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Abstract: In this article, we present an algorithm to generate minimal cut sets 
from AltaRica 3.0 models. AltaRica 3.0 improves the previous versions of the 
language by introducing a fixpoint mechanism to stabilise values of variables 
after each transition firing. This fixpoint mechanism allows the design of 
acausal models and the analysis of systems with instant loops. It makes 
however the generation of fault trees more complex. We show here that by 
using advanced partitioning techniques, we can nevertheless design an efficient 
generation algorithm. We illustrate the different steps of this algorithm by 
means of a red wire example. 
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1 Introduction 

Fault Trees are probably the most popular formalism to support probabilistic risk and 
safety analyses. Efficient algorithms have been designed to assess these models (see, e.g., 
Rauzy, 2008a, 2012). Mature commercial tools are available. Fault Trees are however 
quite far from system specifications. They incorporate implicitly a large amount of 
knowledge of the analyst. As a consequence, they are hard to maintain throughout the life 
cycle of systems. 

In order to tackle this problem, several authors proposed to generate Fault Trees from 
higher level descriptions (see, e.g., Majdara and Wakabayashi, 2009; for a recent review). 
In this way, not only safety models are closer to system specifications, but also the same 
high level model can be used to study several failure conditions and/or plant 
configurations. Most of the proposed approaches (including the one of the above 
reference) rely on various extensions of reliability block diagrams. Basic blocks of the 
diagram carry out both failures and inputs/outputs relations. The flow circulating in the 
diagram is analysed backward to generate the Fault Tree. This idea stems from artificial 
intelligence tools such as assumption-based truth maintenance systems (de Kleer, 1986). 

The high level modelling language AltaRica (Point and Rauzy, 1999; Arnold et al., 
2000; Boiteau et al., 2006) generalises also reliability block diagrams. It is however 
essentially a formalism to describe state machines and to compose them. It is therefore 
much more expressive than all extensions of reliability block diagrams proposed so far. 
Several integrated modelling and simulation environments have been developed to 
support the authoring and the analysis of AltaRica models. A versatile set of processing 
tools has been designed such as compilers to Fault Trees (Rauzy, 2002), compilers to 
Markov chains (Brameret et al., 2013), model-checkers (Griffault and Vincent, 2004) or 
stochastic simulators (Khuu, 2008). Quite a few successful applications have been 
reported in the literature (see, e.g., Bernard et al., 2007; Sagaspe and Bieber, 2007; 
Bieber et al., 2008; Bernard et al., 2008; Humbert et al., 2008; Quayzin and Arbaretier, 
2009; Sghairi et al., 2009; Chaudemar et al., 2009; Adeline et al., 2010). 

AltaRica 3.0 is a new version of the language (Prosvirnova et al., 2013). Its new 
underlying mathematical model, Guarded Transition Systems (GTS) (Rauzy, 2008b; 
Prosvirnova and Rauzy, 2012), improves the expressive power of the previous versions 
by introducing a fixpoint mechanism to stabilise values of flow variables after each 
transition firing. This mechanism allows the design of acausal components and the 
treatment of systems with instant loops. Because of its expressiveness, AltaRica 3.0 
cannot be compiled into Fault Trees just by backward induction on values of flow 
variables. More elaborated compilation schemes must be applied. We show here that it is 
possible to keep this generation efficient thanks to advanced partitioning techniques. 

The main contribution of this article stands in the step by step description of the 
compilation algorithm by applying it on a red wire example. The ideas developed here 
can be applied to other modelling formalisms, beyond AltaRica and GTS. 
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The remainder of this article is organised as follows. Section 2 presents the red wire 
example, a simple network system, containing loops and bidirectional flows. Section 3 
gives an overview of the AltaRica 3.0. Section 4 presents the compilation algorithm. 
Section 5 gives some numerical results. Section 6 discusses related works. Finally, 
Section 7 concludes the article and outlines directions for future works. 

2 Motivating example 

Consider the network depicted in Figure 1, which is inspired from Riera et al. (2012). 
This network is made of: 

• three workstations W1, W2 and W3 producing data 

• two processing units P1 and P2 in charge of processing data 

• six switches SW1, …, SW6 receiving data from workstations and/or other switches 
and transmitting them to processing units or other switches. 

W2 is a spare workstation for W1, i.e., when the workstation W1 is working, the 
workstation W2 is in standby mode, if W1 is failed, then it is replaced by W2. 
Connections between switches are bidirectional, i.e., each switch receives data from all of 
its neighbours and broadcasts data to all of them. 

Figure 1 A data gathering and processing network 
 

 

All components may fail in operation. Moreover, workstations may have a common 
cause failure. Failure rates are given in Table 1. 
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Table 1 Failure rates of components of the network 

Component Failure rate 
Switch 10–4 1/h 
Workstation 10–5 1/h 
Processing unit 10–4 1/h 

This network is considered as robust if at least one of the processing units can send 
information to the plant. Since it is asymmetric, we want actually to assess the probability 
of each of the following three events: 

• processing unit P1 cannot send data to the plant 

• processing unit P2 cannot send data to the plant 

• neither P1 nor P2 can send data to the plant. 

We shall use this network as a red wire example both to present the new features of 
AltaRica 3.0 and to describe the different steps of the compilation of AltaRica 3.0 models 
into Fault Trees. 

The reader has already noticed that this system contains loops since the information 
between switches can be transmitted both ways. As a consequence, the manual 
construction of a Fault Tree for each of the above top events is far from easy. It requires 
to analyse the various combinations of failures of components in order to determine if 
they lead to a total or partial loss of the data processing capacity. 

3 AltaRica 3.0 

AltaRica is an event-oriented modelling language, i.e., it assumes that the system under 
study changes of state when, and only when, an event occurs. The state of the system is 
described by means of variables. Changes of states are described by transitions. The 
occurrence of an event (the firing of a transition) updates the value of variables. Events 
can be associated with deterministic or stochastic delays so to obtain (stochastic) timed 
models. Models of components can be assembled into hierarchies. Variables are also used 
to propagate information through the network of components, i.e., inputs and outputs of 
blocks can be connected in various ways. AltaRica provides also a mechanism to 
synchronise transitions of different blocks. 

Prior to AltaRica 3.0, two main versions of the language have been designed, which 
differ essentially in the way variables are updated after each transition firing. In the first 
version of the language, variables were updated by solving constraints (Point and Rauzy, 
1999; Arnold et al., 2000). This mechanism, although very powerful, proved to be too 
resource consuming for industrial scale applications. Therefore a second version, 
AltaRica Data-Flow (Rauzy, A. (2002; Boiteau et al., 2006), has been designed in which 
variables are updated by propagating values in a fixed order (through data-flow 
equations). This order is determined at compile time, which imposes strong constraints on 
the way updating assertions are written and prevents notably to handle systems with 
loops. AltaRica 3.0 improves AltaRica Data-Flow into two directions: 
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1 Its semantics is based on a new underlying mathematical model: GTS (Rauzy, 
2008b; Prosvirnova, T. and Rauzy, 2012). GTS makes it possible to handle systems 
with instant loops and to define acausal components, i.e., components in which the 
direction of the flow of information is determined at run time. 

2 It provides new constructs to structure models. 

3.1 Simple components 

To start with, let us consider the following model. 

domain ComponentState {WORKING, FAILED} 
class NonRepairableComponent 
 ComponentState s (init = WORKING); 
 parameter Real lambda = 1.0e-5; 
 event failure (delay = exponential (lambda)); 
transition 
 failure: s == WORKING -> s := FAILED; 
end 

The class NonRepairableComponent describes, as its name indicates, a generic  
non-repairable component. The state of the component is represented by a state variable 
s. Its initial value (WORKING) is defined by means of the attribute init. The component 
changes from state WORKING to state FAILED when the event failure occurs. This 
event is associated with a stochastic delay, namely an exponential probability distribution 
of parameter lambda. Unless specified otherwise, this parameter takes the value 10–5. 

3.2 Data-flow components 

AltaRica distinguishes two types of variables: state variables that are introduced by the 
attribute init and flow variables that are introduced by the attribute reset. State variables 
are used to model states of components. They are modified only by transitions. Flow 
variables are used to model the information circulating into the network of components. 
Their value is updated after each transition firing by means of a set of equations gathered 
into an assertion. 

The following class describes processing units. When they are working, processing 
units receive data in input, process them, and emit data as output. If they are failed, they 
do not process nor output any data. 

class ProcessingUnit 
 ComponentState s (init = WORKING); 
 Boolean inFlow, outFlow (reset = false); 
 parameter Real lambda = 1.0e-4; 
 event failure (delay = exponential (lambda)); 
transition 
 failure: s == WORKING -> s := FAILED; 
assertion 
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 outFlow := s == WORKING and inFlow; 
end 

3.3 Inheritance 

The above class is similar to the previous one (NonRepairableComponent) except for 
input and output flow (and the corresponding assertion) that have been added and the 
default value of lambda that has been modified. 

As other object-oriented languages, AltaRica 3.0 provides a mechanism to extend and 
modify classes. The class ProcessingUnit can be better described by inheriting from the 
class NonRepairableComponent as follows. 

class ProcessingUnit 
 extends NonRepairableComponent (lambda = 1.0e-4); 
 Boolean inFlow, outFlow (reset = false); 
assertion 
 outFlow := s == WORKING and inFlow; 
end 

The two definitions are strictly equivalent. 
The model of the workstation is quite similar to the previous one. If the workstation is 

working then the variable outFlow must be true, otherwise it is false (the workstation 
does not send data to the network). 

domain SpareComponentState {STANDBY, WORKING, FAILED} 
class Workstation 
 SpareComponentState s (init = STANDBY); 
 Boolean outFlow (reset = false); 
 event start; 
 event failure(delay = exponential(lambda)); 
 parameter Real lambda = 1.0e-5; 
transition 
 start: s == STANDBY -> s := WORKING; 
 failure: s == WORKING -> s := FAILED; 
assertion 
 outFlow := s == WORKING; 
end 

Also to be able to represent the fact that the workstation W2 is in standby mode when the 
workstation W1 is working, we define a new domain SpareComponentState and two 
transitions start and failure. 
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3.4 Acausal components 

The model for switches is more interesting for it is acausal, conversely to the previous 
models that are directional (data-flow). 

class Switch extends NonRepairableComponent; 
 Boolean leftFlow, rightFlow (reset = false); 
 Boolean inFlow, outFlow (reset = false); 
assertion 
 if s == WORKING then { 
 leftFlow: = rightFlow or inFlow; 
 rightFlow: = leftFlow or inFlow; 
 } 
 outFlow: = (s == WORKING) and 
 (leftFlow or rightFlow or inFlow); 
end 

The above model asserts that, if the switch is working, then flows linking the switch to its 
neighbours are all true as soon as one of them is true. If the switch is failed, then there is 
no relation amongst them. 

3.5 Hierarchical models 

AltaRica 3.0 is a prototype-oriented modelling language (see, e.g., Noble et al., 1999, for 
a discussion on objects versus prototypes). Prototype orientation makes it possible to 
separate the knowledge into two distinct spaces: 

• The stabilised knowledge, incorporated into libraries of on-the-shelf modelling 
components, which are declared as classes. 

• The sandbox in which the system under study is modelled. In the sandbox, many 
components (including the system itself) are unique. It would be therefore rather 
artificial to describe them by classes. Blocks, i.e., prototypes, are used instead. 

This separation of knowledge spaces is inspired from Hatchuel et al. (2002) C-K theory. 
There are several differences between blocks and classes but describing them would go to 
far for the purpose of the present article. 

Workstation, switch and processing unit are on-the-shelf components: they are 
represented in AltaRica 3.0 by classes. The network depicted in Figure 1 is unique, it can 
be represented by means of a block, named Network. This block contains instances of 
classes Workstation, ProcessingUnit and Switch. It is represented in Figure 2. 
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Figure 2 AltaRica 3.0 model of the data gathering and processing network 

 

3.5.1 Observers 

Observers are like flow variables, except that they cannot be used in transitions and 
assertions. They are quantities to be observed by the assessment tools. 

3.5.2 Synchronisations 

Synchronisations are used to compel several events to occur at the same time. In the 
example given above in the initial state the workstation W1 is working and the 
workstation W2 is in standby mode. If W1 is failed, it is replaced by W2. This constraint 
is described by means of a synchronisation. A new event W1_failure is declared; it 
synchronises the events W1.failure and W2.start. 

W1_failure: !W1.failure & ?W2.start;  
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This synchronisation creates a new transition: 

W1_failure: W1.s == WORKING -> {W1.s := FAILED; 
 if W2.s == STANDBY then W2.s := WORKING;} 

The event W1.failure is prefixed with an exclamation mark (!). This modality indicates 
that the individual transition W1.failure is mandatory for the synchronised transition to be 
fired. On the other hand the event W2.start is prefixed with a question mark (?). This 
modality makes it possible to synchronise transitions only when they are fireable. In this 
case, the event W1_failure can occur even if the workstation W2 is not in standby mode. 

The event ccf represents the common cause failure of the three workstations; it 
synchronises the events W1_failure, W2.failure and W3.failure. The corresponding 
transition is as follows. 

ccf: W1.s == WORKING or W2.s == WORKING or W3.s == WORKING -> 
{ if W1.s == WORKING then W1.s: = FAILED; 
 if W1.s == WORKING and W2.s == STANDBY then W2.s: = WORKING; 
 if W2.s == WORKING then W2.s: = FAILED; 
 if W3.s == WORKING then W3.s: = FAILED;} 

A synchronisation can involve any number of events. Events involved in a 
synchronisation continue to exist individually. In case of a common cause failure, the 
synchronised events represent individual failures of components and exist independently 
of the event ccf. However, in some situations events involved in a synchronisation should 
not occur individually. For example, the event W2.start should not occur if W1 is not 
failed. In this case it is possible to hide synchronised events in order to prevent them to 
occur individually. Hidden events and transitions are just removed from the model. Since 
all the instructions are executed in parallel (for more details see Section 4.1), the 
operation of synchronisation is commutative and associative. The reader interested in a 
more detailed description of synchronisations should read reference (Rauzy, 2013). 

3.5.3 Assertion 

Assertion represents connections between different components. The operator :=: 
represents bidirectional flows: data can circulate both ways between switches. The 
direction of the flow is determined at run time for it depends on the (global) state of the 
system. 

Let us now examine how the flow propagation mechanism works on a couple of 
configurations. Assume first that the workstations W1 and W3 and the switch SW6 are 
failed. Since the workstation W2 is working, the flow variable W2.outFlow must be true. 
This value propagates thanks to the assertion to P1.outFlow and P2.outFlow via flows of 
switches SW1, SW2, SW3, SW4 and SW5 in order. Now if the switch SW2 is failed 
rather than the switch SW6, then the value true propagates from W2.outFlow to 
P1.outFlow and P2.outFlow via the flow of SW1, SW6, SW5 and SW4 in order. In the 
first case, the flow circulates from SW4 to SW5. In the second case, it circulates in the 
reverse direction. 

This example illustrates the power of the AltaRica 3.0 language, which in few lines of 
clear code can model quite complex phenomena. 
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3.6 Flattening 

Each hierarchical AltaRica 3.0 model can be flattened into a unique GTS, i.e., a model 
containing only declarations of variables, events, parameters, observers, transitions and 
assertions. Flattening of a block or a class is a purely syntactic operation. It works bottom 
up, i.e., that variables, events, observers, parameters, transitions and assertions of the 
inner block (or instance of class) are copied in the outer block (or instance of class) 
prefixing identifiers with the name of the inner block. Acausal connection, i.e., an 
instruction of the form v :=: w, where v and w are flow variables, is equivalent to two 
assignments: {v: = w; w: = v}. The reader interested in a detailed description of flattening 
should read reference (Rauzy, 2013). 

The model obtained by flattening the block network is given in Figure 3. As for most 
of the assessment algorithms, flattening is the first step of the compilation of AltaRica 3.0 
models into Fault Trees. 

4 Compilation algorithm 

The automatic generation of a Fault Tree from AltaRica 3.0 models is performed 
according to the following ideas: 

• The basic events of the Fault Tree are the events of the AltaRica 3.0 model. 

• There is (at least) an intermediate event for each pair (variable, value) of the 
AltaRica 3.0 model. 

• For each minimal cut set of the Fault Tree rooted by an intermediate event (variable, 
value), there exists at least one sequence of transitions in the AltaRica 3.0 model 
labelled by the events of the cut set that ends up in a state where this variable takes 
this value. Moreover, this sequence is minimal in the sense that no strict subset of the 
minimal cut sets can label a sequence of transitions ending up in a state where this 
variable takes this value. 

The generated Fault Tree is then exported in Open-PSA format (Hibti et al., 2012) and 
can be assessed with any calculation engine supporting this format, in order to calculate 
minimal cut sets, probabilities of the top events, importance factors, etc. The whole 
assessment process is illustrated in Figure 4. 

The algorithm works in five steps (see Figure 5): 

Step 1 The AltaRica 3.0 model is flattened into a GTS. 

Step 2 The obtained GTS is partitioned into independent GTSs plus an independent 
assertion. 

Step 3 Reachability graphs of each independent GTS are calculated. 

Step 4 Each reachability graph is separately compiled into Boolean equations. 

Step 5 The independent assertion is compiled into Boolean equations. 

The first step has been (informally) described in the previous section. In this section, we 
shall describe the four following steps. In order to do so, we need to introduce GTS more 
formally. 
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Figure 3 Flattened network block 

 

Figure 4 Fault tree analysis with AltaRica 3.0 models 
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Figure 5 Compilation of AltaRica 3.0 models into Fault Trees 

 

4.1 Formal definition and semantics of GTS 

A GTS G is a quintuple , , , , ,V E T A ι〈 〉  where: 

• V S F+= ∪  is a set of variables, divided into disjoint sets: a set S of state variables 
and a set F of flow variables. 

• E is a set of events. 

• T is a set of transitions. A transition is a triple , , ,t e G P= 〈 〉  where e is an event from 
E, G is a Boolean expression built over variables from V called the guard of the 
transition, and P is an instruction built over V called the action or the post-condition 
of the transition. 

• A is an assertion (i.e., an instruction built over V). 

• ι is the initial (or default) assignment of variables of V. 

A GTS , , , ,G V E T A ι= 〈 〉  is an implicit representation of a labelled Kripke structure, i.e., 
a graph Γ = (Σ, Θ), where 

• Σ is a set of states, i.e., nodes labelled by the variable assignments 

• Θ is a set of transitions, i.e., edges labelled by the events from E. 

GTS are built on the following instructions: 

• Empty instruction: ‘skip’ is an instruction. 

• Assignment: If v is a variable and Exp an expression, then ‘v: = Exp’ is an 
instruction. 
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• Conditional assignment: If C is a Boolean expression, I is an instruction, then ‘if C 
then I’ is an instruction. 

• Parallel composition: If I1 and I2 are two instructions, then so is ‘I1, I2’. 

We shall consider two types of instructions: 

• Actions, i.e., instructions in which left members of assignments are only state 
variables. 

• Assertions, i.e., instructions in which left members of assignments are only flow 
variables. 

Let σ be a variable assignment just before the firing of the transition , , .t e G P= 〈 〉  
Applying the instruction P to the variable assignment σ consists in calculating a new 
variable assignment τ according to the rules given in a Structural Operational Semantics 
style in Table A1 in Appendix. It is important to note that right hand side of assignments 
and conditions of conditional instructions are evaluated in the variable assignment σ. As a 
consequence, the result does not depend on the order in which instructions of a block are 
applied: they are executed in parallel. We denote by Update(P, σ) a function that: 

• extends a given partial variable assignment τ by means of a total variable assignment 
σ from the instruction P according to the rules given in Table A1 and starting with  
τ = Ø 

• completes τ by setting τ(v) = σ(v) for all state variables that are not given a value by 
the previous step. 

Let A be an assertion, ι be an initial or a default variable assignment and τ the variable 
assignment obtained after the application of the action of a transition τ = Update(P, σ). 
Let denote by Propagate(A, ι, τ) a function that: 

• Extends a partial variable assignment τ by the instruction A according to the rules 
given in Table A2 in Appendix. 

• Completes τ by setting all unassigned variables to its default values 
: ( ) ?/ ( ) ( ).v F τ v τ v ι v∀ ∈ = =  

• Verifies that all assignments of A are satisfied. If there is at least an assignment that 
is not satisfied then an error is raised. 

Assume that the transition t is fireable in the state σ, i.e., the guard G is verified in σ. 
Then, the firing of the transition transforms σ into the assignment Fire(e: G → P, A, ι, σ) 
defined as follows: 

( ) ( ): , , , , , ( , )Fire e G P A ι σ Propagate A ι Update P σ→ =  

The labelled Kripke structure Γ = (Σ, Θ) is constructed as follows: 

1 The initial state σ0 is obtained from the application of the assertion A to the default or 
initial variable assignment 0: ( , , ) Σ.ι σ Propagate A ι ι= ∈  

2 If Σσ ∈  and , , ,t e G P T∃ = 〈 〉 ∈  such that the guard G is verified in σ then the state 
( , , , ) Στ Fire P A ι σ= ∈  and the transition ( , , ) Θ.σ e τ ∈  
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4.2 Compilation of labelled Kripke structures into Boolean formulae 

From now, we assume that a GTS , , , ,G V E T A ι= 〈 〉  describes a system that may fail. 
The graph Γ = (Σ, Θ) is the reachability graph of G. The initial state, or initial variable 
assignment, 0 Σσ ∈  represents the nominal state of the system. Events from E represent 
failures of system components. Some states (variables assignments) Σσ ∈  represent 
failure states. Paths from σ0 to these states represent scenarios of failure. 

Let us consider that the set of events E is an alphabet. Then, let denote by LE a 
language built over the alphabet E and by ε  an empty word. First of all, we search for all 
paths π from the initial state σ0 to each state of the graph σ and associate a word ( )σφ  
from LE to each state Σiσ ∈  of the reachability graph Γ. This word ( )σφ  is calculated as 
follows: 

1 ( )0σ =φ ε  

2 ( )
( ): , , Θ

( ) ,
k k k

k k
σ σ e σ

σ σ e
∈

⊗∑φ φ  

where the operators Σ and ⊗  can be interpreted in different ways. 

In case of the generation of critical sequences of events the operator ⊗  is interpreted as a 
concatenation of sequences and the operator Σ denotes sets of sequences. We do not 
present this case since it is out of the scope of this paper. 

In case of the compilation into Fault Trees, the operator Σ is interpreted as a 
disjunction and the operator ⊗  as a conjunction. The algorithm captures failure scenarios 
into a set of Boolean equations. It produces a Boolean formula ( , )v cφ  for each pair (v, c), 
where v is a variable from V and c is its value, ( ),c dom v∈  such that the variables of 

( , )v cφ  are events from E. 
Due to the exponential blow up of the number of nodes of the reachability graph, it is 

not possible to directly generate the reachability graph and to compile it into Boolean 
formulae. Means should be found to take advantage of the independence of subsystems. 
Thus, before proceeding to the generation of the reachability graph, the model should by 
partitioned into independent parts. 

4.3 GTS partitioning 

Partitioning is a key point of the algorithm that ensures its efficiency. In practice, 
components of a system fail in general in a relatively independent way. In that case a 
partitioning is possible. Partitioning of a GTS , , , ,G V E T A ι= 〈 〉  consists in representing 
G in the following way (see Figure 6 as an illustration): 

Figure 6 Partitioning of GTS 
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* * *
1 2 , , ,nG G G G V A ι= × × × + 〈 〉… ∪  

where 

• , , , ,i i i i i iG V E T A ι= 〈 〉  where are independent GTS, i.e., they do not share any 
variables and any events, i jV V i j= ∅∀ ≠∩  and ,i jE E i j= ∅∀ ≠∩  

• * * *, ,V A ι〈 〉  is an independent assertion, also called a glue. 

such that 

• *
1 2 nV V V V V= + + + +∪ ∪…∪ ∪  

• 1 2 nE E E E= + + +∪ ∪…∪  

• 1 2 nTT T T= + + +∪ ∪…∪  

• A = A1; A2; …; An; A*, where the operator; denotes the parallel composition of 
instructions 

• *
1 2 ,nι ι ι ι ι= D D…D D  where the operator D  denotes the composition of functions. 

The last part (the glue) does not contain any behaviour. Variables in V* are only flow 
variables, they depend on state variables and flow variables of independent GTSs Gi. A 
similar idea can be found in Gössler and Sifakis (2005). 

To partition a GTS one need to analyse dependencies between its transitions in order 
to divide them into independent groups. To do that, variables involved in each transition, 
i.e., variables used in the guard and in the action of the transition, should be considered. 

Let denote by var(Exp) variables used in the expression E, and by var(I) variables 
used in the instruction I. Typically, 

• if I is an empty instruction ‘skip’, then var(I) = Ø 

• if I is in the form ‘v: = Exp’, var( ) var( )I v Exp= ∪  

• if I is in the form ‘if Exp then J’, var( ) var( ) var( )I Exp J= ∪  

• if I is in the form ‘I1; I2’, then 1 2var( ) var( ) var( ).I I I= ∪  

Definition 4.1: Let v and w be two variables and I an instruction. We say that v depends 
immediately on w if the following holds: 

• I is in the form ‘v: = Exp’ and var( )w Exp∈  

• I is in the form ‘if Exp then J’, where J is an instruction, and var( )w Exp∈  or v 
depends immediately on w in J 

• I is in the form ‘I1; I2’ and v depends immediately on w either in I1 or in I2. 

Definition 4.2: Let v and w be two variables and I an instruction. We say that v depends 
on w in the instruction I, if there is a variable u such that v depends immediately on u in I 
and u depends on w in I. 

Let denote by var(t) variables involved in the transition , , :t e G P= 〈 〉  
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var( ) var( ) var( ) ,t G P V ′= ∪ ∪  

where V ′  are variables, such that variables from var( ) var( )G P∪  depend on them via 
the assertion A: 

{ }: var( ) var( ) depends on  in V v V u G P u v A′ = ∈ ∃ ∈ ∪  

Definition 4.3: Let t1 and t2 be two transitions. We say that t1 and t2 are independent if 
1 2var( ) var( ) .t t∩ =∅  

The last relation enables to divide transitions and, as a consequence events and variables, 
into independent sets Ti, Ei, Vi. The assertion A can also be divided into independent parts 
Ai. The remaining flow variables and instructions from A constitute the independent 
assertion < V*, A*, ι*>. 

Figure 7 Partitioned network 

 



   

 

   

   
 

   

   

 

   

   66 T. Prosvirnova and A. Rauzy    
 

    
 
 

   

   
 

   

   

 

   

       
 

In the model of the network system, the transition ccf involves the variables W1.s, W2.s 
and W3.s. Since the transitions ccf, W1_failure, W2.failure, W3.failure share variables, 
used in their guards and actions, they belong to the same partition. Since flow variables 
Wi.outFlow, i = 1..3, and SWi.inFlow, i = 1, 3 do not depend on variables from other 
partitions, they belong to this partition, and it also the case of the corresponding 
assertions. Other transitions SW1.failure, …, SW6.failure, P1.failure, P2.failure are 
independent from each other and form distinct partitions. The partitioned network system 
contains nine independent GTSs and an independent assertion. They are represented by 
blocks in Figure 7. 

Remark 1: Partitioning is a purely syntactic operation. Note that generally the partitioned 
GTS does not correspond to the structure of the initial AltaRica 3.0 model. It is 
particularly the case of the example given above. Only in case of completely independent 
components the partitioned model corresponds to the structure of the AltaRica 3.0 model. 

4.4 Reachability graph generation 

For each independent GTS G its reachability graph Γ = (Σ, Θ) is constructed according to 
the definition given in Section 4.1. Starting from the initial state σ0 = Propagate(A, ι, ι), 
calculated using the initial variable assignment ι and the assertion A, other states are 
discovered by firing step by step all transitions, fireable in the current state: if Σσ ∈  and 
there is a transition , ,t e G P= 〈 〉  which is fireable in σ, then ( , , , ) Στ Fire t A ι σ= ∈  and 
( , , ) Θ.σ e τ ∈  

The reachability graph of the block Part1 is depicted in Figure 8. It contains six nodes 
(or states) S0, …, S5, labelled by variable assignments. Its transitions are labelled by the 
events of the block Part1: ccf, W1_failure, W2.failure and W3.failure. We shall use this 
graph in order to illustrate how a reachability graph is compiled into Boolean formulae. 

Figure 8 Reachability graph of spare workstations 
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Reachability graphs for other partitions of the network system are trivial. They contain 
only two states (when state variable s of each component is equal to WORKING and 
when it is equal to FAILED) and one transition labelled by the event failure of the 
corresponding component. 

4.5 Compilation of the independent reachability graphs into Boolean formulae 

Consider an independent GTS G and its reachability graph Γ = (Σ, Θ). The principle of 
compilation of Γ into Boolean formulae is given in Section 4.2. First, we search for all 
paths π from the initial state σ0 to each state of the graph σ. In order to avoid conflicts 
raised by the composition of components (for more details, see Rauzy, 2002) we need to 
consider not only events occurring along the path π but also those that do not. Finally, the 
algorithm works as follows: 

1 Associate with each state Σσ ∈  a set of Boolean vectors Pσ: E → {TRUE, FALSE}, 
with Pσ(ek) = TRUE if the event ek occurs along the path π from σ0 to σ. 

2 Then for each couple (σ, Pσ) associate a Boolean equation ( , ) ,σσ Pφ  obtained as 
follows: 

( ) ( )
( , )

: :σ
k σ k j σ j

σ P k j
e E P e TRUE e E P e FALSE

e e
∈ = ∈ =

= ∧ ∧φ  

3 For each state σ associate a Boolean equation obtained as follows: 

( ) ( ),
, σ
σ

σ σ P
σ P

= ∨φ φ  

4 Finally, for each couple (v, c), where v V∈  is a variable and ( )c dom v∈  is its value, 
associate a Boolean equation as follows: 

( , )
Σ: ( )

v c σ
σ σ v c∈ =

= ∨φ φ  

In order to illustrate this algorithm consider the reachability graph given in Figure 8. 
Boolean equations associated with each node (or state) of this graph (step 3 of the 
algorithm) are as follows: 

• 0 1_ 2. 3.S ccf W failure W failure W failure= ∧ ∧ ∧φ  

• 1 1_ 2. 3.S ccf W failure W failure W failure= ∧ ∧ ∧φ  

• 2 1_ 2. 3.S ccf W failure W failure W failure= ∧ ∧ ∧φ  

• 3 1_ 2. 3.S ccf W failure W failure W failure= ∧ ∧ ∧φ  

• 
4 1_ 2. 3.

1_ 2. 3.

1_ 2. 3.

S ccf W failure W failure W failure

ccf W failure W failure W failure

ccf W failure W failure W failure

= ∧ ∧ ∧ ∨

∧ ∧ ∧ ∨

∧ ∧ ∧

φ
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5 1_ 2. 3.

1_ 2. 3.

1_ 2. 3.

1_ 2. 3.

1_ 2. 3.

1_

S ccf W failure W failure W failure

ccf W failure W failure W failure

ccf W failure W failure W failure

ccf W failure W failure W failure

ccf W failure W failure W failure

ccf W fail

= ∧ ∧ ∧ ∨

∧ ∧ ∧ ∨

∧ ∧ ∧ ∨

∧ ∧ ∧ ∨

∧ ∧ ∧ ∨

∧

φ

2. 3.

1_ 2. 3.

1_ 2. 3.

ure W failure W failure

ccf W failure W failure W failure

ccf W failure W failure W failure

∧ ∧ ∨

∧ ∧ ∧ ∨

∧ ∧ ∧

 

Then, Boolean equations for each couple variable and its value (v, c) (step 4 of the 
algorithm) are calculated: 

( ) 0 3 ( 1. , ) 1 2 4 51. , S S W s FAILED S S S SW s WORKING = ∨ = ∨ ∨ ∨φ φ φ φ φ φ φ φ  

( ) 0 3 ( 2. , ) 1 42. , S S W s WORKING S SW s STANDBY = ∨ = ∨φ φ φ φ φ φ  

( ) 2 52. , S SW s FAILED = ∨φ φ φ  

( ) 0 1 2 ( 3. , ) 3 4 53. , S S S W s FAILED S S SW s WORKING = ∨ ∨ = ∨ ∨φ φ φ φ φ φ φ φ  

( ) 0 2 ( 1. , ) 1 3 4 51. , , S S W outFlow false S S S SW s outFlow true = ∨ = ∨ ∨ ∨φ φ φ φ φ φ φ φ  

( ) 1 3 ( 2. , ) 0 2 4 52. , , S S W outFlow false S S S SW s outFlow true = ∨ = ∨ ∨ ∨φ φ φ φ φ φ φ φ  

( ) 0 1 4 ( 23 , ) 2 3 53. , , S S S W outFlow false S S SW s outFlow true = ∨ ∨ = ∨ ∨φ φ φ φ φ φ φ φ  

( ) 4 5 ( 1. , ) 0 1 2 31. , S S SW inFlow true S S S SSW inFlow false = ∨ = ∨ ∨ ∨φ φ φ φ φ φ φ φ  

( ) 0 1 4 ( 3. , ) 2 3 53. , S S S SW inFlow false S S SSW inFlow true = ∨ ∨ = ∨ ∨φ φ φ φ φ φ φ φ  

Boolean equations generated from other reachability graphs are very simple. For 
example, 

( 1. , ) 1.SW s WORKING SW failure=φ  

( 1. , ) 1.SW s FAILED SW failure=φ  

4.6 Compilation of the assertion into Boolean formulae 

Let denote by U the set of variables from independent GTSs: 

1 2 nU V V V= + + +∪ ∪…∪  

In the previous step ,u U∀ ∈  ( )c dom u∈  a Boolean equation ( , )u cφ  has been calculated. 
The independent assertion * * *, ,V A ι〈 〉  is transformed into a set of Boolean formulae 

in the following way. For each pair (f, q), where *f V∈  is a flow variable and 
( )q dom f∈  is its value, a Boolean formula ( , )f qφ  is constructed according to the 
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instructions in the assertion A* and Boolean formulae ( , ){ , , ( )}u c u U c dom u∈ ∈φ obtained 
from the compilation of the independent GTSs. 

In order to compile the assertion into Boolean formulae efficiently, one need to 
separate it into independent parts. The dependency relation between variables in the 
assertion A* defines a dependency graph. This graph may contain cycles. The strongly 
connected components of this graph divide variables of A* into sets and enable to 
decompose the assertion A* into blocks of instructions Ai, i = 1 .. m, where m is the 
number of strongly connected components: 

* * * *
1 2; ; ; mA A A A= …  

Each block of instructions *
iA  is compiled into Boolean formulae recursively according 

to the algorithm described hereafter. Let denote by 

• *
iV  – a set of variables labelling the vertices of the strongly connected component 

number i. 

• *
iA  – an instruction that calculates the values of variables from *.iV  

• *
iι  – an initial assignment of variables from *.iV  

• *
iW  – a set of variables such that variables from *

iV  depend on them in *.iA  

Assume that * ( )iw W dom w∀ ∈  and *
( , ){ , , ( )}w c iw W c dom w∈ ∈φ  has been calculated 

(either by the step 3 of the algorithm or by the previous step of the recursion). Then to 
compute *

( , ){ , , ( )},v c iv V c dom v∈ ∈φ  one need 

1 First, to compute the Cartesian product of the domains of variables from *,iW  i.e., 
the set 

*
( )

iw W
dom w

∈
= ×∑  

2 Then, for each assignment of variables from * Σ :iW σ ∈  

a to compute a Boolean equation associated with the variable assignment σ 

( )* , ( )
i

σ w σ w
w W∈

= ∧φ φ  

b to compute a partial variable assignment * *: i iτ V W∪ → C  as follows: 

* ( ) ( )iw W τ w σ w∀ ∈ =  

c to complete the partial variable assignment τ by propagating the assertion * :iA  

( )* *, ,i iτ Propagate A ι τ=  

d to update Boolean equation associated with each couple (v, c), *,iv V∈  such that 
τ (v) = c, as follows: 

( , ) ( , )v c v c σ← ∨φ φ φ  
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Remark 2: In case of a data-flow assertion the dependency graph does not contain any 
cycles and the number of strongly connected components is equal to the number of 
variables and also to the number of the assignments (as long as each variable is assigned 
only once). Since the number of variables used in the right hand side of the assignments 
is never big, this operation is performed very efficiently. 

Let us explain how this algorithm works for the independent assertion of the red wire 
example of this article. Boolean formulae for variables of the independent GTSs of the 
Network system Wi.s, i = 1..3, Wi.outFlow, i = 1..3, SWi.s, i = 1..6, SWi.inFlow, i = 1, 3 
and Pi.s, i = 1, 2 have been calculated by the previous step of the algorithm. Variables of 
the independent assertion V* (i.e., flow variables) depend on them via the assertion A*. 
The dependency graph of A* contains cycles, since acausal components have been used in 
the model. Strongly connected components of this dependency graph are represented in 
Figure 9. 

Figure 9 Dependency graph of the independent assertion 

 

 

Variables SWi.leftFlow, SWi.rightFlow, i = 1..6 belong to the same strongly connected 
component and depend on variables SWi.inFlow, i = 1..6 and SWi.s, i = 1..6 (see  
Figure 9). Let us denote this set of variables *

0 .V  Boolean equations for variables from 
the same strongly connected component are calculated together. 

1 We start with 

*
( , ) 0 , ( )v c v V c dom v= ∅∀ ∈ ∈φ  

2 For each assignment σ of variables SWi.inFlow, i = 1, 3, SWi.s, i = 1..6 
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a first, the corresponding Boolean formula σφ  is calculated 

b then, values of variables from *
0V  are calculated according to the assertion A* 

and the assignment σ 
c finally, for each variable *

0v V∈  and its value c the corresponding Boolean 
formula ( , )v cφ  is updated as follows: 

( , ) ( , )v c v c σ← ∨φ φ φ  

For example, consider a configuration where W1, W3 and SW6 are failed and all other 
components are working. In that case SW1.inFlow = true and SW3.inFlow = false. The 
corresponding Boolean equation σφ  is as follows: 

( 1. , ) ( 3. , ) ( 6. , )

( 1. , ) ( 5. , )

σ SW inFlow true SW inFlow true SW s FAILED

SW s WORKING SW s WORKING

φ φ φ φ
φ φ

= ∧ ∧

∧ ∧ ∧"
 

Since W2 is working, W2.outFlow = true and by propagation all other variables are equal 
to true. The following Boolean equations are generated: 

( 1. , ) ( 1. , )

( 6. , ) ( 6. , )

SW leftFlow true SW leftFlow true σ

SW leftFlow true SW leftFlow true σ

← ∨

← ∨

#

φ φ φ

φ φ φ

 

The same procedure is applied recursively for all strongly connected components of the 
dependency graph of A*. Finally, we obtain a set of Boolean equations ( , ) ,v cφ  * ,v V∈  

( ).c dom v∈  Along with Boolean equations obtained by the compilation of the 
independent reachability graphs, they encode a set of Fault Trees for the model of the 
network system. 

4.7 Complexity analysis 

In the following, we estimate the (time) complexity of each step of the algorithm 
depending on the size of the input model: 

Step 1 Flattening mainly consists in model rewriting. The complexity of this operation 
is linear on the size of the AltaRica 3.0 model. 

Step 2 Partitioning is a syntactical operation. The complexity of this step is linear on 
the size of the GTS model generated by the previous step. 

Step 3 Reachability graph generation is exponential on the number of state variables of 
the model. But the partitioning of the model enables not to generate the 
reachability graph of the whole model. Assume that there are n Boolean state 
variables in the model. In the worst case (when there is only 1 part) the 
complexity is O(2n). In the best case (when all state variables belong to different 
parts) the complexity is O(n). 

Step 4 Compilation of the reachability graphs into Boolean formulae is linear on the 
size of the graph. 
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Step 5 The independent assertion is compiled symbolically into Boolean equations. The 
complexity of this operation depends on the number of strongly connected 
components of the dependency graph of A*. Let’s consider that the dependency 
graph has m strongly connected components. Note that in case of a data-flow 
assertion m is equal to the number of variables in V*. The complexity of each 
step of the algorithm is exponential on the number of outgoing edges of each 
strongly connected component. But in general the number of outgoing edges 
(i.e., the number of variables used in the right hand side of the assignments and 
in the conditions) is never big and then can be considered as constant. Thus, the 
complexity can be considered as linear on the number of strongly connected 
components of the dependency graph of A*. In the best case, when the assertion 
A* is data-flow, the complexity is linear on the number of flow variables 
assigned in A* (O(m)). In the worst case, there is only one strongly connected 
component (m = 1) and there are n outgoing edges, where n is the number of 
state variables of the model, the complexity is exponential on n and the 
advantage of the partitioning is lost. 

4.8 Correctness 

The correctness of the algorithm relies on the following theorems: 

Theorem 1: Let , , , ,G V E T A ι= 〈 〉  be a GTS, Γ its reachability graph and 
( , ){ , , ( )}v c v V c dom v∈ ∈φ  a set of Boolean formulae generated from G. If {e1, …, ek}, ej,  

1 ,j k E= ∈…  is a minimal cut set of ( , ) ,v cφ  then there is a sequence of  
transitions labelled by these events in the reachability graph Γ, such that 

0 1 1 1 2 2 1( , , ) Θ, ( , , ) Θ, , ( , , ) Θ,k k kσ e σ σ e σ σ e σ−∈ ∈ ∈…  and σk(v) = c. 

Proof: By construction (see Sections 4.2 and 4.5) the algorithm explores sequences of 
transitions starting from σ0 and ending up in a state σk, such that σk(v) = c and for a 
particular sequence of transitions generates a conjunction of events labelling the 
transitions of the sequence and negation of events that do not occur in the sequence. 

Theorem 2: Let , , , ,G V E T A ι= 〈 〉  be a GTS, Γ its reachability graph and 
( , ){ , , ( )}v c v V c dom v∈ ∈φ  a set of Boolean formulae generated from G. If there is a 

sequence of transitions in the reachability graph Γ, such that 
0 1 1 1 2 2 1( , , ) Θ, ( , , ) Θ, , ( , , ) Θk k kσ e σ σ e σ σ e σ−∈ ∈ ∈…  and this sequence is minimal (in the 

sense that that no strict subset of events of this sequence can label a sequence of 
transitions ending up in a state where v = c), then the set of events, labelling the 
transitions in the sequence {e1, …, ek}, ej, j = 1 .. k, E∈  is a minimal cut set of ( , ) .v cφ  

Proof: Also by construction (see Sections 4.2 and 4.5). 

Theorem 3: Let * * *
1 2 , ,nG G G G V A ι= × × × + < >… ∪  be a partitioned GTS and let  

Γ = (Σ, Θ) be a reachability graph of G. Then 

( ) * * *1 2 , ,Γ Γ Γ Γ ,n V A ι< >= ⊗ ⊗ ⊗…  
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where 

• ⊗  is a free product of reachability graphs 

• * * *, ,| V A ι< >  is the extension of the reachability graph by the assertion A*, which is 
calculated as follows. 

Let 1 2Γ Γ Γ Γn′ = ⊗ ⊗ ⊗…  and Γ (Σ ,Θ ).′ ′ ′=  Each variable assignment σ: V \ V* → C is 
extended to V: τ = σ|V. The assignment τ is calculated as follows: 

1 *\ ( ) ( )v V V τ v σ v∀ ∈ =  

2 ( )* *, ,τ Propagate A ι τ=  

Proof: The proof is based on the fact that GTSs Gi are built over distinct sets of variables 
and transitions and variables from V* are also distinct from variables of independent 
GTSs. 

5 Experiments 

The initial AltaRica 3.0 model of the network system contains 45 variables and 12 events. 
The complete reachability graph contains 1,536 states and 9,216 transitions. The 
partitioned model has nine parts: reachability graphs of eight parts are very similar and 
contain only two states, the last one contains six states. 

For comparison, execution times of the program with and without partitioning for the 
red wire example of this article are given in Table 2. These results have been obtained on 
a laptop computer with a processor Intel Core i7, a 6 GB memory and running on 
Windows 7. 
Table 2 Execution times of the program for the model of the network system 

Model Without partitioning With partitioning 

Network system 4.852 sec. 0.187 sec. 

The top events are specified via the observers P1failed, P2failed, P1P2failed and their 
value true. Thus, several Fault Trees can be generated from a unique AltaRica 3.0 model. 
For technical reasons, the Fault Trees generated by the AltaRica 3.0 compiler are quite 
different from those an analyst would write. The minimal cut sets are however the 
expected ones. For instance, the minimal cut sets, their probabilities and contributions for 
the top event ‘P1 cannot send data to the plant’, defined by the observer P1failed, are 
given in Table 3. The same results for the top events ‘P2 cannot send data to the plant’ 
(observer P2failed) and ‘Neither P1 nor P2 can send data to the plant’ (observer 
P1P2failed) are summarised in Tables 4 and 5 respectively. 

Probabilities of the top events are calculated for the period from 0 to 1,000 hours. The 
results are presented in Figure 10. 

The generated Fault Trees have been assessed with XFTA calculation engine. 
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Table 3 Minimal cut sets for the top event ‘P1 cannot send data to the plant’ 

Rank Order Probability Contribution Minimal cut set 

1 1 0.0951626 0.409152 P1.failure 
2 1 0.0951626 0.409152 SW5.failure 
3 2 0.00905592 0.038936 SW3.failure SW6.failure 
4 2 0.00905592 0.038936 SW4.failure SW6.failure 
5 2 0.00905592 0.038936 SW1.failure SW4.failure 
6 2 0.00905592 0.038936 SW1.failure SW3.failure 
7 1 0.00498752 0.0214439 ccf 
8 2 0.000946884 0.00416035 SW1.failure W3.failure 
9 3 9.01079e-5 0.00038742 SW2.failure SW6.failure W3.failure 
10 3 9.42165e-6 4.05085e-5 SW3.failure W1_failure W2.failure 
11 3 9.85124e-7 4.23555e-6 W1_failure W2.failure W3.failure 
12 4 8.96588e-7 3.85489e-6 SW2.failure SW4.failure W1_failure W2.failure 

Table 4 Minimal cut sets for the top event ‘P2 cannot send data to the plant’ 

Rank Order Probability Contribution Minimal cut set 
1 1 0.0951626 0.425559 P2.failure 
2 1 0.0951626 0.425559 SW4.failure 
3 2 0.00905592 0.0404973 SW3.failure SW5.failure 
4 2 0.00905592 0.0404973 SW3.failure SW6.failure 
5 2 0.00905592 0.0404973 SW1.failure SW3.failure 
6 1 0.00498752 0.0223038 ccf 
7 2 0.000946884 0.00423438 SW1.failure W3.failure 
8 3 9.01079e-5 0.000402955 SW2.failure SW5.failure W3.failure 
9 3 9.01079e-5 0.000402955 SW2.failure SW6.failure W3.failure 
10 3 9.42165e-6 4.21328e-5 SW3.failure W1_failure W2.failure 
11 3 9.85124e-7 4.40539e-6 W1_failure W2.failure W3.failure 

Table 5 Minimal cut sets for the top event ‘neither P1 nor P2 can send data to the plant’ 

Rank Order Probability Contribution Minimal cut set 

1 2 0.00905592 0.103344 P1.failure P2.failure 
2 2 0.00905592 0.103344 P1.failure SW4.failure 
3 2 0.00905592 0.103344 P2.failure SW5.failure 
4 2 0.00905592 0.103344 SW4.failure SW6.failure 
5 2 0.00905592 0.103344 SW1.failure SW4.failure 
6 2 0.00905592 0.103344 SW4.failure SW5.failure 
7 2 0.00905592 0.103344 SW3.failure SW5.failure 
8 2 0.00905592 0.103344 SW1.failure SW3.failure 
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Table 5 Minimal cut sets for the top event ‘neither P1 nor P2 can send data to the plant’ 
(continued) 

Rank Order Probability Contribution Minimal cut set 
9 2 0.00905592 0.103344 SW3.failure SW6.failure 
10 1 0.00498752 0.0569162 ccf 
11 2 0.000946884 0.0108056 SW1.failure W3.failure 
12 3 9.01079e-5 0.00102829 SW2.failure SW5.failure W3.failure 
13 3 9.01079e-5 0.00102829 SW2.failure SW6.failure W3.failure 
14 3 9.42165e-6 0.00010752 SW3.failure W1_failure W2.failure 
15 3 9.85124e-7 1.1242e-5 W1_failure W2.failure W3.failure 
16 4 8.96588e-7 1.02316e-5 SW2.failure SW4.failure W1_failure W2.failure 

Figure 10 Probability of the top events 

 

 

6 Related works 

The automatic generation of Fault Trees from high level models is a wide domain of 
research. Different algorithms have been proposed in the literature. Most of the proposed 
algorithms can be divided into two groups: 

• algorithms based on backward analysis 

• algorithms based on fault injection. 

6.1 Algorithms based on backward analysis 

In this category most of the proposed approaches rely on various extensions of reliability 
block diagrams (see, e.g., Majdara and Wakabayashi, 2009). Basic blocks of the diagram 
carry out both failures and inputs/outputs relations. The flow circulating in the diagram is 
analysed backward to generate the Fault Tree. This idea stems from artificial intelligence 
tools such as assumption-based truth maintenance systems (de Kleer, 1986). 
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A similar idea is used in the HiP-HOPS workbench (Pasquini et al., 1999; 
Papadopoulos and Maruhn, 2001). This workbench enables to add reliability data to 
models imported from different modelling tools: MATLAB/Simulink, Eclipse-based 
UML tools, etc., and then to automatically generate Fault Trees and FMEA tables. The 
underlying formalism of Hip-HOPS is also an extension of reliability block diagrams, in 
which the system is described by hierarchies of blocks and the outputs of the blocks are 
written as a discrete function of internal failures and inputs. AltaRica 3.0 generalises this 
kind of models and the algorithm described in this article is very efficient on them. 

The same principle is used in Joshi et al. (2007), where Fault Trees are automatically 
generated from AADL models. 

6.2 Algorithms based on fault injection 

In this case the model is simulated step by step in order to discover sequences of events 
leading from the nominal state to a failure state. Then, the generated Fault Tree is just a 
disjunction over all found sequences of conjunctions of events involved in each sequence. 
This approach implies to enumerate all combinations of failure events and to test them. 

In this category, we can find the algorithm used in KB3 workbench (Bouissou, 2005), 
developed by EDF R&D, where Fault Trees are automatically generated from Figaro 
models (Bouissou et al., 1991). The proposed algorithm is based on the exploration of all 
possible combinations of failure events in order to determine if they lead to the system 
failure. Different truncation criteria are applied, such as the maximum number of events 
in a sequence, the probability of the sequence, etc. 

The same principle is used in Bozzano et al. (2007), where the authors use NuSMV 
for Fault Tree analysis and apply different symbolic model-checking techniques in order 
to improve the efficiency of the algorithm. 

In Bozzano et al. (2011), the authors translate AltaRica Data-Flow models, created 
within Cecilia OCAS workbench, into NuSMV input format and apply algorithms from 
Bozzano et al. (2007) to automatically generate Fault Trees. They also compare the 
efficiency of NuSMV with the sequence generator of AltaRica Data-Flow used in Cecilia 
OCAS workbench. The sequence generator of AltaRica Data-Flow basically explores all 
possible combinations of events that lead the system from its nominal state to its failure 
state. The truncation criterion is the number of events involved in a sequence. 

In Griffault et al. (2011), the authors describe algorithms for automatic generation of 
Fault Trees and critical sequences of events from AltaRica [first version of the language 
based on constraint automata (Point and Rauzy, 1999; Arnold et al., 2000)] models using 
symbolic model-checking techniques. 

Because of its expressiveness, AltaRica 3.0 models cannot be compiled into Fault 
Trees just by backward induction on values of flow variables. More elaborated 
compilation schemes must be applied. Thanks to advanced partitioning techniques we do 
not need to explore the whole system model in order to discover sequences of events 
leading the system from its nominal state to its failure state. 

7 Conclusions 

In this article, we introduced an algorithm for automatic generation of Fault Trees and 
calculation of minimal cut sets from AltaRica 3.0 models. This algorithm is a 
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generalisation of the algorithm for AltaRica Data-Flow. AltaRica 3.0 improves AltaRica 
Data-Flow into two directions: first, its semantics is based on the new underlying 
mathematical model – GTSs – that makes it possible to represent acausal components and 
to handle looped systems; second, it provides new constructs to structure models, that 
greatly improves its capacity of reuse and knowledge capitalisation. 

The compilation of AltaRica 3.0 into Fault Trees is of interest for several reasons. 
Assessment tools for Boolean models are much more efficient than those for 
states/transitions models. Also, the automated generation of Fault Trees from high level 
models makes easier their maintenance through the life cycle of systems under study. 

However, the price to pay is the loss of sequencing among events: sequences of 
events are compiled into conjuncts of events. If the GTS is combinatorial, its compilation 
to Fault Trees is efficient and does not loose information. Many real-life models are 
relatively simple extensions of reliability block diagrams and, thus, can be compiled 
efficiently into Fault Trees. 

Compilation techniques presented in this article can be applied to other formalisms, 
beyond AltaRica and GTSs. 

Our future works will focus on testing and improvement of the algorithm (and its 
implementation) for industrial scale models and also on its adaption for the generation of 
critical sequences of events. 
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Appendix 

Table A1 The semantics of actions 

0 :
, ,

S
skip σ τ τ〈 〉 →

 

[ ]
( ) ?, ( ) ( )1 :
: , , ( )
τ v σ E dom sS
v E σ τ τ σ E v

= ∈
〈 = 〉 →

 ( ) ( ), ( ) ( )2 :
: , ,

τ v σ E σ E dom vS
v E σ τ τ
= ∈
〈 = 〉 →

 

( ) or ( ) ( ) or ( ) , ( ) ( )3 :
: , ,

σ E ERROR σ E dom v τ v σ E τ vS
v E σ τ ERROR

= ∉ ≠ ≠
〈 = 〉 →

 

( )4 :
: if then , , , ,

σ C TRUES
v C I σ τ I σ τ

=
〈 = 〉 → 〈 〉

 ( )5 :
if then , ,
σ C FALSES
C I σ τ τ

=
〈 〉 →

 

( )6 :
if then , ,

σ C ERRORS
C I σ τ ERROR

=
〈 〉 →

 

1 2 2

, ,7 :
; , , , ,

I σ τ τS
I I σ τ I σ τ

′〈 〉 →
′〈 〉 → 〈 〉

 2

1 2 1

, ,8 :
; , , , ,

I σ τ τS
I I σ τ I σ τ

′〈 〉 →
′〈 〉 → 〈 〉

 

1 1

1 2 1 2

, , , ,9 :
; , , ; , ,

I σ τ I σ τS
I I σ τ I I σ τ

′ ′〈 〉 → 〈 〉
′ ′〈 〉 → 〈 〉

 2 2

1 2 1 2

, , , ,10 :
; , , ; , ,
I σ τ I σ τS

I I σ τ I I σ τ
′ ′〈 〉 → 〈 〉
′ ′〈 〉 → 〈 〉

 

1

1 2

, ,11:
; , ,
I σ τ ERRORS

I I σ τ ERROR
〈 〉 →

〈 〉 →
 2

1 2

, ,12 :
; , ,
I σ τ ERRORS

I I σ τ ERROR
〈 〉 →
〈 〉 →

 

Table A2 The semantics of assertions 

0 :
,

S
skip τ τ〈 〉 →

 

[ ]
( ) ?, ( ) ?, ( ) ( )1:

: , ( )
τ v τ E τ E dom vS

v E τ τ τ E v
= ≠ ∈
〈 = 〉 →

 ( ) ( ), ( ) ( )2 :
: ,

τ v τ E τ E dom vS
v E τ τ

= ∈
〈 = 〉 →

 

( ) or ( ) ( ) or ( ) ?, ( ) ( )3 :
: ,

τ E ERROR τ E dom v τ v τ E τ vS
v E τ ERROR

= ∉ ≠ ≠
〈 = 〉 →

 

( )4 :
: if then , ,

τ C TRUES
v C I τ I τ

=
〈 = 〉 → 〈 〉

 ( )5 :
if then ,
τ C FALSES
C I τ τ

=
〈 〉 →

 

( )6 :
if then ,

τ C ERRORS
C I τ ERROR

=
〈 〉 →

 

1

1 2 2

,7 :
; , ,

I τ τS
I I τ I τ

′〈 〉 →
′〈 〉 → 〈 〉

 2

1 2 1 2

,8 :
; , ; ,

I τ τS
I I τ I I τ

′〈 〉 →
′ ′〈 〉 → 〈 〉

 

1 1

1 2 1 2

, ,9 :
; , ; ,

I τ I τS
I I τ I I τ

′ ′〈 〉 → 〈 〉
′ ′〈 〉 → 〈 〉

 2 2

1 2 1 2

, ,10 :
; , ; ,
I τ I τS

I I τ I I τ
′ ′〈 〉 → 〈 〉
′ ′〈 〉 → 〈 〉

 

1

1 2

,11:
; ,
I τ ERRORS

I I τ ERROR
〈 〉 →

〈 〉 →
 2

1 2

,12 :
; ,
I τ ERRORS

I I τ ERROR
〈 〉 →
〈 〉 →

 

 


