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A Brief Introdu
tion to Binary De
isionDiagramsAntoine RauzyLaBRI - URA CNRS 1304 - Universit�e Bordeaux I351, 
ours de la Lib�eration,33405 Talen
e Cedex (Fran
e)rauzy�labri.u-bordeaux.frABSTRACT. This paper aims to be a brief introdu
tion to Binary De
ision Diagramsand some of their uses in the reliability analysis framework. It is a 
omputer s
ientistlook on that question, i.e. it fo
uses on data stru
tures and algorithms. It tries togive an overview of implementation issues at an abstra
t level. Basi
 algorithms arereviewed while re
ent developments are only mentioned.KEY WORDS : Binary De
ision Diagrams.1.Introdu
tionAutomated resolution of many pra
ti
al problems requires to store verylarge 
olle
tions of obje
ts. This is espe
ially the 
ase for those expressedin terms of Boolean formulae. To solve them one has to memorize and tomanipulate the truth tables of the formulae under study (or equivalently sum-of-produ
ts forms for these formulae), i.e. a priori at least a signi�
ant partof the 2n possible assignments of Boolean values to their n variables. Bothqualitative and quantitative analyses of fault trees raise this kind of problems[VES 81, LEE 85, LIM 91℄.If the studied Boolean formulae were generated at random, there would beno hope to get a 
ompa
t representation for them [SHA 49℄. Fortunately, real-life fault trees or 
ombinatorial 
ir
uits are not, as far as we know, generatedat random. It is thus possible to design data stru
tures that 
apture, at leastto a 
ertain extent, their regularities. I.e. that en
ode their truth tables within



2an amount of memory that is not dire
tly related to the number of variableassignments satisfying them.Binary De
ision Diagrams (BDD's for short) are su
h a data stru
ture.BDD's are the state-of-the-art data stru
ture to en
ode and manipulateBoolean fun
tions. They have been introdu
ed by B. Akers [AKE 78℄ andimproved by R. Bryant [BRY 86, BRA 90℄. They are nowadays used in a widerange of areas, in
luding hardware synthesis and veri�
ation, proto
ol valida-tion and automated dedu
tion (see [BRY 92℄ for a survey on BDD's and theirappli
ations). Their use in the reliability analysis framework has been initiatedby J.-C. Madre and O. Coudert on the one hand [COU 92a, COU 92b℄, and theauthor on the other hand [RAU 93℄. BDD's are sometimes 
alled bran
hingprograms in the theoreti
al 
omputer s
ien
e literature [WEG 88℄.This paper aims to be a brief introdu
tion to BDD's and some of their usesfor reliability analyses. First, some de�nitions and vo
abulary about proposi-tional 
al
ulus are re
alled se
tion 2. The data stru
ture and its basi
 propertiesare presented se
tion 3. Data stru
tures have no intrisi
 meaning. So, fun
-tions must be de�ned that asso
iates to ea
h data stru
ture its semanti
s, i.e. amathemati
al obje
t. Di�erent interesting semanti
s 
an be de�ned for BDD's.Four of them are presented se
tion 4. BDD's are always built in a 
omposi-tional way, i.e. starting from basi
 BDD's and 
ombining them to obtain more
omplex ones. The most important fun
tions to do so are sket
hed se
tion 5.Worst 
ase sizes of ROBDD's and heuristi
s to get small size ROBDD's aredis
ussed se
tion 6. Se
tion 7 shows how ROBDD's are used to 
ompute theprobability of the root event of a fault tree given the probabilities of its termi-nal events and how to 
ompute and to en
ode the set of its prime impli
antsin a 
ompa
t way.2.Ba
kgroundThis se
tion re
alls basi
 vo
abulary of Boolean algebra and graph theorywe need in this paper. A more detailed presentation 
ould be found in [SCH 89℄.2.1.Boolean AlgebraBoolean formulae are terms indu
tively built over the two (Boolean) 
on-stants 0 (False) and 1 (True), a denumerable set of variables V , and the usuallogi
al 
onne
tives ^ (and), _ (or), : (not). For instan
e, (a ^ :b) _ (:a ^ 
)is a Boolean formula built over the variables a; b and 
. Other 
onne
tives aresometimes used. For instan
e, � denotes the 
onne
tive `ex
lusive or'. Re
allthat f � g is equivalent to (f ^ :g) _ (:f ^ g).A literal is either a variable x or its negation :x. x and :x are said opposite.A produ
t is a set of literals that does not 
ontain both a literal and its opposite.A produ
t is assimilated with the 
onjun
tion of its elements. A set of produ
ts



A Brief Introdu
tion to Binary De
ision Diagrams 3is assimilated with the disjun
tion of its elements. Sets of produ
ts are also
alled sum-of-produ
ts or formulae in disjun
tive normal form (DNF).We denote by V ar[f ℄ the set of variables o

urring in a Boolean formula f .Let f be a Boolean formula. An assignment of V ar[f ℄ is any mapping fromV ar[f ℄ to f0; 1g. For instan
e, [a  1; b  0; 
  1℄ is an assignment ofV ar[(a _ :b) ^ (:a _ 
)℄. An assignment � satis�es (resp. falsi�es) a formulaf if �(f) = 1 (resp. �(f) = 0). For instan
e, [a  1; b  0; 
  1℄ satis�es(a _ :b) ^ (:a _ 
), while [a 1; b 1; 
 1℄ falsi�es it.Let f and g be Boolean formulae. g implies logi
ally f if any assignmentsatisfying g satis�es f . We denote that by g j= f . If both f j= g and g j= f , fand g are said equivalent. We denote that by f � g.A produ
t 
an be seen as a partial assignment of the variables of a formula:the value 1 (resp. 0) is assigned to ea
h variable o

urring positively (resp.negatively) in the produ
t, while the other variables remain unassigned. Wesay that a produ
t � satis�es (resp. falsi�es) a given Boolean formula f if f issatis�ed (resp. falsi�ed) by any (total) assignment of V ar[f ℄ that agrees with�. For instan
e, fa;:bg satis�es (a _ :b) ^ (:a _ 
). The set of assignmentssatisfying a formula 
an thus be seen as a sum-of-produ
ts.A produ
t � that satis�es a fun
tion f is also 
alled an impli
ant of f .Let f be a Boolean formula and � be an impli
ant of f . � is said primeif there is no impli
ant 
 of f stri
tly in
luded in �. In what follows, wedenote by Prime[f ℄ the set of prime impli
ants of a formula f . For instan
e,Prime[(a ^ :b) _ (:a ^ 
)℄ = ffa;:bg; f:a; 
g; f:b; 
gg.When they 
ontain no negative literal, prime impli
ants are often 
alledminimal 
uts in the reliability analysis literature.2.2.GraphsA graph is given by a set of nodes (also 
alled verti
es) U together with aset of edges E � U � U (edges are thus pairs of nodes). In what follows, we
onsider only dire
ted graphs whi
h means that pairs are ordered.An edge (u; v) is an out-edge for the node u and an in-edge for the node v.We also say that the edge (u; v) points to the node v. A node without in-edgeis 
alled a root node, while a node without out-edge is 
alled a sink node. Sinknodes are also 
alled leaves.A path in the graph is a sequen
e of nodes u1; : : : ; uk su
h that (ui; ui+1) 2 Efor i = 1; : : : ; k� 1. The length of a path is the number of edges it traverses. Anode v is said to be rea
hable from a node u if there exists a path from u to v.A graph is said a
y
li
 if for every node u, u is not rea
hable from itselfthrough a positive length path. A tree is a uniquely rooted dire
ted a
y
li
graph in whi
h ea
h node but the root has exa
tly one in-edge.The subgraph rooted by the node u of a graph G = (U;E) is the graphG0 = (U 0; E0), where U 0 is the subset of nodes of U that are rea
hable from uand E0 is the set of edges (v; w) 2 E su
h that both v and w belong to U 0.
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Figure 1. A BDD over the variables a, b and 
.Throughout this paper we deal with labeled graphs, i.e. with graphs thatembbed data (labels) on their verti
es and edges. Two edges with the samesour
e and target nodes but di�erent labels are 
onsidered as distin
t.Three labeled graphs are pi
tured Fig. 2. The leftmost one is a tree, thetwo others are simply a
y
li
.3.Data Stru
tures3.1.Redu
ed Ordered Binary De
ision DiagramsLet x1; : : : ; xn be n Boolean variables. A binary de
ision diagram overx1,. . . ,xn is a dire
ted a
y
li
 graph � verifying 
onditions (i) and (ii).(i) Sink nodes of � are labeled either with 0 or with 1.(ii) Ea
h internal node of � is labeled with a variable xi and has 2 out-edgeslabeled respe
tively with 0 and 1.Let < be a total order over x1; : : : ; xn (say x1 < x2 < : : : < xn). A binaryde
ision diagram � is said to be ordered if 
ondition (iii) holds.(iii) For any pair of nodes (�,�) labeled respe
tively with the variables xi andxj , if � is rea
hable from � then xi < xj .As a 
onsequen
e, in an ordered BDD (OBDD) with a single root node,ea
h variable is en
ountered at most on
e onto any path from the root nodeto a sink node (moreover, variables are en
ountered a

ording to the order <).The BDD pi
tured Fig. 1 is ordered (for the lexi
ographi
 order).For the sake of 
onvenien
e, we denote by �(x; �1; �0) the BDD rootedby a node labeled with the variable x and whose 1- and 0-out-edges pointrespe
tively to BDD's �1 and �0.This de�nition of BDD's is purely synta
ti
al, whi
h means that a BDDis seen as data stru
ture, just as data stru
ture. In order to give a meaningto this 
onstru
tion we need a fun
tion that asso
iates a mathemati
al obje
twith ea
h BDD. The semanti
s of a node �(x; �1; �0) should depend only onthe variable x and the semanti
s of the nodes �1 and �0. It follows that twoisomorphi
 BDD's should have the same semanti
s. As a 
onsequen
e, it is



A Brief Introdu
tion to Binary De
ision Diagrams 5useless to maintain 
opies of isomorphi
 BDD's. One 
opy suÆ
es, whi
h isinteresting to limit memory 
onsumption.An ordered binary de
ision diagram � is said redu
ed if 
ondition (iv) holds.(iv) � 
ontains no isomorphi
 sub-graphs.In parti
ular, it means that a redu
ed ordered binary de
ision diagram(ROBDD) has only two sink nodes, labeled respe
tively with 0 and 1.Fig. 2 shows three equivalent OBDD's. The left most is a tree, while theright most is redu
ed.
0 1 0 1? ?1 0 ? ?1 0lb lb? ?la1 0 0 1? ?1 0? ?1 0lb lb? ?la1 0 0 1? ?1 0lbla??1 0

Figure 2. Three equivalent OBDD's.Condition (iv) 
an be seen as a rewriting rule that \folds" OBDD's to getmore 
ompa
t equivalent ones. A 
ompletely unfolded OBDD is a binary tree.The following property holds.Theorem 1 (Canoni
ity of ROBDD's)For any OBDD �, the ROBDD ob-tained from � by sharing isomorphi
 subgraphs is unique up to an isomorphism.This theorem is very important be
ause it allows to establish a one-to-one
orresponden
e between ROBDD's and mathemati
al obje
ts.3.2.Management of ROBDD's nodesAs we will see, ROBDD's are always 
reated in a bottom-up way, i.e. thata node � = �(x; �1; �0) is always 
reated after the 
reation of the nodes �0and �1. Furthermore, on
e 
reated a node is never modi�ed.Nodes are kept into a table and they are 
reated only through a fun
tionfind or add node. This fun
tion takes x, �1 and �0 as parameters. It looksup the table and it 
reates a
tually a new node only if ne
essary, i.e. if thetable does not already 
ontain the node �(x; �1; �0). Te
hni
ally, this table isa hashtable. This management of nodes has two important 
onsequen
es:1. Redu
tion (iv) is automati
ally performed.2. Provided the hashtable is well dimensioned, the 
omplexity of thefind or add node is in O(1), i.e. 
onstant.A more detailed dis
ussion about implementation 
an be found in [BRA 90℄.



64.Four Semanti
s for ROBDD's4.1.Standard ROBDD'sUsually, ROBDD's are interpreted as Boolean formulae under Shannon Nor-mal Form. This semanti
s for ROBDD's is the standard one and usually it isimpli
itely understood in [AKE 78, BRY 86, BRA 90, BRY 92℄. The ShannonNormal Form is based on the ite (for If-Then-Else) 
onne
tive whi
h is de�nedas follows. Let f , g and h three Boolean fun
tions, thenite(f; g; h) def= (f ^ g) _ (:f ^ h)Any binary 
onne
tive 
an be expressed by means of an ite and possibly anegation. For instan
e, f _ g � ite(f; 1; g) and f � g � ite(f; g;:g). Moreover,ite is orthogonal with the usual 
onne
tives.Let Op be an n-ary operation, let f1; : : : ; fn be n formulae and let x be avariable, Op is said orthogonal with ite if the following equivalen
e holds.Op(f1; : : : ; fn) � ite(x;Op(f1x=1; : : : ; fnx=1); Op(f1x=0; : : : ; fnx=0))where fx=v denotes the formula f in whi
h the 
onstant v has been substitutedfor all o

urren
es of x.Property 2 (Orthorgonality of usual 
onne
tives)Conne
tives :, _, ^,� are orthogonal with ite.A formula is said to be Shannon Normal Form if either it is a 
onstant orit is of the form ite(x; f; g), where x is a variable and f and g are formulae inShannon Normal Form in whi
h x does not o

ur. It is 
lear that, thanks toorthogonality, any formula 
an be rewritten into an equivalent one that is inShannon Normal Form.For instan
e, (a^:b)_ (:a^ 
) is equivalent to ite(a; ite(b; 0; 1); ite(
; 1; 0))whi
h is in Shannon Normal Form.The fun
tion Shannon[[:℄℄ that asso
iates a formula in Shannon NormalForm to ea
h BDD is de�ned by the following re
ursive equations.Shannon[[0℄℄ def= 0Shannon[[1℄℄ def= 1Shannon[[�(x; �1; �0)℄℄ def= ite(x; Shannon[[�1℄℄; Shannon[[�0℄℄)For instan
e, the semanti
s of the OBDD pi
tured Fig. 1 isite(a; ite(b; 0; 1); ite(
; 1; 0)) and the one of OBDD's pi
tured Fig. 2 isite(a; ite(b; 0; 1); ite(b; 0; 1)).This semanti
s for ROBDD's indu
es another redu
tion rule. It is a
tuallyeasy to verify that, for any two Boolean fun
tions f and g, ite(f; g; g) � g. Ifa node en
odes su
h an ite 
onne
tive, it is useless. For instan
e, the ROBDD



A Brief Introdu
tion to Binary De
ision Diagrams 7�(b; 0; 1) 
an used instead of OBDD's pi
tured Fig. 2. We thus slightly 
hangethe de�nition of ROBDD's.An OBDD � en
oding a Boolean formula in Shannon Normal Form is saidredu
ed if 
onditions (iv) and (v) hold.(v) � 
ontains no node of the form �(x; �; �).The following theorem holds.Theorem 3 (Canoni
ity of Shannon ROBDD's)Let f be a Boolean fun
-tion that depends on variables x1, . . . , xn and let < be a total order overthese variables. Then there exists an unique (up to an isomorphism) ROBDDen
oding f w.r.t. <.This theorem has many interesting 
onsequen
es. Let f and g be twoBoolean formulae en
oded respe
tively by ROBDD's � and �, then the fol-lowing propositions hold.{ f is a tautology (resp. and antilogy) if and only if � is the leaf 1 (resp. 0).{ f is satis�able if and only if � is not the leaf 0.{ f � g if and only if � and � are isomorphi
.This last point is interesting be
ause if we manage ROBDD's in su
h way thatthere is never two 
opies of isomorphi
 ROBDD's (as shown se
tion 3.2) thentesting equivalen
e between two fun
tions is redu
ed to testing equality of theaddresses of their ROBDD's.4.2.Fun
tional ROBDD'sThe Reed-Muller Normal Form is another interesting normal form forBoolean formulae [BRO 90℄. It is based on the following theorem.Theorem 4 (Reed-Muller de
omposition)Let f be a Boolean fun
tionthat depends on the variable x. Then there exists two Boolean fun
tions gand h that do not depend on x su
h that f � (x ^ g)� h.Theorem 4 indu
es a new possible semanti
s ReedMuller[[:℄℄ for ROBDD's.ReedMuller[[0℄℄ def= 0ReedMuller[[1℄℄ def= 1ReedMuller[[�(x; �1; �0)℄℄ def= (x ^ ReedMuller[[�1℄℄)�ReedMuller[[�0℄℄For the same reasons as previously, ROBDD's provide a 
anoni
al en
od-ing of Boolean formulae under Reed-Muller normal form. We do not developfurther this semanti
s be
ause it has no appli
ation to fault tree analyses (atleast at the moment). It should be mentioned that it has appli
ations in thelogi
al 
ir
uit synthesis framework [BEC 93℄.



84.3.Zero-suppressed ROBDD'sIn the reliability analysis framework, it is often the 
ase that one has tomanipulate subsets of a given set. For instan
e, minimal 
uts of a fault treeare subsets of the set of its terminal events. Let E = fe1; : : : ; eng be a set. Asubset F of E 
an be des
ribed by means of a Boolean fun
tion �, so-
alled
hara
teristi
 fun
tion, whi
h is de�ned over variables x1; : : : ; xn as follows.�(F ) def= ^ei2F xiIn the same way, a set F = fF1; : : : ; Fmg of subsets of E 
an be des
ribed asthe disjun
tion of 
hara
teristi
 fun
tions of the Fi's.�(F) def= _Fi2F �(Fi)This gives raise to a new semanti
s for ROBDD's that has been formalizedby S. Minato under the name Zero-suppressed BDD's (ZBDD's) in [MIN 93,MIN 94℄ (and impli
itely used in [RAU 93℄).ZBDD[[0℄℄ def= ;ZBDD[[1℄℄ def= f;gZBDD[[�(xi; �1; �0)℄℄ def= ffeig [ �;� 2 ZBDD[[�1℄℄g [ ZBDD[[�0℄℄For instan
e, the OBDD pi
tured Fig. 1 en
odes the sets fag and f
g, andOBDD's pi
tured Fig. 2 en
ode the sets fag and ;.Redu
tion rule (v) does not hold for ZBDD's. However, there is aa new redu
tion rule, spe
i�
 to ZBDD's, that is based on the equality:ZBDD[[�(xi; 0; �0)℄℄ = ZBDD[[�0℄℄. For instan
e, in ZBDD's of Fig. 1 and2, nodes �(b; 0; 1) are useless and 
an be repla
ed by leaf 1.An ZBDD � is said redu
ed if 
onditions (iv) and (vi) hold.(vi) � 
ontains no node of the form �(x; 0; �).The following theorem holds.Theorem 5 (Canoni
ity of ZBDD's)Let F be a set of subsets of a set Elet < be a total order over elements of E. Then, there exists an unique (up toan isomorphism) ZBDD en
oding �(F) w.r.t. <.4.4.ROBDD's to en
ode Meta-Produ
tsAs shown above, ZBDD's 
an be used to en
ode minimal 
uts sets of faulttrees in a quite simple way. Prime impli
ants are more tedious to en
odebe
ause they may 
ontain both positive and negative literals. A way to ta
kle



A Brief Introdu
tion to Binary De
ision Diagrams 9this problem (suggested in [MIN 93℄), is to 
reate, for ea
h variable x of theoriginal formula, two variables, say x+ and x�, that denote respe
tively thepresen
e of the positive and the negative literal built over x in the 
onsideredprodu
ts. Another way to en
ode prime impli
ants by means of ROBDD'shas been proposed by J.-C. Madre and O. Coudert in [COU 92a℄. It works asfollows. Two variables, px and sx, are asso
iated with ea
h variable x of theoriginal formula. px is used to en
ode the presen
e of the variable x in theprodu
ts. sx is used to en
ode the polarity of x in the produ
ts, if it is a
tuallypresent.The meta-produ
t en
oding �, denoted by MP (�), is the 
onjun
tion, overthe variables x o

urring in the formula, of mp(�; x), where mp(�; x) is de�nedas follows.mp(�; x) def= 8<: (px ^ sx) if x 2 �;(px ^ :sx) if :x 2 �;:px if neither x nor :x belong to �:A set of produ
ts is en
oded by the disjun
t of the 
orresponding meta-produ
ts. This gives the following equations that de�ne the semanti
s ofROBDD's en
oding meta-produ
ts.MP [[0℄℄ def= ;MP [[1℄℄ def= f;gMP [[�(px; �1; �0)℄℄ def= MP [[�1℄℄ [MP [[�0℄℄MP [[�(sx; �1; �0)℄℄ def= ffxg [ �;� 2MP [[�1℄℄g [ ff:xg [ �;� 2MP [[�0℄℄gNote that the 
anoni
ity of the representation is ensured by the 
anoni
ityof standard ROBDD's.4.5.Attributed EdgesAnother s
heme of redu
tion rules 
onsists in de�ning attributes (or 
ags)for edges. Let f be a Boolean formula in Shannon Normal Form. The Booleanformula in Shannon Normal Form equivalent to :f is obtained from f bysubstituting 1's for 0's and vi
e-versa. From a ROBDD point of view, thisoperation 
onsists in ex
hanging 0 and 1 leaves.A programming tri
k (due to S. Minato & al [MIN 90℄) makes possible anegation in 
onstant time and redu
es memory 
onsumption. It 
onsists inputting a 
ag on ea
h edge. This 
ag indi
ates whether the pointed BDDis to be 
onsidered positively or negatively. In other words, Shannon[[��℄℄ =:Shannon[[�℄℄. As a 
onsequen
e, only one leaf remains ne
essary, say forinstan
e the leaf 1, sin
e 0 � :1. The 
anoni
ity of the representation ismaintained by storing only nodes with a positive 1-out-edge. The orthogonality
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1? ?? ?lb l
? ?la?v1 01 0 1 0vv vFigure 3. The BDD en
oding :ite(a; ite(b; 1;:1);:ite(
; 1;:1)) (negatededges are denoted with bla
k dots)of ite and : is used to keep only su
h nodes: �(x; ��1; �0) is repla
ed by��(x; �1; ��0) and �(x; ��1; ��0) is repla
ed by ��(x; �1; �0). For instan
e,ite(a; ite(b; 0; 1); ite(
; 1; 0)) is rewritten into :ite(a; ite(b; 1;:1);:ite(
; 1;:1))whi
h is en
oded by the ROBDD pi
tured Fig. 3.In [MIN 93℄, S. Minato suggest to apply this te
hnique to ZBDD's in thefollowing way. A ZBDD is 
agged if and only if it en
odes a set 
ontainingthe empty set. More 
omplex attributes (or 
ags) have proposed in the litera-ture that allow further redu
tions [MIN 90℄, but it is not 
lear whether theseredu
tions improve the method in pra
ti
e.5.Operations for ROBDD's 
ombinationROBDD's are built in a 
ompositional way, i.e. that basi
 ROBDD's are
ombined to get more 
omplex ones whi
h are in turn 
ombined and so on. Inthis se
tion, the main operations to 
ombine ROBDD's are sket
hed.5.1.Computation of the ROBDD en
oding a Boolean formulaLet f be a formula. If f is a 
onstant, a variable x or of the form :g,the ROBDD en
oding f easy to obtain. It is the leaf eventually negated inthe �rst 
ase, the ROBDD �(x; 1; �1) in the se
ond and the negation of theROBDD en
oding g in the third one (see se
tion 4.5). Otherwise, we 
anassume without a loss of generality that f = g�h, where � is any usual binary
onne
tive and g and h are two formulae. In order to 
ompute the ROBDD �en
oding f , one pro
eeds as follows. First, one 
omputes the ROBDD's � and
 en
oding respe
tively g and h. Se
ond, one 
ombines these two ROBDD's toget �. Re
ursive rules for ROBDD's 
ombination are dedu
ed from equationsgiving their semanti
s des
ribed se
tion 4.1. Basi
ally, three 
ases are possible:
ase 1. � and 
 are su
h that � 
an be immediately dedu
ed. For instan
e, if� is ^ and � = 
, then � is � (g ^ g � g for any g). Other 
ases of immediatededu
tion o

ur when either � or 
 (or both) are leaves. For instan
e, if � isthe leaf 1 and � is ^, then � is 
 (1 ^ h � h for any h).
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ase 2. � = �(x; �1; �0) and 
 = �(x; 
1; 
0). Let g1, g0, h1 and h0 berespe
tively the formulae that are the standard semanti
s of respe
tively �1,�0, 
1 and 
0. Then, the following equivalen
e holds.ite(x; g1; g0)� ite(x; h1; h0) � ite(x; g1 � h1; g0 � h0)Thus, in order to 
ompute �, one �rst 
ombines �1 and 
1 with � toget a ROBDD �1, then se
ond one 
ombines �0 and 
0 with � to get aROBDD �0, and third one builds � as �(x; �1; �0) by means of the fun
tionfind or add node (ex
epted if �1 = �0 in whi
h 
ase � = �1).
ase 3. The third possibility is a degenerated 
ase of 
ase 2: � = �(x; �1; �0)and 
 = �(y; 
1; 
0) with say x < y. In this 
ase, the 
ombination rule is thesame as previously ex
epted that �1 and �0 are 
ombined with 
 itself.The referen
e [BRA 90℄ 
ontains more details about these operations.5.2.Zero-suppressed BDD'sAs for ROBDD's en
oding formulae in Shannon Normal Form, Zero-suppressed BDD's are built from smaller ZBDD's that are 
ombined throughset operations. The leaves 0 (:1) and 1 en
ode respe
tively the sets ; andf;g. Singletons feig are en
oded by ZBDD's of the form �(xi; 1; �1). Re
ur-sive rules that perform set operations on ZBDD's are derived from equationsgiving their semanti
s and are very similar to those used to 
ombine standardROBDD's.For instan
e, let � = �(xi; �1; �0) and 
 = �(xi; 
1; 
0) be two ZBDD's.Let G and H be the two sets en
oded by resp. � and 
 and assume we wantto 
ompute a ZBDD � en
oding G \H . We have:G \H = ZBDD[[�℄℄ \ ZBDD[[
℄℄= (ffeig [ �;� 2 ZBDD[[�1℄℄g [ ZBDD[[�0℄℄)\ (ffeig [ �;� 2 ZBDD[[
1℄℄g [ ZBDD[[
0℄℄)= ffeig [ �;� 2 ZBDD[[�1℄℄ \ ZBDD[[
1℄℄g[ (ZBDD[[�0℄℄ \ ZBDD[[
0℄℄)Thus, in order to get the ZBDD's � en
oding F , one �rst 
ombines �1 and 
1with \ to get a ZBDD �1, then se
ond one 
ombines �0 and 
0 with \ to geta ZBDD �0, and third one builds � as �(xi; �1; �0) by means of the fun
tionfind or add node (ex
epted if �1 = 0 in whi
h 
ase � = �0).Similar re
ursive rules are de�ned for all the 
lassi
al operations on setssu
h as union, di�eren
e and 
omplementation [MIN 93℄.5.3.Operations on ROBDD's en
oding Meta-Produ
tsOperations on sets of produ
ts 
an be performed through logi
al operationson the 
orresponding meta-produ
ts. This is the main advantage of this wayof en
oding produ
ts.



12 Let �1 and �2 be two sets of produ
ts built over the variables x1; : : : ; xn.Let MP (�1) and MP (�2) be the two 
orresponding meta-produ
ts. Then,{ The empty set of produ
ts is en
oded by the boolean 
onstant 0.{ The set of all of the possible produ
ts is en
oded by the boolean 
onstant 1.{ The empty produ
t is en
oded by the fun
tion (:px1 ^ : : : ^ :pxn).{ �1 [�2 is en
oded by the fun
tion MP (�1) _MP (�2).{ �1 \�2 is en
oded by the fun
tion MP (�1) ^MP (�2).{ The 
omplement �1 to �1 in the set of all of the possible produ
ts is en
odedby the fun
tion :MP (�1).5.4.Memorization of Intermediate ResultsCanoni
ity of ROBDD's is used to redu
e the 
omputational 
ost of basi
operations in the following way. A table is used in whi
h results of alreadyperformed operations are stored. For instan
e, this table 
ontains 4-tuplesf�; �; 
; �g, where � is a Boolean operation and �, � and 
 are ROBDD'ssu
h that the 
ombination of � and 
 with � gives � as result.Before any operation, one �rst looks up the table to see whether its result isnot already 
omputed. If it is not the 
ase, the operation is a
tually performedand its result is added to the table. This se
ond table is also managed as ahashtable whi
h ensures a fast a

ess to stored tuples (see [BRA 90℄ for moredetails).From a pra
ti
al point of view, memorization of intermediate results in-
reases dramati
ally the performan
es of operations on ROBDD's. From atheoreti
al point of view, it ensures that the worst 
ase 
omplexity of the 
om-bination of two ROBDD's � and � is in O(j�j � j�j), i.e. proportional to theprodu
t of the numbers of nodes of � and � [BRA 90℄ (this holds both forlogi
al operations between ROBDD's and set operations between ZBDD's).6.Complexity IssuesThe size of sum-of-produ
ts a representation of Boolean fun
tion dependson the number of assignments satisfying the represented fun
tion. This is thereason why these representations are qui
kly too expensive. Many fun
tions en-
ountered in pra
ti
e admit not too large ROBDD representations, even if theyhave a very large number of impli
ants. However, from a theoreti
al point ofview, ROBDD's do not really improve the situation sin
e most of Boolean fun
-tions 
annot admit polynomial size ROBDD representations [WEG 88, LIA 92℄([LIA 92℄ is very interesting be
ause it also studies the respe
tive powers of re-du
tion rules (iv) and (v)). Moreover, ex
ept for the spe
ial 
lass of symmetri
fun
tions, the size of the ROBDD heavily depends on the 
hosen variable or-dering. For instan
e, R. Bryant shows in [BRY 86℄ that the ROBDD en
oding



A Brief Introdu
tion to Binary De
ision Diagrams 13the fun
tion:f(x1; : : : ; xn; y1; : : : ; yn) = (x1 ^ y1)
 : : :
 (xn ^ yn)has a linear size for the ordering x1 < y1 < : : : < xn < yn and an exponentialsize for the ordering x1 < : : : < xn < y1 < : : : < yn. There exists naturalfun
tions that are en
oded by exponential size BDD's whatever the variableordering is (e.g. n bits multipliers [BRY 91℄).Finding the best variable ordering is a very diÆ
ult problem. The bestknown algorithms are in O(3n) [FRI 90, ISH 91℄, where n is the number ofvariables, whi
h makes them impra
ti
able.Thus, heuristi
s are used to �nd good orderings. Many su
h heuristi
shave been proposed in the literature (see [FUJ 88, MAL 88, BER 89, CHO 90,BUT 91, FUJ 91, FUJ 93℄ to 
ite some of them). There is, as far as we know,only one 
ommon sense rule to design su
h a heuristi
s: variables that aresemanti
ally 
lose must be 
lose in the ordering as well. The above examplehelps us to understand that rule. It is 
lear that variables xi and yi are stronglylinked together. With the ordering x1 < : : : < xn < y1 < : : : < yn they areseparated by n variables. Before taking a de
ision on the value of the sub-formula (x1^y1) one must examine all the possible values for the xi's. It followsthat the higher part of the BDD must be a 
omplete binary tree. Conversely,with the ordering x1 < y1 < : : : < xn < yn the sub-formulae (xi ^ yi) aretreated one after another.The 
ost of the 
omputation of the ROBDD en
oding a fun
tion is not onlyrelated to its size but also to the sizes of ea
h ROBDD used during the 
om-putation. This is exampli�ed by the formula f = g _ :g that is is en
oded bythe leaf 1, even g is en
oded by an exponential size ROBDD. Moreover, theway a fun
tion is written in
uen
es the 
omplexity of the 
omputation (seepapers by M. Bouissou [BOU 94℄ and [BOU 96℄ for interesting dis
ussions onthat subje
t). Note that, as noted by several authors, te
hniques used by 
las-si
al algorithms to simplify fault trees, su
h as modularization, 
an be adaptedsu

essfully for ROBDD's 
omputations [SIN 96a, PUL 96, DUT 96a℄.7.Appli
ation to Fault Trees Analysis7.1.Quantitative AnalysesA 
entral problem of quantitative fault tree analyses is to determine theprobability of failure of the system under study knowing the probabilities of fail-ures of its elementary 
omponents. This problem is known to be #P-
omplete[VAL 79℄, i.e. as hard as �nding the number of satisfying assignments of aBoolean formula. On
e built the ROBDD asso
iated with a formula, it is easyto 
ompute the exa
t probability of the formula, given the probability of ea
hvariable. This is performed by means of a ROBDD traversal, the Shannon'sde
omposition being applied on ea
h node of the ROBDD.



14 Let p(x) denote the probability of the variable x. The fun
tion p[[:℄℄ thatasso
iates a probability to ea
h ROBDD 
an be seen as a new semanti
s forROBDD's. It is 
omputed by applying the following re
ursive equations.p[[0℄℄ def= 0p[[1℄℄ def= 1p[[�(x; �1; �0)℄℄ def= p(x):p[[�1℄℄ + (1� p(x)):p[[�0℄℄If intermediate results are memorized, the 
omplexity of this 
omputationis linear in the size of the ROBDD. This is a major advantage of ROBDD's.On
e 
omputed the ROBDD, the 
ost of the 
omputation of the probabilityis very 
heap and 
an thus be reiterated many times, for instan
e in order tosample its evolution through the time.ROBDD's 
an be used to 
ompute other quantities of interest in the relia-bility analysis framework as shown in [SIN 95, SIN 96a, SIN 96b, BON 96℄.7.2.Qualitative AnalysesQualitative analyses of fault trees (and some quantitative analyses as well)require to 
ompute prime impli
ants of the 
orresponding formulae [LEE 85℄.ROBDD based algorithms (proposed in [COU 92a, COU 92b℄ and [RAU 93℄)to do so use the following theorem as an indu
tive prin
iple.Theorem 6 (De
omposition Theorem)Let f(x1; : : : ; xn) be a Booleanfun
tion. Then, the set of prime impli
ants of f(x1; : : : ; xn) is the union ofthe three following sets.{ The set Prime[f(1; : : : ; xn) ^ f(0; : : : ; xn)℄.{ The set of produ
ts fx1g [ � where � is a produ
t in Prime[f(1; : : : ; xn)℄that doesn't belong to Prime[f(1; : : : ; xn) ^ f(0; : : : ; xn)℄.{ The set of produ
ts f:x1g [ � where � is a produ
t in Prime[f(0; : : : ; xn)℄that doesn't belong to Prime[f(1; : : : ; xn) ^ f(0; : : : ; xn)℄.Intuitively, the above theorem is justi�ed as follows. A prime impli
ant� of f(x1; : : : ; xn) may 
ontain either x1 or :x1 or none of these two lit-erals. In this latter 
ase, � must still be a prime impli
ant of f whatever
onstant is substituted for x1. Thus, � is a prime impli
ant of f(x1; : : : ; xn)that doesn't 
ontain x1 nor :x1 if and only if it is a prime impli
ant of8x1f(x1; : : : ; xn) = f(1; : : : ; xn) ^ f(0; : : : ; xn). Now, a produ
t fx1g [ � isa prime impli
ant of f(x1; : : : ; xn) if it is a prime impli
ant of f(1; : : : ; xn) and� is not already a prime impli
ant of f(x1; : : : ; xn), i.e. if � doesn't belong toPrime(f(1; : : : ; xn) ^ f(0; : : : ; xn)).The de
omposition theorem gives an indu
tive prin
iple to 
ompute primeimpli
ants (no matter how prime these impli
ants are stored, i.e. either bymeans of ZBDD's or by means of ROBDD's en
oding meta-produ
ts). See the
ited arti
les for more details.



A Brief Introdu
tion to Binary De
ision Diagrams 158.Perspe
tivesSeveral experiments on large real-life fault trees (realized with tools su
has METAPRIME [COU 93, COU 94, MAD 94a℄ or Aralia [ARA 94, ARA 95℄)have demonstrated that ROBDD's outperform by orders of magnitude 
lassi
alte
hniques su
h as MOCUS [FUS 72℄. Trees with several hundred of gates and(repeated) terminal events 
an now be handled on personal 
omputers. Despiteof these �rst su

esses, it remains many things to do.Treatment of very large fault trees. Pra
titioners, knowing that they haveeÆ
ient tools at their disposal, are now studying physi
al systems at a moredetailed level. The trees they are working on are in general automati
allygenerated (by tools su
h as FIGARO [BOU 91℄) and sometimes so large (or
omplex) that they 
annot be handled dire
tly. Several te
hniques 
an beexplored to ta
kle this 
omplexity.{ The design of new and more powerful heuristi
s for variable ordering. Firstexperiments we did in that dire
tion are promising.{ Modularization and rewriting of formulae in su
h way that they be
ome easierto handle. First works su
h as those presented in [BOU 96, DUT 96a℄ indi
atethat great improvements 
an be obtained in this way.{ Appli
ation of ROBDD's te
hniques su
h as dynami
 variable re-ordering[ISH 91℄. These te
hniques have been shown powerful in the 
ir
uit veri�
ationframework. Perhaps they 
an be used for fault tree analysis as well.{ The design of approximated algorithms. At least for what 
on
erns the deter-mination of minimal 
uts, we su

eeded in this way in dealing with otherwiseuntra
table trees [ARA 95℄.Appli
ations to other risk assessment te
hniques. Works by J. Dugan & al.show that ROBDD's 
an su

essfully applied to many risk assessment problems,su
h as fault 
overage [DOY 96℄ and analysis of dynami
 fault trees [PUL 96℄.In parti
ular, one of their interesting appli
ations is the reliability networksanalysis for whi
h �rst promising results have been obtained by Madre & al.[MAD 94b℄ (and improved in [DUT 96b℄).9.Referen
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