Dug89, DT89, Mye06, Tri02]. The proper

operation of all redundant systems is clearly dependent on the system's ability to detect,

isolate and correctly accommodate failures of the redundant elements. The probability of

correctly accomplishing these tasks is termed coverage. For highly reliable systems, even

for very high values approaching unity, coverage has a significant effect on system

reliability. As a result, appropriate modeling of the effects of coverage is critical to the

design of these systems, particularly for those whose operation is life critical.

The redundancy management (RM) process of a redundant system is responsible for the

following tasks; (1) the detection of faults among the system's elements, (2) the isolation

of a fault to a particular element, and (3) the reconfiguration of the system in such a way

as to assure the system's proper operation subsequent to a redundant element failure. For

systems in which the RM tasks are accomplished under computer control, this process

can seldom, perhaps never, be done with perfect certainty. There are two main

techniques used as a primary basis for the implementation of a system's RM function; (1)

the RM tasks are accomplished using a diagnostic process that is associated with each of

the individual redundant elements, this typically takes advantage of a built in test

capability (BIT) incorporated within the redundant element, or (2) the RM function may

take advantage of some version of mid-value-select voting when there are at least 3

operational elements within the system's set of redundant elements of a given type.

Systems utilizing these two RM techniques require different approaches for the modeling

of system reliability. Those utilizing the first type of RM (BIT) are modeled using what

we term element level coverage (ELC) while the second RM approach (voting) are

modeled using a fault level coverage (FLC) model. For all IFC systems (whether ELC or

FLC) an "uncovered" failure results in system failure even though sufficient redundancy

may still exist.

In this article, we propose efficient table based algorithms for k-out-of-n:F systems

subject to IFC for both ELC and FLC systems. These algorithms are based on a recursive

decomposition inspired from those used for general k-out-of-n:F systems proposed in

[DR01]. We show that both algorithms have a O(n.k) time complexity. With such a low

complexity, virtually any real life system can be assessed within few seconds. The ELC

functions presented in this paper produce results identical to those computed using the

SEA algorithm [AM99]. Similarly, presented FLC functions produce the same results as

the Ral procedure presented in [Mye06]. In both cases however, the functions presented

here achieve a much better complexity.

Voters are in general embedded into broader systems whose failures are conveniently

modeled by means of fault trees. It is therefore of interest to be able to encode ELC and

FLC models by means of the usual fault tree gates. Although the recursive

decomposition we propose makes such an encoding possible, we adopt here a slightly

different approach. Namely, we propose to define new types of gates, one for each IFC

model. We show that the table based algorithms can be adapted to the construction of

Binary Decision Diagrams (BDD). Since BDD have proved to be the most efficient

technology to assess fault trees, we end up with a powerful tool to assess general systems

with IFC components.

The remainder of this article is organized as follows. Section 2 presents a taxonomy for

these classes of imperfect fault coverage systems. Section 3 proposes the table based

algorithms to assess these models. It reports also results of small experiments that show

the efficiency of these algorithms as well as the impact of the coverage on k-out-of-n:F

systems. Section 4 proposes a BDD based implementation of the models. Finally,

section 5 reports some results on a realistic test case.

2. Imperfect Fault Coverage Models

In this section, we shall consider the different IFC models, i.e. k-out-of-n:F systems using

ELC, FLC or OLC models. Recall that a k-out-of-n:F system is a system with n

redundant, not necessarily identical, components that fails when at least k out of the n

components have failed. The taxonomy presented hereafter is mainly borrowed to from

Myers work [Mye06].

2.1. ELC Systems

A ELC system is a k-out-of-n system where each component ei, i=1,…,n, is associated

with a coverage value ci (i.e. a probability of individual fault coverage). The system is

failed if either one of the ei’s is failed uncovered or if at least k of the ei’s are failed

(uncovered).

ELC is appropriate in the circumstance where the RM selection among the redundant

elements is made on the basis of a self–diagnostic capability of the individual elements,

i.e., the redundant elements have not only their primary output but also a status signal

indicating the health of the element. If ELC is used to model the reliability of a system

whose redundant elements utilize BIT then the product of the probability that the BIT

will correctly identify the failure of its associated element and the reliability of the BIT

system itself can be utilized as the coverage value for the associated element. The

achievable level of ELC will, in actual systems, depend on the time scale required by the

RM process. For systems in which the RM process can be run with a periodicity

measured on the order of several seconds or minutes (or longer) BIT reliability, and as a

result ELC coverage level, may be in excess of 99%, depending on the nature of the

element's BIT. However, for systems for which the RM task must be performed multiple

times per second, such as required for aircraft digital flight control systems, element BIT

generally cannot be done with a confidence greater than 90 to 99%. These differences in

BIT confidence are the result of the fact that exhaustive BIT is often not possible in very

short times, i.e., given enough time the BIT can test a greater fraction of its possible

failure modes. Systems utilizing RM architectures based on ELC are generally not

capable of meeting extremely stringent reliability requirements such as those required for

aircraft flight control systems. This is because the level of achievable coverage (generally

99% or less) severely limits the level of reliability achievable through the use of

redundancy.

2.2. FLC Systems

A FLC system is a k-out-of-n system that organizes a vote amongst components e1, e2…

en. The first failure has a probability c1 to be covered, the second one a probability c2, and

so on up to k-1 (the k-th failure will fail the system whether it is covered or not). Again,

the system is failed if either one of the ei’s is failed uncovered or if at least k of the ei’s

are failed (uncovered).

FLC is appropriate for modeling systems in which the fault detection and reconfiguration

RM tasks vary between initial and subsequent failures. For a system in which the fault

detection and reconfiguration logic is based on the comparison of the outputs, i.e., voting,

of the redundant elements are candidates for FLC modeling. A system with three or more

redundant elements can be designed to assure extremely high levels of coverage so long

as a mid-value-select (MVS) voting strategy can be applied. However, selection from

among the last two remaining elements, whose outputs do not agree by an amount in

excess of some predetermined fault detection threshold, cannot be done with the same

high level of coverage. Note that this lower level of coverage is not due to the inability of

detecting the fault but, rather, the ability of determining which of the two disagreeing

elements is the failed one. RM for this one-on-one case is typically accomplished by

using BIT (as done for ELC systems) along with other heuristics based on the nature of

the element. Thus for initial faults (those occurring when the redundant set still has 3 or

more elements of a given type) are subject to FLC very nearly unity, while, after the

system has failed down to a one-on-one configuration, the coverage will be no better than

that typically associated with ELC systems. For FLC systems, coverage for the initial

faults are very close to unity and only the one-on-one fault has a coverage level typical of

an ELC system, and, as a result, FLC systems can be designed to achieve much lower

levels of failure probability. For this reason most digital aircraft flight control systems

(typically designed to have a probability of failure on the order of 10
-7
to 10

-9
 per flight

hour) are designed as FLC systems.

2.3. OLC Systems

Since the coverage levels for initial faults in FLC systems can be very close to unity they

can frequently be modeled with sufficient accuracy by assuming that these initial

coverage values are in fact unity. This simplification can significantly reduce the

complexity of the system reliability calculations. A model using this approximation for

one–on–one level coverage is given the term OLC.

3. Table based Algorithms for ELC and FLC models

3.1. ELC Systems

Consider a k-out-of-n:F ELC system and the situation at mission time t. Let us denote by

pi i=1,…,n the probability that the i-th component fails between 0 and t. Let us denote by

ci i=1,…,n the probability that the failure of the i-th component is covered. Finally, let us

denote by ELC(k,n) the probability that the k-out-of-n:F ELC system is failed at t.

Now consider the n-th component. There are three possibilities.

• This component did not fail. In that case, the remainder of the components

worked as an ELC k-out-of-(n-1) system.

• This component failed covered. In that case, the remainder of the components

worked as an ELC (k-1)-out-of-(n-1) system.

• This component failed uncovered. In that case, the system failed.

So, we can write the following equations for ELC(k,n).

 ELC(k,n) = (1-pn).ELC(k,n-1) + pn.cn.ELC(k-1,n-1) + pn.(1-cn)

Terminal cases are the following.

 ELC(0,n) = 1 n>0

 ELC(k,0) = 0 k>0

It is easy to derive an algorithm from the above recursive equation. However, one can

verify that this algorithm has a complexity in

Ο ∑

=

k

i i

n

1

, which is indeed unacceptable

for large values of n (and k). Fortunately, it is possible to memorize intermediate results,

similarly to what proposed by Dutuit and Rauzy in reference [DR01]. The idea is to use a

table P to store the probability that 0, 1…, k-1 failed components. A loop iterates over

the n components and the probability of failure is accumulated into a variable ELC. So,

at the i-th step, we consider separately the cases where 0, 1, 2…, k components amongst

the i-1 first components are failed. The algorithm is given Figure 1. It is easy to verify

that the complexity of this algorithm is in O(n.k).

3.2. FLC Systems

The recursive principle that governs FLC systems is very similar to equation (1). Let us

define now cj (j=1,…,n) has the conditional probability that at least j components are

failed covered given that at least j components are failed and at least j-1 components are

failed covered.

To make things a bit more concrete, consider a 2-out-of-4:F system. Consider the

configuration C in which component 1 and 3 are failed and 2 and 4 are working at time t.

The intrinsic probability of this configuration is as follows.

 p(C) = p1.(1-p2).p3.(1-p4)

Now, we have the following case study:

• The probability that neither component 1 nor component 3 is covered is (1-c1).

• The probability that exactly one of these two components is covered is c1.(1-c2)

• Finally, the probability that both components are covered is c1.c2.

So, the probability that the system is in configuration C and is working is as follows.

 p(C and working) = p(C).c1.c2

More generally, the probability that the system works in a configuration C where m

components are failed is as follows.

 p(C and working) =

 p(C) .Πi=1,…,m ci if m < k

 0 otherwise

Let FLC(k,n,f) denote the conditional probability that the k-out-of-n:F system is failed at

time t, given that f other components (not in the n components) are failed covered. So,

FLC(k,n,0) is the probability that the k-out-of-n:F system with components 1,…, n is

failed at time t.

 FLC(k,n,f) = (1–pn).FLC(k,n-1,f+1) + pn.cf+1.FLC(k-1,n-1,f+1) + pn.(1-cf+1)

Terminal cases are the same as previously, namely the following.

 FLC(0,n,f) = 1 n>0

 FLC(k,0,f) = 0 k>0

The corresponding table based algorithm is given Figure 2. Its complexity is also in

O(n.k). Note that the variable FLC has now to be updated for each number of already

failed components.

The algorithm given Figure 2 can be used to compute OLC systems. Alternatively, it can

be specialized for the case where all the cj but ck-1 are set to 1.

Note that it is possible to improve slightly the table base algorithms for both ELC and

FLC by remarking that the internal loop should start at min(i,k-1) and end up at max(1,n-

i), where i is the index of the external loop, in order to avoid useless computations. This

does not change however the complexity of the algorithm.

3.3. Experiments

With the two algorithms given Figure 1 and Figure 2, we made two experiments: a first

one to study the comparative efficiencies of recursive and table based algorithms and a

second one to study the importance of coverage.

We computed the probabilities of failure of a k-out-of-4k:F system for different values of

k and for t=0 to t=50 with a 0.05 time step. Figure 3 shows the curves of running times

for both algorithms. This figure makes very clear the exponential blow up of the

recursive algorithm as well as the efficiency of the table based algorithm. With this latter

algorithm, virtually any realistic k-out-of-n:F ELC, FLC or OLC system can be assessed

within few seconds.

We considered then a 4-out-of-4:F system with identical components. We assumed that

each component has a failure rate of 10
-3
. Figure 4 gives the curve of unreliability of

such a system for the perfect coverage model (PFC), the ELC model with ci = 0.99 for all

the components, the FLC model with c1 = 0.999999975, c2 = 0.999999983 and c3 = 0.99

and finally the OLC model with c = 0.99 (i.e. the FLC model with c1 = 1.0 and c2 = 0.99).

The benefit of the use of a mid-value-select redundancy management (which is modeled

using FLC) is that the initial coverage values, c1 and c2 for this example, will have

coverage values very close to 1, while the n-1 coverage value, c3 in this case, would be

lower, i.e. 0.99. A mid-value-select vote and reconfiguration can be defeated if a second

like failure occurs within the time period subsequent to the failure and prior to the

completion of system reconfiguration, we designate this period the fault detection

window, w. If the mid-value-select vote is done at a 100hz and we use a fault detection

window, of 3 repetitions (w = 30 milliseconds), we can estimate the values for c1 and c2

as follows:

 c1 = exp(-(n-1)*0.001*w) = 0.999999975

 c2 = exp(-(n-2)*0.001*w) = 0.999999983

and

 c3 = 0.99 (same as for the ELC coverage).

With these values for FLC coverage, we can make a fair comparison with the ELC

results. Figure 4 shows clearly that the coverage cannot be ignored, even for very high

values of the coverage probability. The figure also shows that for mission times > 4, OLC

provides an excellent approximation to the more rigorous FLC result.

Note that it is not possible to simulate the impact of imperfect coverage by increasing the

failure rates of individual components. To illustrate that point, we considered the same 4-

out-of-4:F system under perfect coverage, but with failure rates set to 10-3, 2 10-3, 3 10-3,

4 10
-3
 and 5 10

-3
. The resulting curve is shown Figure 5. This figure shows clearly that

the shape of the curve of perfect and imperfect coverage models are by no means the

same.

4. Binary Decision Diagrams Implementation

Bryant’s Binary Decision Diagrams [Bry86], BDD for short, are now a well-known and

widely used technique [Bry92]. In this section, we give first an encoding of PFC and IFC

models by means of classical fault tree gates. Then, we recall briefly the basics of this

technique. Finally, we show how to use it to implement PFC, ELC, OLC and FLC

models.

4.1. Encoding PFC and IFC models into fault trees

Consider first a k-out-of-n:F PFC system. Assume that the failures of each component ei

are described by means of a (sub)-fault tree rooted by the gate (or the basic event) ei (for

the sake of the simplicity, we keep the same name for the component and the top event of

the corresponding fault tree). Note that fault trees rooted by the ei’s may share gates and

basic events. The first idea is to associate a basic event with each coverage parameter,

i.e. a basic event ci, i=1,..,n, is associated to the component ei in the case of ELC models,

a basic event ci, i=1,…,k-1, is associated to each failure level in the case of FLC models

and a unique basic event c is associated with the k-1-th failure coverage in the case of

OLC models. The recursive decomposition may be encoded by means of gates AND, OR

and NOT and the Boolean constants TRUE and FALSE. For instance, the formula

ELC(n,k) associated a k-out-of-n ELC system is defined recursively as follows.

 ELC(k,n) =

 (NOT(en) AND ELC(k,n-1))

 OR (en AND cn AND ELC(k-1,n-1))

 OR (en AND NOT(cn))

Terminal cases are the following.

 ELC(0,n) = TRUE n>0

 ELC(k,0) = FALSE k>0

The derivation of the formulae for PFC, FLC and OLC models follows the same line.

4.2. Binary Decision Diagrams

The Binary Decision Diagram of a formula is a compact encoding of the truth table of

this formula. From a BDD, it is possible to perform efficiently all of the probabilistic

quantifications (top event probability, importance factors…). The BDD representation is

based on the Shannon decomposition: Let F be a Boolean formula that depends on the

variable v, then

][.][. 01 ←+←= vFvvFvF

By choosing a total order over the variables and applying recursively the Shannon

decomposition, the truth table of any formula can be graphically represented as a binary

tree. The nodes are labelled with variables and have two out edges (a then-out edge,

pointing to the node that encodes F[v←1], and an else-out edge, pointing to the node that

encodes F[v←0]). The leaves are labelled with either 0 or 1. The value of the formula for

a given variable assignment is obtained by descending along the corresponding branch of

the tree. The Shannon tree for the formula F ab ac= + and the lexicographic order is

pictured Figure 7 (dashed lines represent else-out edges).

Indeed such a representation is very space consuming. It is however possible to shrink it

by means of the following two reduction rules.

• Isomorphic sub trees merging. Since two isomorphic sub trees encode the same

formula, at least one is useless.

• Useless nodes deletion. A node with two equal sons is useless since it is equivalent to

its son (FvFvF .. +=).

By applying these two rules as far as possible, one get the BDD associated with the

formula. A BDD is therefore a directed acyclic graph. It is unique, up to an isomorphism.

This process is illustrated on Figure 7.

Logical operations (and, or not) can be performed directly on BDD. In this way, the

Shannon tree is never built then shrunk. The BDD of a formula is obtained by composing

the BDD of its sub formulae. An efficient implementation of a BDD package is described

in reference [BRB90].

An important point is that the Shannon decomposition applies to probabilities as well.

The following equation holds.

])[()).((])[().()(011 ←−+←= vFpvpvFpvpFp

A linear time algorithm (in the size of the BDD) can be derived from the above equation

[Rau93].

4.3. Implementation of Imperfect Coverage by means of BDD

The BDD implementation of perfect and imperfect coverage models mimics basically the

algorithms described Figure 1 and Figure 2 using the Boolean decomposition of section

4.1. Disjunctions are substituted for sums and conjunctions are substituted for products.

As an illustration, the algorithm to compute the BDD of a FLC system is given Figure 8.

It is worth to notice that the algorithm given Figure 8 and the corresponding ones for

ELC and OLC models make it possible to embed ELC, OLC and FLC gates into any

BDD based fault tree assessment tool. These gates have the same status than usual AND,

OR, and K-OUT-OF-N gates. Therefore, not only the top event probability can be

evaluated, but also minimal cutsets [Rau01], importance factors [DR00] …

It is worth noting that, the classical approach for fault tree assessment, based on minimal

cutsets, may give slightly different results than the BDD approach (that gives exact

results). This is illustrated Figure 6 where the result of both approaches on a 3-out-of-6:F

ELC system are compared.

5. Assessment of a Digital Flight Control System

We created a BDD reliability model for the flight critical portion of a hypothetical

aircraft utilizing a quadruple redundant parallel-channel digital flight control system. The

principal elements of this system's RM are preformed by the flight control computers

using a mid-value-select voting logic to detect failures and to select from among the

system's redundant elements. Subsequent to a third failure of a given element type the

RM logic detects failures by observing that two remaining elements differ by an amount

greater than a predetermined fault detection threshold. Fault isolation for a third like

failure is accomplished by reference to the element BIT and using certain heuristic

reasonability tests. We use both FLC and OLC models to predict this system's probability

of failure. The estimated coverage levels for the various voted elements are summarized

in Table 1. The expected failure rates for each of the redundant element types are given in

Table 2 .

Figure 9 shows a functional block diagram for this hypothetical 4 engines transport

aircraft with a quadruple channel digital flight control system. This system has four

engines (ENGn), which provide power to the electrical generator/transformer rectifiers

(GENn) and hydraulic pumps (HYDn). Each of the GENn provide power to two

electrical buses (BUSn) which distribute direct current electrical power to each of the

electrically powered elements associated with its local channel. The flight control

computers (Cn) receive vehicle state information from two different sensor systems

associated with each channel, the air data system (SAn) and a strap-down inertial system

(SIn). Each axis of the pilot’s control wheel and rudder pedals has a quadruple set of

transducers, which provide pilot command data to the flight control computers. The pitch,

roll and yaw command transducers are designated, PPn, PRn and PYn respectively. The

Cn are interconnected via a cross-channel data link (CCDL), which allows the flight

control computers to send their local sensor data to each of the other computers, this

allows each of the Cn to "vote" sensor inputs. Each Cn then transmits a set of control

surface commands to its local actuation system computer, ACn. The ACn also have a

CCDL, allowing them to vote the inputs and their control surface commands. Each of the

ACn transmit the individual control surface commands to the actuation system

controlling each of the 8 flight control surfaces on the vehicle, these commands are

depicted in the figure as CHn.

Figure 10, provides a functional diagram for 1 of the 8 flight critical control surfaces

utilized by the vehicle. System operation requires all 8 of the control surfaces to be

operational. Each control surface utilizes two actuators, An. For the surface to be

operational at least 1-out-of-2 An must be operational. Each of the An can be supplied

hydraulic power from either of 2 hydraulic systems, Hn.

We designed a fault tree for this digital flight control system. The fault tree is made of 95

gates among which 15 are k-out-of-n:F IFC gates. We designed three versions of this

fault tree: one where the 15 gates are just k-out-of-n:F (PFC model), one with 15 FLC

gates and one with 15 OLC gates. The first tree involves 120 basic events, the second

one 186 basic events and the third one 143 basic events. The BDD for these three fault

trees are made respectively of 6796, 22778 and 12240 nodes. The number of minimal

cutsets (and their orders) of these three fault trees are given Table 3.

We computed the top event probability for mission times 0, 0.1, 0.2…, and 50 (total 501

points). The three curves are given Figure 11. This figure shows significant differences

between the PFC and the IFC models. It shows also that the OLC provides a very good

approximation of the full FLC model for mission times greater than 4. Note that there is

no significant difference between the unreliabilities computed from BDD and from MCS.

Running times to compute the BDD, the minimal cutsets and the unreliability curves

(from both BDD and MCS) are respectively 1.40 seconds, 4.42 seconds and 2.64 seconds

(on a desktop computer cadenced at 3.40GHz and running Windows XP). These running

times are quite good and show the efficiency of the approach we propose on a realistic

size test case.

6. Conclusion

In this article, we reviewed first the taxonomy of imperfect fault coverage (IFC) models

proposed by Myers in reference [Mye06]. We gave a formal definition of the tree models

ELC (Element Level Coverage), FLC (Function Level Coverage) and OLC (One-on-One

Level Coverage). These three models can be seen a three different types of k-out-of-n:F

systems.

Then, we derived, from a principle proposed by Dutuit and Rauzy in reference [DR01],

O(n.k) table based algorithms to compute the unreliability of k-out-of-n:F IFC systems.

These algorithms outperform those proposed so far in the literature ([AM99], [Mye06])

whose complexity is exponential.

We proposed also a BDD implementation for these algorithms that makes it possible to

embed IFC systems as special gates of any (BDD based) fault tree assessment tool.

Finally, we show on a realistic size test case (a Digital Flight Control System) the

importance of the effect of imperfect coverage as well as the efficiency of the proposed

algorithms.

This study provides a solid ground for IFC systems analysis. It remains certainly

however to study in more details how to set the coverage parameters.

7. References

[AM99] S. V. Amari, J. B. Misra, A Seperable Method for Incorporating Imperfect Fault-

Coverage into Combinatorial Models, IEEE Transactions on Reliability, 48(3),

pages 267-274, September 1999.

[ADM99] S. V. Amari, J. B. Dugan, R. B. Misra, Optimal Reliability of Systems Subject

to Imperfect Fault-Coverage, IEEE Transactions on Reliability, 48(3), pages 275-

284, September 1999.

[BRB90] K. Brace, R. Rudell, and R. Bryant. Efficient Implementation of a BDD

Package. In Proceedings of the 27th ACM/IEEE Design Automation Conference,

pages 40–45. IEEE 0738, 1990.

[Bry86] R. Bryant. Graph Based Algorithms for Boolean Function Manipulation. IEEE

Transactions on Computers, 35(8):677–691, August 1986.

[Bry92] R. Bryant. Symbolic Boolean Manipulation with Ordered Binary Decision

Diagrams. ACM Computing Surveys, 24:293–318, September 1992.

[CAK02] Y-R Chang, S. V. Amari, S-Y Kuo, Reliability Evaluation of Multi-state

Systems Subject to Imperfect Coverage using OBDD, Proceedings of the 2002

Pacific Rim International Symposium on Dependable Computing IEEE.

[Dug89] J. B. Dugan, Fault Tree and Imperfect Coverage, IEEE Transactions on

Reliability, vol. 38, pages 177-185, March 1989.

[DDP95] S. A. Doyle, J. B. Dugan, F. A. Patterson-Hine, A Combinatorial Approach to

Modeling Imperfect Coverage, IEEE Transactions on Reliability, vol. 44, pages 87-

94, March 1995.

[DR00] Y. Dutuit and A. Rauzy. Efficient Algorithms to Assess Components and Gates

Importances in Fault Tree Analysis. Reliability Engineering and System Safety,

72(2):213–222, 2000.

[DR01] Y. Dutuit and A. Rauzy. New insights in the assessment of k-out-of-n and related

systems. Reliability Engineering and System Safety, 72(3):303–314, 2001.

[DT89] J. B. Dugan, K. S. Trivedi, Coverage Modeling for Dependability Analysis of

Fault-Tolerant Systems, IEEE Transactions on Reliability, vol. 38, pages 775-787,

June 1989.

[Mye06] A. F. Myers, k-out-of-n:G System Reliability with Imperfect Fault Coverage. To

Appear in IEEE Transactions On Reliability, 2006.

[Rau93] A. Rauzy. New Algorithms for Fault Trees Analysis. Reliability Engineering &

System Safety, 05(59):203–211, 1993.

[Rau01] A. Rauzy. Mathematical Foundation of Minimal Cutsets. IEEE Transactions on

Reliability, volume 50, number 4, pages 389-396, 2001.

[Tri02] K. S. Trivedi, Probability and Statistics with Reliability, Queuing and Computer

Science Applications, 2 ed, John Wiley & Sons, New York, 2002.

ELC(k,n)

// initialisation

for j = 1 upto k-1 do P[j] ← 0.0 done

P[0] ← 1.0, ELC ← 0.0

// main loop

for i = 1 upto n do

 ELC ← ELC + pi*(1-ci) + pi*ci*P[k-1]

 for j = k-1 downto 1 do

 P[j] ← (1–pi)*P[j] + pi*ci*P[j-1]

done

P[0] ← (1–pi)*P[0]

done

return ELC

Figure 1. A table base algorithm to compute ELC(k,n)

FLC(n,k)

// initialisation

for j = 1 upto k-1 do P[j] ← 0.0 done

P[0] ← 1.0, FLC ← 0.0

// main loop

for i = 1 upto n do

 FLC ← FLC + pi*P[k-1]

for j = k-1 downto 1 do

 FLC ← FLC + pi*(1-cj)*P[j-1]

 P[j] ← (1–pi)*P[j] + pi*cj*P[j-1]

done

P[0] ← (1–pi)*P[0]

done

return FLC

Figure 2. A table based algorithm to compute FLC(n,k)

Figure 3. Comparative running times of the recursive and table based algorithms on a k-

out-of-4xk:F OLC system.

Figure 4. Unreliability of a 4-out-of-4:F system under PFC, ELC, FLC and OLC models

Figure 5. Unreliability of a 4-out-of-4:F system under 5 PFC models and a ELC, FLC

and OLC models

Figure 6. Unreliability of a 3-out-of-6:F ELC system computed from the BDD and the

MCS

Figure 7. From the Shannon Tree to the Binary Decision Diagram

BDD-FLC(n,k)

// initialisation

for j = 1 upto k-1 do T[j] ← bddLeaf(0) done

T[0] ← bddLeaf(1), FLC ← bddLeaf(1)

// main loop

for i = 1 upto n do

 FLC ← bddOr(FLC,bddAnd(bddComponent(i),T[k-1]))

for j = k-1 downto 1 do

 FLC ← bddOr(

 FLC,

 bddAnd(bddComponent(i),bddNot(bddCoverage(j)),T[j-1]))

 P[j] ← bddOr(

 bddAnd(bddNot(bddComponent(i)),T[j])

 bddAnd(bddComponent(i),bddCoverage(j),T[j-1]))

done

T[0] ← bddAnd(bddNot(bddComponent(i)),T[0])

done

return FLC

Figure 8. A table based algorithm to compute the BDD associated with a FLC system.

Element OLC FLC Coverage

Type Coverage c1 c2 c3

PP 0.95 0.999999988 0.999999992 0.95

PR 0.95 0.999999988 0.999999992 0.95

PY 0.95 0.999999988 0.999999992 0.95

SA 0.9 0.999999958 0.999999972 0.9

SI 0.96 0.999999979 0.999999986 0.96

C 0.99 0.999999983 0.999999989 0.99

AC 0.99 0.999999983 0.999999989 0.99

E 0.9 0.999999999 0.999999999 0.9

Table 1. OLC and ELC Coverage values for Hypothetical Transport Aircraft System

Element Failure Rate

Type FPMH

ENG 250

GEN 200

HYD 350

PP 150

PR 150

PY 150

SA 500

SI 250

C 200

AC 200

E 10

A 5

Table 2. Element Failure Rates for Hypothetical Transport Aircraft System

Figure 9. Hypothetical 4 Channel Transport Digital Flight Control System

Figure 10. Actuation System for a Hypothetical Transport Aircraft Control Surface

 #MCS

orders PFC FLC OLC

2 8 64 8

3 64 526 64

4 122 2948 318

5 1872 12290 4960

6 5552 29904 15904

7 1936 11054 8816

8 120 1758 1992

total 9674 58544 32062

Table 3. Number of cutsets per order, for the three models PFC, FLC and OLC of the

Digital Flight Control System.

Figure 11. Unreliability of the digital control flight computed from the three models

PFC, FLC, OLC.

