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Abstract— Since their introduction in the reliability field,
Binary Decision Diagrams have proved to be the most effi-
cient tool to assess Boolean models such as fault trees. Their
success increases the need of sound mathematical founda-
tions for the notions that are involved in reliability and de-
pendability studies. The aim of this article is to clarify the
mathematical status of the notion of minimal cutsets, that
plays a central role in fault tree assessment. Algorithmic
issues are also discussed.
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I. INTRODUCTION

Bryant’s Binary Decision Diagrams (BDDs [1], [2]) are
the state-of-the-art data structure to handle boolean func-
tions. Since their introduction in the reliability field (the
very first papers on this topics were [3] and [4]) they have
proved to be the most efficient tool to assess Boolean mod-
els such as fault trees. First, BDDs make it possible to
assess the top event probability in an exact and very effi-
cient way [4]. Second, they can be used to compute and
to encode very large sets of minimal cutsets [5], [6]. Their
success increases the need of sound mathematical founda-
tions for the notions that are involved in reliability and
dependability studies: BDD algorithms are derived from
recursive equations that apply on the Shannon decomposi-
tion of the formula under study. These recursive equations
are obtained from the formal definitions of the quantities of
interest (see, for instance, [6], [7]). They are, in general, dif-
ferent from those used to design more classical algorithms
based on formula rewriting or on the Sylvester-Poincaré de-
velopment. In other words, the design of BDD algorithms
requires to separate clearly mathematical definitions from
algorithmic issues.

The aim of this article is to clarify the mathematical
status of the notion of minimal cutsets. Minimal cutsets
play an important role in fault tree assessment. They are
the basis for qualitative analyses for they represent minimal
scenarii of failure. Moreover, they are used in several prob-
abilistic computations. Although BDD encoding of fault
trees makes them useless to assess the top event probabil-
ity, there remains many probabilistic measures that rely
on minimal cutsets: contribution of individual scenarii of
failure, Fussel-Vesely importance factor [§], ...

Intuitively, a minimal cutset is a minimal set of basic
events of the tree that induces its top event. For coher-
ent fault trees, this informal definition fits well with the
formal notion of prime implicant. This is not the case for
non coherent fault trees because prime implicants of such
trees may contain negative literals. This raises the question
whether minimal cutsets are a convenient, but definitely
informal, approximation of prime implicants or a sound
mathematical notion for their own. We advocate here that

minimal cutsets have a well defined logical status, distinct
from the notion of prime implicant. This status captures
and generalises the above intuition. Minimal cutsets are ac-
tually prime implicants of a formula that is obtained from
the formula under study by widening it with respect to a
set of significant literals. Several structural theorems can
be established that give insights about the actual nature of
minimal cutsets. These theorems are used to design BDD
algorithms.

Nowadays, fault trees with several hundred gates and
basic events have to be assessed. Despite of their great
efficiency, BDDs sometimes fail to handle such models be-
cause they cannot avoid the exponential blow up that re-
sults from manipulation of such large numbers of gates and
events. Therefore, approximations have to be made. For
instance, a commonly used approximation consists in con-
sidering short minimal cutsets only. This is justified by the
fact that these cutsets capture, in general, the main part
of the top-event probability. Indeed, this raises questions
about the quality of the results. We clarify here the math-
ematical status of this kind of approximations through the
introduction of a family of Boolean sub-algebrae. We show
its interest from both a computational complexity and a
practical point of views. We propose BDD algorithms to
perform approximate computations.

In a word, the aim of this article is to revisit the notion
of minimal cutsets in order to give it sound mathematical
foundations and, by the way, to make it possible to design
BDD algorithms. It is organized as follows. In section III,
we recall basics about Boolean algebrae, that are the math-
ematical foundations of the notions we deal with. In sec-
tion IV, we propose a formal definition of minimal cutsets
and we discuss it. In section V, we present briefly BDDs
and ZBDDs and we show the decomposition theorem that
is used to design an algorithm to compute minimal cutsets.
Finally, in section VI, we propose a formal framework to
perform approximate computations of both the top event
probability and the minimal cutsets of fault trees.

II. NOTATIONS

Boolean variables: a, b, ¢, v, vy, va, ...

Sets of Boolean variables: V (denumerable), V' (finite)

Literals: v, v, p, p, - ..

Set of literals: L, ...

Products & minterms: =, p, ...

Sets of products: S, T, ...

Boolean formulae: F, Fy, Fy, G, ...

Logical operations: “.” (and), “+” (or), “” (not)

Set operations: “N” (union), “U” (intersection), “C”
(complement), \ (set difference)

Power set of a set X: 2%



III. BOOLEAN ALGEBRAE

This section recalls basics about Boolean algebrae, in-
cluding the definitions of Boolean formulae, literals, prod-
ucts, minterms, assignments and Boolean algebrae.

A. Boolean Formulae

Boolean formulae are built over the two constants 0
(false) and 1 (true), a denumerable set of variables V =
{v1,v2,...}, and the usual logical connectives “.” (and),
“+” (or), “” (not). The set of Boolean formulae is the
smallest set such that :

— 0, 1 are formulae,

— the variables of V are formulae,

— if F and G are formulae, then so are F.G, F + G, F.
The set of variables that occur in the formula F' is denoted

by var(F'). The set of Boolean formulae that can be built
over a finite subset V of V is denoted by F(V).

B. Literals, Products, Minterms, Assignments

A literal is either a Boolean variable v or its negation
0. v is a positive literal, v is a negative literal, they are
said opposite. The opposite of a literal p is denoted by p
(p=p).

A product is a set of literals that does not contain both a
literal and its opposite. A product is assimilated with the
conjunction of its elements. We denote by |r| the order,
i.e. number of literals, of a product .

Let V be afinite set of variables. A product that contains
a literal built over each variable of V' is called a minterm of
V. We denote by minterms(V') the set of minterms that
can be built over V.

An assignment over )V is any mapping from V to
{0,1}. Assignments are extended inductively into map-
pings from Boolean formulae into {0,1}. Let o be an as-
signment and let F and G be two formulae, then o[F.G] =
min(o[F),0[G]), o[F + G] = max(c[F),0[G]) and o[F] =
1 —o[F].

There is a one to one correspondance between minterms
over a finite set of variables V' and assignments (restricted
to V): a variable occurs positively in a minterm if and only
if it receives the value 1 in the corresponding assignment.
An assignment (or equivalently a minterm) o satisfies a
formula F' if o[F] = 1, otherwise it falsifies F.

Let F and G be two formulae. If any assignment satis-
fying F satisfies G as well, we say that F' implies G, which
is denoted by F = G.

A formula F' is monotone if for any minterm @.7w that
satisfies F', the minterm v.m satisfies F' as well. Coherent
fault trees are monotone formulae since they are built just
with and gates, or gates and k-out-of-n gates.

C. Boolean Algebrae

It is often convenient to consider Boolean formulae as
sets of minterms and therefore to consider logical oper-
ations as set operations. This relies on the well known
Stone’s theorem about Boolean algebrae.
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Let V be a finite set of Boolean variables. The set F (V')
together with the constants 0 and 1 and the operations ., +
and ~ forms a Boolean algebra. The power set 2minterms(V)
together with the constants ) and minterms(V) and the
set operations N (intersection), U (union) and C (comple-
mentation) forms also a Boolean algebra, which is actually
isomorphic (by the Stone’s theorem) to the previous one:
a Boolean formula corresponds to the set of minterms that
“satisfy” it. The formula F' corresponds to the complement
of the set of minterms that corresponds to F'. The formulae
F.G and F + @ correspond to respectively the intersection
and the union of the sets of minterms that correspond to
F and G.

Let, for instance, F' be the formula ab + ac. F and its
subformulae are satisfied by the following minterms (over

{a,b,c}).

formulae minterms
a abec + abé + abe + abé
b abc + abe + abe + abe
c abe + abe + @be + abe
a abc + abe + abc + abe

ab abc + abé

ac abe + @be
ab+ ac | abc + abé + abc + abe

IV. MINIMAL CUTSETS

This section presents the mathematical foundations of
the notion of minimal cutsets.

A. Preliminaries

The notion of minimal cutsets seems clear to everybody
who works with fault trees. A minimal cutset represents
a minimal scenario of failure, i.e. a set (a conjunction) of
basic events that induces the top event and that is minimal
w.r.t. set inclusion. This definition is correct when applied
to coherent fault trees. However, it is not correct when
applied to non-coherent fault trees. For this later case,
the notion of prime implicant should be substituted for
the notion of minimal cutset. Prime implicants are sets of
literals, i.e. they may contain negated variables.

To illustrate the above discussion, let us consider again
the formula F' = ab + ac. As we shall see, the prime im-
plicants of F' are ab, ac and be. This does correspond to
the notion of minimal solution of F', but this does not cor-
respond to the intuitive notion of minimal cutsets. The
expected minimal cutsets are ab and c.

In reliability models, there is a foundamental asymetry
between positive and negative literals. Since positive liter-
als represent unexpected (and often undesirable and rare)
events such as failures, they are in some sense the only
ones of interest. This is the reason why most of the fault
tree assessment tools (including electronic simulators such
as ESCAF [9] and softwares such as Risk-Spectrum [10])
never produce minimal cutsets with negative literals. They
produce only something which is related to positive parts
of prime implicants.

This raises the question whether minimal cutsets are a
convenient, but definitely informal, approximation of prime
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implicants or a sound mathematical notion for their own.
We advocate here the later answer. To start with, let us
recall the notion of prime implicant.

B. Prime Implicants

Let F' be a Boolean formula and 7 be a product. 7 is an
implicant of F if 7 = F. Let F be a Boolean formula and
m be an implicant of F. Such an implicant 7 is said prime
if there is no implicant p of F' such that p C w. We denote
by PI[F] the set of prime implicants of the formula F'.

Consider for instance the formula F' = ab+ac. F admits
7 implicants ab, abe, abé, abe, ac, abc and be and 3 prime
implicants ab and ac, bc.

C. Minimal Custsets

Let V be a finite set of variables, let L be a subset of the
literals that may built over V, finally let F' be a formula
built over V.

We shall define minimal cutsets of F' as minimal solutions
from which literals outside L are remove because they “do
not matter”. Intuitively, a cutset is a product that contains
only literals from L and that can be completed with literals
not in L in order to give a implicant of F.

L is typically the set of all of the positive literals for, as
discussed above, these literals are often the only ones that
actually bring an information. Note however that some
negative literals may be of interest as well, for instance
because the corresponding basic events are of high proba-
bilities. These negative literals must be kept in L. In other
words, L is the set of significant literals.

From now, we shall say that a literal p is significant if it
belongs to L and that it is critical if it is significant and
while its opposite is not.

A first way to define minimal cutsets is derived straight
from the idea to keep only significant parts of prime impli-
cants. Let PIL[F] be the set of products obtained first by
removing from products of PI[F] the literals not in L and
second by removing from the resulting set the non minimal
products. Formally, PI;[F] is defined as follows.

def

PrF] < (wnr; T EPIF]

" A Ap€ PI[F]st.pNnLCrmNL }

This first definition captures actually the intuitive notion
of minimal cutsets. For instance, it is easy to verify that
Pliqp.c1[ab + ac] = {ab,c}. However, it has the drawback
to be based on the definition of prime implicants. This
makes it not suitable to design an algorithm to compute
minimal cutsets without computing prime implicants.

A second way to define minimal cutsets that avoids this
drawback is as follows.

Let T be the binary relation among opposite literals
defined as follows. p Cp pif p € L. Cp, is extended into
a binary relation over minterms(V) as follows. 7© Cp, p
if for any variable v, w[v] Ty, p[v], where w[v] (resp. p[v])
denotes the literal built over v that belongs to 7 (resp. to
p). Intuitively, # Cj, p when 7 is less significant than p.

Cy, is both reflexive (7 Cy, 7, for any 7) and transitive
(m Cr, 0 and o Cy, p implies 7 Cf, p, for any 7, o and p).
Therefore, Cj, is a pre-order.

Let m be a product over V that contains significant lit-
erals only. 7 is a cutset of F' w.r.t. L if it fulfils the first
of the two following requirements, it is minimal if it fulfils
the second one.

1. For any minterm ¢ such that 7 C o, there exists a

minterm ¢ such that § Cy, o and 6 = F.

2. There is no cutset p such that p C .

We denote by M C[F] the set of minimal cutsets w.r.t. L
of F.

Consider again the formula F' = ab + ac.

o If L ={a,a,b,b,c,é}, minterms are pairwisely incom-

parable. Therefore, M Cy[F] = PI[F].
o If L = {a,b,c}, abé Cr abc and abc T, abe, abe, dbe,
therefore the cutsets of F' w.r.t. L are abe, ab, ac, be
and ¢ and MCL[F] = {ab, c}.

o If L = {b,b,c,c}, the cutsets of F w.r.t. L are be, b
and ¢ and MCL[F] = {b,c}.

The two definitions of minimal cutsets are actually equiv-
alent, as asserted by the following theorem.

Theorem 1 (Equivalence of minimal cutsets definitions)
Let F' be a Boolean formula and let L be a set of literals
built over var(F'). Then, the following equality holds.

PIL[F] = MCL[F]

The proof is a straight application of the definitions.

Note finally that if L = V, a positive product 7 is a
cutset if and only if the minterm 7 U {g;v € V Av & 7w} is
an implicant of F. In this case, minimal cutsets of F' are
what we called minimal p-cuts in [6], [11].

D. The widening operator wr,

Any formula is equivalent to the disjunction of its prime
implicants. A formula is not in general equivalent to the
disjunction of its minimal cutsets. The widening operator
wr, gives some insights about the relationship between a
formula F', its prime implicants and its minimal cutsets
w.r.t. the set L of literals.

wr is an endomorphism of the Boolean algebra
(minterms(V),N,U,0) that associates to each set of
minterms (formula) F' the set of minterms wr,(F) defined
as follows.

wr(F)

{m3pst.pCraApEF}

Intuitively, wy, enlarges F' with all of the minterms that
are more significant than a minterm already in F.

Let us consider again the formula F' = ab + ac.

o If L =1{a,a,b,b,c,c}, then wr(F) = F.

o If L = {a,b,c}, then wy [F] = abc+abé+ abc+abe+abe.

o If L ={b,b,c,¢}, then wr,[F] = abc+ abé+ abc + abc +

abc + abc.

The operator wy, has a number of interesting properties,

that are summarized by the following theorem.



Theorem 2 (The widening operator wr) Let F be a
Boolean formula and let L be a set of literals built over
var(F). Then, the following facts hold.

e wy, is indempotent: wy, (wy (F)) = wy (F).

o Plwr(F)] = MCL[F].

The theorem 2 shows that wj acts as a projection.
Therefore, the formulae F' such that PI[F] = MCL[F] are
the fixpoints of wy,, i.e. the formulae such that wr,(F) = F.
If L =V, fixpoints are monotone formulae.

The theorem 2 gives also a third way to define mini-
mal cutsets: the minimal cutsets of a formula F' are the
prime implicants of a pessimistic approximation of F'. This
approximation is obtained by widening F' with all of the
minterms that are more significant, and therefore less ex-
pected, than a minterm already in F'.

V. BINARY DECISION DIAGRAMS

Due to space limitation, we recall in this section only ba-
sics about BDDs. The reader interested by a more detailed
presentation should see for instance (see for instance [12],
[13], [14].

A. Regular BDDs

The BDD associated with a formulae is a compact encod-
ing of the truth table of this formula. This representation
is based on the Shannon decomposition.

Let F be a Boolean formula that depends on the variable
v. There exists two formulae F; and Fy not depending on
v such that:

F = v.F +v.F (1)
By choosing a total order over the variables and applying
recursively the Shannon decomposition, the truth table of
any formula can be graphically represented as a binary tree.
The nodes are labeled with variables and have two outedges
(a then-outedge that points to the node that encodes Fi,
and a else-outedge that points to the node that encodes
Fp). The leaves are labeled with either 0 or 1. The value
of the formula for a given variable assignment is obtained
by descending along the corresponding branch of the tree.
The Shannon tree for the formula ab + ac and the lexi-
cographic order is pictured Fig. 1 (dashed lines represent
else-outedges).

Indeed, such a representation is very expensive. It is
however possible to shrink it by means of the following two
reduction rules.

e Isomorphic subtrees merging. Since two isomorphic
subtrees encode the same formula, at least one is use-
less.

o Useless nodes deletion. A node with two equal sons is
useless since it is equivalent to its unique son (v.F +
v.F =F).

By applying these two rules as far as possible, one gets the
BDD associated with the formula. A BDD is therefore a
directed acyclic graph. It is unique, up to an isomorphism
[1]. This process is illustrated on Fig. 1.
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Logical operations (and, or, xor, ...) can be directly per-
formed on BDDs. This results from the orthogonality of
usual connectives and the Shannon decomposition.

(’U.F1 + ’D.Fo)

_ ’U.(Fl @Gl)
® (WG +9.Gy) — +

0.(Fo © Go) @)

where ® is any binary connective. In order to compute
F ® @G, one computes first F; ® G and Fy ® Go and then
one composes the results. Terminal cases of this recursive
principle are given by Boolean simplification rules, e.g. F'+
1=1,F0=0,FF=F,...

Among other consequences, this means that the com-
plete binary tree is never built and then shrunk: the BDD
encoding a formula is obtained by composing the BDDs
encoding its subformulae. Moreover, a caching principle is
used to store intermediate results of computations. This
makes the usual logical operations (conjunction, disjunc-
tion) polynomial in the sizes of their operands. Negation is
even more efficiently performed for it suffices to add flags
on edges to get it in constant time. A complete implemen-
tation of a BDD package is described in [2]. The reader
interested in details should thus refer to this article.

To end this short presentation, it should be noticed that
almost all of the BDD algorithms are fully described by
means of equations such as eq. 2 that recurse over the
Shannon decomposition (eq. 1). For instance, the algo-
rithm that computes the probability of the top-event from
basic event probabilities is described as follows.

p(v).p(F1) + [1 = p(v)].p(Fo) (3)
B. Zero-Suppressed BDDs

Working with minimal cutsets requires to encode sets of
products. BDDs are not sufficient to encode such sets. This
is because a product may contain a variable v either posi-
tively (v), or negatively () or not at all. Therefore, ternary
decision diagrams would be necessary to encode sets of
products (this was actually proposed by Sasao in [15]).

Another (and better) solution consists in using BDDs,
but with another semantics. This is the notion of Zero-
suppressed BDD (ZBDD) introduced by Minato in [16].
The idea is to label nodes with literals and to decompose
sets of products according to the presence of a given literal:

o The leaves 1 and 0 encode respectively the sets {(}}
and 0.

e A node n = (p,ni,ng) encodes the set S = {{p} U
m;m € S1} U Sy, where p is the literal that labels the
node and S; and Sy are respectively the sets encoded
by its two sons n; and ng.

This representation for sets of products is also canonical,
although it requires to change the second reduction rule:
useless nodes are those of the form (p,0,n).

As logical operations on BDDs, set operations (union,
intersection, set difference) are of polynomial worst case
complexity on ZBDDs (thanks to the caching principle al-
ready mentioned).

Thanks to the sharing of isomorphic sub-trees, BDDs
and ZBDDs make it possible to encode huge functions

p(’l}.F1 +’D.F0) =
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Fig. 1. From the Shannon tree to the BDD encoding ab + ac.

(resp. sets of products) with relatively few nodes. Indeed,
this does not work always (it is even easy to show that this
does work for most of the functions), but this does work
often in practice.

C. Decomposition Theorem

Let us present now the decomposition theorem which is
the core of BDD algorithms to compute minimal cutsets.
The principle of this algorithm is to traverse the BDD that
encodes the formula F' in a depth-first way and to build the
ZBDD that encodes the minimal cutsets of F' in a bottom-
up way, by collecting the result of the BDD traversal.

In the sequel, p.S, where p is a literal and S is a set of
products in which p and its opposite do not occur, denotes
the following set, of products.

p.S def

{{pumme S}

The following decomposition theorem generalizes both
the theorem for prime implicant by Morreale [17] and our
theorem for minimal p-cuts [6]. It can be stated as follows.

Theorem 8 (Decomposition Theorem) Let F' = v.F} +
v.Fy be the Shannon decomposition of a Boolean formula
F w.r.t. a variable v and let L be a set of literals built
over var(F). Then, MCp[F] can be obtained as the union
of several sets depending on the literals built over v that
belong to L.

case 1: v € L, § € L. In this case, M CL[F] is the union

of three sets:

MCL[F] = U.Sl U’l_}.S()US2

where, Sy, Sy and S» are defined as follows.

S Y MCOL[F.F)
Sy Y MOL[R]\ S,
So ¥ MCL[F)\S:

case 2: veE L, v ¢ L.
of two sets:

In this case, M CL[F] is the union

MCL[F] = ’U.Sl US()

where, S; and Sy are defined as follows.

So ¥ MCLR)
Sy ¥ MCLF + F)\ So
or Sy ¥ MCLFR]+ S

where S + T denotes the following set.

S+ ¢

{reS;ApeT,pCr}

case 3: v € L, v € L. Similar to case 2.

case 4: v € L, o ¢ L. In this case, M C[[F] is as follows.
MCL[F] = MCL[F1 + FO]

The case 1 corresponds to Morreale’s theorem [17]. The
case 2 corresponds to our theorem [6]. More details about
the principle of this algorithm and the operator + can be
found in [3], [6].

Consider again the formula F' = ab+ac, which is already
Shannon decomposed (for the lexicographic order).

o If L ={a,a,b,b,c,c} (case 1), then MCy[F] = a.S; U

a.So U S, where
- SQ = MCL[bC] = {bc}
~ Sy = MCyH]\ S5 = {b}\ {be} = {b}
= So = MCr[]\ S2 = {c} \ {bc} = {c}
Therefore, MCL[F]| = {ab, ac, bc}.
o If L = {a,b,c} (case 2), then MCL[F] = a.S; U Sy,
where
- S() = MCL[C] = {C}
- S1 =MCLb+ ]\ Sy = {b,c}\{c} = {b} or S1 =
MCLb]) + Sy = {b}
Therefore, MCL[F] = {ab, c}.
o If L = {b,b,c,&} (case 4), then MCr[F] = MCL[b +
c] = {b,c}.

VI. APPROXIMATE COMPUTATIONS

In this section, we propose an algebraic framework to
perform approximate computations of both the top event
probability and the minimal cutsets of fault tree (coherent
or not). This framework is based on the notion of sub-
algebra.



A. Sub-Algebrae

Let X be a subset of a set Y, we denote by [x the unary

operation from 2 to 2" defined as follows.
Cx(2) ¥ C(Z)nXx

Let V be a finite set of variables and let A be a subset
of minterms(V). 24 together with the constant () and
A and with the operations U, N and C4 forms a Boolean
algebra. It is actually a sub-algebra of the propositional
calculus over V. There is a canonical homomorphism h 4
from 2minterms(V) into 24: by (F) 2 FAA. In the reverse
direction, the identity is a homomorphism that comes back
from A to 2minterms(V)_

Assume that A contains most of the minterms of interest
and that A is not too large, i.e. it is polynomially bounded
in the number of variables. Then, it may be a safe ap-
proximation to interpret the functions under study in the
sub-algebra (A4, N, U, [ 4) rather than in the regular algebra
(minterms(V),N,U,L). The point is that computations in
the former algebra are far easier than in the later. This is
because when A is not too large, it is always tractable to
consider one by one its elements.

As an illustration, consider the problem of determining
the probability p(F') of a formula F' from the probabilities
of its variables. In (A4,N,U,04), this problem is trivially
of a polynomial worst case complexity, for it suffices to
sum the probabilities of the minterms that satisfy F. In
(minterms(V),N,U,[), it is #P-hard [18], even if strong
syntactic restrictions are set on the formula F' under study
[18], [19].

B. The Sub-Algebrae A%

We shall consider the sub-algebrae A¥ induced by our
formalisation of the notion of minimal cutsets. Let F' and
L be respectively a formula and a set of literals built over a
set of variables V and let k be an integer such that k£ < |V].

The set of minterms built over V' that contain at most k
critical literals is denoted by mintermsk (V).

The algebra (minterms® (V),n,U,C
noted by A .

h% denotes the following homomorphism from the regu-
lar propositional calculus to A% .

minterms® (V) ) is de-

def
hi(F) =

F Nmintermsk (V)
h% is a marrowing operator for it removes minterms from
the original formula.

Finally, MC¥[F] denotes the set of minimal cutsets (of
the formula F w.r.t. a set of literals L) that contain at
most k critical literals.

It is clear that if L contains most of the variables of V'
and k is small, then A% is a good candidate to be the frame-
work of approximate computations: let n be the number of
variables of V' and let m be the number of critical literals,
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then the number of atoms of A% is as follows.

2”—’”.;: (T)

= O@2"™.mk) (4)

|mintermsh (V)| =

Therefore, if m is close to n and k is small, A¥ is not too
large.

Moreover, due to the probabilistic asymetry be-
tween critical literals and their opposite, minterms of
mintermst. (V) concentrate in general most of the proba-
bility of the formula under study. Minterms outside this set
have a neglictible probability, even considered altogether.
The table given figure 2 summarizes — for some values of
n, some values of £ and some values of p, the probability
of all of the basic events — the maximum error E¥ that
may be done by considering only minterms® (V). E¥ is
bounded as follows.

Ep <

>

mgminterms® (V)

p(m) (5)

This illustrates that, even for large number of basic
events and small values of k, the maximum error is not
too large. In practice, the actual error is in general far less
than the maximum error for not all the minterms not in
minterms% (V) belong to the formula under study.

Note that it is possible to tune algorithms by considering
different values of k.

Note also that upper approximations of the above bound
can be used, that are possibly easier to compute than the
exact bound.

Note finally that if no assumption is made on the proba-
bility of minterms, not only the exact value of p(F') is hard
to compute, but also approximations are hard to get, even
again if strong syntactic restrictions are set on the formulae
under study (see [20] for recent results on that topics).

C. BDD Implementation of Sub-Algebrae A%

In order to use BDDs to perform approximate computa-
tions, we have to consider the BDD implementation of the
three operations N, U and C in .A%¥. A BDD encodes only
minterms of mintermsk (V) if and only if no path from
its root node to a sink node contains more than k critical
literals. The problem is thus to implement N, U and C in
such a way that this property is kept.

The negation over BDDs just inverts 0 and 1 leaves (or
flips a flag). Therefore, the BDD that encodes F' contains
only minterms of mintermsk (V) if and only if this prop-
erty is true for the BDD that encodes F'. Hence, the oper-
ation 0 in A% can be implemented by means of the regular
negation.

The implementation of N and U requires to revisit equa-
tion (2) to include the parameter k. Let F' = (v, F1, Fy)
and G = (v, G1, Gp) be the Shannon decompositions of two
formulae in A¥, and assume that v is critical. Then, the
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k= 1 2 3 4 5 6 7
n=100 p=10"° 943102 45510 ° 14610 % 34910 ° 66110 ° 1.0310° 1.3710
p=10"*]98510"% 4.8210~° 1.56 10~7 3.74 1010 7.09 10~'% 4.44 10~16 ~0
n=200 p=10—2 18010 ¢ 1.72102 1.1110~° 543105 2.1010°° 6.7810~° 1.86 10"
p=10"4|1.9710"2 1.9410~% 12710% 6.2410°° 24310~ 7.79 10~ ~0
n=500 p=10 7339310 1 89810 2 14210 2 172103 16810 % 13710 ° 9.5410 "
p=10"%| 4871072 1.2010~3 1.9810~° 24510~7 2.4210~° 1.99 10! 1.3910~!3

Fig. 2. Zw&mintermsl‘“,(V) p(w) for different values of n = |V/|, k and p (p is the probability of all basic events).

following equality holds.

(U.F1 + Q_J.F())
(v.Gy + 8.Go)

’U.(F1 @kil Gl)

+ ’D.(F() @k G()) (6)

ok
where ® denotes either N or U. Indeed, the above equa-
tion is completed by the usual simplification rules and the
additional terminal case F ©° G = 0.

The following theorem holds that asserts that the BDD
implementation of the algebra A¥ is efficient, i.e. of poly-
nomial complexity if the number of non critical variables is
not too large.

Theorem 4 (Approximate computation of BDDs) Let F
be formula, let L be a set of literals built over var(F), let
n = |var(F)| and m be the number of non critical literals
of L, finally let k& be a positive integer such that k < n.
Then, the construction of the BDD that encodes h% (F) is
in O(Q(nfm)\F|nk|F\),

This theorem generalizes our previous theorem [11].

D. Sub-Algebrae A% and Minimal Cutsets

Now, let us consider the interest of the A% sub-algebrae
for the computation of minimal cutsets of small order. The
question is whether it is possible to compute efficiently
MCE¥[F], i.e. in polynomial time w.r.t. to the number
n of variables (where n = |var(F)|).

First, it is easy to introduce the parameter k in the recur-
sive equations given by the theorem 3. Let F' = v.F} +0.Fy
be the Shannon decomposition of a formula F'; and assume
that v is critical. Then, M C¥[F] is the union of two sets:

MCY[F] = v.MCE'F +FRJUMCEF] (7)

This is basically what we proposed in [6] to compute short
minimal p-cuts (L = V). However, this process requires
to compute first the BDD that encodes F', which may lead
to an exponential blow up. There exists actually mono-
tone formulae that admit a polynomial number of short
prime implicants and that do no admit polynomial polyno-
mial size BDD whatever is the order over the variables [21].
Fortunately, there is a mean to avoid the full construction
of the BDD.

Let F be a formula and « be a minterm of
mintermsh (V) such that 7 ¢ F and 7 € wr(F). Then,
there exists a minterm o such that o = F and o Cj, «.
By definition, o belongs to minterms¥ (V). Therefore, the
following theorem holds.

Theorem 5 (h% and wr) Let F be any formula, let L be
a set of literals built over var(F'), finally let k be a positive
integer such that k < n. The following equality holds.
= hi(wr(hi(F)))

hi (wr(F)) (8)

As a consequence of the theorem 5, minimal cutsets with
at most k critical literals come only from minterms with
the same property. Therefore, in order to compute short
minimal cutsets of a formula F, it suffices to compute the
minimal cutsets of the narrowing of F', as asserted by the
following corollary.

Corollary 6 (Computation of small minimal cutsets)
Let F' be any formula, let L be a set of literals built over
var(F), finally let k be a positive integer such that k < n.
Then, the following equality holds.

MC}[F)

= MCr[hi(F)] 9)

E. Roadmap for the computation of MCE[F]

The roadmap for the computation of the ZBDD that
encodes M C¥[F] is pictured figure 3.

The algorithms TrBDD% and TrZBDD¥ just consist
in traversing the BDD and the ZBDD and in keeping only
the products that contain less than k critical literals (see
[11] for a very similar algorithm). The other algorithms are
fully described by equations given throughout this article.

The figure 3 shows the three main ways to compute
MCE[F]. The first one, build/wr/PI/TrZBDDY re-
calls the definition of minimal cutsets. The second one,
build/ M C* follows from the Morreale’s theorem and the
definition of minimal cutsets. Both compute the BDD en-
coding F' and are therefore of exponential worst case com-
plexities. The last one, build — hf /MC7, illustrates the
interest of the mathematical foundations we gave for min-
imal cutsets. As shown by theorem 4, build — h% is of
polynomial worst case complexity. It is easy to verify that,
if a BDD encodes only minterms of minterms% (V), then
MCY, is also of polynomial worst case complexity, at least
if it is implemented by means of the operator + [6]. There-
fore, the following theorem holds.

Theorem 7 (Complexity of MC¥) Let F be formula, let
L be a set of literals built over var(F'), finally let k& be a
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MCy,

Fig. 3. The roadmap for the computation of the ZBDD that encodes MC¥[F].

positive integer such that k& < n. Assume that the num-
ber of non-critical literals is small w.r.t. |var(F)|, i.e. in
O(log(Jvar(F)|)). Then, the construction of the ZBDD
that encodes M C¥[F] is is of polynomial worst case com-
plexity.

This is major advantage of minimal cutsets over prime
implicants: the existence of a prime implicant of length
k or less is a hard problem. Namely, it is AP-complete,
where AP is the class of problems or languages that can
be defined as the intersection of a language in NP and a
language in coN P [22].

VII. CONCLUSION

In this article, we clarified the mathematical status of
the notion of minimal cutsets, through the introduction
the notion of significant and critical literal, the induced
order relation over minterms Cj and widening operator
wr,- We show that minimal cutsets are distinct from prime
implicants and that they have a great interest from both
a computational complexity and practical point of views.
We introduced the families of narrowing operators h% and
sub-algebrae A% that provide a sound mathematical frame-
work for approximate computations of both the top event
probabilities of fault trees and of their minimal cutsets.

We discussed also the implementation of BDD algo-
rithms. All of the algorithms evocated here are actually
implemented in the Aralia software, which is now widely
used by most of the french compagnies that are involved in
risk assessment studies. These algorithms and their math-
ematical foundations were designed to enabled us to assess
efficiently a very large non-coherent fault tree that models
the emergency shutdown system of a nuclear reactor [23].
This gives evidences of the practical interest of the math-
ematical framework we introduced here.
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