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ABSTRACT. This paper aims to be a brief introduction to Binary Decision Diagrams
and some of their uses in the reliability analysis framework. It is a computer scientist
look on that question, i.e. it focuses on data structures and algorithms. It tries to
give an overview of implementation issues at an abstract level. Basic algorithms are
reviewed while recent developments are only mentioned.
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1.Introduction

Automated resolution of many practical problems requires to store very
large collections of objects. This is especially the case for those expressed
in terms of Boolean formulae. To solve them one has to memorize and to
manipulate the truth tables of the formulae under study (or equivalently sum-
of-products forms for these formulae), i.e. a priori at least a significant part
of the 2™ possible assignments of Boolean values to their n variables. Both
qualitative and quantitative analyses of fault trees raise this kind of problems
[VES 81, LEE 85, LIM 91].

If the studied Boolean formulae were generated at random, there would be
no hope to get a compact representation for them [SHA 49]. Fortunately, real-
life fault trees or combinatorial circuits are not, as far as we know, generated
at random. It is thus possible to design data structures that capture, at least
to a certain extent, their regularities. I.e. that encode their truth tables within



an amount of memory that is not directly related to the number of variable
assignments satisfying them.

Binary Decision Diagrams (BDD’s for short) are such a data structure.
BDD’s are the state-of-the-art data structure to encode and manipulate
Boolean functions. They have been introduced by B. Akers [AKE 78] and
improved by R. Bryant [BRY 86, BRA 90]. They are nowadays used in a wide
range of areas, including hardware synthesis and verification, protocol valida-
tion and automated deduction (see [BRY 92] for a survey on BDD’s and their
applications). Their use in the reliability analysis framework has been initiated
by J.-C. Madre and O. Coudert on the one hand [COU 92a, COU 92b], and the
author on the other hand [RAU 93]. BDD’s are sometimes called branching
programs in the theoretical computer science literature [WEG 88].

This paper aims to be a brief introduction to BDD’s and some of their uses
for reliability analyses. First, some definitions and vocabulary about proposi-
tional calculus are recalled section 2. The data structure and its basic properties
are presented section 3. Data structures have no intrisic meaning. So, func-
tions must be defined that associates to each data structure its semantics, i.e. a
mathematical object. Different interesting semantics can be defined for BDD’s.
Four of them are presented section 4. BDD’s are always built in a composi-
tional way, i.e. starting from basic BDD’s and combining them to obtain more
complex ones. The most important functions to do so are sketched section 5.
Worst case sizes of ROBDD’s and heuristics to get small size ROBDD’s are
discussed section 6. Section 7 shows how ROBDD’s are used to compute the
probability of the root event of a fault tree given the probabilities of its termi-
nal events and how to compute and to encode the set of its prime implicants
in a compact way.

2.Background

This section recalls basic vocabulary of Boolean algebra and graph theory
we need in this paper. A more detailed presentation could be found in [SCH 89].

2.1. Boolean Algebra

Boolean formulae are terms inductively built over the two (Boolean) con-
stants 0 (False) and 1 (True), a denumerable set of variables V, and the usual
logical connectives A (and), V (or), = (not). For instance, (a A =b) V (—a A c¢)
is a Boolean formula built over the variables a,b and ¢. Other connectives are
sometimes used. For instance, & denotes the connective ‘exclusive or’. Recall
that f @ g is equivalent to (f A —g) V (=f A g).

A literal is either a variable z or its negation —z. x and -z are said opposite.
A product is a set of literals that does not contain both a literal and its opposite.
A product is assimilated with the conjunction of its elements. A set of products
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is assimilated with the disjunction of its elements. Sets of products are also
called sum-of-products or formulae in disjunctive normal form (DNF).

We denote by Var[f] the set of variables occurring in a Boolean formula f.

Let f be a Boolean formula. An assignment of Var|[f] is any mapping from
Var[f] to {0,1}. For instance, [@ < 1,b < 0,c¢ < 1] is an assignment of
Var[(aV —b) A (ma V ¢)]. An assignment o satisfies (resp. falsifies) a formula
fifo(f) =1 (resp. o(f) = 0). For instance, [a < 1,b «+ 0,c < 1] satisfies
(aV =b) A (—aV c), while [a < 1,b + 1,c + 1] falsifies it.

Let f and g be Boolean formulae. g implies logically f if any assignment
satisfying g satisfies f. We denote that by g = f. If both f =Egand g E f, f
and g are said equivalent. We denote that by f = g¢.

A product can be seen as a partial assignment of the variables of a formula:
the value 1 (resp. 0) is assigned to each variable occurring positively (resp.
negatively) in the product, while the other variables remain unassigned. We
say that a product o satisfies (resp. falsifies) a given Boolean formula f if f is
satisfied (resp. falsified) by any (total) assignment of Var[f] that agrees with
o. For instance, {a, b} satisfies (a V —=b) A (—a V ¢). The set of assignments
satisfying a formula can thus be seen as a sum-of-products.

A product o that satisfies a function f is also called an implicant of f.
Let f be a Boolean formula and o be an implicant of f. o is said prime
if there is no implicant v of f strictly included in o. In what follows, we
denote by Prime|f] the set of prime implicants of a formula f. For instance,
Prime[(a A =b) V (ma A ¢)] = {{a, b}, {—a,c}, {-b,c}}.

When they contain no negative literal, prime implicants are often called
minimal cuts in the reliability analysis literature.

2.2. Graphs

A graph is given by a set of nodes (also called vertices) U together with a
set of edges E C U x U (edges are thus pairs of nodes). In what follows, we
consider only directed graphs which means that pairs are ordered.

An edge (u,v) is an out-edge for the node u and an in-edge for the node v.
We also say that the edge (u,v) points to the node v. A node without in-edge
is called a root node, while a node without out-edge is called a sink node. Sink
nodes are also called leaves.

A path in the graph is a sequence of nodes uy, . .., uy such that (u;,u;41) € E
fori =1,...,k—1. The length of a path is the number of edges it traverses. A
node v is said to be reachable from a node u if there exists a path from u to v.

A graph is said acyclic if for every node u, u is not reachable from itself
through a positive length path. A tree is a uniquely rooted directed acyclic
graph in which each node but the root has exactly one in-edge.

The subgraph rooted by the node w of a graph G = (U, E) is the graph
G' = (U', E"), where U’ is the subset of nodes of U that are reachable from u
and E' is the set of edges (v,w) € E such that both v and w belong to U’.



Figurel. A BDD owver the variables a, b and c.

Throughout this paper we deal with labeled graphs, i.e. with graphs that
embbed data (labels) on their vertices and edges. Two edges with the same
source and target nodes but different labels are considered as distinct.

Three labeled graphs are pictured Fig. 2. The leftmost one is a tree, the
two others are simply acyclic.

3.Data Structures

3.1. Reduced Ordered Binary Decision Diagrams

Let z1,...,z, be n Boolean variables. A binary decision diagram over
X1,...,Ty is a directed acyclic graph « verifying conditions (i) and ().

(i) Sink nodes of a are labeled either with 0 or with 1.
(1i) Each internal node of « is labeled with a variable x; and has 2 out-edges
labeled respectively with 0 and 1.

Let < be a total order over z1,...,z, (say 1 < 3 < ... < @,). A binary
decision diagram « is said to be ordered if condition (i) holds.

(iii) For any pair of nodes (a,) labeled respectively with the variables x; and
xj, if B is reachable from a then z; < x;.

As a consequence, in an ordered BDD (OBDD) with a single root node,
each variable is encountered at most once onto any path from the root node
to a sink node (moreover, variables are encountered according to the order <).
The BDD pictured Fig. 1 is ordered (for the lexicographic order).

For the sake of convenience, we denote by A(z,a;,qp) the BDD rooted
by a node labeled with the variable z and whose 1- and 0-out-edges point
respectively to BDD’s a; and ay.

This definition of BDD’s is purely syntactical, which means that a BDD
is seen as data structure, just as data structure. In order to give a meaning
to this construction we need a function that associates a mathematical object
with each BDD. The semantics of a node A(z,a;,ap) should depend only on
the variable x and the semantics of the nodes a; and «ag. It follows that two
isomorphic BDD’s should have the same semantics. As a consequence, it is
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useless to maintain copies of isomorphic BDD’s. One copy suffices, which is
interesting to limit memory consumption.
An ordered binary decision diagram « is said reduced if condition (iv) holds.

(iv) « contains no isomorphic sub-graphs.

In particular, it means that a reduced ordered binary decision diagram
(ROBDD) has only two sink nodes, labeled respectively with 0 and 1.

Fig. 2 shows three equivalent OBDD’s. The left most is a tree, while the
right most is reduced.

@)
IHO

O O b B
MO0 B8 B @0

Figure 2. Three equivalent OBDD'’s.

Condition (iv) can be seen as a rewriting rule that “folds” OBDD’s to get
more compact equivalent ones. A completely unfolded OBDD is a binary tree.
The following property holds.

Theorem 1 (Canonicity of ROBDD’s) For any OBDD «, the ROBDD ob-
tained from a by sharing isomorphic subgraphs is unique up to an isomorphism.

This theorem is very important because it allows to establish a one-to-one
correspondence between ROBDD’s and mathematical objects.

3.2. Management of ROBDD’s nodes

As we will see, ROBDD’s are always created in a bottom-up way, i.e. that
a node o = A(z,a1,qp) is always created after the creation of the nodes ag
and «aq. Furthermore, once created a node is never modified.

Nodes are kept into a table and they are created only through a function
find_or_add_node. This function takes x, a; and «g as parameters. It looks
up the table and it creates actually a new node only if necessary, i.e. if the
table does not already contain the node A(z, a1, ap). Technically, this table is
a hashtable. This management of nodes has two important consequences:

1. Reduction (v) is automatically performed.
2. Provided the hashtable is well dimensioned, the complexity of the
find_or_add_node is in O(1), i.e. constant.

A more detailed discussion about implementation can be found in [BRA 90].
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4.Four Semantics for ROBDD’s

4.1. Standard ROBDD'’s

Usually, ROBDD’s are interpreted as Boolean formulae under Shannon Nor-
mal Form. This semantics for ROBDD’s is the standard one and usually it is
implicitely understood in [AKE 78, BRY 86, BRA 90, BRY 92]. The Shannon
Normal Form is based on the ite (for If-Then-FElse) connective which is defined
as follows. Let f, g and h three Boolean functions, then

ite(f,9,h) = (FAg)V(=fAh)

Any binary connective can be expressed by means of an ite and possibly a
negation. For instance, fV g = ite(f,1,9) and f & g = ite(f, g, ~g). Moreover,
ite is orthogonal with the usual connectives.

Let Op be an n-ary operation, let f!,..., f® be n formulae and let 2 be a
variable, Op is said orthogonal with ite if the following equivalence holds.

Op(f',.... f") = ite(z,0p(fo1, - s f1=1), OP(fazos - - fi=0))

where f,—, denotes the formula f in which the constant v has been substituted
for all occurrences of x.

Property 2 (Orthorgonality of usual connectives)Connectives —, V, A,
@ are orthogonal with ite.

A formula is said to be Shannon Normal Form if either it is a constant or
it is of the form ite(z, f,g), where z is a variable and f and ¢ are formulae in
Shannon Normal Form in which x does not occur. It is clear that, thanks to
orthogonality, any formula can be rewritten into an equivalent one that is in
Shannon Normal Form.

For instance, (a A =b) V (-a A ¢) is equivalent to ite(a, ite(b,0,1),ite(c, 1,0))
which is in Shannon Normal Form.

The function Shannon[.] that associates a formula in Shannon Normal
Form to each BDD is defined by the following recursive equations.

Shannon]0] = 0
Shannon[l] = 1

Shannon[A(x, oy, ap)] L te (x, Shannon[ai], Shannon]ag])

For instance, the semantics of the OBDD pictured Fig. 1 is
ite(a,ite(b,0,1),ite(c,1,0)) and the one of OBDD’s pictured Fig. 2 is
ite(a, ite(b,0,1),ite(b,0,1)).

This semantics for ROBDD’s induces another reduction rule. It is actually
easy to verify that, for any two Boolean functions f and g, ite(f,g,9) = g. If
a node encodes such an ite connective, it is useless. For instance, the ROBDD
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A(b,0,1) can used instead of OBDD’s pictured Fig. 2. We thus slightly change
the definition of ROBDD’s.

An OBDD «a encoding a Boolean formula in Shannon Normal Form is said
reduced if conditions (i) and (v) hold.

(v) a contains no node of the form A(z, 3, 3).
The following theorem holds.

Theorem 3 (Canonicity of Shannon ROBDD’s)Let f be a Boolean func-
tion that depends on variables x1, ..., x, and let < be a total order over
these variables. Then there exists an unique (up to an isomorphism) ROBDD
encoding f w.r.t. <.

This theorem has many interesting consequences. Let f and g be two
Boolean formulae encoded respectively by ROBDD’s a and £, then the fol-
lowing propositions hold.

— f is a tautology (resp. and antilogy) if and only if « is the leaf 1 (resp. 0).
— f is satisfiable if and only if « is not the leaf 0.

— f =g if and only if & and 8 are isomorphic.

This last point is interesting because if we manage ROBDD’s in such way that
there is never two copies of isomorphic ROBDD’s (as shown section 3.2) then

testing equivalence between two functions is reduced to testing equality of the
addresses of their ROBDD'’s.

4.2. Functional ROBDD’s

The Reed-Muller Normal Form is another interesting normal form for
Boolean formulae [BRO 90]. It is based on the following theorem.

Theorem 4 (Reed-Muller decomposition)Let f be a Boolean function
that depends on the wvariable ©. Then there ezists two Boolean functions g
and h that do not depend on x such that f = (x A g) ® h.

Theorem 4 induces a new possible semantics ReedMuller[.] for ROBDD’s.

ReedMuller[0] < 0
ReedMuller[1] e
ReedMuller[A(z, a1, ao)] def (x A ReedMuller[a1]) ® ReedMuller[ao]

For the same reasons as previously, ROBDD’s provide a canonical encod-
ing of Boolean formulae under Reed-Muller normal form. We do not develop
further this semantics because it has no application to fault tree analyses (at
least at the moment). It should be mentioned that it has applications in the
logical circuit synthesis framework [BEC 93].
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4.3. Zero-suppressed ROBDD'’s

In the reliability analysis framework, it is often the case that one has to
manipulate subsets of a given set. For instance, minimal cuts of a fault tree

are subsets of the set of its terminal events. Let E = {ey,...,e,} be a set. A
subset F' of E can be described by means of a Boolean function y, so-called
characteristic function, which is defined over variables z1, ..., z, as follows.
def
x(F) = /\ Ti
e;€F

In the same way, a set F = {F},..., F;,,} of subsets of E can be described as
the disjunction of characteristic functions of the F;’s.

XF =\ xF)
F,eF

This gives raise to a new semantics for ROBDD’s that has been formalized
by S. Minato under the name Zero-suppressed BDD’s (ZBDD’s) in [MIN 93,
MIN 94] (and implicitely used in [RAU 93]).

ZBDD[0] ¥ ¢
ZBDD[] % {0
ZBDD[A(z;,a1,00)] = {{ei}Uo;0 € ZBDDJ[a:1]} U ZBDDJay]

For instance, the OBDD pictured Fig. 1 encodes the sets {a} and {c}, and
OBDD’s pictured Fig. 2 encode the sets {a} and 0.

Reduction rule (v) does not hold for ZBDD’s. However, there is a
a new reduction rule, specific to ZBDD’s, that is based on the equality:
ZBDD[A(z;,0,00)] = ZBDD]Jap]. For instance, in ZBDD’s of Fig. 1 and
2, nodes A(b,0,1) are useless and can be replaced by leaf 1.

An ZBDD a« is said reduced if conditions (iv) and (vi) hold.

(vi) « contains no node of the form A(z,0, ).
The following theorem holds.

Theorem 5 (Canonicity of ZBDD’s)Let F be a set of subsets of a set E
let < be a total order over elements of E. Then, there exists an unique (up to
an isomorphism) ZBDD encoding x(F) w.r.t. <.

4.4. ROBDD’s to encode Meta-Products

As shown above, ZBDD’s can be used to encode minimal cuts sets of fault
trees in a quite simple way. Prime implicants are more tedious to encode
because they may contain both positive and negative literals. A way to tackle
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this problem (suggested in [MIN 93]), is to create, for each variable z of the
original formula, two variables, say 1 and z~, that denote respectively the
presence of the positive and the negative literal built over x in the considered
products. Another way to encode prime implicants by means of ROBDD’s
has been proposed by J.-C. Madre and O. Coudert in [COU 92a]. It works as
follows. Two variables, p, and s,, are associated with each variable x of the
original formula. p, is used to encode the presence of the variable z in the
products. s, is used to encode the polarity of = in the products, if it is actually
present.

The meta-product encoding 7, denoted by M P(rx), is the conjunction, over
the variables x occurring in the formula, of mp(w, ), where mp(w, x) is defined
as follows.

ot (pa A sp) if z € m,
mp(m,z) = (pz A msz) if ~2 €,
—p, if neither x nor —z belong to .

A set of products is encoded by the disjunct of the corresponding meta-
products. This gives the following equations that define the semantics of
ROBDD’s encoding meta-products.

MP[] ¥ ¢
MP[] = {0}
MP[A(p,,a1,00)] € MP[au] UMP[ao]
MP[A(5s,01,00)] ¥ {{z}Uo;0 € MP[u]} U {{~2} Uo;o € MPJao]}

Note that the canonicity of the representation is ensured by the canonicity
of standard ROBDD'’s.

4.5. Attributed Edges

Another scheme of reduction rules consists in defining attributes (or flags)
for edges. Let f be a Boolean formula in Shannon Normal Form. The Boolean
formula in Shannon Normal Form equivalent to —f is obtained from f by
substituting 1’s for 0’s and vice-versa. From a ROBDD point of view, this
operation consists in exchanging 0 and 1 leaves.

A programming trick (due to S. Minato & al [MIN 90]) makes possible a
negation in constant time and reduces memory consumption. It consists in
putting a flag on each edge. This flag indicates whether the pointed BDD
is to be considered positively or negatively. In other words, Shannon[ea] =
—Shannonfa]. As a consequence, only one leaf remains necessary, say for
instance the leaf 1, since 0 = —1. The canonicity of the representation is
maintained by storing only nodes with a positive 1-out-edge. The orthogonality
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Figure3. The BDD encoding —ite(a,ite(b,1,-1),—ite(c,1,—-1)) (negated
edges are denoted with black dots)

of ite and — is used to keep only such nodes: A(z,ea;, ) is replaced by
oA(z,a1,eqp) and A(z,eqa;,eqy) is replaced by eA(z, ay,ap). For instance,
ite(a,ite(b,0,1),ite(c, 1,0)) is rewritten into —ite(a, ite(b, 1, —1), —ite(c, 1, 1))
which is encoded by the ROBDD pictured Fig. 3.

In [MIN 93], S. Minato suggest to apply this technique to ZBDD’s in the
following way. A ZBDD is flagged if and only if it encodes a set containing
the empty set. More complex attributes (or flags) have proposed in the litera-
ture that allow further reductions [MIN 90], but it is not clear whether these
reductions improve the method in practice.

5.0perations for ROBDD’s combination

ROBDD’s are built in a compositional way, i.e. that basic ROBDD’s are
combined to get more complex ones which are in turn combined and so on. In
this section, the main operations to combine ROBDD’s are sketched.

5.1. Computation of the ROBDD encoding a Boolean formula

Let f be a formula. If f is a constant, a variable z or of the form —g,
the ROBDD encoding f easy to obtain. It is the leaf eventually negated in
the first case, the ROBDD A(z,1,e1) in the second and the negation of the
ROBDD encoding ¢ in the third one (see section 4.5). Otherwise, we can
assume without a loss of generality that f = g® h, where ® is any usual binary
connective and g and h are two formulae. In order to compute the ROBDD «
encoding f, one proceeds as follows. First, one computes the ROBDD’s § and
~ encoding respectively g and h. Second, one combines these two ROBDD’s to
get a. Recursive rules for ROBDD’s combination are deduced from equations
giving their semantics described section 4.1. Basically, three cases are possible:
case 1. 8 and v are such that o can be immediately deduced. For instance, if
©®is A and =1, then a'is § (g A g = g for any g). Other cases of immediate
deduction occur when either 8 or v (or both) are leaves. For instance, if 3 is
the leaf 1 and ® is A, then « is v (1 A h = h for any h).
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case 2. B = A(xaﬁlaﬁo) and Y= A(xa/yla/y())' Let g1, 9o, hl and hO be
respectively the formulae that are the standard semantics of respectively i,
Bo, 71 and 7. Then, the following equivalence holds.

ite(x, g1, 90) ©ite(x, hi,ho) = ite(x, 91 © h1, g0 ® ho)

Thus, in order to compute «, one first combines f; and v, with ©@ to
get a ROBDD ay, then second one combines £y and 7o with ® to get a
ROBDD «p, and third one builds « as A(x, a1, ap) by means of the function
find-or_add_node (excepted if @y = ap in which case o = ay).

case 3. The third possibility is a degenerated case of case 2: § = A(z, 1, (o)
and v = A(y, v1,7) with say z < y. In this case, the combination rule is the
same as previously excepted that £, and By are combined with ~ itself.

The reference [BRA 90] contains more details about these operations.

5.2. Zero-suppressed BDD’s

As for ROBDD’s encoding formulae in Shannon Normal Form, Zero-
suppressed BDD’s are built from smaller ZBDD’s that are combined through
set operations. The leaves 0 (=1) and 1 encode respectively the sets () and
{0}. Singletons {e;} are encoded by ZBDD’s of the form A(z;,1,e1). Recur-
sive rules that perform set operations on ZBDD’s are derived from equations
giving their semantics and are very similar to those used to combine standard
ROBDD’s.

For instance, let 8 = A(z;,61,00) and v = A(zi,v1,7) be two ZBDD’s.
Let G and H be the two sets encoded by resp. 8 and v and assume we want
to compute a ZBDD « encoding G N H. We have:

GNH =  ZBDD[S|nZBDD[]
= ({{e;} Uo;0 € ZBDD][B:]} U ZBDD][po])
N ({{e;i}Uo;0 € ZBDD[v]} U ZBDD[v])
{{ei}Uo;0 € ZBDD[p]N ZBDD[n]}
U (ZBDDIBs] N ZBDD[))

Thus, in order to get the ZBDD’s a encoding F', one first combines 8; and v,
with N to get a ZBDD «;, then second one combines 3y and g with N to get
a ZBDD «y, and third one builds a as A(x;, a1, ag) by means of the function
find-or_add_-node (excepted if @y = 0 in which case a = ayp).

Similar recursive rules are defined for all the classical operations on sets
such as union, difference and complementation [MIN 93].

5.3. Operations on ROBDD’s encoding Meta-Products

Operations on sets of products can be performed through logical operations
on the corresponding meta-products. This is the main advantage of this way
of encoding products.
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Let ¥; and X5 be two sets of products built over the variables z,...,z,.
Let M P(X1) and M P(%5) be the two corresponding meta-products. Then,

The empty set of products is encoded by the boolean constant 0.

— The set of all of the possible products is encoded by the boolean constant 1.
— The empty product is encoded by the function (=py, A ... A —pg,).

¥, U, is encoded by the function M P (X)) V M P(Xs).

¥ N, is encoded by the function M P (1) A M P(Xs).

— The complement 37 to £; in the set of all of the possible products is encoded
by the function =M P(%,).

5.4. Memorization of Intermediate Results

Canonicity of ROBDD’s is used to reduce the computational cost of basic
operations in the following way. A table is used in which results of already
performed operations are stored. For instance, this table contains 4-tuples
{®,8,v,a}, where ® is a Boolean operation and «a, # and vy are ROBDD’s
such that the combination of # and v with ® gives a as result.

Before any operation, one first looks up the table to see whether its result is
not already computed. If it is not the case, the operation is actually performed
and its result is added to the table. This second table is also managed as a
hashtable which ensures a fast access to stored tuples (see [BRA 90] for more
details).

From a practical point of view, memorization of intermediate results in-
creases dramatically the performances of operations on ROBDD’s. From a
theoretical point of view, it ensures that the worst case complexity of the com-
bination of two ROBDD’s « and 3 is in O(]a| x |B]), i.e. proportional to the
product of the numbers of nodes of a and 8 [BRA 90] (this holds both for
logical operations between ROBDD’s and set operations between ZBDD’s).

6.Complexity Issues

The size of sum-of-products a representation of Boolean function depends
on the number of assignments satisfying the represented function. This is the
reason why these representations are quickly too expensive. Many functions en-
countered in practice admit not too large ROBDD representations, even if they
have a very large number of implicants. However, from a theoretical point of
view, ROBDD’s do not really improve the situation since most of Boolean func-
tions cannot admit polynomial size ROBDD representations [WEG 88, LIA 92]
([LIA 92] is very interesting because it also studies the respective powers of re-
duction rules (iv) and (v)). Moreover, except for the special class of symmetric
functions, the size of the ROBDD heavily depends on the chosen variable or-
dering. For instance, R. Bryant shows in [BRY 86] that the ROBDD encoding
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the function:

f(wla7$n7y175y’ﬂ):($1/\y1)®®($’n/\yn)

has a linear size for the ordering z; < y; < ... < 2, < ¥, and an exponential
size for the ordering 1 < ... < xp, < y1 < ... < yp. There exists natural
functions that are encoded by exponential size BDD’s whatever the variable
ordering is (e.g. n bits multipliers [BRY 91]).

Finding the best variable ordering is a very difficult problem. The best
known algorithms are in O(3™) [FRI 90, ISH 91], where n is the number of
variables, which makes them impracticable.

Thus, heuristics are used to find good orderings. Many such heuristics
have been proposed in the literature (see [FUJ 83, MAL 88, BER 89, CHO 90,
BUT 91, FUJ 91, FUJ 93] to cite some of them). There is, as far as we know,
only one common sense rule to design such a heuristics: variables that are
semantically close must be close in the ordering as well. The above example
helps us to understand that rule. It is clear that variables x; and y; are strongly
linked together. With the ordering z1 < ... < z, < y1 < ... < yp they are
separated by n variables. Before taking a decision on the value of the sub-
formula (z1 Ay;) one must examine all the possible values for the z;’s. It follows
that the higher part of the BDD must be a complete binary tree. Conversely,
with the ordering z; < y1 < ... < z,, < ¥y, the sub-formulae (z; A y;) are
treated one after another.

The cost of the computation of the ROBDD encoding a function is not only
related to its size but also to the sizes of each ROBDD used during the com-
putation. This is examplified by the formula f = g V =g that is is encoded by
the leaf 1, even g is encoded by an exponential size ROBDD. Moreover, the
way a function is written influences the complexity of the computation (see
papers by M. Bouissou [BOU 94] and [BOU 96] for interesting discussions on
that subject). Note that, as noted by several authors, techniques used by clas-
sical algorithms to simplify fault trees, such as modularization, can be adapted
successfully for ROBDD’s computations [SIN 96a, PUL 96, DUT 96a].

7.Application to Fault Trees Analysis

7.1. Quantitative Analyses

A central problem of quantitative fault tree analyses is to determine the
probability of failure of the system under study knowing the probabilities of fail-
ures of its elementary components. This problem is known to be #P-complete
[VAL 79], i.e. as hard as finding the number of satisfying assignments of a
Boolean formula. Once built the ROBDD associated with a formula, it is easy
to compute the exact probability of the formula, given the probability of each
variable. This is performed by means of a ROBDD traversal, the Shannon’s
decomposition being applied on each node of the ROBDD.
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Let p(x) denote the probability of the variable z. The function p[.] that
associates a probability to each ROBDD can be seen as a new semantics for
ROBDD’s. It is computed by applying the following recursive equations.

p[0] = 0
p[l] = 1
plA(z,a1,00)] % p(@).plan] + (1 = p(z))-plao]

If intermediate results are memorized, the complexity of this computation
is linear in the size of the ROBDD. This is a major advantage of ROBDD’s.
Once computed the ROBDD, the cost of the computation of the probability
is very cheap and can thus be reiterated many times, for instance in order to
sample its evolution through the time.

ROBDD’s can be used to compute other quantities of interest in the relia-
bility analysis framework as shown in [SIN 95, SIN 96a, SIN 96b, BON 96].

7.2. Qualitative Analyses

Qualitative analyses of fault trees (and some quantitative analyses as well)
require to compute prime implicants of the corresponding formulae [LEE 85].
ROBDD based algorithms (proposed in [COU 92a, COU 92b] and [RAU 93])
to do so use the following theorem as an inductive principle.

Theorem 6 (Decomposition Theorem)Let f(zi1,...,2,) be a Boolean
function. Then, the set of prime implicants of f(x1,...,z,) is the union of
the three following sets.

— The set Prime[f(1,...,zn) A f(O,...,2zp)].

— The set of products {x1} U o where o is a product in Prime[f(1,...,zp)]
that doesn’t belong to Prime[f(1,...,zn) A f(O,...,zp)].

— The set of products {-x1} U o where o is a product in Prime[f(0,...,zy)]
that doesn’t belong to Prime[f(1,...,x,) A f(0,...,z,)]

Intuitively, the above theorem is justified as follows. A prime implicant
o of f(x1,...,1,) may contain either z; or -z or none of these two lit-
erals. In this latter case, ¢ must still be a prime implicant of f whatever
constant is substituted for z;. Thus, o is a prime implicant of f(xy,...,x,)
that doesn’t contain x; nor —z; if and only if it is a prime implicant of
Ve f(z1,...,zn) = f(1,...,20) A f(O,...,2,). Now, a product {z1} Uo is
a prime implicant of f(z1,...,%,) if it is a prime implicant of f(1,...,z,) and
o is not already a prime implicant of f(z1,...,2y), i.e. if o doesn’t belong to
Prime(f(1,...,2,) A f(O,...,2,)).

The decomposition theorem gives an inductive principle to compute prime
implicants (no matter how prime these implicants are stored, i.e. either by
means of ZBDD’s or by means of ROBDD’s encoding meta-products). See the
cited articles for more details.
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8.Perspectives

Several experiments on large real-life fault trees (realized with tools such
as METAPRIME [COU 93, COU 94, MAD 94a] or Aralia [ARA 94, ARA 95])
have demonstrated that ROBDD’s outperform by orders of magnitude classical
techniques such as MOCUS [FUS 72]. Trees with several hundred of gates and
(repeated) terminal events can now be handled on personal computers. Despite
of these first successes, it remains many things to do.

Treatment of very large fault trees. Practitioners, knowing that they have
efficient tools at their disposal, are now studying physical systems at a more
detailed level. The trees they are working on are in general automatically
generated (by tools such as FIGARO [BOU 91]) and sometimes so large (or
complex) that they cannot be handled directly. Several techniques can be
explored to tackle this complexity.

— The design of new and more powerful heuristics for variable ordering. First
experiments we did in that direction are promising.

— Modularization and rewriting of formulae in such way that they become easier
to handle. First works such as those presented in [BOU 96, DUT 96a] indicate
that great improvements can be obtained in this way.

— Application of ROBDD’s techniques such as dynamic variable re-ordering
[ISH 91]. These techniques have been shown powerful in the circuit verification
framework. Perhaps they can be used for fault tree analysis as well.

— The design of approximated algorithms. At least for what concerns the deter-
mination of minimal cuts, we succeeded in this way in dealing with otherwise
untractable trees [ARA 95].

Applications to other risk assessment techniques. Works by J. Dugan & al.
show that ROBDD’s can successfully applied to many risk assessment problems,
such as fault coverage [DOY 96] and analysis of dynamic fault trees [PUL 96].
In particular, one of their interesting applications is the reliability networks
analysis for which first promising results have been obtained by Madre & al.
[MAD 94b] (and improved in [DUT 96b]).
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