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A Brief Introdution to Binary DeisionDiagramsAntoine RauzyLaBRI - URA CNRS 1304 - Universit�e Bordeaux I351, ours de la Lib�eration,33405 Talene Cedex (Frane)rauzy�labri.u-bordeaux.frABSTRACT. This paper aims to be a brief introdution to Binary Deision Diagramsand some of their uses in the reliability analysis framework. It is a omputer sientistlook on that question, i.e. it fouses on data strutures and algorithms. It tries togive an overview of implementation issues at an abstrat level. Basi algorithms arereviewed while reent developments are only mentioned.KEY WORDS : Binary Deision Diagrams.1.IntrodutionAutomated resolution of many pratial problems requires to store verylarge olletions of objets. This is espeially the ase for those expressedin terms of Boolean formulae. To solve them one has to memorize and tomanipulate the truth tables of the formulae under study (or equivalently sum-of-produts forms for these formulae), i.e. a priori at least a signi�ant partof the 2n possible assignments of Boolean values to their n variables. Bothqualitative and quantitative analyses of fault trees raise this kind of problems[VES 81, LEE 85, LIM 91℄.If the studied Boolean formulae were generated at random, there would beno hope to get a ompat representation for them [SHA 49℄. Fortunately, real-life fault trees or ombinatorial iruits are not, as far as we know, generatedat random. It is thus possible to design data strutures that apture, at leastto a ertain extent, their regularities. I.e. that enode their truth tables within



2an amount of memory that is not diretly related to the number of variableassignments satisfying them.Binary Deision Diagrams (BDD's for short) are suh a data struture.BDD's are the state-of-the-art data struture to enode and manipulateBoolean funtions. They have been introdued by B. Akers [AKE 78℄ andimproved by R. Bryant [BRY 86, BRA 90℄. They are nowadays used in a widerange of areas, inluding hardware synthesis and veri�ation, protool valida-tion and automated dedution (see [BRY 92℄ for a survey on BDD's and theirappliations). Their use in the reliability analysis framework has been initiatedby J.-C. Madre and O. Coudert on the one hand [COU 92a, COU 92b℄, and theauthor on the other hand [RAU 93℄. BDD's are sometimes alled branhingprograms in the theoretial omputer siene literature [WEG 88℄.This paper aims to be a brief introdution to BDD's and some of their usesfor reliability analyses. First, some de�nitions and voabulary about proposi-tional alulus are realled setion 2. The data struture and its basi propertiesare presented setion 3. Data strutures have no intrisi meaning. So, fun-tions must be de�ned that assoiates to eah data struture its semantis, i.e. amathematial objet. Di�erent interesting semantis an be de�ned for BDD's.Four of them are presented setion 4. BDD's are always built in a omposi-tional way, i.e. starting from basi BDD's and ombining them to obtain moreomplex ones. The most important funtions to do so are skethed setion 5.Worst ase sizes of ROBDD's and heuristis to get small size ROBDD's aredisussed setion 6. Setion 7 shows how ROBDD's are used to ompute theprobability of the root event of a fault tree given the probabilities of its termi-nal events and how to ompute and to enode the set of its prime impliantsin a ompat way.2.BakgroundThis setion realls basi voabulary of Boolean algebra and graph theorywe need in this paper. A more detailed presentation ould be found in [SCH 89℄.2.1.Boolean AlgebraBoolean formulae are terms indutively built over the two (Boolean) on-stants 0 (False) and 1 (True), a denumerable set of variables V , and the usuallogial onnetives ^ (and), _ (or), : (not). For instane, (a ^ :b) _ (:a ^ )is a Boolean formula built over the variables a; b and . Other onnetives aresometimes used. For instane, � denotes the onnetive `exlusive or'. Reallthat f � g is equivalent to (f ^ :g) _ (:f ^ g).A literal is either a variable x or its negation :x. x and :x are said opposite.A produt is a set of literals that does not ontain both a literal and its opposite.A produt is assimilated with the onjuntion of its elements. A set of produts



A Brief Introdution to Binary Deision Diagrams 3is assimilated with the disjuntion of its elements. Sets of produts are alsoalled sum-of-produts or formulae in disjuntive normal form (DNF).We denote by V ar[f ℄ the set of variables ourring in a Boolean formula f .Let f be a Boolean formula. An assignment of V ar[f ℄ is any mapping fromV ar[f ℄ to f0; 1g. For instane, [a  1; b  0;   1℄ is an assignment ofV ar[(a _ :b) ^ (:a _ )℄. An assignment � satis�es (resp. falsi�es) a formulaf if �(f) = 1 (resp. �(f) = 0). For instane, [a  1; b  0;   1℄ satis�es(a _ :b) ^ (:a _ ), while [a 1; b 1;  1℄ falsi�es it.Let f and g be Boolean formulae. g implies logially f if any assignmentsatisfying g satis�es f . We denote that by g j= f . If both f j= g and g j= f , fand g are said equivalent. We denote that by f � g.A produt an be seen as a partial assignment of the variables of a formula:the value 1 (resp. 0) is assigned to eah variable ourring positively (resp.negatively) in the produt, while the other variables remain unassigned. Wesay that a produt � satis�es (resp. falsi�es) a given Boolean formula f if f issatis�ed (resp. falsi�ed) by any (total) assignment of V ar[f ℄ that agrees with�. For instane, fa;:bg satis�es (a _ :b) ^ (:a _ ). The set of assignmentssatisfying a formula an thus be seen as a sum-of-produts.A produt � that satis�es a funtion f is also alled an impliant of f .Let f be a Boolean formula and � be an impliant of f . � is said primeif there is no impliant  of f stritly inluded in �. In what follows, wedenote by Prime[f ℄ the set of prime impliants of a formula f . For instane,Prime[(a ^ :b) _ (:a ^ )℄ = ffa;:bg; f:a; g; f:b; gg.When they ontain no negative literal, prime impliants are often alledminimal uts in the reliability analysis literature.2.2.GraphsA graph is given by a set of nodes (also alled verties) U together with aset of edges E � U � U (edges are thus pairs of nodes). In what follows, weonsider only direted graphs whih means that pairs are ordered.An edge (u; v) is an out-edge for the node u and an in-edge for the node v.We also say that the edge (u; v) points to the node v. A node without in-edgeis alled a root node, while a node without out-edge is alled a sink node. Sinknodes are also alled leaves.A path in the graph is a sequene of nodes u1; : : : ; uk suh that (ui; ui+1) 2 Efor i = 1; : : : ; k� 1. The length of a path is the number of edges it traverses. Anode v is said to be reahable from a node u if there exists a path from u to v.A graph is said ayli if for every node u, u is not reahable from itselfthrough a positive length path. A tree is a uniquely rooted direted ayligraph in whih eah node but the root has exatly one in-edge.The subgraph rooted by the node u of a graph G = (U;E) is the graphG0 = (U 0; E0), where U 0 is the subset of nodes of U that are reahable from uand E0 is the set of edges (v; w) 2 E suh that both v and w belong to U 0.
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Figure 1. A BDD over the variables a, b and .Throughout this paper we deal with labeled graphs, i.e. with graphs thatembbed data (labels) on their verties and edges. Two edges with the samesoure and target nodes but di�erent labels are onsidered as distint.Three labeled graphs are pitured Fig. 2. The leftmost one is a tree, thetwo others are simply ayli.3.Data Strutures3.1.Redued Ordered Binary Deision DiagramsLet x1; : : : ; xn be n Boolean variables. A binary deision diagram overx1,. . . ,xn is a direted ayli graph � verifying onditions (i) and (ii).(i) Sink nodes of � are labeled either with 0 or with 1.(ii) Eah internal node of � is labeled with a variable xi and has 2 out-edgeslabeled respetively with 0 and 1.Let < be a total order over x1; : : : ; xn (say x1 < x2 < : : : < xn). A binarydeision diagram � is said to be ordered if ondition (iii) holds.(iii) For any pair of nodes (�,�) labeled respetively with the variables xi andxj , if � is reahable from � then xi < xj .As a onsequene, in an ordered BDD (OBDD) with a single root node,eah variable is enountered at most one onto any path from the root nodeto a sink node (moreover, variables are enountered aording to the order <).The BDD pitured Fig. 1 is ordered (for the lexiographi order).For the sake of onveniene, we denote by �(x; �1; �0) the BDD rootedby a node labeled with the variable x and whose 1- and 0-out-edges pointrespetively to BDD's �1 and �0.This de�nition of BDD's is purely syntatial, whih means that a BDDis seen as data struture, just as data struture. In order to give a meaningto this onstrution we need a funtion that assoiates a mathematial objetwith eah BDD. The semantis of a node �(x; �1; �0) should depend only onthe variable x and the semantis of the nodes �1 and �0. It follows that twoisomorphi BDD's should have the same semantis. As a onsequene, it is



A Brief Introdution to Binary Deision Diagrams 5useless to maintain opies of isomorphi BDD's. One opy suÆes, whih isinteresting to limit memory onsumption.An ordered binary deision diagram � is said redued if ondition (iv) holds.(iv) � ontains no isomorphi sub-graphs.In partiular, it means that a redued ordered binary deision diagram(ROBDD) has only two sink nodes, labeled respetively with 0 and 1.Fig. 2 shows three equivalent OBDD's. The left most is a tree, while theright most is redued.
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Figure 2. Three equivalent OBDD's.Condition (iv) an be seen as a rewriting rule that \folds" OBDD's to getmore ompat equivalent ones. A ompletely unfolded OBDD is a binary tree.The following property holds.Theorem 1 (Canoniity of ROBDD's)For any OBDD �, the ROBDD ob-tained from � by sharing isomorphi subgraphs is unique up to an isomorphism.This theorem is very important beause it allows to establish a one-to-oneorrespondene between ROBDD's and mathematial objets.3.2.Management of ROBDD's nodesAs we will see, ROBDD's are always reated in a bottom-up way, i.e. thata node � = �(x; �1; �0) is always reated after the reation of the nodes �0and �1. Furthermore, one reated a node is never modi�ed.Nodes are kept into a table and they are reated only through a funtionfind or add node. This funtion takes x, �1 and �0 as parameters. It looksup the table and it reates atually a new node only if neessary, i.e. if thetable does not already ontain the node �(x; �1; �0). Tehnially, this table isa hashtable. This management of nodes has two important onsequenes:1. Redution (iv) is automatially performed.2. Provided the hashtable is well dimensioned, the omplexity of thefind or add node is in O(1), i.e. onstant.A more detailed disussion about implementation an be found in [BRA 90℄.



64.Four Semantis for ROBDD's4.1.Standard ROBDD'sUsually, ROBDD's are interpreted as Boolean formulae under Shannon Nor-mal Form. This semantis for ROBDD's is the standard one and usually it isimpliitely understood in [AKE 78, BRY 86, BRA 90, BRY 92℄. The ShannonNormal Form is based on the ite (for If-Then-Else) onnetive whih is de�nedas follows. Let f , g and h three Boolean funtions, thenite(f; g; h) def= (f ^ g) _ (:f ^ h)Any binary onnetive an be expressed by means of an ite and possibly anegation. For instane, f _ g � ite(f; 1; g) and f � g � ite(f; g;:g). Moreover,ite is orthogonal with the usual onnetives.Let Op be an n-ary operation, let f1; : : : ; fn be n formulae and let x be avariable, Op is said orthogonal with ite if the following equivalene holds.Op(f1; : : : ; fn) � ite(x;Op(f1x=1; : : : ; fnx=1); Op(f1x=0; : : : ; fnx=0))where fx=v denotes the formula f in whih the onstant v has been substitutedfor all ourrenes of x.Property 2 (Orthorgonality of usual onnetives)Connetives :, _, ^,� are orthogonal with ite.A formula is said to be Shannon Normal Form if either it is a onstant orit is of the form ite(x; f; g), where x is a variable and f and g are formulae inShannon Normal Form in whih x does not our. It is lear that, thanks toorthogonality, any formula an be rewritten into an equivalent one that is inShannon Normal Form.For instane, (a^:b)_ (:a^ ) is equivalent to ite(a; ite(b; 0; 1); ite(; 1; 0))whih is in Shannon Normal Form.The funtion Shannon[[:℄℄ that assoiates a formula in Shannon NormalForm to eah BDD is de�ned by the following reursive equations.Shannon[[0℄℄ def= 0Shannon[[1℄℄ def= 1Shannon[[�(x; �1; �0)℄℄ def= ite(x; Shannon[[�1℄℄; Shannon[[�0℄℄)For instane, the semantis of the OBDD pitured Fig. 1 isite(a; ite(b; 0; 1); ite(; 1; 0)) and the one of OBDD's pitured Fig. 2 isite(a; ite(b; 0; 1); ite(b; 0; 1)).This semantis for ROBDD's indues another redution rule. It is atuallyeasy to verify that, for any two Boolean funtions f and g, ite(f; g; g) � g. Ifa node enodes suh an ite onnetive, it is useless. For instane, the ROBDD



A Brief Introdution to Binary Deision Diagrams 7�(b; 0; 1) an used instead of OBDD's pitured Fig. 2. We thus slightly hangethe de�nition of ROBDD's.An OBDD � enoding a Boolean formula in Shannon Normal Form is saidredued if onditions (iv) and (v) hold.(v) � ontains no node of the form �(x; �; �).The following theorem holds.Theorem 3 (Canoniity of Shannon ROBDD's)Let f be a Boolean fun-tion that depends on variables x1, . . . , xn and let < be a total order overthese variables. Then there exists an unique (up to an isomorphism) ROBDDenoding f w.r.t. <.This theorem has many interesting onsequenes. Let f and g be twoBoolean formulae enoded respetively by ROBDD's � and �, then the fol-lowing propositions hold.{ f is a tautology (resp. and antilogy) if and only if � is the leaf 1 (resp. 0).{ f is satis�able if and only if � is not the leaf 0.{ f � g if and only if � and � are isomorphi.This last point is interesting beause if we manage ROBDD's in suh way thatthere is never two opies of isomorphi ROBDD's (as shown setion 3.2) thentesting equivalene between two funtions is redued to testing equality of theaddresses of their ROBDD's.4.2.Funtional ROBDD'sThe Reed-Muller Normal Form is another interesting normal form forBoolean formulae [BRO 90℄. It is based on the following theorem.Theorem 4 (Reed-Muller deomposition)Let f be a Boolean funtionthat depends on the variable x. Then there exists two Boolean funtions gand h that do not depend on x suh that f � (x ^ g)� h.Theorem 4 indues a new possible semantis ReedMuller[[:℄℄ for ROBDD's.ReedMuller[[0℄℄ def= 0ReedMuller[[1℄℄ def= 1ReedMuller[[�(x; �1; �0)℄℄ def= (x ^ ReedMuller[[�1℄℄)�ReedMuller[[�0℄℄For the same reasons as previously, ROBDD's provide a anonial enod-ing of Boolean formulae under Reed-Muller normal form. We do not developfurther this semantis beause it has no appliation to fault tree analyses (atleast at the moment). It should be mentioned that it has appliations in thelogial iruit synthesis framework [BEC 93℄.



84.3.Zero-suppressed ROBDD'sIn the reliability analysis framework, it is often the ase that one has tomanipulate subsets of a given set. For instane, minimal uts of a fault treeare subsets of the set of its terminal events. Let E = fe1; : : : ; eng be a set. Asubset F of E an be desribed by means of a Boolean funtion �, so-alledharateristi funtion, whih is de�ned over variables x1; : : : ; xn as follows.�(F ) def= ^ei2F xiIn the same way, a set F = fF1; : : : ; Fmg of subsets of E an be desribed asthe disjuntion of harateristi funtions of the Fi's.�(F) def= _Fi2F �(Fi)This gives raise to a new semantis for ROBDD's that has been formalizedby S. Minato under the name Zero-suppressed BDD's (ZBDD's) in [MIN 93,MIN 94℄ (and impliitely used in [RAU 93℄).ZBDD[[0℄℄ def= ;ZBDD[[1℄℄ def= f;gZBDD[[�(xi; �1; �0)℄℄ def= ffeig [ �;� 2 ZBDD[[�1℄℄g [ ZBDD[[�0℄℄For instane, the OBDD pitured Fig. 1 enodes the sets fag and fg, andOBDD's pitured Fig. 2 enode the sets fag and ;.Redution rule (v) does not hold for ZBDD's. However, there is aa new redution rule, spei� to ZBDD's, that is based on the equality:ZBDD[[�(xi; 0; �0)℄℄ = ZBDD[[�0℄℄. For instane, in ZBDD's of Fig. 1 and2, nodes �(b; 0; 1) are useless and an be replaed by leaf 1.An ZBDD � is said redued if onditions (iv) and (vi) hold.(vi) � ontains no node of the form �(x; 0; �).The following theorem holds.Theorem 5 (Canoniity of ZBDD's)Let F be a set of subsets of a set Elet < be a total order over elements of E. Then, there exists an unique (up toan isomorphism) ZBDD enoding �(F) w.r.t. <.4.4.ROBDD's to enode Meta-ProdutsAs shown above, ZBDD's an be used to enode minimal uts sets of faulttrees in a quite simple way. Prime impliants are more tedious to enodebeause they may ontain both positive and negative literals. A way to takle



A Brief Introdution to Binary Deision Diagrams 9this problem (suggested in [MIN 93℄), is to reate, for eah variable x of theoriginal formula, two variables, say x+ and x�, that denote respetively thepresene of the positive and the negative literal built over x in the onsideredproduts. Another way to enode prime impliants by means of ROBDD'shas been proposed by J.-C. Madre and O. Coudert in [COU 92a℄. It works asfollows. Two variables, px and sx, are assoiated with eah variable x of theoriginal formula. px is used to enode the presene of the variable x in theproduts. sx is used to enode the polarity of x in the produts, if it is atuallypresent.The meta-produt enoding �, denoted by MP (�), is the onjuntion, overthe variables x ourring in the formula, of mp(�; x), where mp(�; x) is de�nedas follows.mp(�; x) def= 8<: (px ^ sx) if x 2 �;(px ^ :sx) if :x 2 �;:px if neither x nor :x belong to �:A set of produts is enoded by the disjunt of the orresponding meta-produts. This gives the following equations that de�ne the semantis ofROBDD's enoding meta-produts.MP [[0℄℄ def= ;MP [[1℄℄ def= f;gMP [[�(px; �1; �0)℄℄ def= MP [[�1℄℄ [MP [[�0℄℄MP [[�(sx; �1; �0)℄℄ def= ffxg [ �;� 2MP [[�1℄℄g [ ff:xg [ �;� 2MP [[�0℄℄gNote that the anoniity of the representation is ensured by the anoniityof standard ROBDD's.4.5.Attributed EdgesAnother sheme of redution rules onsists in de�ning attributes (or ags)for edges. Let f be a Boolean formula in Shannon Normal Form. The Booleanformula in Shannon Normal Form equivalent to :f is obtained from f bysubstituting 1's for 0's and vie-versa. From a ROBDD point of view, thisoperation onsists in exhanging 0 and 1 leaves.A programming trik (due to S. Minato & al [MIN 90℄) makes possible anegation in onstant time and redues memory onsumption. It onsists inputting a ag on eah edge. This ag indiates whether the pointed BDDis to be onsidered positively or negatively. In other words, Shannon[[��℄℄ =:Shannon[[�℄℄. As a onsequene, only one leaf remains neessary, say forinstane the leaf 1, sine 0 � :1. The anoniity of the representation ismaintained by storing only nodes with a positive 1-out-edge. The orthogonality
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1? ?? ?lb l? ?la?v1 01 0 1 0vv vFigure 3. The BDD enoding :ite(a; ite(b; 1;:1);:ite(; 1;:1)) (negatededges are denoted with blak dots)of ite and : is used to keep only suh nodes: �(x; ��1; �0) is replaed by��(x; �1; ��0) and �(x; ��1; ��0) is replaed by ��(x; �1; �0). For instane,ite(a; ite(b; 0; 1); ite(; 1; 0)) is rewritten into :ite(a; ite(b; 1;:1);:ite(; 1;:1))whih is enoded by the ROBDD pitured Fig. 3.In [MIN 93℄, S. Minato suggest to apply this tehnique to ZBDD's in thefollowing way. A ZBDD is agged if and only if it enodes a set ontainingthe empty set. More omplex attributes (or ags) have proposed in the litera-ture that allow further redutions [MIN 90℄, but it is not lear whether theseredutions improve the method in pratie.5.Operations for ROBDD's ombinationROBDD's are built in a ompositional way, i.e. that basi ROBDD's areombined to get more omplex ones whih are in turn ombined and so on. Inthis setion, the main operations to ombine ROBDD's are skethed.5.1.Computation of the ROBDD enoding a Boolean formulaLet f be a formula. If f is a onstant, a variable x or of the form :g,the ROBDD enoding f easy to obtain. It is the leaf eventually negated inthe �rst ase, the ROBDD �(x; 1; �1) in the seond and the negation of theROBDD enoding g in the third one (see setion 4.5). Otherwise, we anassume without a loss of generality that f = g�h, where � is any usual binaryonnetive and g and h are two formulae. In order to ompute the ROBDD �enoding f , one proeeds as follows. First, one omputes the ROBDD's � and enoding respetively g and h. Seond, one ombines these two ROBDD's toget �. Reursive rules for ROBDD's ombination are dedued from equationsgiving their semantis desribed setion 4.1. Basially, three ases are possible:ase 1. � and  are suh that � an be immediately dedued. For instane, if� is ^ and � = , then � is � (g ^ g � g for any g). Other ases of immediatededution our when either � or  (or both) are leaves. For instane, if � isthe leaf 1 and � is ^, then � is  (1 ^ h � h for any h).



A Brief Introdution to Binary Deision Diagrams 11ase 2. � = �(x; �1; �0) and  = �(x; 1; 0). Let g1, g0, h1 and h0 berespetively the formulae that are the standard semantis of respetively �1,�0, 1 and 0. Then, the following equivalene holds.ite(x; g1; g0)� ite(x; h1; h0) � ite(x; g1 � h1; g0 � h0)Thus, in order to ompute �, one �rst ombines �1 and 1 with � toget a ROBDD �1, then seond one ombines �0 and 0 with � to get aROBDD �0, and third one builds � as �(x; �1; �0) by means of the funtionfind or add node (exepted if �1 = �0 in whih ase � = �1).ase 3. The third possibility is a degenerated ase of ase 2: � = �(x; �1; �0)and  = �(y; 1; 0) with say x < y. In this ase, the ombination rule is thesame as previously exepted that �1 and �0 are ombined with  itself.The referene [BRA 90℄ ontains more details about these operations.5.2.Zero-suppressed BDD'sAs for ROBDD's enoding formulae in Shannon Normal Form, Zero-suppressed BDD's are built from smaller ZBDD's that are ombined throughset operations. The leaves 0 (:1) and 1 enode respetively the sets ; andf;g. Singletons feig are enoded by ZBDD's of the form �(xi; 1; �1). Reur-sive rules that perform set operations on ZBDD's are derived from equationsgiving their semantis and are very similar to those used to ombine standardROBDD's.For instane, let � = �(xi; �1; �0) and  = �(xi; 1; 0) be two ZBDD's.Let G and H be the two sets enoded by resp. � and  and assume we wantto ompute a ZBDD � enoding G \H . We have:G \H = ZBDD[[�℄℄ \ ZBDD[[℄℄= (ffeig [ �;� 2 ZBDD[[�1℄℄g [ ZBDD[[�0℄℄)\ (ffeig [ �;� 2 ZBDD[[1℄℄g [ ZBDD[[0℄℄)= ffeig [ �;� 2 ZBDD[[�1℄℄ \ ZBDD[[1℄℄g[ (ZBDD[[�0℄℄ \ ZBDD[[0℄℄)Thus, in order to get the ZBDD's � enoding F , one �rst ombines �1 and 1with \ to get a ZBDD �1, then seond one ombines �0 and 0 with \ to geta ZBDD �0, and third one builds � as �(xi; �1; �0) by means of the funtionfind or add node (exepted if �1 = 0 in whih ase � = �0).Similar reursive rules are de�ned for all the lassial operations on setssuh as union, di�erene and omplementation [MIN 93℄.5.3.Operations on ROBDD's enoding Meta-ProdutsOperations on sets of produts an be performed through logial operationson the orresponding meta-produts. This is the main advantage of this wayof enoding produts.



12 Let �1 and �2 be two sets of produts built over the variables x1; : : : ; xn.Let MP (�1) and MP (�2) be the two orresponding meta-produts. Then,{ The empty set of produts is enoded by the boolean onstant 0.{ The set of all of the possible produts is enoded by the boolean onstant 1.{ The empty produt is enoded by the funtion (:px1 ^ : : : ^ :pxn).{ �1 [�2 is enoded by the funtion MP (�1) _MP (�2).{ �1 \�2 is enoded by the funtion MP (�1) ^MP (�2).{ The omplement �1 to �1 in the set of all of the possible produts is enodedby the funtion :MP (�1).5.4.Memorization of Intermediate ResultsCanoniity of ROBDD's is used to redue the omputational ost of basioperations in the following way. A table is used in whih results of alreadyperformed operations are stored. For instane, this table ontains 4-tuplesf�; �; ; �g, where � is a Boolean operation and �, � and  are ROBDD'ssuh that the ombination of � and  with � gives � as result.Before any operation, one �rst looks up the table to see whether its result isnot already omputed. If it is not the ase, the operation is atually performedand its result is added to the table. This seond table is also managed as ahashtable whih ensures a fast aess to stored tuples (see [BRA 90℄ for moredetails).From a pratial point of view, memorization of intermediate results in-reases dramatially the performanes of operations on ROBDD's. From atheoretial point of view, it ensures that the worst ase omplexity of the om-bination of two ROBDD's � and � is in O(j�j � j�j), i.e. proportional to theprodut of the numbers of nodes of � and � [BRA 90℄ (this holds both forlogial operations between ROBDD's and set operations between ZBDD's).6.Complexity IssuesThe size of sum-of-produts a representation of Boolean funtion dependson the number of assignments satisfying the represented funtion. This is thereason why these representations are quikly too expensive. Many funtions en-ountered in pratie admit not too large ROBDD representations, even if theyhave a very large number of impliants. However, from a theoretial point ofview, ROBDD's do not really improve the situation sine most of Boolean fun-tions annot admit polynomial size ROBDD representations [WEG 88, LIA 92℄([LIA 92℄ is very interesting beause it also studies the respetive powers of re-dution rules (iv) and (v)). Moreover, exept for the speial lass of symmetrifuntions, the size of the ROBDD heavily depends on the hosen variable or-dering. For instane, R. Bryant shows in [BRY 86℄ that the ROBDD enoding



A Brief Introdution to Binary Deision Diagrams 13the funtion:f(x1; : : : ; xn; y1; : : : ; yn) = (x1 ^ y1)
 : : :
 (xn ^ yn)has a linear size for the ordering x1 < y1 < : : : < xn < yn and an exponentialsize for the ordering x1 < : : : < xn < y1 < : : : < yn. There exists naturalfuntions that are enoded by exponential size BDD's whatever the variableordering is (e.g. n bits multipliers [BRY 91℄).Finding the best variable ordering is a very diÆult problem. The bestknown algorithms are in O(3n) [FRI 90, ISH 91℄, where n is the number ofvariables, whih makes them impratiable.Thus, heuristis are used to �nd good orderings. Many suh heuristishave been proposed in the literature (see [FUJ 88, MAL 88, BER 89, CHO 90,BUT 91, FUJ 91, FUJ 93℄ to ite some of them). There is, as far as we know,only one ommon sense rule to design suh a heuristis: variables that aresemantially lose must be lose in the ordering as well. The above examplehelps us to understand that rule. It is lear that variables xi and yi are stronglylinked together. With the ordering x1 < : : : < xn < y1 < : : : < yn they areseparated by n variables. Before taking a deision on the value of the sub-formula (x1^y1) one must examine all the possible values for the xi's. It followsthat the higher part of the BDD must be a omplete binary tree. Conversely,with the ordering x1 < y1 < : : : < xn < yn the sub-formulae (xi ^ yi) aretreated one after another.The ost of the omputation of the ROBDD enoding a funtion is not onlyrelated to its size but also to the sizes of eah ROBDD used during the om-putation. This is exampli�ed by the formula f = g _ :g that is is enoded bythe leaf 1, even g is enoded by an exponential size ROBDD. Moreover, theway a funtion is written inuenes the omplexity of the omputation (seepapers by M. Bouissou [BOU 94℄ and [BOU 96℄ for interesting disussions onthat subjet). Note that, as noted by several authors, tehniques used by las-sial algorithms to simplify fault trees, suh as modularization, an be adaptedsuessfully for ROBDD's omputations [SIN 96a, PUL 96, DUT 96a℄.7.Appliation to Fault Trees Analysis7.1.Quantitative AnalysesA entral problem of quantitative fault tree analyses is to determine theprobability of failure of the system under study knowing the probabilities of fail-ures of its elementary omponents. This problem is known to be #P-omplete[VAL 79℄, i.e. as hard as �nding the number of satisfying assignments of aBoolean formula. One built the ROBDD assoiated with a formula, it is easyto ompute the exat probability of the formula, given the probability of eahvariable. This is performed by means of a ROBDD traversal, the Shannon'sdeomposition being applied on eah node of the ROBDD.



14 Let p(x) denote the probability of the variable x. The funtion p[[:℄℄ thatassoiates a probability to eah ROBDD an be seen as a new semantis forROBDD's. It is omputed by applying the following reursive equations.p[[0℄℄ def= 0p[[1℄℄ def= 1p[[�(x; �1; �0)℄℄ def= p(x):p[[�1℄℄ + (1� p(x)):p[[�0℄℄If intermediate results are memorized, the omplexity of this omputationis linear in the size of the ROBDD. This is a major advantage of ROBDD's.One omputed the ROBDD, the ost of the omputation of the probabilityis very heap and an thus be reiterated many times, for instane in order tosample its evolution through the time.ROBDD's an be used to ompute other quantities of interest in the relia-bility analysis framework as shown in [SIN 95, SIN 96a, SIN 96b, BON 96℄.7.2.Qualitative AnalysesQualitative analyses of fault trees (and some quantitative analyses as well)require to ompute prime impliants of the orresponding formulae [LEE 85℄.ROBDD based algorithms (proposed in [COU 92a, COU 92b℄ and [RAU 93℄)to do so use the following theorem as an indutive priniple.Theorem 6 (Deomposition Theorem)Let f(x1; : : : ; xn) be a Booleanfuntion. Then, the set of prime impliants of f(x1; : : : ; xn) is the union ofthe three following sets.{ The set Prime[f(1; : : : ; xn) ^ f(0; : : : ; xn)℄.{ The set of produts fx1g [ � where � is a produt in Prime[f(1; : : : ; xn)℄that doesn't belong to Prime[f(1; : : : ; xn) ^ f(0; : : : ; xn)℄.{ The set of produts f:x1g [ � where � is a produt in Prime[f(0; : : : ; xn)℄that doesn't belong to Prime[f(1; : : : ; xn) ^ f(0; : : : ; xn)℄.Intuitively, the above theorem is justi�ed as follows. A prime impliant� of f(x1; : : : ; xn) may ontain either x1 or :x1 or none of these two lit-erals. In this latter ase, � must still be a prime impliant of f whateveronstant is substituted for x1. Thus, � is a prime impliant of f(x1; : : : ; xn)that doesn't ontain x1 nor :x1 if and only if it is a prime impliant of8x1f(x1; : : : ; xn) = f(1; : : : ; xn) ^ f(0; : : : ; xn). Now, a produt fx1g [ � isa prime impliant of f(x1; : : : ; xn) if it is a prime impliant of f(1; : : : ; xn) and� is not already a prime impliant of f(x1; : : : ; xn), i.e. if � doesn't belong toPrime(f(1; : : : ; xn) ^ f(0; : : : ; xn)).The deomposition theorem gives an indutive priniple to ompute primeimpliants (no matter how prime these impliants are stored, i.e. either bymeans of ZBDD's or by means of ROBDD's enoding meta-produts). See theited artiles for more details.



A Brief Introdution to Binary Deision Diagrams 158.PerspetivesSeveral experiments on large real-life fault trees (realized with tools suhas METAPRIME [COU 93, COU 94, MAD 94a℄ or Aralia [ARA 94, ARA 95℄)have demonstrated that ROBDD's outperform by orders of magnitude lassialtehniques suh as MOCUS [FUS 72℄. Trees with several hundred of gates and(repeated) terminal events an now be handled on personal omputers. Despiteof these �rst suesses, it remains many things to do.Treatment of very large fault trees. Pratitioners, knowing that they haveeÆient tools at their disposal, are now studying physial systems at a moredetailed level. The trees they are working on are in general automatiallygenerated (by tools suh as FIGARO [BOU 91℄) and sometimes so large (oromplex) that they annot be handled diretly. Several tehniques an beexplored to takle this omplexity.{ The design of new and more powerful heuristis for variable ordering. Firstexperiments we did in that diretion are promising.{ Modularization and rewriting of formulae in suh way that they beome easierto handle. First works suh as those presented in [BOU 96, DUT 96a℄ indiatethat great improvements an be obtained in this way.{ Appliation of ROBDD's tehniques suh as dynami variable re-ordering[ISH 91℄. These tehniques have been shown powerful in the iruit veri�ationframework. Perhaps they an be used for fault tree analysis as well.{ The design of approximated algorithms. At least for what onerns the deter-mination of minimal uts, we sueeded in this way in dealing with otherwiseuntratable trees [ARA 95℄.Appliations to other risk assessment tehniques. Works by J. Dugan & al.show that ROBDD's an suessfully applied to many risk assessment problems,suh as fault overage [DOY 96℄ and analysis of dynami fault trees [PUL 96℄.In partiular, one of their interesting appliations is the reliability networksanalysis for whih �rst promising results have been obtained by Madre & al.[MAD 94b℄ (and improved in [DUT 96b℄).9.Referenes[AKE 78℄ B. Akers. \Binary Deision Diagrams". IEEE Transations on Com-puters, 27(6):509{516, 1978.[ARA 94℄ Groupe Aralia. \Arbres de D�efaillanes et Diagrammes Binaires deD�eision". in Ates du 1er ongr�es interdisiplinaire sur la Qualit�e et la Sûret�e deFontionnement, pp 47{56. Universit�e Tehnologique de Compi�egne, 1994. The\Groupe Aralia" is onstitued by A. Rauzy (LaBRI { Universit�e Bordeaux I),Y. Dutuit (LADS { Universit�e Bordeaux I), J.P. Signoret (Elf-Aquitaine { Pau),M. Chevalier (Shneider Eletri { Grenoble), I. Morlaes (SGN { Saint Quentin
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