
SUBMITTED TO IEEE TRANS. ON RELIABILITY 1Mathemati
al Foundations of Minimal CutsetsA. RauzyAbstra
t|Sin
e their introdu
tion in the reliability �eld,Binary De
ision Diagrams have proved to be the most eÆ-
ient tool to assess Boolean models su
h as fault trees. Theirsu

ess in
reases the need of sound mathemati
al founda-tions for the notions that are involved in reliability and de-pendability studies. The aim of this arti
le is to 
larify themathemati
al status of the notion of minimal 
utsets, thatplays a 
entral role in fault tree assessment. Algorithmi
issues are also dis
ussed.Keywords|Boolean Algebrae, Fault Trees, Minimal Cut-sets, Binary De
ision DiagramsI. Introdu
tionBryant's Binary De
ision Diagrams (BDDs [1℄, [2℄) arethe state-of-the-art data stru
ture to handle boolean fun
-tions. Sin
e their introdu
tion in the reliability �eld (thevery �rst papers on this topi
s were [3℄ and [4℄) they haveproved to be the most eÆ
ient tool to assess Boolean mod-els su
h as fault trees. First, BDDs make it possible toassess the top event probability in an exa
t and very eÆ-
ient way [4℄. Se
ond, they 
an be used to 
ompute andto en
ode very large sets of minimal 
utsets [5℄, [6℄. Theirsu

ess in
reases the need of sound mathemati
al founda-tions for the notions that are involved in reliability anddependability studies: BDD algorithms are derived fromre
ursive equations that apply on the Shannon de
omposi-tion of the formula under study. These re
ursive equationsare obtained from the formal de�nitions of the quantities ofinterest (see, for instan
e, [6℄, [7℄). They are, in general, dif-ferent from those used to design more 
lassi
al algorithmsbased on formula rewriting or on the Sylvester-Poin
ar�e de-velopment. In other words, the design of BDD algorithmsrequires to separate 
learly mathemati
al de�nitions fromalgorithmi
 issues.The aim of this arti
le is to 
larify the mathemati
alstatus of the notion of minimal 
utsets. Minimal 
utsetsplay an important role in fault tree assessment. They arethe basis for qualitative analyses for they represent minimals
enarii of failure. Moreover, they are used in several prob-abilisti
 
omputations. Although BDD en
oding of faulttrees makes them useless to assess the top event probabil-ity, there remains many probabilisti
 measures that relyon minimal 
utsets: 
ontribution of individual s
enarii offailure, Fussel-Vesely importan
e fa
tor [8℄, : : :Intuitively, a minimal 
utset is a minimal set of basi
events of the tree that indu
es its top event. For 
oher-ent fault trees, this informal de�nition �ts well with theformal notion of prime impli
ant. This is not the 
ase fornon 
oherent fault trees be
ause prime impli
ants of su
htrees may 
ontain negative literals. This raises the questionwhether minimal 
utsets are a 
onvenient, but de�nitelyinformal, approximation of prime impli
ants or a soundmathemati
al notion for their own. We advo
ate here that

minimal 
utsets have a well de�ned logi
al status, distin
tfrom the notion of prime impli
ant. This status 
apturesand generalises the above intuition. Minimal 
utsets are a
-tually prime impli
ants of a formula that is obtained fromthe formula under study by widening it with respe
t to aset of signi�
ant literals. Several stru
tural theorems 
anbe established that give insights about the a
tual nature ofminimal 
utsets. These theorems are used to design BDDalgorithms.Nowadays, fault trees with several hundred gates andbasi
 events have to be assessed. Despite of their greateÆ
ien
y, BDDs sometimes fail to handle su
h models be-
ause they 
annot avoid the exponential blow up that re-sults from manipulation of su
h large numbers of gates andevents. Therefore, approximations have to be made. Forinstan
e, a 
ommonly used approximation 
onsists in 
on-sidering short minimal 
utsets only. This is justi�ed by thefa
t that these 
utsets 
apture, in general, the main partof the top-event probability. Indeed, this raises questionsabout the quality of the results. We 
larify here the math-emati
al status of this kind of approximations through theintrodu
tion of a family of Boolean sub-algebrae. We showits interest from both a 
omputational 
omplexity and apra
ti
al point of views. We propose BDD algorithms toperform approximate 
omputations.In a word, the aim of this arti
le is to revisit the notionof minimal 
utsets in order to give it sound mathemati
alfoundations and, by the way, to make it possible to designBDD algorithms. It is organized as follows. In se
tion III,we re
all basi
s about Boolean algebrae, that are the math-emati
al foundations of the notions we deal with. In se
-tion IV, we propose a formal de�nition of minimal 
utsetsand we dis
uss it. In se
tion V, we present brie
y BDDsand ZBDDs and we show the de
omposition theorem thatis used to design an algorithm to 
ompute minimal 
utsets.Finally, in se
tion VI, we propose a formal framework toperform approximate 
omputations of both the top eventprobability and the minimal 
utsets of fault trees.II. NotationsBoolean variables: a, b, 
, v, v1, v2, : : :Sets of Boolean variables: V (denumerable), V (�nite)Literals: v, �v, p, �p, : : :Set of literals: L, : : :Produ
ts & minterms: �, �, : : :Sets of produ
ts: S, T , : : :Boolean formulae: F , F1, F0, G, : : :Logi
al operations: \:" (and), \+" (or), \�" (not)Set operations: \\" (union), \[" (interse
tion), \{"(
omplement), n (set di�eren
e)Power set of a set X : 2X



2 SUBMITTED TO IEEE TRANS. ON RELIABILITYIII. Boolean AlgebraeThis se
tion re
alls basi
s about Boolean algebrae, in-
luding the de�nitions of Boolean formulae, literals, prod-u
ts, minterms, assignments and Boolean algebrae.A. Boolean FormulaeBoolean formulae are built over the two 
onstants 0(false) and 1 (true), a denumerable set of variables V =fv1; v2; : : : g, and the usual logi
al 
onne
tives \:" (and),\+" (or), \�" (not). The set of Boolean formulae is thesmallest set su
h that :{ 0, 1 are formulae,{ the variables of V are formulae,{ if F and G are formulae, then so are F:G, F +G, �F .The set of variables that o

ur in the formula F is denotedby var(F ). The set of Boolean formulae that 
an be builtover a �nite subset V of V is denoted by F(V ).B. Literals, Produ
ts, Minterms, AssignmentsA literal is either a Boolean variable v or its negation�v. v is a positive literal, �v is a negative literal, they aresaid opposite. The opposite of a literal p is denoted by �p(��p = p).A produ
t is a set of literals that does not 
ontain both aliteral and its opposite. A produ
t is assimilated with the
onjun
tion of its elements. We denote by j�j the order,i.e. number of literals, of a produ
t �.Let V be a �nite set of variables. A produ
t that 
ontainsa literal built over ea
h variable of V is 
alled a minterm ofV . We denote by minterms(V ) the set of minterms that
an be built over V .An assignment over V is any mapping from V tof0; 1g. Assignments are extended indu
tively into map-pings from Boolean formulae into f0; 1g. Let � be an as-signment and let F and G be two formulae, then �[F:G℄ =min(�[F ℄; �[G℄), �[F +G℄ = max(�[F ℄; �[G℄) and �[ �F ℄ =1� �[F ℄.There is a one to one 
orrespondan
e between mintermsover a �nite set of variables V and assignments (restri
tedto V ): a variable o

urs positively in a minterm if and onlyif it re
eives the value 1 in the 
orresponding assignment.An assignment (or equivalently a minterm) � satis�es aformula F if �[F ℄ = 1, otherwise it falsi�es F .Let F and G be two formulae. If any assignment satis-fying F satis�es G as well, we say that F implies G, whi
his denoted by F j= G.A formula F is monotone if for any minterm �v:� thatsatis�es F , the minterm v:� satis�es F as well. Coherentfault trees are monotone formulae sin
e they are built justwith and gates, or gates and k-out-of-n gates.C. Boolean AlgebraeIt is often 
onvenient to 
onsider Boolean formulae assets of minterms and therefore to 
onsider logi
al oper-ations as set operations. This relies on the well knownStone's theorem about Boolean algebrae.

Let V be a �nite set of Boolean variables. The set F(V )together with the 
onstants 0 and 1 and the operations :, +and � forms a Boolean algebra. The power set 2minterms(V )together with the 
onstants ; and minterms(V ) and theset operations \ (interse
tion), [ (union) and { (
omple-mentation) forms also a Boolean algebra, whi
h is a
tuallyisomorphi
 (by the Stone's theorem) to the previous one:a Boolean formula 
orresponds to the set of minterms that\satisfy" it. The formula �F 
orresponds to the 
omplementof the set of minterms that 
orresponds to F . The formulaeF:G and F +G 
orrespond to respe
tively the interse
tionand the union of the sets of minterms that 
orrespond toF and G.Let, for instan
e, F be the formula ab + �a
. F and itssubformulae are satis�ed by the following minterms (overfa; b; 
g). formulae mintermsa ab
+ ab�
+ a�b
+ a�b�
b ab
+ ab�
+ �ab
+ �ab�

 ab
+ a�b
+ �ab
+ �a�b
�a �ab
+ �ab�
+ �a�b
+ �a�b�
ab ab
+ ab�
�a
 �ab
+ �a�b
ab+ �a
 ab
+ ab�
+ �ab
+ �a�b
IV. Minimal CutsetsThis se
tion presents the mathemati
al foundations ofthe notion of minimal 
utsets.A. PreliminariesThe notion of minimal 
utsets seems 
lear to everybodywho works with fault trees. A minimal 
utset representsa minimal s
enario of failure, i.e. a set (a 
onjun
tion) ofbasi
 events that indu
es the top event and that is minimalw.r.t. set in
lusion. This de�nition is 
orre
t when appliedto 
oherent fault trees. However, it is not 
orre
t whenapplied to non-
oherent fault trees. For this later 
ase,the notion of prime impli
ant should be substituted forthe notion of minimal 
utset. Prime impli
ants are sets ofliterals, i.e. they may 
ontain negated variables.To illustrate the above dis
ussion, let us 
onsider againthe formula F = ab + �a
. As we shall see, the prime im-pli
ants of F are ab, �a
 and b
. This does 
orrespond tothe notion of minimal solution of F , but this does not 
or-respond to the intuitive notion of minimal 
utsets. Theexpe
ted minimal 
utsets are ab and 
.In reliability models, there is a foundamental asymetrybetween positive and negative literals. Sin
e positive liter-als represent unexpe
ted (and often undesirable and rare)events su
h as failures, they are in some sense the onlyones of interest. This is the reason why most of the faulttree assessment tools (in
luding ele
troni
 simulators su
has ESCAF [9℄ and softwares su
h as Risk-Spe
trum [10℄)never produ
e minimal 
utsets with negative literals. Theyprodu
e only something whi
h is related to positive partsof prime impli
ants.This raises the question whether minimal 
utsets are a
onvenient, but de�nitely informal, approximation of prime
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ants or a sound mathemati
al notion for their own.We advo
ate here the later answer. To start with, let usre
all the notion of prime impli
ant.B. Prime Impli
antsLet F be a Boolean formula and � be a produ
t. � is animpli
ant of F if � j= F . Let F be a Boolean formula and� be an impli
ant of F . Su
h an impli
ant � is said primeif there is no impli
ant � of F su
h that � � �. We denoteby PI [F ℄ the set of prime impli
ants of the formula F .Consider for instan
e the formula F = ab+�a
. F admits7 impli
ants ab, ab
, ab�
, �ab
, �a
, �a�b
 and b
 and 3 primeimpli
ants ab and �a
, b
.C. Minimal CustsetsLet V be a �nite set of variables, let L be a subset of theliterals that may built over V , �nally let F be a formulabuilt over V .We shall de�ne minimal 
utsets of F as minimal solutionsfrom whi
h literals outside L are remove be
ause they \donot matter". Intuitively, a 
utset is a produ
t that 
ontainsonly literals from L and that 
an be 
ompleted with literalsnot in L in order to give a impli
ant of F .L is typi
ally the set of all of the positive literals for, asdis
ussed above, these literals are often the only ones thata
tually bring an information. Note however that somenegative literals may be of interest as well, for instan
ebe
ause the 
orresponding basi
 events are of high proba-bilities. These negative literals must be kept in L. In otherwords, L is the set of signi�
ant literals.From now, we shall say that a literal p is signi�
ant if itbelongs to L and that it is 
riti
al if it is signi�
ant andwhile its opposite is not.A �rst way to de�ne minimal 
utsets is derived straightfrom the idea to keep only signi�
ant parts of prime impli-
ants. Let PIL[F ℄ be the set of produ
ts obtained �rst byremoving from produ
ts of PI [F ℄ the literals not in L andse
ond by removing from the resulting set the non minimalprodu
ts. Formally, PIL[F ℄ is de�ned as follows.PIL[F ℄ def= f� \ L; � 2 PI [F ℄^ 6 9� 2 PI [F ℄ s:t: � \ L � � \ L gThis �rst de�nition 
aptures a
tually the intuitive notionof minimal 
utsets. For instan
e, it is easy to verify thatPIfa;b;
g[ab+ �a
℄ = fab; 
g. However, it has the drawba
kto be based on the de�nition of prime impli
ants. Thismakes it not suitable to design an algorithm to 
omputeminimal 
utsets without 
omputing prime impli
ants.A se
ond way to de�ne minimal 
utsets that avoids thisdrawba
k is as follows.Let vL be the binary relation among opposite literalsde�ned as follows. p vL �p if p 62 L. vL is extended intoa binary relation over minterms(V ) as follows. � vL �if for any variable v, �[v℄ vL �[v℄, where �[v℄ (resp. �[v℄)denotes the literal built over v that belongs to � (resp. to�). Intuitively, � vL � when � is less signi�
ant than �.

vL is both re
exive (� vL �, for any �) and transitive(� vL � and � vL � implies � vL �, for any �, � and �).Therefore, vL is a pre-order.Let � be a produ
t over V that 
ontains signi�
ant lit-erals only. � is a 
utset of F w.r.t. L if it ful�ls the �rstof the two following requirements, it is minimal if it ful�lsthe se
ond one.1. For any minterm � su
h that � � �, there exists aminterm Æ su
h that Æ vL � and Æ j= F .2. There is no 
utset � su
h that � � �.We denote by MCL[F ℄ the set of minimal 
utsets w.r.t. Lof F .Consider again the formula F = ab+ �a
.� If L = fa; �a; b;�b; 
; �
g, minterms are pairwisely in
om-parable. Therefore, MCL[F ℄ = PI [F ℄.� If L = fa; b; 
g, ab�
 vL ab
 and �a�b
 vL ab
; a�b
; �ab
,therefore the 
utsets of F w.r.t. L are ab
, ab, a
, b
and 
 and MCL[F ℄ = fab; 
g.� If L = fb;�b; 
; �
g, the 
utsets of F w.r.t. L are b
, band 
 and MCL[F ℄ = fb; 
g.The two de�nitions of minimal 
utsets are a
tually equiv-alent, as asserted by the following theorem.Theorem 1 (Equivalen
e of minimal 
utsets de�nitions)Let F be a Boolean formula and let L be a set of literalsbuilt over var(F ). Then, the following equality holds.PIL[F ℄ =MCL[F ℄The proof is a straight appli
ation of the de�nitions.Note �nally that if L = V , a positive produ
t � is a
utset if and only if the minterm � [ f�v; v 2 V ^ v 62 �g isan impli
ant of F . In this 
ase, minimal 
utsets of F arewhat we 
alled minimal p-
uts in [6℄, [11℄.D. The widening operator !LAny formula is equivalent to the disjun
tion of its primeimpli
ants. A formula is not in general equivalent to thedisjun
tion of its minimal 
utsets. The widening operator!L gives some insights about the relationship between aformula F , its prime impli
ants and its minimal 
utsetsw.r.t. the set L of literals.!L is an endomorphism of the Boolean algebra(minterms(V );\;[; {) that asso
iates to ea
h set ofminterms (formula) F the set of minterms !L(F ) de�nedas follows.!L(F ) def= f�; 9� s:t: � vL � ^ � j= FgIntuitively, !L enlarges F with all of the minterms thatare more signi�
ant than a minterm already in F .Let us 
onsider again the formula F = ab+ �a
.� If L = fa; �a; b;�b; 
; �
g, then !L(F ) = F .� If L = fa; b; 
g, then !L[F ℄ = ab
+ab�
+a�b
+�ab
+�a�b
.� If L = fb;�b; 
; �
g, then !L[F ℄ = ab
+ab�
+a�b
+�ab
+�a�b
+ �a�b
.The operator !L has a number of interesting properties,that are summarized by the following theorem.



4 SUBMITTED TO IEEE TRANS. ON RELIABILITYTheorem 2 (The widening operator !v) Let F be aBoolean formula and let L be a set of literals built overvar(F ). Then, the following fa
ts hold.� !L is indempotent: !L(!L(F )) = !L(F ).� PI [!L(F )℄ =MCL[F ℄.The theorem 2 shows that !L a
ts as a proje
tion.Therefore, the formulae F su
h that PI [F ℄ =MCL[F ℄ arethe �xpoints of !L, i.e. the formulae su
h that !L(F ) = F .If L = V , �xpoints are monotone formulae.The theorem 2 gives also a third way to de�ne mini-mal 
utsets: the minimal 
utsets of a formula F are theprime impli
ants of a pessimisti
 approximation of F . Thisapproximation is obtained by widening F with all of theminterms that are more signi�
ant, and therefore less ex-pe
ted, than a minterm already in F .V. Binary De
ision DiagramsDue to spa
e limitation, we re
all in this se
tion only ba-si
s about BDDs. The reader interested by a more detailedpresentation should see for instan
e (see for instan
e [12℄,[13℄, [14℄.A. Regular BDDsThe BDD asso
iated with a formulae is a 
ompa
t en
od-ing of the truth table of this formula. This representationis based on the Shannon de
omposition.Let F be a Boolean formula that depends on the variablev. There exists two formulae F1 and F0 not depending onv su
h that: F = v:F1 + �v:F0 (1)By 
hoosing a total order over the variables and applyingre
ursively the Shannon de
omposition, the truth table ofany formula 
an be graphi
ally represented as a binary tree.The nodes are labeled with variables and have two outedges(a then-outedge that points to the node that en
odes F1,and a else-outedge that points to the node that en
odesF0). The leaves are labeled with either 0 or 1. The valueof the formula for a given variable assignment is obtainedby des
ending along the 
orresponding bran
h of the tree.The Shannon tree for the formula ab + �a
 and the lexi-
ographi
 order is pi
tured Fig. 1 (dashed lines representelse-outedges).Indeed, su
h a representation is very expensive. It ishowever possible to shrink it by means of the following tworedu
tion rules.� Isomorphi
 subtrees merging. Sin
e two isomorphi
subtrees en
ode the same formula, at least one is use-less.� Useless nodes deletion. A node with two equal sons isuseless sin
e it is equivalent to its unique son (v:F +�v:F = F ).By applying these two rules as far as possible, one gets theBDD asso
iated with the formula. A BDD is therefore adire
ted a
y
li
 graph. It is unique, up to an isomorphism[1℄. This pro
ess is illustrated on Fig. 1.

Logi
al operations (and, or, xor, ...) 
an be dire
tly per-formed on BDDs. This results from the orthogonality ofusual 
onne
tives and the Shannon de
omposition.(v:F1 + �v:F0)� (v:G1 + �v:G0) = v:(F1 �G1)+ �v:(F0 �G0) (2)where � is any binary 
onne
tive. In order to 
omputeF �G, one 
omputes �rst F1 �G1 and F0 �G0 and thenone 
omposes the results. Terminal 
ases of this re
ursiveprin
iple are given by Boolean simpli�
ation rules, e.g. F+1 = 1, F:0 = 0, F:F = F , : : :Among other 
onsequen
es, this means that the 
om-plete binary tree is never built and then shrunk: the BDDen
oding a formula is obtained by 
omposing the BDDsen
oding its subformulae. Moreover, a 
a
hing prin
iple isused to store intermediate results of 
omputations. Thismakes the usual logi
al operations (
onjun
tion, disjun
-tion) polynomial in the sizes of their operands. Negation iseven more eÆ
iently performed for it suÆ
es to add 
agson edges to get it in 
onstant time. A 
omplete implemen-tation of a BDD pa
kage is des
ribed in [2℄. The readerinterested in details should thus refer to this arti
le.To end this short presentation, it should be noti
ed thatalmost all of the BDD algorithms are fully des
ribed bymeans of equations su
h as eq. 2 that re
urse over theShannon de
omposition (eq. 1). For instan
e, the algo-rithm that 
omputes the probability of the top-event frombasi
 event probabilities is des
ribed as follows.p(v:F1 + �v:F0) = p(v):p(F1) + [1� p(v)℄:p(F0) (3)B. Zero-Suppressed BDDsWorking with minimal 
utsets requires to en
ode sets ofprodu
ts. BDDs are not suÆ
ient to en
ode su
h sets. Thisis be
ause a produ
t may 
ontain a variable v either posi-tively (v), or negatively (�v) or not at all. Therefore, ternaryde
ision diagrams would be ne
essary to en
ode sets ofprodu
ts (this was a
tually proposed by Sasao in [15℄).Another (and better) solution 
onsists in using BDDs,but with another semanti
s. This is the notion of Zero-suppressed BDD (ZBDD) introdu
ed by Minato in [16℄.The idea is to label nodes with literals and to de
omposesets of produ
ts a

ording to the presen
e of a given literal:� The leaves 1 and 0 en
ode respe
tively the sets f;gand ;.� A node n = (p; n1; n0) en
odes the set S = ffpg [�;� 2 S1g [ S0, where p is the literal that labels thenode and S1 and S0 are respe
tively the sets en
odedby its two sons n1 and n0.This representation for sets of produ
ts is also 
anoni
al,although it requires to 
hange the se
ond redu
tion rule:useless nodes are those of the form (p;0; n).As logi
al operations on BDDs, set operations (union,interse
tion, set di�eren
e) are of polynomial worst 
ase
omplexity on ZBDDs (thanks to the 
a
hing prin
iple al-ready mentioned).Thanks to the sharing of isomorphi
 sub-trees, BDDsand ZBDDs make it possible to en
ode huge fun
tions



RAUZY: MATHEMATICAL FOUNDATIONS OF MINIMAL CUTSETS 5
a

1

c c

b

1 1

c

0 0

c

b

0 1 0

a

b

c

1 0

Shannon tree
Reduction rules

BDD

Fig. 1. From the Shannon tree to the BDD en
oding ab + �a
.(resp. sets of produ
ts) with relatively few nodes. Indeed,this does not work always (it is even easy to show that thisdoes work for most of the fun
tions), but this does workoften in pra
ti
e.C. De
omposition TheoremLet us present now the de
omposition theorem whi
h isthe 
ore of BDD algorithms to 
ompute minimal 
utsets.The prin
iple of this algorithm is to traverse the BDD thaten
odes the formula F in a depth-�rst way and to build theZBDD that en
odes the minimal 
utsets of F in a bottom-up way, by 
olle
ting the result of the BDD traversal.In the sequel, p:S, where p is a literal and S is a set ofprodu
ts in whi
h p and its opposite do not o

ur, denotesthe following set of produ
ts.p:S def= ffpg [ �;� 2 SgThe following de
omposition theorem generalizes boththe theorem for prime impli
ant by Morreale [17℄ and ourtheorem for minimal p-
uts [6℄. It 
an be stated as follows.Theorem 3 (De
omposition Theorem) Let F = v:F1 +�v:F0 be the Shannon de
omposition of a Boolean formulaF w.r.t. a variable v and let L be a set of literals builtover var(F ). Then, MCL[F ℄ 
an be obtained as the unionof several sets depending on the literals built over v thatbelong to L.
ase 1: v 2 L, �v 2 L. In this 
ase, MCL[F ℄ is the unionof three sets:MCL[F ℄ = v:S1 [ �v:S0 [ S2where, S1, S0 and S2 are de�ned as follows.S2 def= MCL[F1:F0℄S1 def= MCL[F1℄ n S2S0 def= MCL[F0℄ n S2
ase 2: v 2 L, �v 62 L. In this 
ase, MCL[F ℄ is the unionof two sets: MCL[F ℄ = v:S1 [ S0

where, S1 and S0 are de�ned as follows.S0 def= MCL[F0℄S1 def= MCL[F1 + F0℄ n S0or S1 def= MCL[F1℄� S0where S � T denotes the following set.S � T def= f� 2 S; 6 9� 2 T; � � �g
ase 3: v 62 L, �v 2 L. Similar to 
ase 2.
ase 4: v 62 L, �v 62 L. In this 
ase,MCL[F ℄ is as follows.MCL[F ℄ = MCL[F1 + F0℄The 
ase 1 
orresponds to Morreale's theorem [17℄. The
ase 2 
orresponds to our theorem [6℄. More details aboutthe prin
iple of this algorithm and the operator � 
an befound in [3℄, [6℄.Consider again the formula F = ab+�a
, whi
h is alreadyShannon de
omposed (for the lexi
ographi
 order).� If L = fa; �a; b;�b; 
; �
g (
ase 1), then MCL[F ℄ = a:S1 [�a:S0 [ S2, where{ S2 =MCL[b
℄ = fb
g{ S1 =MCL[b℄ n S2 = fbg n fb
g = fbg{ S0 =MCL[
℄ n S2 = f
g n fb
g = f
gTherefore, MCL[F ℄ = fab; �a
; b
g.� If L = fa; b; 
g (
ase 2), then MCL[F ℄ = a:S1 [ S0,where{ S0 =MCL[
℄ = f
g{ S1 = MCL[b + 
℄ n S0 = fb; 
g n f
g = fbg or S1 =MCL[b℄� S0 = fbgTherefore, MCL[F ℄ = fab; 
g.� If L = fb;�b; 
; �
g (
ase 4), then MCL[F ℄ = MCL[b +
℄ = fb; 
g.VI. Approximate 
omputationsIn this se
tion, we propose an algebrai
 framework toperform approximate 
omputations of both the top eventprobability and the minimal 
utsets of fault tree (
oherentor not). This framework is based on the notion of sub-algebra.



6 SUBMITTED TO IEEE TRANS. ON RELIABILITYA. Sub-AlgebraeLet X be a subset of a set Y , we denote by {X the unaryoperation from 2Y to 2Y de�ned as follows.{X(Z) def= {(Z) \XLet V be a �nite set of variables and let A be a subsetof minterms(V ). 2A together with the 
onstant ; andA and with the operations [, \ and {A forms a Booleanalgebra. It is a
tually a sub-algebra of the propositional
al
ulus over V . There is a 
anoni
al homomorphism hAfrom 2minterms(V ) into 2A: hA(F ) def= F \A. In the reversedire
tion, the identity is a homomorphism that 
omes ba
kfrom 2A to 2minterms(V ).Assume that A 
ontains most of the minterms of interestand that A is not too large, i.e. it is polynomially boundedin the number of variables. Then, it may be a safe ap-proximation to interpret the fun
tions under study in thesub-algebra (A;\;[; {A) rather than in the regular algebra(minterms(V );\;[; {). The point is that 
omputations inthe former algebra are far easier than in the later. This isbe
ause when A is not too large, it is always tra
table to
onsider one by one its elements.As an illustration, 
onsider the problem of determiningthe probability p(F ) of a formula F from the probabilitiesof its variables. In (A;\;[; {A), this problem is triviallyof a polynomial worst 
ase 
omplexity, for it suÆ
es tosum the probabilities of the minterms that satisfy F . In(minterms(V );\;[; {), it is #P-hard [18℄, even if strongsynta
ti
 restri
tions are set on the formula F under study[18℄, [19℄.B. The Sub-Algebrae AkLWe shall 
onsider the sub-algebrae AkL indu
ed by ourformalisation of the notion of minimal 
utsets. Let F andL be respe
tively a formula and a set of literals built over aset of variables V and let k be an integer su
h that k � jV j.The set of minterms built over V that 
ontain at most k
riti
al literals is denoted by mintermskL(V ).The algebra (mintermskL(V );\;[; {mintermskL(V )) is de-noted by AkL.hkL denotes the following homomorphism from the regu-lar propositional 
al
ulus to AkL.hkL(F ) def= F \mintermskL(V )hkL is a narrowing operator for it removes minterms fromthe original formula.Finally, MCkL[F ℄ denotes the set of minimal 
utsets (ofthe formula F w.r.t. a set of literals L) that 
ontain atmost k 
riti
al literals.It is 
lear that if L 
ontains most of the variables of Vand k is small, then AkL is a good 
andidate to be the frame-work of approximate 
omputations: let n be the number ofvariables of V and let m be the number of 
riti
al literals,

then the number of atoms of AkL is as follows.jmintermskL(V )j = 2n�m: kXi=0 �mi �= O(2n�m:mk) (4)Therefore, if m is 
lose to n and k is small, AkL is not toolarge.Moreover, due to the probabilisti
 asymetry be-tween 
riti
al literals and their opposite, minterms ofmintermskV (V ) 
on
entrate in general most of the proba-bility of the formula under study. Minterms outside this sethave a negli
tible probability, even 
onsidered altogether.The table given �gure 2 summarizes | for some values ofn, some values of k and some values of p, the probabilityof all of the basi
 events | the maximum error EkL thatmay be done by 
onsidering only mintermskV (V ). EkL isbounded as follows.EkL � X� 62mintermskL(V ) p(�) (5)This illustrates that, even for large number of basi
events and small values of k, the maximum error is nottoo large. In pra
ti
e, the a
tual error is in general far lessthan the maximum error for not all the minterms not inmintermskL(V ) belong to the formula under study.Note that it is possible to tune algorithms by 
onsideringdi�erent values of k.Note also that upper approximations of the above bound
an be used, that are possibly easier to 
ompute than theexa
t bound.Note �nally that if no assumption is made on the proba-bility of minterms, not only the exa
t value of p(F ) is hardto 
ompute, but also approximations are hard to get, evenagain if strong synta
ti
 restri
tions are set on the formulaeunder study (see [20℄ for re
ent results on that topi
s).C. BDD Implementation of Sub-Algebrae AkLIn order to use BDDs to perform approximate 
omputa-tions, we have to 
onsider the BDD implementation of thethree operations \, [ and { in AkL. A BDD en
odes onlyminterms of mintermskL(V ) if and only if no path fromits root node to a sink node 
ontains more than k 
riti
alliterals. The problem is thus to implement \, [ and { insu
h a way that this property is kept.The negation over BDDs just inverts 0 and 1 leaves (or
ips a 
ag). Therefore, the BDD that en
odes �F 
ontainsonly minterms of mintermskL(V ) if and only if this prop-erty is true for the BDD that en
odes F . Hen
e, the oper-ation { in AkL 
an be implemented by means of the regularnegation.The implementation of \ and [ requires to revisit equa-tion (2) to in
lude the parameter k. Let F = (v; F1; F0)and G = (v;G1; G0) be the Shannon de
ompositions of twoformulae in AkL, and assume that v is 
riti
al. Then, the



RAUZY: MATHEMATICAL FOUNDATIONS OF MINIMAL CUTSETS 7k = 1 2 3 4 5 6 7n = 100 p = 10�3 9:43 10�2 4:55 10�3 1:46 10�4 3:49 10�6 6:61 10�8 1:03 10�9 1:37 10�11p = 10�4 9:85 10�3 4:82 10�5 1:56 10�7 3:74 10�10 7:09 10�13 4:44 10�16 � 0n = 200 p = 10�3 1:80 10�1 1:72 10�2 1:11 10�3 5:43 10�5 2:10 10�6 6:78 10�8 1:86 10�9p = 10�4 1:97 10�2 1:94 10�4 1:27 10�6 6:24 10�9 2:43 10�11 7:79 10�14 � 0n = 500 p = 10�3 3:93 10�1 8:98 10�2 1:42 10�2 1:72 10�3 1:68 10�4 1:37 10�5 9:54 10�7p = 10�4 4:87 10�2 1:20 10�3 1:98 10�5 2:45 10�7 2:42 10�9 1:99 10�11 1:39 10�13Fig. 2. P� 62mintermskV (V ) p(�) for di�erent values of n = jV j, k and p (p is the probability of all basi
 events).following equality holds.(v:F1 + �v:F0)�k (v:G1 + �v:G0) = v:(F1 �k�1 G1)+ �v:(F0 �k G0) (6)where � denotes either \ or [. Indeed, the above equa-tion is 
ompleted by the usual simpli�
ation rules and theadditional terminal 
ase F �0 G = 0.The following theorem holds that asserts that the BDDimplementation of the algebra AkL is eÆ
ient, i.e. of poly-nomial 
omplexity if the number of non 
riti
al variables isnot too large.Theorem 4 (Approximate 
omputation of BDDs) Let Fbe formula, let L be a set of literals built over var(F ), letn = jvar(F )j and m be the number of non 
riti
al literalsof L, �nally let k be a positive integer su
h that k � n.Then, the 
onstru
tion of the BDD that en
odes hkL(F ) isin O(2(n�m):jF j:nk:jF j),This theorem generalizes our previous theorem [11℄.D. Sub-Algebrae AkL and Minimal CutsetsNow, let us 
onsider the interest of the AkL sub-algebraefor the 
omputation of minimal 
utsets of small order. Thequestion is whether it is possible to 
ompute eÆ
ientlyMCkL[F ℄, i.e. in polynomial time w.r.t. to the numbern of variables (where n = jvar(F )j).First, it is easy to introdu
e the parameter k in the re
ur-sive equations given by the theorem 3. Let F = v:F1+�v:F0be the Shannon de
omposition of a formula F , and assumethat v is 
riti
al. Then, MCkL[F ℄ is the union of two sets:MCkL[F ℄ = v:MCk�1L [F1 + F0℄ [MCkL[F0℄ (7)This is basi
ally what we proposed in [6℄ to 
ompute shortminimal p-
uts (L = V ). However, this pro
ess requiresto 
ompute �rst the BDD that en
odes F , whi
h may leadto an exponential blow up. There exists a
tually mono-tone formulae that admit a polynomial number of shortprime impli
ants and that do no admit polynomial polyno-mial size BDD whatever is the order over the variables [21℄.Fortunately, there is a mean to avoid the full 
onstru
tionof the BDD.Let F be a formula and � be a minterm ofmintermskL(V ) su
h that � 62 F and � 2 !L(F ). Then,there exists a minterm � su
h that � j= F and � vL �.By de�nition, � belongs to mintermskL(V ). Therefore, thefollowing theorem holds.

Theorem 5 (hkL and !L) Let F be any formula, let L bea set of literals built over var(F ), �nally let k be a positiveinteger su
h that k � n. The following equality holds.hkL(!L(F )) = hkL(!L(hkL(F ))) (8)As a 
onsequen
e of the theorem 5, minimal 
utsets withat most k 
riti
al literals 
ome only from minterms withthe same property. Therefore, in order to 
ompute shortminimal 
utsets of a formula F , it suÆ
es to 
ompute theminimal 
utsets of the narrowing of F , as asserted by thefollowing 
orollary.Corollary 6 (Computation of small minimal 
utsets)Let F be any formula, let L be a set of literals built overvar(F ), �nally let k be a positive integer su
h that k � n.Then, the following equality holds.MCkL[F ℄ = MCL[hkL(F )℄ (9)E. Roadmap for the 
omputation of MCkL[F ℄The roadmap for the 
omputation of the ZBDD thaten
odes MCkL[F ℄ is pi
tured �gure 3.The algorithms TrBDDkL and TrZBDDkL just 
onsistin traversing the BDD and the ZBDD and in keeping onlythe produ
ts that 
ontain less than k 
riti
al literals (see[11℄ for a very similar algorithm). The other algorithms arefully des
ribed by equations given throughout this arti
le.The �gure 3 shows the three main ways to 
omputeMCkL[F ℄. The �rst one, build/!L/PI/TrZBDDkL re-
alls the de�nition of minimal 
utsets. The se
ond one,build/MCkL follows from the Morreale's theorem and thede�nition of minimal 
utsets. Both 
ompute the BDD en-
oding F and are therefore of exponential worst 
ase 
om-plexities. The last one, build � hkL/MCL illustrates theinterest of the mathemati
al foundations we gave for min-imal 
utsets. As shown by theorem 4, build � hkL is ofpolynomial worst 
ase 
omplexity. It is easy to verify that,if a BDD en
odes only minterms of mintermskL(V ), thenMCL is also of polynomial worst 
ase 
omplexity, at leastif it is implemented by means of the operator � [6℄. There-fore, the following theorem holds.Theorem 7 (Complexity of MCkL) Let F be formula, letL be a set of literals built over var(F ), �nally let k be a
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Fig. 3. The roadmap for the 
omputation of the ZBDD that en
odes MCkL[F ℄.positive integer su
h that k � n. Assume that the num-ber of non-
riti
al literals is small w.r.t. jvar(F )j, i.e. inO(log(jvar(F )j)). Then, the 
onstru
tion of the ZBDDthat en
odes MCkL[F ℄ is is of polynomial worst 
ase 
om-plexity.This is major advantage of minimal 
utsets over primeimpli
ants: the existen
e of a prime impli
ant of lengthk or less is a hard problem. Namely, it is �P -
omplete,where �P is the 
lass of problems or languages that 
anbe de�ned as the interse
tion of a language in NP and alanguage in 
oNP [22℄.VII. Con
lusionIn this arti
le, we 
lari�ed the mathemati
al status ofthe notion of minimal 
utsets, through the introdu
tionthe notion of signi�
ant and 
riti
al literal, the indu
edorder relation over minterms vL and widening operator!L. We show that minimal 
utsets are distin
t from primeimpli
ants and that they have a great interest from botha 
omputational 
omplexity and pra
ti
al point of views.We introdu
ed the families of narrowing operators hkL andsub-algebraeAkL that provide a sound mathemati
al frame-work for approximate 
omputations of both the top eventprobabilities of fault trees and of their minimal 
utsets.We dis
ussed also the implementation of BDD algo-rithms. All of the algorithms evo
ated here are a
tuallyimplemented in the Aralia software, whi
h is now widelyused by most of the fren
h 
ompagnies that are involved inrisk assessment studies. These algorithms and their math-emati
al foundations were designed to enabled us to assesseÆ
iently a very large non-
oherent fault tree that modelsthe emergen
y shutdown system of a nu
lear rea
tor [23℄.This gives eviden
es of the pra
ti
al interest of the math-emati
al framework we introdu
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