
SUBMITTED TO IEEE TRANS. ON RELIABILITY 1Mathematial Foundations of Minimal CutsetsA. RauzyAbstrat|Sine their introdution in the reliability �eld,Binary Deision Diagrams have proved to be the most eÆ-ient tool to assess Boolean models suh as fault trees. Theirsuess inreases the need of sound mathematial founda-tions for the notions that are involved in reliability and de-pendability studies. The aim of this artile is to larify themathematial status of the notion of minimal utsets, thatplays a entral role in fault tree assessment. Algorithmiissues are also disussed.Keywords|Boolean Algebrae, Fault Trees, Minimal Cut-sets, Binary Deision DiagramsI. IntrodutionBryant's Binary Deision Diagrams (BDDs [1℄, [2℄) arethe state-of-the-art data struture to handle boolean fun-tions. Sine their introdution in the reliability �eld (thevery �rst papers on this topis were [3℄ and [4℄) they haveproved to be the most eÆient tool to assess Boolean mod-els suh as fault trees. First, BDDs make it possible toassess the top event probability in an exat and very eÆ-ient way [4℄. Seond, they an be used to ompute andto enode very large sets of minimal utsets [5℄, [6℄. Theirsuess inreases the need of sound mathematial founda-tions for the notions that are involved in reliability anddependability studies: BDD algorithms are derived fromreursive equations that apply on the Shannon deomposi-tion of the formula under study. These reursive equationsare obtained from the formal de�nitions of the quantities ofinterest (see, for instane, [6℄, [7℄). They are, in general, dif-ferent from those used to design more lassial algorithmsbased on formula rewriting or on the Sylvester-Poinar�e de-velopment. In other words, the design of BDD algorithmsrequires to separate learly mathematial de�nitions fromalgorithmi issues.The aim of this artile is to larify the mathematialstatus of the notion of minimal utsets. Minimal utsetsplay an important role in fault tree assessment. They arethe basis for qualitative analyses for they represent minimalsenarii of failure. Moreover, they are used in several prob-abilisti omputations. Although BDD enoding of faulttrees makes them useless to assess the top event probabil-ity, there remains many probabilisti measures that relyon minimal utsets: ontribution of individual senarii offailure, Fussel-Vesely importane fator [8℄, : : :Intuitively, a minimal utset is a minimal set of basievents of the tree that indues its top event. For oher-ent fault trees, this informal de�nition �ts well with theformal notion of prime impliant. This is not the ase fornon oherent fault trees beause prime impliants of suhtrees may ontain negative literals. This raises the questionwhether minimal utsets are a onvenient, but de�nitelyinformal, approximation of prime impliants or a soundmathematial notion for their own. We advoate here that

minimal utsets have a well de�ned logial status, distintfrom the notion of prime impliant. This status apturesand generalises the above intuition. Minimal utsets are a-tually prime impliants of a formula that is obtained fromthe formula under study by widening it with respet to aset of signi�ant literals. Several strutural theorems anbe established that give insights about the atual nature ofminimal utsets. These theorems are used to design BDDalgorithms.Nowadays, fault trees with several hundred gates andbasi events have to be assessed. Despite of their greateÆieny, BDDs sometimes fail to handle suh models be-ause they annot avoid the exponential blow up that re-sults from manipulation of suh large numbers of gates andevents. Therefore, approximations have to be made. Forinstane, a ommonly used approximation onsists in on-sidering short minimal utsets only. This is justi�ed by thefat that these utsets apture, in general, the main partof the top-event probability. Indeed, this raises questionsabout the quality of the results. We larify here the math-ematial status of this kind of approximations through theintrodution of a family of Boolean sub-algebrae. We showits interest from both a omputational omplexity and apratial point of views. We propose BDD algorithms toperform approximate omputations.In a word, the aim of this artile is to revisit the notionof minimal utsets in order to give it sound mathematialfoundations and, by the way, to make it possible to designBDD algorithms. It is organized as follows. In setion III,we reall basis about Boolean algebrae, that are the math-ematial foundations of the notions we deal with. In se-tion IV, we propose a formal de�nition of minimal utsetsand we disuss it. In setion V, we present briey BDDsand ZBDDs and we show the deomposition theorem thatis used to design an algorithm to ompute minimal utsets.Finally, in setion VI, we propose a formal framework toperform approximate omputations of both the top eventprobability and the minimal utsets of fault trees.II. NotationsBoolean variables: a, b, , v, v1, v2, : : :Sets of Boolean variables: V (denumerable), V (�nite)Literals: v, �v, p, �p, : : :Set of literals: L, : : :Produts & minterms: �, �, : : :Sets of produts: S, T , : : :Boolean formulae: F , F1, F0, G, : : :Logial operations: \:" (and), \+" (or), \�" (not)Set operations: \\" (union), \[" (intersetion), \{"(omplement), n (set di�erene)Power set of a set X : 2X



2 SUBMITTED TO IEEE TRANS. ON RELIABILITYIII. Boolean AlgebraeThis setion realls basis about Boolean algebrae, in-luding the de�nitions of Boolean formulae, literals, prod-uts, minterms, assignments and Boolean algebrae.A. Boolean FormulaeBoolean formulae are built over the two onstants 0(false) and 1 (true), a denumerable set of variables V =fv1; v2; : : : g, and the usual logial onnetives \:" (and),\+" (or), \�" (not). The set of Boolean formulae is thesmallest set suh that :{ 0, 1 are formulae,{ the variables of V are formulae,{ if F and G are formulae, then so are F:G, F +G, �F .The set of variables that our in the formula F is denotedby var(F ). The set of Boolean formulae that an be builtover a �nite subset V of V is denoted by F(V ).B. Literals, Produts, Minterms, AssignmentsA literal is either a Boolean variable v or its negation�v. v is a positive literal, �v is a negative literal, they aresaid opposite. The opposite of a literal p is denoted by �p(��p = p).A produt is a set of literals that does not ontain both aliteral and its opposite. A produt is assimilated with theonjuntion of its elements. We denote by j�j the order,i.e. number of literals, of a produt �.Let V be a �nite set of variables. A produt that ontainsa literal built over eah variable of V is alled a minterm ofV . We denote by minterms(V ) the set of minterms thatan be built over V .An assignment over V is any mapping from V tof0; 1g. Assignments are extended indutively into map-pings from Boolean formulae into f0; 1g. Let � be an as-signment and let F and G be two formulae, then �[F:G℄ =min(�[F ℄; �[G℄), �[F +G℄ = max(�[F ℄; �[G℄) and �[ �F ℄ =1� �[F ℄.There is a one to one orrespondane between mintermsover a �nite set of variables V and assignments (restritedto V ): a variable ours positively in a minterm if and onlyif it reeives the value 1 in the orresponding assignment.An assignment (or equivalently a minterm) � satis�es aformula F if �[F ℄ = 1, otherwise it falsi�es F .Let F and G be two formulae. If any assignment satis-fying F satis�es G as well, we say that F implies G, whihis denoted by F j= G.A formula F is monotone if for any minterm �v:� thatsatis�es F , the minterm v:� satis�es F as well. Coherentfault trees are monotone formulae sine they are built justwith and gates, or gates and k-out-of-n gates.C. Boolean AlgebraeIt is often onvenient to onsider Boolean formulae assets of minterms and therefore to onsider logial oper-ations as set operations. This relies on the well knownStone's theorem about Boolean algebrae.

Let V be a �nite set of Boolean variables. The set F(V )together with the onstants 0 and 1 and the operations :, +and � forms a Boolean algebra. The power set 2minterms(V )together with the onstants ; and minterms(V ) and theset operations \ (intersetion), [ (union) and { (omple-mentation) forms also a Boolean algebra, whih is atuallyisomorphi (by the Stone's theorem) to the previous one:a Boolean formula orresponds to the set of minterms that\satisfy" it. The formula �F orresponds to the omplementof the set of minterms that orresponds to F . The formulaeF:G and F +G orrespond to respetively the intersetionand the union of the sets of minterms that orrespond toF and G.Let, for instane, F be the formula ab + �a. F and itssubformulae are satis�ed by the following minterms (overfa; b; g). formulae mintermsa ab+ ab�+ a�b+ a�b�b ab+ ab�+ �ab+ �ab� ab+ a�b+ �ab+ �a�b�a �ab+ �ab�+ �a�b+ �a�b�ab ab+ ab��a �ab+ �a�bab+ �a ab+ ab�+ �ab+ �a�bIV. Minimal CutsetsThis setion presents the mathematial foundations ofthe notion of minimal utsets.A. PreliminariesThe notion of minimal utsets seems lear to everybodywho works with fault trees. A minimal utset representsa minimal senario of failure, i.e. a set (a onjuntion) ofbasi events that indues the top event and that is minimalw.r.t. set inlusion. This de�nition is orret when appliedto oherent fault trees. However, it is not orret whenapplied to non-oherent fault trees. For this later ase,the notion of prime impliant should be substituted forthe notion of minimal utset. Prime impliants are sets ofliterals, i.e. they may ontain negated variables.To illustrate the above disussion, let us onsider againthe formula F = ab + �a. As we shall see, the prime im-pliants of F are ab, �a and b. This does orrespond tothe notion of minimal solution of F , but this does not or-respond to the intuitive notion of minimal utsets. Theexpeted minimal utsets are ab and .In reliability models, there is a foundamental asymetrybetween positive and negative literals. Sine positive liter-als represent unexpeted (and often undesirable and rare)events suh as failures, they are in some sense the onlyones of interest. This is the reason why most of the faulttree assessment tools (inluding eletroni simulators suhas ESCAF [9℄ and softwares suh as Risk-Spetrum [10℄)never produe minimal utsets with negative literals. Theyprodue only something whih is related to positive partsof prime impliants.This raises the question whether minimal utsets are aonvenient, but de�nitely informal, approximation of prime



RAUZY: MATHEMATICAL FOUNDATIONS OF MINIMAL CUTSETS 3impliants or a sound mathematial notion for their own.We advoate here the later answer. To start with, let usreall the notion of prime impliant.B. Prime ImpliantsLet F be a Boolean formula and � be a produt. � is animpliant of F if � j= F . Let F be a Boolean formula and� be an impliant of F . Suh an impliant � is said primeif there is no impliant � of F suh that � � �. We denoteby PI [F ℄ the set of prime impliants of the formula F .Consider for instane the formula F = ab+�a. F admits7 impliants ab, ab, ab�, �ab, �a, �a�b and b and 3 primeimpliants ab and �a, b.C. Minimal CustsetsLet V be a �nite set of variables, let L be a subset of theliterals that may built over V , �nally let F be a formulabuilt over V .We shall de�ne minimal utsets of F as minimal solutionsfrom whih literals outside L are remove beause they \donot matter". Intuitively, a utset is a produt that ontainsonly literals from L and that an be ompleted with literalsnot in L in order to give a impliant of F .L is typially the set of all of the positive literals for, asdisussed above, these literals are often the only ones thatatually bring an information. Note however that somenegative literals may be of interest as well, for instanebeause the orresponding basi events are of high proba-bilities. These negative literals must be kept in L. In otherwords, L is the set of signi�ant literals.From now, we shall say that a literal p is signi�ant if itbelongs to L and that it is ritial if it is signi�ant andwhile its opposite is not.A �rst way to de�ne minimal utsets is derived straightfrom the idea to keep only signi�ant parts of prime impli-ants. Let PIL[F ℄ be the set of produts obtained �rst byremoving from produts of PI [F ℄ the literals not in L andseond by removing from the resulting set the non minimalproduts. Formally, PIL[F ℄ is de�ned as follows.PIL[F ℄ def= f� \ L; � 2 PI [F ℄^ 6 9� 2 PI [F ℄ s:t: � \ L � � \ L gThis �rst de�nition aptures atually the intuitive notionof minimal utsets. For instane, it is easy to verify thatPIfa;b;g[ab+ �a℄ = fab; g. However, it has the drawbakto be based on the de�nition of prime impliants. Thismakes it not suitable to design an algorithm to omputeminimal utsets without omputing prime impliants.A seond way to de�ne minimal utsets that avoids thisdrawbak is as follows.Let vL be the binary relation among opposite literalsde�ned as follows. p vL �p if p 62 L. vL is extended intoa binary relation over minterms(V ) as follows. � vL �if for any variable v, �[v℄ vL �[v℄, where �[v℄ (resp. �[v℄)denotes the literal built over v that belongs to � (resp. to�). Intuitively, � vL � when � is less signi�ant than �.

vL is both reexive (� vL �, for any �) and transitive(� vL � and � vL � implies � vL �, for any �, � and �).Therefore, vL is a pre-order.Let � be a produt over V that ontains signi�ant lit-erals only. � is a utset of F w.r.t. L if it ful�ls the �rstof the two following requirements, it is minimal if it ful�lsthe seond one.1. For any minterm � suh that � � �, there exists aminterm Æ suh that Æ vL � and Æ j= F .2. There is no utset � suh that � � �.We denote by MCL[F ℄ the set of minimal utsets w.r.t. Lof F .Consider again the formula F = ab+ �a.� If L = fa; �a; b;�b; ; �g, minterms are pairwisely inom-parable. Therefore, MCL[F ℄ = PI [F ℄.� If L = fa; b; g, ab� vL ab and �a�b vL ab; a�b; �ab,therefore the utsets of F w.r.t. L are ab, ab, a, band  and MCL[F ℄ = fab; g.� If L = fb;�b; ; �g, the utsets of F w.r.t. L are b, band  and MCL[F ℄ = fb; g.The two de�nitions of minimal utsets are atually equiv-alent, as asserted by the following theorem.Theorem 1 (Equivalene of minimal utsets de�nitions)Let F be a Boolean formula and let L be a set of literalsbuilt over var(F ). Then, the following equality holds.PIL[F ℄ =MCL[F ℄The proof is a straight appliation of the de�nitions.Note �nally that if L = V , a positive produt � is autset if and only if the minterm � [ f�v; v 2 V ^ v 62 �g isan impliant of F . In this ase, minimal utsets of F arewhat we alled minimal p-uts in [6℄, [11℄.D. The widening operator !LAny formula is equivalent to the disjuntion of its primeimpliants. A formula is not in general equivalent to thedisjuntion of its minimal utsets. The widening operator!L gives some insights about the relationship between aformula F , its prime impliants and its minimal utsetsw.r.t. the set L of literals.!L is an endomorphism of the Boolean algebra(minterms(V );\;[; {) that assoiates to eah set ofminterms (formula) F the set of minterms !L(F ) de�nedas follows.!L(F ) def= f�; 9� s:t: � vL � ^ � j= FgIntuitively, !L enlarges F with all of the minterms thatare more signi�ant than a minterm already in F .Let us onsider again the formula F = ab+ �a.� If L = fa; �a; b;�b; ; �g, then !L(F ) = F .� If L = fa; b; g, then !L[F ℄ = ab+ab�+a�b+�ab+�a�b.� If L = fb;�b; ; �g, then !L[F ℄ = ab+ab�+a�b+�ab+�a�b+ �a�b.The operator !L has a number of interesting properties,that are summarized by the following theorem.



4 SUBMITTED TO IEEE TRANS. ON RELIABILITYTheorem 2 (The widening operator !v) Let F be aBoolean formula and let L be a set of literals built overvar(F ). Then, the following fats hold.� !L is indempotent: !L(!L(F )) = !L(F ).� PI [!L(F )℄ =MCL[F ℄.The theorem 2 shows that !L ats as a projetion.Therefore, the formulae F suh that PI [F ℄ =MCL[F ℄ arethe �xpoints of !L, i.e. the formulae suh that !L(F ) = F .If L = V , �xpoints are monotone formulae.The theorem 2 gives also a third way to de�ne mini-mal utsets: the minimal utsets of a formula F are theprime impliants of a pessimisti approximation of F . Thisapproximation is obtained by widening F with all of theminterms that are more signi�ant, and therefore less ex-peted, than a minterm already in F .V. Binary Deision DiagramsDue to spae limitation, we reall in this setion only ba-sis about BDDs. The reader interested by a more detailedpresentation should see for instane (see for instane [12℄,[13℄, [14℄.A. Regular BDDsThe BDD assoiated with a formulae is a ompat enod-ing of the truth table of this formula. This representationis based on the Shannon deomposition.Let F be a Boolean formula that depends on the variablev. There exists two formulae F1 and F0 not depending onv suh that: F = v:F1 + �v:F0 (1)By hoosing a total order over the variables and applyingreursively the Shannon deomposition, the truth table ofany formula an be graphially represented as a binary tree.The nodes are labeled with variables and have two outedges(a then-outedge that points to the node that enodes F1,and a else-outedge that points to the node that enodesF0). The leaves are labeled with either 0 or 1. The valueof the formula for a given variable assignment is obtainedby desending along the orresponding branh of the tree.The Shannon tree for the formula ab + �a and the lexi-ographi order is pitured Fig. 1 (dashed lines representelse-outedges).Indeed, suh a representation is very expensive. It ishowever possible to shrink it by means of the following tworedution rules.� Isomorphi subtrees merging. Sine two isomorphisubtrees enode the same formula, at least one is use-less.� Useless nodes deletion. A node with two equal sons isuseless sine it is equivalent to its unique son (v:F +�v:F = F ).By applying these two rules as far as possible, one gets theBDD assoiated with the formula. A BDD is therefore adireted ayli graph. It is unique, up to an isomorphism[1℄. This proess is illustrated on Fig. 1.

Logial operations (and, or, xor, ...) an be diretly per-formed on BDDs. This results from the orthogonality ofusual onnetives and the Shannon deomposition.(v:F1 + �v:F0)� (v:G1 + �v:G0) = v:(F1 �G1)+ �v:(F0 �G0) (2)where � is any binary onnetive. In order to omputeF �G, one omputes �rst F1 �G1 and F0 �G0 and thenone omposes the results. Terminal ases of this reursivepriniple are given by Boolean simpli�ation rules, e.g. F+1 = 1, F:0 = 0, F:F = F , : : :Among other onsequenes, this means that the om-plete binary tree is never built and then shrunk: the BDDenoding a formula is obtained by omposing the BDDsenoding its subformulae. Moreover, a ahing priniple isused to store intermediate results of omputations. Thismakes the usual logial operations (onjuntion, disjun-tion) polynomial in the sizes of their operands. Negation iseven more eÆiently performed for it suÆes to add agson edges to get it in onstant time. A omplete implemen-tation of a BDD pakage is desribed in [2℄. The readerinterested in details should thus refer to this artile.To end this short presentation, it should be notied thatalmost all of the BDD algorithms are fully desribed bymeans of equations suh as eq. 2 that reurse over theShannon deomposition (eq. 1). For instane, the algo-rithm that omputes the probability of the top-event frombasi event probabilities is desribed as follows.p(v:F1 + �v:F0) = p(v):p(F1) + [1� p(v)℄:p(F0) (3)B. Zero-Suppressed BDDsWorking with minimal utsets requires to enode sets ofproduts. BDDs are not suÆient to enode suh sets. Thisis beause a produt may ontain a variable v either posi-tively (v), or negatively (�v) or not at all. Therefore, ternarydeision diagrams would be neessary to enode sets ofproduts (this was atually proposed by Sasao in [15℄).Another (and better) solution onsists in using BDDs,but with another semantis. This is the notion of Zero-suppressed BDD (ZBDD) introdued by Minato in [16℄.The idea is to label nodes with literals and to deomposesets of produts aording to the presene of a given literal:� The leaves 1 and 0 enode respetively the sets f;gand ;.� A node n = (p; n1; n0) enodes the set S = ffpg [�;� 2 S1g [ S0, where p is the literal that labels thenode and S1 and S0 are respetively the sets enodedby its two sons n1 and n0.This representation for sets of produts is also anonial,although it requires to hange the seond redution rule:useless nodes are those of the form (p;0; n).As logial operations on BDDs, set operations (union,intersetion, set di�erene) are of polynomial worst aseomplexity on ZBDDs (thanks to the ahing priniple al-ready mentioned).Thanks to the sharing of isomorphi sub-trees, BDDsand ZBDDs make it possible to enode huge funtions
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Fig. 1. From the Shannon tree to the BDD enoding ab + �a.(resp. sets of produts) with relatively few nodes. Indeed,this does not work always (it is even easy to show that thisdoes work for most of the funtions), but this does workoften in pratie.C. Deomposition TheoremLet us present now the deomposition theorem whih isthe ore of BDD algorithms to ompute minimal utsets.The priniple of this algorithm is to traverse the BDD thatenodes the formula F in a depth-�rst way and to build theZBDD that enodes the minimal utsets of F in a bottom-up way, by olleting the result of the BDD traversal.In the sequel, p:S, where p is a literal and S is a set ofproduts in whih p and its opposite do not our, denotesthe following set of produts.p:S def= ffpg [ �;� 2 SgThe following deomposition theorem generalizes boththe theorem for prime impliant by Morreale [17℄ and ourtheorem for minimal p-uts [6℄. It an be stated as follows.Theorem 3 (Deomposition Theorem) Let F = v:F1 +�v:F0 be the Shannon deomposition of a Boolean formulaF w.r.t. a variable v and let L be a set of literals builtover var(F ). Then, MCL[F ℄ an be obtained as the unionof several sets depending on the literals built over v thatbelong to L.ase 1: v 2 L, �v 2 L. In this ase, MCL[F ℄ is the unionof three sets:MCL[F ℄ = v:S1 [ �v:S0 [ S2where, S1, S0 and S2 are de�ned as follows.S2 def= MCL[F1:F0℄S1 def= MCL[F1℄ n S2S0 def= MCL[F0℄ n S2ase 2: v 2 L, �v 62 L. In this ase, MCL[F ℄ is the unionof two sets: MCL[F ℄ = v:S1 [ S0

where, S1 and S0 are de�ned as follows.S0 def= MCL[F0℄S1 def= MCL[F1 + F0℄ n S0or S1 def= MCL[F1℄� S0where S � T denotes the following set.S � T def= f� 2 S; 6 9� 2 T; � � �gase 3: v 62 L, �v 2 L. Similar to ase 2.ase 4: v 62 L, �v 62 L. In this ase,MCL[F ℄ is as follows.MCL[F ℄ = MCL[F1 + F0℄The ase 1 orresponds to Morreale's theorem [17℄. Thease 2 orresponds to our theorem [6℄. More details aboutthe priniple of this algorithm and the operator � an befound in [3℄, [6℄.Consider again the formula F = ab+�a, whih is alreadyShannon deomposed (for the lexiographi order).� If L = fa; �a; b;�b; ; �g (ase 1), then MCL[F ℄ = a:S1 [�a:S0 [ S2, where{ S2 =MCL[b℄ = fbg{ S1 =MCL[b℄ n S2 = fbg n fbg = fbg{ S0 =MCL[℄ n S2 = fg n fbg = fgTherefore, MCL[F ℄ = fab; �a; bg.� If L = fa; b; g (ase 2), then MCL[F ℄ = a:S1 [ S0,where{ S0 =MCL[℄ = fg{ S1 = MCL[b + ℄ n S0 = fb; g n fg = fbg or S1 =MCL[b℄� S0 = fbgTherefore, MCL[F ℄ = fab; g.� If L = fb;�b; ; �g (ase 4), then MCL[F ℄ = MCL[b +℄ = fb; g.VI. Approximate omputationsIn this setion, we propose an algebrai framework toperform approximate omputations of both the top eventprobability and the minimal utsets of fault tree (oherentor not). This framework is based on the notion of sub-algebra.



6 SUBMITTED TO IEEE TRANS. ON RELIABILITYA. Sub-AlgebraeLet X be a subset of a set Y , we denote by {X the unaryoperation from 2Y to 2Y de�ned as follows.{X(Z) def= {(Z) \XLet V be a �nite set of variables and let A be a subsetof minterms(V ). 2A together with the onstant ; andA and with the operations [, \ and {A forms a Booleanalgebra. It is atually a sub-algebra of the propositionalalulus over V . There is a anonial homomorphism hAfrom 2minterms(V ) into 2A: hA(F ) def= F \A. In the reversediretion, the identity is a homomorphism that omes bakfrom 2A to 2minterms(V ).Assume that A ontains most of the minterms of interestand that A is not too large, i.e. it is polynomially boundedin the number of variables. Then, it may be a safe ap-proximation to interpret the funtions under study in thesub-algebra (A;\;[; {A) rather than in the regular algebra(minterms(V );\;[; {). The point is that omputations inthe former algebra are far easier than in the later. This isbeause when A is not too large, it is always tratable toonsider one by one its elements.As an illustration, onsider the problem of determiningthe probability p(F ) of a formula F from the probabilitiesof its variables. In (A;\;[; {A), this problem is triviallyof a polynomial worst ase omplexity, for it suÆes tosum the probabilities of the minterms that satisfy F . In(minterms(V );\;[; {), it is #P-hard [18℄, even if strongsyntati restritions are set on the formula F under study[18℄, [19℄.B. The Sub-Algebrae AkLWe shall onsider the sub-algebrae AkL indued by ourformalisation of the notion of minimal utsets. Let F andL be respetively a formula and a set of literals built over aset of variables V and let k be an integer suh that k � jV j.The set of minterms built over V that ontain at most kritial literals is denoted by mintermskL(V ).The algebra (mintermskL(V );\;[; {mintermskL(V )) is de-noted by AkL.hkL denotes the following homomorphism from the regu-lar propositional alulus to AkL.hkL(F ) def= F \mintermskL(V )hkL is a narrowing operator for it removes minterms fromthe original formula.Finally, MCkL[F ℄ denotes the set of minimal utsets (ofthe formula F w.r.t. a set of literals L) that ontain atmost k ritial literals.It is lear that if L ontains most of the variables of Vand k is small, then AkL is a good andidate to be the frame-work of approximate omputations: let n be the number ofvariables of V and let m be the number of ritial literals,

then the number of atoms of AkL is as follows.jmintermskL(V )j = 2n�m: kXi=0 �mi �= O(2n�m:mk) (4)Therefore, if m is lose to n and k is small, AkL is not toolarge.Moreover, due to the probabilisti asymetry be-tween ritial literals and their opposite, minterms ofmintermskV (V ) onentrate in general most of the proba-bility of the formula under study. Minterms outside this sethave a neglitible probability, even onsidered altogether.The table given �gure 2 summarizes | for some values ofn, some values of k and some values of p, the probabilityof all of the basi events | the maximum error EkL thatmay be done by onsidering only mintermskV (V ). EkL isbounded as follows.EkL � X� 62mintermskL(V ) p(�) (5)This illustrates that, even for large number of basievents and small values of k, the maximum error is nottoo large. In pratie, the atual error is in general far lessthan the maximum error for not all the minterms not inmintermskL(V ) belong to the formula under study.Note that it is possible to tune algorithms by onsideringdi�erent values of k.Note also that upper approximations of the above boundan be used, that are possibly easier to ompute than theexat bound.Note �nally that if no assumption is made on the proba-bility of minterms, not only the exat value of p(F ) is hardto ompute, but also approximations are hard to get, evenagain if strong syntati restritions are set on the formulaeunder study (see [20℄ for reent results on that topis).C. BDD Implementation of Sub-Algebrae AkLIn order to use BDDs to perform approximate omputa-tions, we have to onsider the BDD implementation of thethree operations \, [ and { in AkL. A BDD enodes onlyminterms of mintermskL(V ) if and only if no path fromits root node to a sink node ontains more than k ritialliterals. The problem is thus to implement \, [ and { insuh a way that this property is kept.The negation over BDDs just inverts 0 and 1 leaves (orips a ag). Therefore, the BDD that enodes �F ontainsonly minterms of mintermskL(V ) if and only if this prop-erty is true for the BDD that enodes F . Hene, the oper-ation { in AkL an be implemented by means of the regularnegation.The implementation of \ and [ requires to revisit equa-tion (2) to inlude the parameter k. Let F = (v; F1; F0)and G = (v;G1; G0) be the Shannon deompositions of twoformulae in AkL, and assume that v is ritial. Then, the



RAUZY: MATHEMATICAL FOUNDATIONS OF MINIMAL CUTSETS 7k = 1 2 3 4 5 6 7n = 100 p = 10�3 9:43 10�2 4:55 10�3 1:46 10�4 3:49 10�6 6:61 10�8 1:03 10�9 1:37 10�11p = 10�4 9:85 10�3 4:82 10�5 1:56 10�7 3:74 10�10 7:09 10�13 4:44 10�16 � 0n = 200 p = 10�3 1:80 10�1 1:72 10�2 1:11 10�3 5:43 10�5 2:10 10�6 6:78 10�8 1:86 10�9p = 10�4 1:97 10�2 1:94 10�4 1:27 10�6 6:24 10�9 2:43 10�11 7:79 10�14 � 0n = 500 p = 10�3 3:93 10�1 8:98 10�2 1:42 10�2 1:72 10�3 1:68 10�4 1:37 10�5 9:54 10�7p = 10�4 4:87 10�2 1:20 10�3 1:98 10�5 2:45 10�7 2:42 10�9 1:99 10�11 1:39 10�13Fig. 2. P� 62mintermskV (V ) p(�) for di�erent values of n = jV j, k and p (p is the probability of all basi events).following equality holds.(v:F1 + �v:F0)�k (v:G1 + �v:G0) = v:(F1 �k�1 G1)+ �v:(F0 �k G0) (6)where � denotes either \ or [. Indeed, the above equa-tion is ompleted by the usual simpli�ation rules and theadditional terminal ase F �0 G = 0.The following theorem holds that asserts that the BDDimplementation of the algebra AkL is eÆient, i.e. of poly-nomial omplexity if the number of non ritial variables isnot too large.Theorem 4 (Approximate omputation of BDDs) Let Fbe formula, let L be a set of literals built over var(F ), letn = jvar(F )j and m be the number of non ritial literalsof L, �nally let k be a positive integer suh that k � n.Then, the onstrution of the BDD that enodes hkL(F ) isin O(2(n�m):jF j:nk:jF j),This theorem generalizes our previous theorem [11℄.D. Sub-Algebrae AkL and Minimal CutsetsNow, let us onsider the interest of the AkL sub-algebraefor the omputation of minimal utsets of small order. Thequestion is whether it is possible to ompute eÆientlyMCkL[F ℄, i.e. in polynomial time w.r.t. to the numbern of variables (where n = jvar(F )j).First, it is easy to introdue the parameter k in the reur-sive equations given by the theorem 3. Let F = v:F1+�v:F0be the Shannon deomposition of a formula F , and assumethat v is ritial. Then, MCkL[F ℄ is the union of two sets:MCkL[F ℄ = v:MCk�1L [F1 + F0℄ [MCkL[F0℄ (7)This is basially what we proposed in [6℄ to ompute shortminimal p-uts (L = V ). However, this proess requiresto ompute �rst the BDD that enodes F , whih may leadto an exponential blow up. There exists atually mono-tone formulae that admit a polynomial number of shortprime impliants and that do no admit polynomial polyno-mial size BDD whatever is the order over the variables [21℄.Fortunately, there is a mean to avoid the full onstrutionof the BDD.Let F be a formula and � be a minterm ofmintermskL(V ) suh that � 62 F and � 2 !L(F ). Then,there exists a minterm � suh that � j= F and � vL �.By de�nition, � belongs to mintermskL(V ). Therefore, thefollowing theorem holds.

Theorem 5 (hkL and !L) Let F be any formula, let L bea set of literals built over var(F ), �nally let k be a positiveinteger suh that k � n. The following equality holds.hkL(!L(F )) = hkL(!L(hkL(F ))) (8)As a onsequene of the theorem 5, minimal utsets withat most k ritial literals ome only from minterms withthe same property. Therefore, in order to ompute shortminimal utsets of a formula F , it suÆes to ompute theminimal utsets of the narrowing of F , as asserted by thefollowing orollary.Corollary 6 (Computation of small minimal utsets)Let F be any formula, let L be a set of literals built overvar(F ), �nally let k be a positive integer suh that k � n.Then, the following equality holds.MCkL[F ℄ = MCL[hkL(F )℄ (9)E. Roadmap for the omputation of MCkL[F ℄The roadmap for the omputation of the ZBDD thatenodes MCkL[F ℄ is pitured �gure 3.The algorithms TrBDDkL and TrZBDDkL just onsistin traversing the BDD and the ZBDD and in keeping onlythe produts that ontain less than k ritial literals (see[11℄ for a very similar algorithm). The other algorithms arefully desribed by equations given throughout this artile.The �gure 3 shows the three main ways to omputeMCkL[F ℄. The �rst one, build/!L/PI/TrZBDDkL re-alls the de�nition of minimal utsets. The seond one,build/MCkL follows from the Morreale's theorem and thede�nition of minimal utsets. Both ompute the BDD en-oding F and are therefore of exponential worst ase om-plexities. The last one, build � hkL/MCL illustrates theinterest of the mathematial foundations we gave for min-imal utsets. As shown by theorem 4, build � hkL is ofpolynomial worst ase omplexity. It is easy to verify that,if a BDD enodes only minterms of mintermskL(V ), thenMCL is also of polynomial worst ase omplexity, at leastif it is implemented by means of the operator � [6℄. There-fore, the following theorem holds.Theorem 7 (Complexity of MCkL) Let F be formula, letL be a set of literals built over var(F ), �nally let k be a
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