
Polynomial restrictions of SAT: What can be

done with an efficient implementation of the

Davis and Putnam’s procedure ??

Antoine Rauzy

LaBRI – CNRS URA 1304 – Université Bordeaux I
51, cours de la Libération, F-33405 Talence (France)

email: rauzy@labri.u-bordeaux.fr

Abstract. Constraint Solving Problems are NP-Complete and thus com-
putationaly intractable. Two approaches have been used to tackle this
intractability: the improvement of general purpose solvers and the re-
search of polynomial time restrictions. An interesting question follows:
what is the behavior of the former solvers on the latter restrictions ?
In this paper, we examplify this problem by studying both theoretical
and practical complexities of the Davis and Putnam’s procedure on the
two main polynomial restrictions of SAT, namely Horn-SAT and 2-SAT.
We propose an efficient implementation and an improvement that make
it quadratic in the worst case on these sub-classes. We show that this
complexity is never reached in practice where linear times are observed,
making the Davis and Putnam’s as efficient as specialized algorithms.

1 Introduction

Let φ = C1 ∧C2 ∧ . . .∧Cm be a Boolean expression in conjunctive normal form,
i.e. where each clause Ci is a disjunction of literals and each literal is either a
variable pi or its negation ¬pi (1 ≤ i ≤ n).

The SAT(isfiability) problem consists in determining whether such an expres-
sion φ is true for some assignment of Boolean values to the variables p1, . . . , pn.
Cook [13] has shown that SAT is NP-complete and it is now the reference NP-
complete problem [25]. A k-SAT instance is a SAT instance wherein all of the
clauses have the same length k. For k ≥ 3, k-SAT is NP-complete [13].

As the other Constraint Solving Problems and unless P = NP , SAT is
thus computationally intractable. Two approaches have been used to tackle this
intractability: the improvement of general purpose solvers and the research of
restrictions for which there exists polynomial time algorithms. It must be pointed
out that solving a restriction requires a priori two algorithms: the first one to
recognize that a given instance belongs to the restriction, the second one to
decide whether instances belonging to this restriction are satisfiable or not. Both
must be polynomial to establish that the restriction is so.

? This work is supported by the french inter-PRC project “Classes Polynomiales”

SAT admits some (few) restrictions for which such algorithms are known.
These restrictions are mainly Horn-SAT (satisfiability of sets of Horn clauses)
and 2-SAT (satisfiability of sets of binary clauses) for which there exist linear
time algorithms. These algorithms work on specialized data-structures (graphs
or hypergraphs) and cannot be extended into general solvers for SAT. This raises
an interesting question: what about the behavior of the general purpose solvers
on these restrictions ?

In this paper, we aswer this question for what concerns the good old Davis
and Putnam’s procedure [17, 16], Horn-SAT and 2-SAT. This procedure is of
a particular interest because, despite of its simplicity, it has never been shown
inferior to any other complete algorithm. In particular, it outperforms the most
efficient resolution based methods [6].

We first propose an efficient implementation and discuss how unit resolu-
tion and monotone literal propagation can be achieved in linear time. Then, we
establish that this implementation is quadratic on Horn clauses and that an im-
provement we have proposed in [33] makes it quadratic on binary clauses. We
give experimental results obtained on randomly generated sets of clauses. This
provides evidence that the quadratic worst case complexity is never reached
in practice where linear times are observed. We give elements to explain why.
We examine also some related problems such as unique-satisfiability or truth of
quantified boolean formulae.

The main interest of these results is that given any SAT instance, it is not
necessary to test whether it belongs to one of the cited polynomial classes, in
order to apply a specialized decision algorithm. The Davis and Putnam’s pro-
cedure, that is a complete solver for SAT, ensures good practical results. This
show a clear separation between hard instances, that are indeed hard for any
algorithm, and easy instances that are symmetrically easy for well implemented
general purpose solvers.

The remaining of this paper is organized as follows. We describe how the
Davis and Putnam’s procedure can be efficiently implemented at section 1. Then,
sections 2 and 3 are respectively devoted to Horn instances and 2-SAT instances.

The paper by Davis and Putnam [17], that is cited by most of the authors,
does not contain the procedure under its nowadays recursive presentation in
terms of assignments of Boolean values to variables. Such a presentation has
appeared for the first time in [16]. Nevertheless, even the latter paper does
not give any detail about the underlying data structure (nor does the very often
referenced [41]). However, this point is significant since linear time simplifications
discussed below can only be achieved by choosing the appropriate data structure.

1.1 Data structure

We use a “sparse matrix” to store the clauses. Each row of the matrix encodes
a clause (i.e. a list of literals). Each column encodes the list of occurrences of a
variable. The design of an enumerative algorithm (i.e. one whose principle is to
assign values to variables), on such a matrix requires a single basic instruction:
the assignment of a value belonging to {true, false, neutral} to a variable. This

operation is performed by visiting each occurrence of the variable and updating
various counters that are used for multiple purposes, including the design of
algorithms and heuristics.

– For each clause, counts of satisfied, falsified and neutral literals it contains
in the current assignment are maintained, as well as a status belonging to
{unchanged, satisfied, shortened, falsified}. A clause is unchanged when all
its literals have the value neutral. It is satisfied when at least one of its
literals is satisfied. It is falsified when all its literals are falsified. Finally,
it is shortened otherwise, i.e. when it contains no satisfied literal and at
least a falsified literal and a neutral literal. A clause is active if it is either
unchanged or shortened. A clause is unit when it is active and it contains
only one unassigned literal.

– Global counts of clauses of each of the fourth categories are maintained.
– The value of each variable is maintained, as well as counts of its positive

and negative occurrences in the clauses of each category and counts of its
positive and negative occurrences in unit clauses. Note that if a variable
occurs both positively and negatively in unit clauses the current set of clauses
is unsatisfiable.

– A list of unit literals and a list of monotone literals are maintained. A neutral
literal is said to be monotone, if its opposite does not occur in active clauses.
It is said to be an unit-literal if it is the only neutral literal of an unit clause.
These lists are doubly chained ones, in order to allow constant time insertion
and removal of items.

We denote by Ep1←v1,...,pk←vk
the matrix E in which values v1, . . . , vk be-

longing to {true, false} are assigned to variables p1, . . . , pk. The other variables
are assumed to have the value neutral. By extension, we denote Eq the matrix E
in which the literal q has been satisfied. We denote by 1− v the opposite value
of v, i.e. 1 − v = false when v = true and vice versa, and by ¬q the opposite
of a literal q. Note that the presented way of carrying out assignments is not
the one described for instance in the Loveland’s book [41]. In general, authors
assume that the set of clauses is updated each time an assignment is performed.
Of course, the set of clauses encoded by Ep1←v1,...,pk←vk

is obtained from the
set of clauses encoded by E by deleting clauses that contain a satisfied literal
and suppressing the occurrences of falsified literals from the other clauses. In our
experience, our way of doing is not only simpler to program but also more effi-
cient. In the following, we always say “set of clauses” but the underlying coding
by means of a sparse matrix is implicitly assumed.

Lemma 1 (Complexity of the basic operation). The worst case complexity
of the assignment of a value to a variable is in O(L×K), where L denotes the
maximum number of occurrences of a variable and K denotes the maximal size
of a clause.

In what follows, we keep the same meaning to L and K. We denote by V the
number of variables, by C the number of clauses and by S the total number of
literals occurring in the clauses. K and L are indeed majored by V and C.

1.2 Linear Time Unit and Monotone Propagation

A very interesting property of the proposed data structure is that it allows linear
time unit and monotone propagations. We call unit and monotone propagation
the process that consists in peeking repeatedly an unit or monotone literal and
satisfying it until there is no more unit or monotone literals or a variable occurs
both positively and negatively in unit clauses.

Lemma 2 (Linear Time Unit and Monotone Propagation). Unit and
Monotone Propagation is in O(S).

Since lists of unit and monotone literals are maintained, detection of such
literals is done in constant time. Let us consider the maximum number of times
a literal is visited. A clause may change at most two times of status during
the propagation process (from unchanged to shortened then from shortened to
falsified or to satisfied), thus its literals are visited at most two times in order to
update counters of their owning variables. An additional visit may be necessary
to detect the only unassigned literal of the clause (when this clause becomes
unit). The list of occurrences of a variable is visited at most once, when a value
is assigned to this variable. It follows that each literal is visited at most four
times. 2

This simple complexity analysis is not essentially new since Minoux in [44]
have already remarked that unit resolution can be performed in linear time. We
extend it here to monotone literals and to the updating of various counters.
Moreover, the algorithm discussed here is far more natural and general than
graph based algorithms proposed by Dowling and Gallier [18] (and corrected in
[50]), Minoux [44] or Ghallab and Escalada-Imaz [27].

1.3 Algorithm

The Davis and Putnam’s procedure, as it is implemented on a sparse matrix,
can be described in an informal way as follows: let E the set of clauses to be
tested.

– If the satisfiability of E is not immediately decidable (i.e. if neither E is
empty nor it contains an empty clause or a variable occurring both positively
and negatively in unit clauses), then there are two cases:

– E contains a monotone or a unit literal q. In this case, the value v that
satisfies q is assigned to the corresponding variable, and the algorithm is
called recursively. It is sound since in both cases, E is satisfiable if and only
if Eq is satisfiable.

– E does not contain monotone or unit literal. In this case, a variable p and a
value v are chosen and the algorithm is called recursively first on Ep←v and
second on Ep←1−v , if Ep←v is not satisfiable.

Heuristics. In practice, a good heuristic for choosing the next literal to assign
improves dramatically the performances of the algorithm. Of course, a compro-
mise must be found between the cost of an heuristic and its efficiency. For this
study, we used two simple heuristics.

The first one so-called ffis (for First Fail in Shortened Clauses) that consists
in choosing the variable that has first the maximum number of occurrences in
shortened clauses and second the maximum number of occurrences in unchanged
clauses.The chosen value is the one satisfying the most frequent literal. ffis is
not the best heuristic we know, however it is a very interesting tradeoff and
seems — as far as we have tested them on a sufficiently large benchmark —
as efficient as many other proposed ones [56, 34, 42, 20]. Its cost is in O(V) (a
traversal of the table of variables).

The second heuristics so-called bimo (for Best In Matrix Order) is even sim-
pler and consists in choosing the first unassigned variable in the matrix order.
The chosen value is the one satisfying the most frequent literal. Its cost is in
O(1) (it suffices to increment a pointer each time a variable is assigned).

On-Line Algorithms. Several authors have examined the case where new clauses
are added on-line to the current set [4, 32, 54]. It is clear that the Davis and Put-
nam’s procedure can be easily adapted without any additional cost to this case:
it suffices to maintain the current execution stack, i.e. the current assignment
plus a number of information to handle backtracking. In what follows, we will
do not mention this point anymore, but it will be implicitly understood.

2 Horn Clauses

2.1 Worst Case Complexity

A Horn clause is a clause that contains at most one positive literal. Horn-clauses
are used extensively in Artificial Intelligence (see e.g. [31]) A set of clauses E is
said Horn-renamable if it exists a renaming transforming E into a set of Horn
clauses (a renaming substitutes in the whole set and for some variables p, the
occurrences of p for ¬p and vice versa).

Several linear time algorithms have been proposed to test the satisfiability
of Horn clauses [18, 44, 27]. These algorithms do not consider the recognition
problem (i.e. they take sets of Horn clauses in input). Lewis showed in [39] that
in order to decide whether a set of clauses is Horn-renamable or not it suffices
to check the satisfiability of an associated set of binary clauses (as it will be
discussed at the next section, it is possible the perform this test in linear time).
The basic idea is to associate a binary clause (¬p ∨ ¬q) with each pair (p, q)
of literals occurring simultaneously in a clause. Each assignment satisfying the
set of binary clauses defines a Horn-renaming: it suffices to rename the variables
taking the value false in the assignment. Conversely, each Horn-renaming defines
a satisfying assignment: the value false is assigned to renamed variables, the value
true is assigned to the others. Roughly done this construction may generate a
quadratic number of binary clauses. Many authors have proposed linear explicit

or implicit constructions of the set of binary clauses [2, 43, 1, 40, 10, 30]. The
following result is well known:

Theorem 1 (Unit-Resolution). The unit-resolution is complete for Horn clauses.

It means that if a Horn-renamable set of clauses is unsatisfiable, the Davis and
Putnam’s procedure demonstrates it just by applying the unit-literal selection
rule. Therefore, the following results holds:

Lemma 3 (Unsatisfiable Horn-SAT). The Davis and Putnam’s procedure is
in O(S) on unsatisfiable Horn-renamable instances.

This result is already known and has been implicitly pointed out for instance
in [24]. Unit literal propagation is sufficient to determine whether a Horn set
is satisfiable or not. But this requires to know that the tested instance is Horn
renamable. What we want to ensure is that our general decision procedure,
here the Davis and Putnam’s procedure, is polynomial on polynomial classes of
SAT without testing before whether the tested instance belongs to a polynomial
class or not. It thus remains to look at the complexity of the algorithm on
Horn-renamable sets clauses that do not contain unit literal and that are thus
satisfiable. Let E be such a set. We can assume without a loss of generality that
E does not contain any monotone literal.

Let q be the literal chosen by the used heuristics. There are two cases:

– Eq is satisfiable. In this case, the algorithm does not backtrack on the satis-
faction of q.

– Eq is unsatisfiable, and from the lemma 3, the Davis and Putnam’s proce-
dure detects this unsatisfiability in O(S). Thus it backtracks (with the same
complexity), and then it falsifies q. The set E¬q is a Horn-renamable set of
clauses with at least one variable less than E.

Since the process “selection of variable / unit-literal propagation / detection
of a falsified clause / backtrack” cannot be repeated more than V times, the
following result holds:

Theorem 2 (Horn-SAT). The Davis and Putnam’s procedure is in O(V ×S)
on Horn-renamable instances.

On the one hand, this shows that the worst case complexity of the Davis and
Putnam’s procedure is not as good as the worst complexity of specialized algo-
rithms that first decide in O(S) whether a set of clauses is Horn-renamable then
test in O(S) whether it is satisfiable. On the other hand, the obtained complex-
ity is low and we will see that the practical complexity is actually linear. Note
that the key point to obtain a linear worst case complexity stands in the proof
of Horn-renamability and that this proof is in turn equivalent to a satisfiability
test of a set of binary clauses.

2.2 Experimental Complexity

Fig. 1 shows the results obtained on randomly generated Horn-SAT instances.
An instance consists of C non-tautological clauses of size 3 built independently
over 1000 and 2000 variables, each variable having the same probability to be
drawn. One of the literals of a clause is positive, the two others are negative
(to be sure not to introduce biases, instances are randomly renamed). Presented
curves have been obtained by interpolating points corresponding to the draw of
100 instances for the value 0.5, 0.6 and so on of ratio C/V . Fig. 1 shows that:
– Below the value 2.3 of the ratio C/V , curves of running times with both
heuristics are quasi-identical.
– Beyond this value, running times grows linearly with the ratio C/V for bimo,
and more than linearly with ffis.

0

200

400

600

800

1000

1200

1400

0 1 2 3 4 5 6

”bimo1000”
”ffis1000”

”bimo2000”
”ffis2000”

Fig. 1. Horn-SAT: Relation between sizes of instances and running times

This is explained as follows. For any value of the ratio C/V and for both
heuristics, the procedure never backtracks. This is due to the choice of the most
frequent literal (once the variable chosen). The number of assignments required
to satisfy all of the clauses grows as C/V grows. Below the ratio 2.3, the satis-
fiability of instances is proved only by means of monotone literal propagation.
No choice is performed, and thus the two curves are identical. Beyond this ra-
tio, monotone literal propagation does not suffice. Some choices must be per-
formed. The number of required choices increases as C/V increases. Conversely,
the number of monotone literals decreases as C/V increases, even if it remains
high for a long time. For instance, about 60% of assigned literals are monotone
at C/V = 6.5. With bimo, each choice is performed in constant time and thus,
even if a linear number of such choices must be done, the Davis and Putnam’s
procedure remains linear. With ffis, each choice is performed in linear time.
The Davis and Putnam’s procedure tends thus to be quadratic, since it must

perform ρV choices, where ρ is a constant between 0 and 1 that depends on
C/V .

These observations justify the way we draw instances: the easiness of a Horn-
renamable instance depends on the number of monotone literals it contains,
that depends on turn on the proportion of “positive” literals. Statistically, the
more there are such literals, the less there are monotone ones. By compelling
at least one literal per clause to be “positive”, we ensure that there is a quite
high proportion of such literals, namely about 1/3. Note that drawing instances
whose clauses are longer than 3 would decrease this proportion. On the other
hand, introducing binary clauses makes the problem easier, as we will see at the
next section.

How to reach the worst case complexity ? It is possible to build instances for
which the worst case complexity is reached (even in terms of the number of
assignments). This is exemplified by the following family.

En =
∧

i=1..n(¬pi ∨ qi)
∧
∧

i=2..n(¬qi−1 ∨ pi)
∧ (
∧

i=1..n(¬pi ∨ ri) ∧ (pi ∨ ¬ri))
∧ (
∧

i=1..n(qi ∨ ¬si) ∧ (qi ∨ ¬ti))
∧ (
∧

i=1..n(¬qi ∨ ui) ∧ (¬qi ∨ vi))
∧ (
∧

i=1..n(si ∨ ¬ti) ∧ (¬si ∨ ti))
∧
(
∧

i=1..n−1
(ui ∨ ¬vi) ∧ (¬ui ∨ vi)

)

∧ (un ∨ vn) ∧ (¬un ∨ ¬vn)

En is horn-renamable (it suffices to rename vn to obtain a Horn set). The pi’s
have 4 occurrences (2 positives and 2 negative), excepted p1 that has a positive
occurrence less. The qi’s have 6 occurrences (3 positives and 3 negatives). The
ri’s have 2 occurrences (1 positive and 1 negative). The si’s and the ti’s have 3
occurrences (1 positive and 2 negative). The ui’s and the vi’s have 3 occurrences
(2 positive and 1 negative) Thus, En contains 24 × V − 1 literal occurrences
and thus has a size linear in V . There is no unit and no monotone literal in En.
ffis may choose to assign the value 1 to q1, since q1 is one of the most frequent
variables and has as many positive and negative occurrences. The set Enq1←1 is
shown unsatisfiable in at least 2n unit-literal assignments:

q1 ⇒ p2 ⇒ q2 ⇒ p3 ⇒ . . .⇒ qn ⇒ (un ∧ vn)

but the last two clauses constrain un and vn to take different values. Thus, the
algorithm backtracks and assigns the value 0 to q1. It is easy to verify that

Enq1←0 ≡ (En−1 ∧ ¬p1 ∧ ¬r1 ∧ ¬s1 ∧ ¬t1 ∧ (u1 ⇔ v1))

The next chosen literal may be q2, and so on. It follows that at least n(n+ 1)/2
assignments are necessary to find a model of En. The same result holds for
bimo (with the appropriate variable ordering). Note that the above instances
are compound of binary clauses.

2.3 Unique Horn Satisfiability

The unique satisfiability problem (unique-SAT) asks whether there exists a
unique solution to a given SAT instance. Unique-SAT is known to be co-NP-
complete [5]. In [48], D. Pretolani proposes linear time algorithm to solve unique-
SAT on Horn clauses. This algorithm involves rather complex techniques. By
going on after the first model was found (indeed in the case of satisfiable in-
stances), the Davis and Putnam’s procedure will check whether there exists a
second model within the same complexity than for the first one: it will explore
remaining alternatives, and on each unexplored right branch, either the corre-
sponding set is unsatisfiable and it will be demonstrated it in O(S) in the worst
case, or it is satisfiable and the procedure finds the second model in O(V × S).
Since the number of unexplored alternatives is majored by V , we have:

Theorem 3 (unique-Horn-SAT). The Davis and Putnam’s procedure is in
O(V × S) on unique-Horn-SAT.

In practice, determining whether a Horn-instance is unique satisfiable is not
more costly than finding a solution: experiments reported above show that even
for very large ratios C/V (50 for instance), there remain variables not valued in
the found solution. Thus this solution is in fact a set of 2k solutions, where k is
the number of free variables.

3 Binary Clauses

Binary clauses play an important role in circuit design (see e.g. [37]). Satisfia-
bility of quadratic clauses is the other well known polynomial time restriction
of the SAT problem. As the matter of fact, there are a quadratic number of
binary clauses (exactly 2n(n− 1)). Thus, simply by saturating a 2-SAT instance
for the resolution principle, one obtains a polynomial decision algorithm. There
exist linear time algorithms for solving 2-SAT [3, 22, 47]. Two different ways have
been proposed to achieve linearity:

– By using the Tarjan’s (linear) algorithm for exhibiting and sorting strongly
connected components of a graph [52], as it is proposed by Apsvall, Plass
and Tarjan in [3]. This implies a graph based formulation of the problem.

– By performing assignments of Boolean values to variables in “parallel” as
suggested by Even, Itai and Shamir in [22].

However, as it is shown in [47], it appears that algorithms with a quadratic worst
case complexity are more efficient in practice than those with a linear one. We
will discuss this point latter.

3.1 A Frequent Error

Conversely to what many authors have written (including Petreschi and Simeone
in [47]), the worst case complexity of the Davis and Putnam’s procedure is not

polynomial on binary clauses. To be convinced of that, it suffices to consider the
following family of instances:

En =

(

∧

i=1..n

(pi ∨ ¬qi) ∧ (¬pi ∨ qi)

)

∧ (r ∨ s) ∧ (¬r ∨ s) ∧ (r ∨ ¬s) ∧ (¬r ∨ ¬s)

The four last clauses form an unsatisfiable subset. It is easy to verify that the
first ones, that encode the relations pi = qi for i = 1..n, admit 2n models. With
a heuristics such as bimo presented at section 1, that chooses variables in the
order p1, . . . , pn, r, the Davis and Putnam’s procedure goes through a complete
binary tree on height n. Each leaf of this tree consists of the small search tree
showing that the subset of the four last clauses is unsatisfiable.

This way of building sets of clauses – a big subset admitting a lot of solutions
and a small unsatisfiable subset – often misleads enumerative methods. Note
that it is always possible to mislead any reasonable heuristics (such as ffis), by
duplicating some clauses, for these heuristics are based on counting arguments.

3.2 An improvement

Nevertheless, an improvement that we have introduced in [33] ensures the poly-
nomiality of the algorithm on binary clauses (no complexity study was done in
the cited paper). This improvement generalizes the notion of monotone literal
to sets of literals. It uses the following property – so-called model separation:

Lemma 4 (Model separation). Let E be a set of clauses and σ a partial
assignment of the variables of E. If Eσ does not contain any shortened (nor
falsified) clause, then E is satisfiable if and only if Eσ is satisfiable.

Proof it suffices to see that Eσ is a subset of E. Thus, if it is unsatisfiable, E is
unsatisfiable too. Otherwise, σ extends any model of Eσ into a model of E. 2

This property is used in order to prune the search tree:
Assume the values v1, . . . , vk assigned to the variables p1, . . . , pk in this order.

Assume too that the set Ep1←v1,...pk←vk
has been shown unsatisfiable (a complete

subtree under the node labeled with pk has been explored). Assume finally that
Ep1←v1,...pk←vk

does not contain any clause shortened by the assignment of the
variables pi, pi+1, . . . , pk (1 ≤ i ≤ k).

Then, from the model separation lemma, the search tree can be pruned from
the node labeled with pi−1 to the node labeled with pk.

Let, for instance, E be the following set of clauses:

E = (p1 ∨ ¬q1) ∧ (¬p1 ∨ q1) ∧ (p2 ∨ ¬q2) ∧ (¬p2 ∨ q2)
∧ (r ∨ s) ∧ (¬r ∨ s) ∧ (r ∨ ¬s) ∧ (¬r ∨ ¬s)

Assume that the procedure assigns first the value 1 to p1 (and thus the value 1 to
q1 by unit literal propagation), then second the value 1 to p2 (and thus the value
1 to q2 by unit literal propagation). Ep1←1,q1←1,p2←1,q2←1 is unsatisfiable and

contains no shortened clause. Thus, E is also unsatisfiable and it is not necessary
to explore the assignments p1 ← 1, q1 ← 1, p2 ← 0, q2 ← 0 and p1 ← 0, q1 ← 0.

Note that the complexity of the detection of the model separation is linear
w.r.t. the number of pruned branches, thanks to the counters described in the
first section.

The improved Davis and Putnam’s procedure, when applied to sets of binary
clauses, is very similar to an algorithm proposed in [22] to solve instances of
the timetable problem (which is reducible to 2-SAT). Model separation lemma
also generalizes the notion of “autarch” proposed by Monien and Speckenmeyer
in [46]. The key idea is that when a pair variable/value is chosen, either this
assignment is demonstrate unsatisfiable by unit literal propagation, or it can be
definitely kept.

3.3 Polynomiality of the improved Davis and Putnam’s procedure

Let E be a set of binary clauses. We can assume without a loss of generality
that E does not contain unit-clause, nor monotone literal.

Let < p, v > be the pair variable/value chosen by the heuristic. The assign-
ment of v to p creates eventually some unit-literals. These literals are chosen,
thanks to the unit-literal selection rule. Their assignments may create new unit-
literals that are themselves chosen and so on. At the end of this process, a set
Eσ is obtained. There are two cases:

– At least one of the clauses of E is falsified by σ. Then, the algorithm back-
tracks and assigns the value 1− v to p.

– None of the clauses of Eσ is falsified and Eσ does not contain any shortened
clause, since a shortened binary clause is unit. In this case, the model sep-
aration lemma holds and E is satisfiable if and only if Eσ is satisfiable too.
Thus, the partial assignment σ is definitive.

Since the process “selection of variable / unit-literal propagation / detection
of a falsified clause / backtrack” cannot be repeated more than V times, the
following result holds:

Theorem 4 (2-SAT). The improved Davis et Putnam’s procedure is in O(V ×
S) on binary clauses.

3.4 Experimental Complexity

Before presenting experimental results of the Davis and Putnam’s procedure on
binary clauses, we must discuss recent works about threeshold phenomena and
randomly generated k-SAT.

The interest in randomly generated k-SAT instances has been increased re-
cently by an experimental result due to several authors independently [21, 45,
38, 15] that remarked that k-SAT instances obey a 0/1 law. Below a ratio C/V
that depends on k, the probability to draw a satisfiable instance tends to 1 as

V tends to infinity. Beyond this ratio it tends (quickly) to 0. For k = 2 the
threshold has been actually established equal to 1 by several authors [12, 28].
For k = 3 and k = 4 experimental values have been found (respectively 4.25
for k = 3 and 9.8 for k = 4). Researchers work hard to find (theoretical) lower
and upper bounds for these values and Dubois in [20] gives a general equation
ln(2) − V.2k − exp(kV/(2k − 1) = 0, for which the upper zeros would be very
close to the values of the thresholds of k-SAT instances (for k=3 and beyond).
Threshold phenomena occur also in sets of clauses with different lengths [26].

In a practical point of view, one can observe that the hardest randomly
generated k-SAT instances for Davis and Putnam’s procedure (and for other
algorithms, even incomplete ones such as Selman’s GSAT [51]) are those around
the threshold [11, 45, 20, 49] that is where about 50% of the drawn instances are
satisfiable. Even for small numbers of variables (say 50) running times suddenly
increase near the threshold and quickly decrease after. Satisfiable instances are
significantly easier than unsatisfiable ones, but they are hard too, i.e. that run-
ning times quickly increase as V increases.

The Fig. 2 shows the results obtained on randomly generated 2-SAT instances
(heuristics: bimo). An instance is compound of C different and non tautological
clauses, all literals having the same probability. For 1000, 1500, 2000 and 2500
variables, 100 instances have been generated for the values 0.5, 0.55, 0.60, . . . ,
1.95 and 2 of the ratio C/V . This study enlighten the following phenomena:

– For a given the number of variables, the average running time reaches a max-
imum near the value 1 of the ratio C/V , i.e. near the threshold. The maximum
is closer to 1 as V increases.

– At least for the ratio C/V around 1 (i.e. near the difficulty peek), running
times grows linearly with V .

0

100

200

300

400

500

600

700

800

900

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

”t1000”
”t1500”
”t2000”
”t2500”

Fig. 2. 2-SAT: Relation between sizes and running times

This is explained as follows. Below the value 1 of the ratio C/V , instances are
almost always satisfiable, and thus are Horn instances (since a 2-SAT instance
is satisfiable if and only if it is Horn). The results obtained in the previous
section apply here too, i.e. the procedure never bactracks. The difference stands
in that here only one choice is necessary in average. The number of assignments
increases as V increases, which explains that the running times (slowly) increases.
Beyond the value 1 of the ratio C/V , instances tends to be unsatisfiable. For both
heuristics (bimo and ffis), the procedure backtracks exactly once (in average).
Thus unsatisfiablity is shown by means of two unit literal propagations. This
has been already remarked by Petreshi and Simeone [47]. The “length” of each
unit literal propagation depends on the ratio C/V : the more it is close to 1, the
more propagations tend to be long. This explains why there is a difficulty peak.

How to reach the worst case complexity ? The example of the previous section
that shows that the Davis and Putnam’s procedure can actually reach its worst
case quadratic complexity on Horn clauses is also a 2-SAT instance. Moreover,
it is easy to verify that the model separation property never applies on this
example.

Fig. 3, a Davis and Putnam’s tree is pictured that sketches how the worst case
complexity is reached on both Horn clauses and binary clauses. This tree clarifies
the idea behind the Even, Itai and Shamir’s algorithm. If the two unit literal
propagations are performed in “parallel” (and fairly), one can stop immediatly
after the first one is achieved. Thus, left branches of the pictured tree are “cut”
at the same “length” than right branches. This trick ensures the linearity.

@
@
@

@@��O(1)

s
O(V − 1)

��
s@@

O(V)

��
s

Fig. 3. 2-SAT: A worst case Davis and Putnam’s tree

3.5 Related Problems

Unique Satisfiability A linear algorithm that determine whether set of binary
clauses is uniquely satisfiable has been proposed in [29]. It is derived from the
already cited algorithm proposed in [3]. The argumentation we have developed
for Horn clauses applies here too. Thus, we have the following result:

Theorem 5 (unique-2-SAT). The improved Davis and Putnam’s procedure is
in O(S × V) on unique-2-SAT.

Note that, for the same reasons than for Horn instances, the Davis and Put-
nam’s procedure is not more costly in practice to find the first solution than to

determine whether it is unique (and thus there are good reasons to think that
it is more efficient in practice than the algorithm of [29]).

Quantified Boolean Formulae Let ψ = Q1x1Q2x2 . . .Qnxnφ, where each Qi is
either ∃ or ∀ and φ is a formula in conjunctive normal form built over the
variables x1, . . . , xn. The quantified Boolean formulae problem (QBF) consists
in determining whether such a formula ψ is true. QBF is P-SPACE complete
and limitations on the position and the number of quantifier alternations define
the polynomial hierarchy (see [35] for a survey on complexity classes).

In [3], a linear algorithm for solving QBF for quadratic formulae is proposed.
What we do here uses a similar trick (but translated from a graph based algo-
rithm to a assignment based algorithm).

Let ψ a QBF instance in which all the clauses are at most quadratic. The
quantifier alternation defines an order on variables: x1 < x2 < . . . < xn.

Consider the following adaptation of the Davis and Putnam’s procedure:
– The terminal cases are those of the standard procedure (all the clauses are
satisfied or a clause is falsified), plus the following one: if a universally quantified
variable occurs into an unit-clause, then ψ is false (since the variable cannot take
two values).
– The monotone literal selection rule is removed.
– The chosen variable, when there are no unit literal, is the least unassigned
one. Let xi be this variable, then examine successively φxi←0 and φxi←1 by
propagating these assignments with the unit literal selection rule. Now, there
are two cases : If xi is existentially quantified, then either both assignments
drive to failure cases and the formula ψ is false, or the last assignment is kept
and the algorithm is called recursively on the corresponding formula. If xi is
universally quantified, then either one of the assignments drives to a failure case
and the formula ψ is false, or the last assignment is kept and the algorithm is
called recursively on the corresponding formula.

The soundness of the algorithm comes from the following lemma:

Lemma 5 (Extended model separation). Let ψ = Q1x1Q2x2 . . . Qnxnφ be
quadratic QBF instance with no unit-clause, and such that the unit propagations
of the assignments x1 ← 0 and x1 ← 1 don’t drive to failure cases. Let ψ0 and ψ1

be the two obtained formulae (φ0 and φ1 being their respective sets of clauses).

1. φ0 is satisfiable if and only if φ1 is satisfiable.
2. For any variable y occurring in one of these formulae and that is not assigned

in φ0 and φ1, φv |= y if and only if φ1−v |= y (v ∈ {0, 1}).

Proof. The first point comes from the model separation lemma. The second
one is demonstrated as follows: Assume φ0 and φ1 satisfiable and φv |= y. Since
φv is a proper subset of φ, φ |= y. Assume that there exists a model of φ1−v that
assigns the value 0 to y. Then by model separation lemma, this model can be
extended into a model of φ. A contradiction. 2

The above lemma explains why it is not necessary to explore the two branches
of the alternative when a choice point occurs: one suffices to make sure that either

a universally quantified variable is implied and thus the whole formula is false,
or that no universally quantified variable is implied and the formula is true.

Since the examination of least unassigned variable is in O(S), the following
result holds:

Theorem 6 (QBF restricted to quadratic clauses). The extended im-
proved Davis et Putnam’s procedure is in O(V ×S) on the QBF problem restricted
to sets of binary clauses.

Note however that, on the contrary to what happens for 2-SAT and unique 2-
SAT, this result requires to know that the given instance contains only quadratic
clauses. Once again there are good reasons to think that the improved Davis and
Putnam’s procedure is more efficient in practice than the algorithm of [3].

4 Conclusion

What is done : In this paper, we provided worst case complexity bounds for the
Davis and Putnam’s procedure applied to Horn clauses and binary clauses. In
both cases, this complexity is quadratic. In practice, the Davis and Putnam’s
procedure never reaches this complexity on randomly generated instances where
linear times are observed.

We designed, on the same basis, algorithms to solve related problems such as
the unique satisfiability or the truth of a quantified Boolean formula that have
a good complexity on known polynomial restrictions of these problems.

What cannot be done : The variations studied here are designed without adding
any functionality to the standard data structure used to implement the Davis
and Putnam’s procedure. They use two principles:
– A filtering principle : the unit literal propagation rule.
– An intelligent backtracking principle : the model separation property.

There exist polynomial classes that cannot be captured with these simple
mechanisms. These classes are those defined by means of structural properties of
the underlying graph of constraints. The Constraint Solving Problem community
has extensively studied this kind of properties. It is well known, for instance,
that if this graph is a tree, the problem is solvable in polynomial time. But
this requires to assign values to variables in an order depending on the graph.
Such an order cannot be induced by counting arguments (what do heuristics
associated with the Davis and Putnam’s procedure). In the case of SAT, several
such classes have been exhibited [55, 1, 23, 36]. But, conversely to what happens
for Horn-SAT and 2-SAT, it is doubtful that these classes have any practical
interest, due to their very unnatural look. Nevertheless it could be interesting to
randomly generate instances of these classes and see what happens.

What could be done : Other polynomial restrictions of SAT could be handled as
we have done in this paper. It is the case of r, r − SAT instances of Tovey [53]
(improved by Dubois [19]) that are trivial to solve for they contain less clauses

than variables. More interesting is the class of q-Horn clauses introduced in [7]
that generalizes both Horn clauses and binary clauses. A linear algorithm has
been proposed recently to recognize instances of this class in [9] (once recognized,
solving them could be easily done in linear time). A complexity index of SAT
instances based on this class has been proposed in [8]. In [49], we have proposed
a variation on the Davis and Putnam’s procedure that is polynomial on this
class and once again linear in practice. However, our variation has a quite high
complexity that can be surely improved.

More generally, it could be interesting to examine which simple filterings
and/or pruning principles make enumerative algorithms (designed to solve con-
straint problems) polynomial on known polynomial restrictions. A first step in
this direction has been done for CSPs in [14].

References

1. V. Arvind and S. Biswas. An O(n2) algorithm for the satisfiability problem of a
subset of propositional sentences in CNF that includes horn sentences. Information
Processing Letters, 24:67–69, 1987.

2. B. Aspvall. Recognizing Disguised NR(1) Instances of the Satisfiability Problem.
Journal of Algorithms, 1:97–103, 1980.

3. B. Aspvall, M. Plass, and R. Tarjan. A Linear Time Algorithm for Testing the
Truth of Certain Quantified Boolean Formulae. Information Processing Letters,
8(3):121–123, 1979.

4. G. Ausiello and G. Italiano. On-Line Algorithms for Polynomially Solvable Satis-
fiability Problems. Journal of Logic Programming, 10:69–90, 1990.

5. A. Blass and Y. Gurevitch. On the unique satisfiability problem. Information and
Control, 55:80–88, 1982.

6. J.M. Böı and A. Rauzy. Two algorithms for constraints system solving in proposi-
tional calculus and their implementation in prologIII. In P. Jorrand and V. Sugrev,
editors, Proceedings Artificial Intelligence IV Methodology, Systems, Applications
(AIMSA’90), pages 139–148. North-Holand, September 1990. Alba-Varna bulgarie.

7. E. Boros, Y. Crama, and P.L. Hammer. Polynomial-time inference of all implica-
tions for Horn and related formulae. Annals of Mathematics and Artificial Intelli-
gence, 1:21–32, 1990.

8. E. Boros, Y. Crama, P.L. Hammer, and M. Saks. A complexity index for satisfia-
bility problems. SIAM Journ. Comp., 23:45–49, 1994.

9. E. Boros, P.L. Hammer, and X. Sun. Recognition of q-Horn formulae in linear
time. Discrete Applied Mathematics, 55:1–13, 1994.

10. V. Chandru, C.R. Coulard, P.L. Hammer, M. Montanez, and X. Sun. On re-
namable Horn and generalized Horn functions. In Annals of Mathematics and
Artificial Intelligence, volume 1. J.C. Baltzer AG, Scientific Publishing Company,
Basel Switzerland, 1990.

11. P. Cheeseman, B. Kanefsky, and W.M. Taylor. Where the Really Hard Problems
Are. In Proceedings of the International Joint Conference of Artificial Intelligence,
IJCAI’91, 1991.

12. V. Chvátal and B. Reed. Miks gets some (the odds are on his side). In Proceedings
of the 33rd IEEE Symp. on Foundations of Computer Science, pages 620–627, 1992.

13. S.A. Cook. The Complexity of Theorem Proving Procedures. In Proceedings of
the 3rd Ann. Symp. on Theory of Computing, ACM, pages 151–158, 1971.

14. M.C. Cooper, D.A. Cohen, and P.G. Jeavons. Characterizing Tractable Con-
straints. Artificial Intelligence, 65:347–361, 1994.

15. J.M. Crawford and L.D. Auton. Experimental results on the crossover point in
satisfiability problems. In Proceedings of the Eleventh National Conference on
Artificial Intelligence (Washington, D.C., AAAI’1993), pages 21–27, 1993.

16. M. Davis, G. Logemann, and D. Loveland. A Machine Program for Theorem
Proving. CACM, 5:394–397, 1962.

17. M. Davis and H. Putnam. A Computing Procedure for Quantification Theory.
JACM, 7:201–215, 1960.

18. W.F. Dowling and J.H. Gallier. Linear-time Algorithms for Testing the Satisfiablity
of Propositional Horn Formulae. J. Logic Programming, 3:267–284, 1984.

19. O. Dubois. On the r,s-SAT satisfiability problem and a conjecture of Tovey. Dis-
crete Applied Mathematics, 26:51–60, 1990.

20. O. Dubois, P. André, Y. Boufkhad, and J. Carlier. SAT versus UNSAT. In SAT
Chalenge, volume 26, pages 415–436. AMS, DIMACS Series in Discrete Mathemat-
ics and Theoretical Computer Science, 1996.

21. O. Dubois and J. Carlier. Sur le problème de satisfiabilité. Communication at the
Barbizon Workshop on SAT, october 1991.

22. S. Even, A. Itai, and A. Shamir. On the Complexity of Timetable and Multicom-
modity Flow Problems. SIAM J. Comput., 5:691–703, 1976.

23. G. Gallo and M.G. Scutellà. Polynomially Solvable Satisfiability Problems. Infor-
mation Processing Letters, 29:221–227, 1988.

24. G. Gallo and G. Urbani. Algorithms for Testing the Satisfiablity of Propositional
Formulae. Journal of Logic Programming, 7:45–61, 1989.

25. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, San Fransisco, 1979.

26. I.P. Gent and T. Walsh. The SAT Phase Transition. In A.G. Cohn, editor, Pro-
ceedings of 11th European Conference on Artificial Intelligence, ECAI’94, pages
105–109. Wiley, 1994.

27. M. Ghallab and E. Escalada-Imaz. A linear control algorithm for a class of rule-
based systems. Journal of Logic Programming, 11:117–132, 1991.

28. A. Goerdt. A threshold for unsatifiability. In I.M. Havel and V. Koubek, editors,
Proceedings of Mathematical Foundations of Computer Science, MFCS’92, pages
264–272, August 1992.

29. P. Hansen and B. Jaumard. Uniquely solvable quadratic boolean equations. Dis-
crete Applied Mathematics, 12:147–154, 1985.

30. J.-J. Hébrard. A linear algorithm for renaming a set of clauses as a Horn set.
Theoretical Computer Science, 124:343–350, 1994.

31. L. Henschen and L. Wos. Unit refutations and Horn sets. JACM, 21(4):590–605,
October 1974.

32. J.N. Hooker. Solving the incremental satisfiability problem. Journal of Logic
Programming, 15:177–186, 1993.

33. S. Jeannicot, L. Oxusoff, and A. Rauzy. Évaluation Sémantique en Calcul Propo-
sitionnel. Revue d’Intelligence Artificielle, 2:41–60, 1988.

34. R.J. Jeroslow and J. Wang. Solving Propositional Satisfiability Problems. Annals
of Mathematics and Artificial Intelligence, 1:167–188, 1990.

35. D.S. Johnson. A Catalog of Complexity Classes. In J. Van Leeuwen, editor, Hand-
book of Theoretical Computer Science, volume A, pages 67–162. Elsevier, 1990.

36. D.E. Knuth. Nested Satisfiability. Acta Informatica, 28:1–6, 1990.
37. T. Larrabee. Test Pattern Generation Using Boolean Satisfiability. IEEE Trans-

actions on Computer-Aided Design, 11(1):4–15, January 1992.
38. T. Larrabee and Y. Tsuji. Evidence for a Satisfiability Threshold for Random

3CNF Formulas. In H. Hirsh and al., editors, Proceedings of Spring Symposium on
Artificial Intelligence and NP-Hard Problems (Stanford CA 1993), pages 112–118,
1993.

39. H.R. Lewis. Renaming a Set of Clauses as a Horn Set. JACM, 25(1):134–135,
1978.

40. G. Lindhorst and F. Shahrokhi. On renaming a set of clauses as a Horn set.
Information Processing Letters, 30:289–293, 1989.

41. D. Loveland. Automated Theorem Proving: A Logical Basis. North Holland, 1978.
42. E.L. Lozinskii. A simple test improves checking satisfiability. Journal of Logic

Programming, 15:99–111, 1993.
43. H. Mannila and K. Mehlorn. A fast algorithm for renaming a set of clauses as a

Horn set. Information Processing Letters, 21:269–272, 1985.
44. M. Minoux. LTUR: A Simplified Linear-Time Unit Resolution Algorithm for Horn

Formulae and its Computer Implementation. Information Processing Letters, 29:1–
12, 1988.

45. D. Mitchell, B. Selman, and H. Levesque. Hard and Easy Distributions of SAT
Problems. In Proceedings Tenth National Conference on Artificial Intelligence
(AAAI’92), 1992.

46. B. Monien and E. Speckenmeyer. Solving Satisfiability in Less than 2n Steps.
Discrete Applied Math., 10:287–295, 1985.

47. R. Petreschi and B. Simeone. Experimental Comparison on 2-Satisfiability Algo-
rithms. RAIRO Recherche Opérationelle, 25:241–264, 8 1991.

48. D. Pretolani. A linear time algorithm for unique Horn satisfiability. Information
Processing Letters, 48:61–66, 1993.

49. A. Rauzy. On the Complexity of the Davis and Putnam’s Procedure on Some
Polynomial Sub-Classes of SAT. Technical Report 806-94, LaBRI, URA CNRS
1304, Université BordeauxI, 9 1994.

50. M.G. Scutellà. A Note on Dowling and Gallier’s Top-Down Algorithm for Propo-
sitional Horn Satisfiability. Journal of Logic Programming, 8:265–273, 1990.

51. B. Selman, H. Levesque, and D. Mitchell. A New Method for Solving Hard Sat-
isfiability Problems. In Proceedings of the 10th National Conference on Artificial
Intelligence, AAAI’92, 1992.

52. R.E. Tarjan. Depth First Search and Linear Graph Algorithms. SIAM J. Comput.,
1:146–160, 1972.

53. C.A. Tovey. A Simplified NP-complete Satisfiability Problem. Discrete Applied
Mathematics, 8:85–89, 1984.

54. A. van Gelder. Linear Time Unit Resolution for Propositional Formulas - in Prolog,
Yet. submitted to the Journal of Logic Programming, 1994.

55. S. Yamasaki and S. Doshita. The satisfiability problem for a class consisting of
Horn sentences and some non-Horn sentences in propositional logic. Information
and Computation, 59:1–12, 1983.

56. R. Zabih and D. Mac Allester. A rearrangement search strategy for determining
propositional satisfiability. In Proceedings of the National Conference on Artificial
Intelligence, AAAI’88, pages 155–160, 1988.

