Reliability Engineering and System Safety 40 (1993) 203-211

New algorithms for fault trees analysis

Antoine Rauzy
LaBRI, CNRS-Université Bordeaux I, 351, cours de la Libération 33405 Talence Cedex, France

(Received 20 February 1992; accepted 2 September 1992)

In this paper, a new method for fault tree management is presented. This
method is based on binary decision diagrams and allows the efficient
computation of both the minimal cuts of a fault tree and the probability of its
root event. We show on a set of benchmarks that our method results in a
qualitative and quantitative improvement in safety analysis of industrial

systems.

1 INTRODUCTION

The fault tree is one of the most commonly used
methods for safety analysis of industrial systems. A
difficulty in this method is the computation of the
minimal cuts of the tree, i.e. the minimal combina-
tions of elementary faults that make the whole system
fail. This computation is NP-hard. In this paper, we
propose an algorithm, based on Bryant’s trees, which
can be used to compute and memorize these cuts very
efficiently.

Binary decision diagrams (BDDs) were introduced
by Bryant'* and are now used in many domains, for
instance the symbolic verification of digital circuits®*
and the implementation of constraint logic program-
ming languages.’

A BDD is a graph encoding Shannon’s decomposi-
tion of a formula. BDDs have two important features:
(1) the graphs are compacted by sharing equivalent
subgraphs, and (2) the results of operations performed
on BDDs are memorized and thus a job is never
performed twice. These two features make BDDs one
of the most efficient methods for Boolean formulae
management.

The algorithm we propose consists in computing
from the BDD encoding a fault tree, a second BDD
encoding its minimal cuts. The procedures we have
defined use all the functionalities of a BDD package,
in particular the ability to memorize all the
operations. The power of this mechanism allows an
improvement in efficiency of several orders of
magnitude with respect to ‘classical’ methods.

In addition, since a BDD encodes the Shannon’s

Reliability Engineering and System Safety 0951-8320/93/$06.00
© 1993 Elsevier Science Publishers Ltd, England.

203

decomposition of a fault tree, the computation of the
probability of the root event, given the probabilities of
the leaves (terminal events) becomes very easy.

This paper is organized as follows: some definitions
and basic properties of Boolean formulae and
functions are given in the first section. In the second
section BDDs are presented. In the third section, the
algorithm computing minimal cuts is described.
Finally, the computation of the probability of the root
event is presented.

2 FAULT TREES
2.1 Assignments, Boolean functions and formulae

In this section we will briefly introduce the vocabulary
used.

Definition 1: Let X ={x,,...,x,} be a set of
Boolean variables. An assignment of X is a mapping
from X into {0, 1}.

An assignment o can be viewed as the characteristic
function of a subset of X (o(x) = 1iff x belongs to the
subset). It follows that the set =, of assignments on X
is isomorphic to P(X) the powerset of X. Thus, we
can define a partial order =< on Zy as the inclusion in
P(X).

Definition 2: A Boolean function f on X is a mapping
from Xy into {0, 1}.

Thus, in the same way as above, the set @, of the
Boolean functions on X is isomorphic to P(P(X)),
and we can define a partial order < on ®, as the
inclusion in P(P(X)).

Assignment and function are semantic objects. A

204 Antoine Rauzy

unique Boolean function corresponds to each Boolean
formula built over the set X of variables and a given
set of connectives (of course, the converse is not
true). In order to distinguish between functions and
formulae we will denote functions with lower-case
letters and formulae with upper-case letters.

By abuse of notations, we will sometimes write that
a variable belongs to an assignment or that an
assignment belongs to a function when the cor-
responding relations are verified in the corresponding
powersets.

Definition 3: An assignment o is a solution of a
Boolean formula F if o belongs to the corresponding
Boolean function f.

Definition 4: A solution ¢ of a Boolean formula F is
minimal if for any other assignment o’, ¢’ < ¢ implies
that o'(f)=0.

The set of solutions of F is denoted by Sol(F), the set
of its minimal solutions is denoted by Sol,;,(F).

Definition 5: Let f be a Boolean function. f is
monotonic if for any assignment ¢ and ¢’, o(f) =1
and 0 < ¢’ imply that o'(f) =1.

By considering an assignment as the conjunction of
the variables to which it gives the value 1, it is possible
to characterize the monotonic functions:

Property 1: A function f is monotonic iff it is
equivalent to the disjunction of its minimal solutions.

2.2 Fault trees

The presentation of fault trees we give here is, of
course, incomplete. The interested reader should see
Ref. 6 for a detailed monograph.

The fault trees we deal with are defined by means of
sets of equations in the form:

X=y,0ory,or...ory,
or x=y,and y, and ... and y,
or x=atleast kin y;, 5, .. ., ¥,
such that: (1) and x, y;, ¥, ...,y, are Boolean

variables (events), (2) a variable cannot appear as the
left-hand member of two equations, (3), all the
variables but one (the root event) occur at least once
in a right-hand member, (4) there is no cycle, i.e. no
subset of equations in the form: x; =op(. .., x,,...),

X=0p(. .. X3, o)y, Xy =0p(L Xy,)
Example 1.
Figure 1 is defined by three equations:

a= (b1 or b2)
b1=(cl and c2)
b2 = (c2 and ¢3)

()
(o7]

5H

Fig. 1. A fault tree.

A complete tree is given in the appendix. This set of
equations describes a directed acyclic graph (DAG).
The internal nodes are either connectives or events. A
connective has only one ascendant. The sink nodes (or
leaves) are terminal or elementary events.

This fault tree encodes the following Boolean
function:

F(cl, 2, c3)=(cl Ac2) v (c2 Ac3)

There are eight possible assignments of the three
variables c1, ¢2, ¢3, denoted, in terms of sets by:

. ¢c1=0,¢2=0, ¢3=0,

{cl}:cl=1,¢2=0,c3=0,

{c2}: ¢c1=0,c2=1,c3=0,

{c3}: ¢1=0,¢2=0,c3=1,

{cl,c2}: c1=1,c2=1, ¢3=0,

{c1,c3}: ¢1=1,¢2=0,¢3=1,

{c2,¢3}: c1=0,¢2=1,c3=1,

{cl,¢2,c3}: c1=1,c2=1, c3=1,
F(cl, ¢2, ¢3) admits three solutions: {cl, c2},
{c2, ¢3} and {cl, c2, ¢3}. The first two are minimal
since there is no subset of these two sets that is a
solution. F(c1, ¢2, ¢3) is monotonic since any superset
of a solution is also a solution. In fact, the connectives

and, or and at-least are monotonic thus the following
property holds.

Property 2: The fault trees we deal with encode
monotonic functions.

Let us recall that the solutions of a fault tree are also
called cuts.

3. BINARY DECISION DIAGRAMS

We review here basic definitions and properties of
BDDs for reference. For a complete presentation, the
reader is referred to two papers by Bryant.'*?

New algorithms for fault trees analysis 205

3.1 Shannon’s decomposition

Theorem 3: Shannon’s decomposition: let f be a
Boolean function on X, and x be a variable of X, then
f=GAfao)) V(X Af—0), where f evaluated in
x =v is denoted by f(,_.;.

In order to make the notations correspond with the
intuitive notion of binary tree induced by the
Shannon’s decomposition of a function, we introduce
the ite (If-Then—Else) connective:

Definition 6: ite(F, G, H)=(F A G) v (OF A H).

Definition 7: Let F be a Boolean formula. F is said to
be in Shannon’s form if either it is a constant or it is in
the form ite(x, F, G) where x is a variable and F and
G are formulae in Shannon’s form in which x doesn’t
occur.

Example 2

Let F:lavc)a(bvo). Then, G: ite(a,
ite(b, 1, ite(c, 1, 0)), ite(c,1,0)) is a formula in
Shannon’s form, equivalent to F.

Property 4: For any formula F a formula G exists in
Shannon’s form equivalent to F.

Remark: the Shannon’s form of a formula encodes its
truth table.

3.2 Binary decision diagrams

Definition 8: Let < be a total order on variables. A
binary decision diagram (BDD) is a directed acyclic
graph (DAG). A BDD has two leaves: 0 and 1
encoding the two corresponding constant functions.
Each internal node encodes an ite connective, i.e. it is
labelled with a variable x and has two out-edges.
These two edges are called 0-edge and 1-edge. An
internal node descendant from a node labelled by a
variable x is labelled by a variable y such that x <y.

BDDs compactly encode formulae in Shannon’s form
by means of subtree sharing. A set of formula can
thus be represented with a single multirooted BDD.

Example 3
The BDD associated with the formula:
F=(@vecyabve)

=ite(a, ite(b, 1, ite(c, 1, 0)), ite(c, 1, 0)

is shown in Fig. 2.

3.3 Memory management for BDDs

The practical efficiency of BDDs derives from the way
in which the memory is managed. A major idea, due
to Bryant, consists in using a hashtable to store the ite

ONE 0 / ZERO
~~S[1T1] [T

Fig. 2. The BDD associated with (a v ¢) A (b v ¢).

nodes: the ite-table. When, during a computation, a
node ite(x, F, G) is required—where x is a variable
and F and G are two addresses in the table—the table
is consulted and the node is created only if it is not yet
stored.

The use of such a table warrants the encoding of two
equivalent Boolean formulae at the same address. The
sharing of equivalent subtrees to one or several BDDs
is thus automatically performed.

3.4 Logical operations on BDDs

In order to compute the BDD associated with a
formula F, the following principle is applied: if Fis a
constant then one associates with F the corresponding
leaf, if F =x where x is a variable then one associates
with F the BDD ite(x, 1,0), finally if F=G { H,
where {) is a binary connective and G and H are
formulae* then one computes the BDDs associated
with G and H and then performs the operation {) on
these two BDDs. Given two Boolean functions g and
h encoded by the BDDs G =ite(x, G1, G2) and
H=ite(y, H1, H2), it is possible to compute directly
on G and H any logical operation between g and & by
means of the following property:

Property 5: Let x and y be two variables (x <y), let
G1, G2, H1, H2 be four formulae and let be { any
binary connective (A,v, <,@®,...), then the
following equalities hold: '
ite(x, G1, G2) { ite(x, H1, H2)

=ite(x, G1Q) H1, G2 H2) (5.1)
ite(x, G1, G2) {ite(y, H1, dH2)

=ite(x, G1{ite(y, H1, H2), G2 {ite(y, H1, H2))
(5.2)

*If { is not a binary connective then F is rewritten implicitly
in a equivalent formula with a binary connective as root
connective. For instance, let F be at-least (k,F1,...,Fn) then
F is rewritten implicitly in (F1 Aatleast (k-
1, F2, ..., Fn)) v at-least (k, F2, ..., Fn).

206 Antoine Rauzy

computation (op,F, G) =

return R

if (U=V) returnU

return R

if ((F=0)or (F=1) or (G=0) or (G=1))
return op(F, G) /* call to the truth table of op */
else if (computation-table has entry {{op, F, G), R})

else let x be the least variable of Fand G
U< computation (op, Fiy_ 1y, Gxo1y) s
V<computation (op, Fix_0}5 Gix—0y

else R« find-or-add-ite-table (x, U, V)
insert-in-computation-table ({(op, F, G), R})

Fig. 3. BDDs: the main algorithm.

These two equalities suggest clearly a recursive
procedure (Fig. 3).

In the algorithm described below, a second
hashtable (the computation table) has been intro-
duced in order to memorized quadruples
{{op, F, G),R}, where op is a logical operation and
F, G and R are addresses in the ite-table. Thus, F op
G will be performed only if the computation table
does not have an entry for this operation. With this
table the algorithm ‘learns’ in some sense from the
computations it peforms: the more computations it
has done, the more efficient it is.

Remark: Bryant notes that he has obtained best
performances with a hashcash rather than a hashtable
for the computation table (a hashcash is a hashtable
without collision chain).> We have made a different
choice: in or implementation all the operations are
memorized.

Example 4

Assume that we have built the two BDDs
G =ite(a, 1, ite(c, 1, 0)) and H =ite(b, 1, ite(c, 1, 0))
encoding respectively the subformulae (a v ¢) and
(b v ¢) of the formula of example 2. Now, in order to
compute the BDD associated with the formula itself,
we need to compute G A H.

G A H=ite(a, 1 Aite(d, 1, ite(c, 1, 0)), ite(c, 1, 0)

Aite(b, 1, ite(c, 1, 0))

=ite(a, ite(d, 1, ite(c, 1, 0)), ite(c, 1, 0)
A ite(b, 1, ite(c, 1, 0)))

=ite((a, ite(b, 1, ite(c, 1, 0)), ite(b, 1
nite(c, 1, 0), ite(c, 1, 0) A ite(c, 1, 0)))

=ite(a, ite(d, 1, ite(c, 1, 0)), ite(b, ite(c, 1, 0),
ite(c, 1, 0)))

=ite(q, ite(b, 1, ite(c, 1, 0)), ite(c, 1, 0))

i.e. The BDD shown in Fig. 2.

3.5 Complexity

To conclude this presentation of BDDs, let us give the
following two complexity results:

Property 6: The maximal size of a BDD encoding a
formula on n variables is 2"/n; the complexity in the
worst case of F § G, where F and G are two BDDs
and { any binary operation is in O(|F|. |G|), where
|F| denotes the size of F.

Of course, these worst case complexity results are not
very significant; in practice the complexity is far
better. At the moment, no definitive results on
average complexity are known.

4 COMPUTATION OF MINIMAL SOLUTIONS
4.1 Solutions defined by the paths in a BDD

Let f be a Boolean function and F the BDD associated
with f. Each path from the root of F to leaf 1 defines a
solution of f(x € o iff the path goes through a node
labelled by x and goes out of this node on the 1-edge).
The set of solutions defined by the paths of a BDD F
is computed by the procedure shown in Fig. 4. This
procedure must be called with o =).

All these solutions are not minimal. Nevertheless,
the following property holds:

Property 7: Let f be a Boolean function encoded by
the BDD F and let ¢ be a solution of f, then a path
exists from the root of F to leaf 1 which defines a
solution & of f such that 6 is included in o.

solutions (F, o) =
if (F=0) return @
else if (F=1) return {0}
else /* F=ite(x, F1,F2) */
S<solutions(Fl, oU{x}),
T<solutions(F2, o),
return SUT

Fig. 4. Solutions defined by a BDD.

New algorithms for fault trees analysis 207

Proof: three cases are possible:

(1) F=0 and f doesn’t have any solution.

(2) F=1 and f is a tautology. Thus, the empty
assignment (all the variables assigned to 0) is a
solution of f included in o.

(3) F=ite(x, G, H) and two cases are possible:

x € 0 and ¢ and o\{x} is a solution of G
x ¢ 0 and o is a solution of H

It follows that the property is demonstrated by
induction on the size of F.

Corollary 8: 1f o is a minimal solution of f, then there
exists only one path from the root of F to leaf 1
defining o.

Example 5

In the BDD shown in Fig. 2, there are three paths
from the root to leaf 1: {a, b}, {4, c} and {c}. {a, b}
and {c} correspond to the two minimal solutions of
the function. {a, ¢} is not minimal.

In order to compute and memorize the minimal
solutions of a function f, we will compute from the
BDD F encoding f, a new BDD G such that the set of
paths from the root of G to leaf 1 defines exactly the
minimal solutions of f.

For the sake of simplicity, we will abbreviate the
path from the root to the leaf 1 by path, when it will
be clear from the context.

4.2 Characterization of the minimal solutions

Theorem 9: Let F =ite(x, G, H) be a monotonic
Boolean formula in Shannon’s form. Then, the
following equality holds:

Solyin(F) = {0 | (6=8U {x}) A (8 € SOln(G))
A (6(H) = 0)} U Solyin(H)

Proof (sketch): If p is a minimal solution of H then p
is a solution of F. In addition, p is minimal since any
other solution of F is either a solution of H (i.e. no
smaller than p) or a solution of G augmented of x
(and p doesn’t contain x).

Now, if is a minimal solution of G, then 8 U {x}
is a solution of F. If, in addition, & is not a solution of
H, then a solution of F smaller than 6 U {x} doesn’t
exist and & U {x} is minimal.

Example 6

By means of Theorem 9, the minimal solutions of the
BDD: ite((a, ite((b, 1, ite(c, 1, 0)), ite(c, 1, 0)) (Fig.
2) are: the minimal solutions of the BDD ite(c, 1, 0)—
i.e. {c}—the minimal solutions of the BDD
ite(b, 1, ite(c, 1, 0))—i.e. {b} and {c}—that are not
solutions of the BDD ite(c, 1, 0)—ie. {b}—

augmented of a—i.e. {a, b}. Finally, we have:
Solin(ite(a, ite(b, 1, ite(c, 1, 0)),

ite(c, 1, 0))) = {{a, b}, {c}}.
4.3 The ‘\’ (without) operator

Let F =ite(p, G, H) be a BDD. Theorem 9 suggests a
recursive algorithm in order to compute the BDD F_;,
encoding the minimal solutions of F: it consists in
computing G, and H.;, encoding the minimal
solutions of G and H, then removing from G, all the
paths included in a path of H and finally composing
the two obtained BDDs with x in order to obtain F_;,.
The point is then to define the ‘remove’ operation.
We will call this the without operator and denote it
by V.

Let F =ite(x, F1, F2) and G =ite(y, G1, G2) be
two BDDs. Three cases are possible:

(1) x <y, in this case, the paths of F which are not
included in a path of G are, on the one hand,
the paths of F1 augmented by x which are not
included in a path of G, and on the other hand,
the paths of F2 which are not included in a path
of G. Thus we have: F\G =ite(x, FI\G, F2\
G).

(2) x>y, in this case, the paths of G containing y
cannot contain a path of F. Then we have,
F\G = F\G2.

(3) x=y, in this case, let o be a path of F. Two
cases are possible:

x € ¢ and o can be included either in a path of
G1 or in a path of G2

x ¢ o0 and o can be included only in a path of
G2.

It follows that F\G = ite(p, FI\(G1 or G2), F2\G2).
The meaning of ‘or’ has not yet been defined. Here
we will use the monotonicity of the studied functions.

Property 10: Let F=ite(x, G, H) be a monotonic
Boolean formula in Shannon’s form. Then, G and H
are monotonic.

The proof follows from the definitions

Property 11: Let F =ite(x, G, H) be a monotonic
Boolean formula in Shannon’s form. Then, for each
solution ¢ of H a solution é of G exists included in o.

Here too, the proof follows from the definitions.

Corollary 12: Let F =ite(p, F1, F2) be a BDD
encoding a monotonic solution. Then, for each path o
of F2 there exists a path 6 of F1 included in o.

Corollary 13: Let F =ite(p, F1,F2) and G=
ite(p, G1, G2) be two BDDs such that G encodes a
monotonic function. Then, F\G =ite(p, FI\G1, F2\
G2).

It follows that the ‘or’ operation is useless!

208

Antoine Rauzy

without (F, G)=

if (F=0) return O
elseif (G=1) returno
else if (G=0) returnF

else if (F=1) returnl

return R
else /*F=1ite(x, F1,F2) */

/* G=1ite(y, G1, G2) */
if (x<vy)

return R
else if (x>vy)

else /*x=y*/

return R

else if (computation-table has entry {(without, F, G), R})

U«<without (F1, G)

V<without (F2, G)

R<find-or-add-ite~table (x, U, V)
insert-in-computation-table (<without, F, G), R)

return without (F, G2)

U<without (F1, G1)

V<without (F2, G2)

R<-find-or-add-ite-table (x, U, V)
insert-in-computation-table ((without, F, G), R)

Fig. 5. Algorithm for computing F\G.

4.4 Algorithms

Theorem 9 and properties 10-13 thus allow the
description of an algorithm which computes the BDD
encoding the minimal solutions of a monotonic
Boolean function from the BDD encoding this
function. It is given in Figs 5 and 6.

Example 7
Let wus apply the algorithm
1, ite(c, 1, 0)), ite(c, 1, 0)):
solmin(ite(a,ite(b, 1, ite(c, 1, 0)), ite(c, 1, 0)) =
K1 = solmin(ite(d, 1, ite(c, 1, 0)))
K11 =solmin(1) =1
U11 = without(1, ite(c, 1, 0)) =1
V11 = solmin(ite(c, 1, 0) = ite(c, 1, 0)/*here
we have shortened */
thus, K1 =ite(b, 1, ite(c, 1, 0))

on ite(a, ite(b,

U1 = without(K1, ite(c, 1, 0)) = without (ite(b, 1,
ite(c, 1, 0)), ite(c, 1, 0))
U12 = without(1, ite(c, 1, 0)) =1
V12 = without(ite(c, 1, 0), ite(c, 1, 0)) =0
Thus Ul =ite(b, 1, 0)
V1 = solmin(ite(c, 1, 0)) = V11 =ite(c, 1, 0) /*

memorization of results! */

Thus, the result is ite(a, ite(b, 1, 0), ite(c, 1, 0)).
It is now easy to verify that the solutions of this BDD
obtained by the procedure in Fig. 4 are {a, b} and

{c}, i.e. the minimal solutions of the considered
formula.

4.5 Practical results

4.5.1 Benchmarks
We have tested our algorithm on 13 fault trees from
industrial practice: nine of these were proposed by

minsol (F) =
if ((F=0)or (F=1)) returnF
returnR

else /* F=1ite(x, G, H) */
K< minsol(G)
U«without (K, H)
Veminsol(H)

return R

else if (computation-table has entry {{minsol, F, _), R})

/* His monotonic */

R<find-or-add-ite-table(x, U, V)
insert-in-computation-table({{minsol, F, _),R}

Fig. 6. Algorithm for computing minimal solutions.

New algorithms for fault trees analysis

Table 1. Statistical elements on Dassault’s trees

209

Table 4. Running times (minimal cuts) for European trees

Trees

1 2 3 4 5 6 7 8 9

Variables 103 122 51 53 51 121 276 109 49
Connectives 145 82 30 30 20 112 324 73 36
Size 248 204 81 83 71 233 600 182 85

Table 2. Statistical elements on European trees

Trees
Chinese European European FEuropean
1 2 3
Variables 25 61 32 80
Connectives 36 84 40 107
Size 61 145 72 187

Dassault Aviation, and four by Professor Y. Dutuit
(one of these trees is completely described in the
appendix). Tables 1 and 2 lists some elements of these
trees.

4.5.2 Results
Tables 3 and 4 gives the computation times, the
number of minimal solutions and the size of the
obtained BDDs. The running times include the choice
of an index for each variable, the computation of the
BDD associated with the tree and finally the
computation of the BDD encoding its minimal cuts.
In order to give some comparison elements, Table 5
gives the running times obtained for the Dassault’s
trees with a classical algorithm using de Morgan’s
laws.

4.5.3 Heuristics

The size of a BDD (and thus the time necessary to
achieve its computation) depends greatly on the order
chosen for the variables. In the first version of our
program, the variables occurred in the set of
equations describing the tree. With this rough order,
the memory of our machine was insufficient for three
of the nine Dassault’s trees (i.e. 1000000 ite nodes
and 200 000 quadruples).

Chinese European European European
1 2 3
Times 0s50 4536 0s31 6s81
Solutions 392 46 188 4 805 24 386
Size 56 6044 183 2590

Table 5. Runing times obtained with a classical algorithm

Trees

1 2 3 4 5 6 7 8 9

Time 10577 2470 147 130 74 4327984383 — —*

“ The computations for the two last trees are not possible in
reasonable times.

Thus, we have defined a very simple heuristic in
order to find a better ordering: it consists in carrying
out a depth-first exploration of the tree and
numbering the variables as soon as they appear. The
computation times given above have been obtained
with this heuristic.

5 PROBABILITY OF THE ROOT EVENT
5.1 Shannon’s decomposition

In the previous section, we have shown how BDDs
allow the efficient computation of the minimal cuts of
a fault tree. It is clear that BDDs allow the probability
of the root event of the tree to be computed, given the
probabilities of the leaves (terminal events), by means
of the Shannon’s decomposition.

Theorem 14: Shannon’s decomposition (2): let f be a
function and x a variable occurring in f then the
following equality holds:

p(f)=px=1).p(fu-1)) +P(x=0). p(fx=0)
5.2 Algorithm

The Shannon’s decomposition is carried out as shown
in Fig. 7. Note that this procedure uses the BDD

Table 3. Running times (minimal cuts) for Dassault’s trees

Trees
1 2 3 4 5 6 7 8 9
Times 3s13 0s56 0s03 0s03 0s01 0s65 4543 0s05 0s05
Solutions 8060 14217 16200 16704 17280 19518 25988 =~81x10° 27788
Size 1056 422 62 69 53 466 1525 161 51

The program was written in C, compiled with the gcc compiler without optimization option and
runs onto a SUN IPX workstation with 16 MBytes of memory.

210

Antoine Rauzy

probability(F)=
if (F=0) return O
else if (F=1) returnl

return R
else /*F=1ite(x, G, H) */
Re<p(x) .probability(G)

return R

else if (computation-table has entry {(probability, F, _),R})

+ (l1-p(x)) .probability(H)
insert-in-computation-table({(probability, F, _), R})

Fig. 7. Algorithm for computing p(F).

memorization. It follows that its complexity is linear
in the size of the BDD and not in the size of the
solutions (i.e. number of solutions X number of events
in one solution).

5.3 Benchmarks

Below, the running times shown in Tables 6 and 7 are
those necessary for choosing an index for each
variable, computing the BDD associated with each
tree and the probability of its root event.

Table 6. Running times (probability of the root event) for Dassault’s trees

Trees
1 2 3 4 5 6 7 8 9
Times 4576 0s36 0s03 0s05 0s02 0s81 8s25 0s10 0s06
Solutions 8060 14217 16200 16704 17280 19518 25988 =~81x10° 27788
Size 1056 422 62 69 53 466 1525 161 51

Table 7. Running times (probability of the root event) for
European trees

Trees
Chinese European European FEuropean
1 2 3
Times 0s05 1s71 0s21 4576
Solutions 392 46 188 4 805 24 386
Size 56 6044 183 2590

6 RELATED WORK

Recently, Coudert and Madre have proposed a
method based on BDDs in order to compute the
prime implicants of a formula.” Their method is more
powerful than the one we have proposed since it can
be applied even on non-monotonic formulae.
However, it requires duplication of each variable and
the efficiency is decreased (at least by a factor of 20 as
far as we have compared the two methods). In
addition, the use of the BDD obtained to compute the
probability of the root event is not so clear.

7 CONCLUSION

In this paper, we have described new algorithms for
fault tree management. The main conclusion stands in

the tables describing the benchmarks. These tables
show that BDDs are very well-adapted for our
purpose and allow a qualitative and quantitative
improvement in the safety analysis of embedded
systems.

It remains for us to extend the work to the entire
fault tree method including non-consistent trees, fuzzy
trees and so on.

ACKNOWLEDGEMENT

This work is supported by a collaboration between the
LaBRI and Dassault Aviation (Cecilia Project).

REFERENCES

1. Bryant, R., Graph based algorithms for Boolean function
manipulation. IEEE Transactions on Computer, 35(8)
(1987) 677-91.

2. Brace, K., Rudell, R. & Bryant, R., Efficient
implementation of a BDD package. Paper presented at
the 27th ACM/IEEE Design Automation Conference,
1990, IEEE 0738.

3. Billon, J. C. & Madre, P., Formal proof of combinatorial
digital circuits. IFIP WG 10.2 July 1988.

4. Burch, J. R., Clark, E. M., McMillan, K. L. & Dill, D.
L., Sequential circuit verification using symbolic model
checking. Proceedings Workshop DAC 1990.

5. Biittner, W. & Simonis, H., Embedding Boolean

N., Arbres

root :=(gl26 & gl138 & gl44)

de Défaillances.
Nouvelles Technologies Edition Hermes, Paris 1992. (in
French).

. Coudert, J. C. & Madre, P., A new method to compute
prime and essential implicant of Boolean functions.
Rapport de Recherche BULL RT/91028, October 1991.

expressions into logic programming. Journal of Symbolic
Computation, 4 (1987) 191-205.
. Limnios,

Traité des

New algorithms for fault trees analysis

APPENDIX: A

This is one of the fault trees of our benchmarks. The
syntax is as follows: a := f defines the event a by the
formula f. The symbols | and & stand for ‘or’ and
‘and’, finally @(k, [...]) stands for the connective

‘at-least kin . . .’

European 1

gl44 .= (g1111g112 | g143 | c053)
g143 = (g139 & g140 & gl141 & g142)
8142 := (g065 1 g069 | g118 1 g132 1 c051)

gl4l:

(2064 | g067 1 g117 | g131 | c050)

2140 := (g063 1 g068 1 g118 | g130 | c049)
g139 := (g062 1 g066 1 g117 | 129 | c048)

138 := (g106 1 g119 | g137)

g137 := @(3, [g133,g134,8135,8136])

2136 := (g065 | g132 1 c061)
g135 := (g064 | gi31 | c060)
g134 := (g063 | g130 | c059)
8133 := (g062 | g129 | c058)
g132 := (g065 1 g128 | c057)
g131 := (g064 1 g127 | c056)
2130 := (g063 1 £128 | c055)
2129 := (g062 1 g127 | c054)
g128 := (gl16 & g120)

8127 := (g115 & g120)

8126 :=(g1111g1121g1251c053)
g125 := @(2, [g121,2123,2122,8124))

124 := (g069 1 g118 | c051)
2123 := (g067 | g117 | c050)
g122 := (g068 | g118 | c049)
g121 := (g066 1 g117 | c048)

2120 :=(g1091g110)

8119 :=(g107 | g108 | c052)
gl18:=(gl14 | g047)

8117 1= (g113 | g046)

g116 := (g103 & g105)
g115 :=(g102 & g104)
£114 := (g091 & g093)
g113 := (g090 & g092)
gl12 := @(3, [g098,2099,2100,g101})
gl11 := @(3, [g094,2095,2096,g097])
g110 := @(3, [2086,2087,2088,20891)
£109 := @(3, [g082,g083,2084,2085])
2108 := @(3, [g078,2079,2080,20811)
2107 := @(3, [g074,2075,2076,2077))
2106 := @(3, {g070,g071,2072,2073])
8105 = (g069 | c045)
g104 = (g067 | c044)

p(c001)=0.01

p(c002)=0.051
p(c003)=0.051
P(c004)=0.051
P(c005)=0.051
P(c006)=0.112
P(c008)=0.112
P(c009)=0.112
P(c010)=0.016
p(c011)=0.016
p(c012)=0.016

P(c013)=0.016
Hc014)=0.0218
Pc015)=0.0218
P(c016)=0.0218
P(c017)=0.0218
p(c018)=0.015
P(c019)=0.015
P(c020)=0.015
p(c021)=0.015
P(c022)=0.016
p(c023)=0.016

P(c024)=0.016
P(c025)=0.016
P(c026)=0.015
pc027)=0.015
p(c028)=0.015
Mc029)=0.015
p(c030)=0.0137
P(c031)=0.0137
P(c032)=0.0137
P(c033)=0.0137
p(c034)=0.016

g103
g102
g101
g100

g099 :
2098 :

g097
096
g095
2094
g093
g092
g091

090 :
g089 :
g088 :

g087
g086
g085

g084 :
g083 :

2082
g081
080

g079 :

FAULT TREE

= (g068 | c043)
= (g066 | c042)
1= (g069 1 c041)
= (g067 | c040)
(2068 1 c039)
(g066 | c038)
= (g069 1 c037)
= (g067 | c036)
:= (g068 | c035)
(g066 1 c034)
(2069 1 c033)
= (g067 1 c032)
= (g068 | c031)
(g066 | c030)
(2065 | c029)
(2064 | c028)
= (g063 | c027)
= (g062 | c026)
= (g065 1 c025)
(2064 | c024)
(2063 1 c023)
= (g062 t c022)
= (g065 1 c021)
1= (g064 | c020)
(g063 1 c019)

g078 :
g077
g076
g075:
g074 :
g073:
g072
2071
g070
069 :
£068 :
g067
2066
2065 :
g064

(20621 c018)
= (g065 1 c017)
= (g064 | c016)
(2063 | c015)
(2062 1 c014)
(20651 c013)
= (g064 1 c012)
= (g063 1 c011)
= (g062 1 c010)
(c001 & c009)
(c001 & c008)
= (c001 & c007)
= (c001 & c006)
= (c001 & c005)
= (c001 & c004)

2063 := (c001 & c003)
062 := (c001 & c002)

p(c035)=0.016
P(c036)=0.016
p(c037)=0.016
P(c038)=0.016
P(c039)=0.016
P(c040)=0.016
p(c041)=0.016
P(c042)=0.0038
P(c043)=0.0038
P(c044)=0.0117
p(c045)=0.0117

p(c046)=0.00052 p(c057)=0.015
p(c047)=0.00052 p(c058)=0.0188
p(c048)=0.018 p(c059)=0.0188
p(c049)=0.018 p(c060)=0.0188
p(c050)=0.018 p(c061)=0.0188
p(c051)=0.018
p(c052)=0.000008
p(c053)=0.000072
p(c034)=0.015

p(c055)=0.015

p(c056)=0.015

