Mode Automata
and their Compilation into Fault Trees

Antoine Rauzy
Institut de Mathématique de Luminy
163, avenue de Luminy, Case 907
13288 Marseille cedex 9 — FRANCE

arauzy@iml.univ-mrs.fr

Abstract

In this article, we advocate the use of mode automata as a high level represen-
tation language for reliability studies. Mode automata are states/transitions based
representations with the additional notion of flow. They can be seen as a generaliza-
tion of both finite capacity Petri nets and block diagrams. They can be assembled
into hierarchies by means of composition operations.

The contribution of this article is twofold. First, we introduce mode automata
and we discuss their relationship with other formalisms. Second, we propose an
algorithm to compile mode automata into Boolean equations (fault trees). Such
a compilation is of interest for two reasons. First, assessment tools for Boolean
models are much more efficient than those for states/transitions models. Second, the
automated generation of fault trees from higher level representations makes easier
their maintenance through the life cycle of systems under study.

1 Introduction

Different formalisms are used in the reliability engineering framework in order to design
models of the systems under study: Boolean formalisms (e.g. Fault Trees, Block Diagrams)
and states/transitions formalisms (e.g. Petri Nets, Markov Graphs). All of them stand at
a rather low level which makes their design and their maintenance a difficult task. Higher
level formalims are needed to fill the gap between systems and models.

In this article, we advocate the use of mode automata as such a formalism. A mode
automaton is a states/transitions system with input and output flows. States are called
modes for in each mode a different transfer function determines the values of output flows
from the values of input flows. Mode automata can be combined in order to design hier-
archical models. They generalize both bounded Petri nets and block diagrams. The term
“mode automaton” itself is borrowed from the work by Maraninchi & al. [14, 15] on the

introduction of modes into reactive languages. We use this term here in a different way,
although the two concepts are strongly related.

The popularity of above mentioned formalisms (Fault Trees, Petri nets, ...) relies not
only on their mathematical soundness, but also on the possibility to represent graphically
each mathematical construct. Mode automata have also this property. Moreover, different
views of the same automaton can be given in order to emphasize an aspect or another
of the model. Two main categories of views are provided: states/transitions views and
hierachical views. The latters are close to functional representations (e.g. block diagrams).

The design of a model always results of a tradeoff between the acuracy of the description
and the tractability of computations to be performed. For instance, the fault tree method
ignores deliberately the sequencing among events in order to decrease the complexity of
qualitative and probabilistic assessments. As a generalization of Petri nets, mode automata
make it possible to describe complex phenomena, leading to difficult assessment problems.
However, a key idea is that they can be compiled efficiently into Boolean formulae (fault
trees). Indeed, this compilation process loses some information. This is the price to pay
to pass from a functional states/transitions description to a fault tree. However, the clear
mathematical semantics of mode automata makes explicit what is lost during this process.

The contribution of this article is thus twofold. First, we introduce mode automata and
we discuss their relationship with classical formalisms. Second, we propose an algorithm
to compile mode automata into Boolean formulae. This algorithm could be adapted to
other high level description formalisms. This work is a part of a larger project, so-called
AltaRica, that aims to design a normalized high level language for reliability studies as
well as a workbench supporting this language [18, 4].

The remainder of this article is organized as follows. Section 2 presents mode automata.
Section 3 explains the different mechanisms to combine them. Section 4 is devoted to their
compilation into Boolean formulae. Finally, section 5 examines related formalims.

2 Mode Automata

2.1 Informal presentation

A mode automaton is an input/output automaton. It has a finite number of states, that
are called modes. At each instant, it is in one (and only one) mode. It may change of
mode when an event occurs. In each mode, a transfer function determines the values of
output flows from the values of input flows.

Consider, for instance, the valve pictured Fig. 1 (a). Assume that it can be either open
or closed and that it may be stuck, either open or closed. The valve changes from open
to closed (resp. from close to open) if it is not stuck and if the event close (resp. open)
occurs. It gets stuck when the event fail occurs. If the valve is open, its output flow equals
its input flow. Otherwise, its output flow is null.

Fig. 1 (b) shows the mode automaton that describes such a valve. Modes are represented
by rectangles with rounded corners. The mode itself and the transfer function are described

respectively above and under the separation line. The initial mode is pointed by an arrow.
Transitions are represented by arrows joining modes.

Such normalized graphical notations — and the correspondance between graphical and
textual constructs — is actually essential to make the formalism both mathematically
sound and user friendly.

2.2 Formal definition

Let D be a finite set of symbols called constants and let V be a finite set of symbols called
variables (D NV = (). D is called a domain. We assume given a mapping dom from V to
2P (the powerset of D), such that forall v in V, dom(v) # 0. dom(v) is called the domain
of the variable v, i.e. dom(v) is the set of possible values of v.

Let U C V. We denote by dom(U) the cartesian product of the domains of the variables
of U: dom(U) = I,y dom(v). In other words, dom(U) is the set of all possible valuations
of the variables of U. Let U € dom(U). We denote by Ulv] the value of the variable v in
the valuation U and by Ulv < ¢], ¢ € dom(v), the valuation that is equal everywhere to U
but possibly in v, where it is equal to c.

A mode automaton is a ninetuple A = (D, dom, S, F™™, Fout 33,6, 0,T), where

e D and dom are a domain and domain function defined as above.

S, Fin, Foul are three pairwisely disjoint subsets of V. Variables of S, F™ and F°u
are called respectively state variables, input flows and output flows.

Y is a finite set of symbols called events.

§ is a partial function from dom(S) x dom(F™) x ¥ to dom(S). § gives the next
values of state variables from their current values, the values of input flows and the
event the occurrence of which induces a change of mode.

o is a total function from dom(8S) x dom(F™) to dom(F°*). o gives the values of
output flows from the current values of state variables and input flows.

fail
open ot stuk
outFlow=inFlow outFlow=inFlow

|
valve close

inFlow D—k} outFlow

(a) (b)

fail

close stuck
outFlow=null

close not stuck
outFlow=null

Figure 1: A valve and the mode automaton that describes it.

e Finally, Z belongs to dom(S) and is called the initial mode.

Example: Consider again the valve pictured Fig. 1. Assume that its input and output
flows range in the set {null, low, medium, high}. The mode automaton that describes the
valve is formally defined as follows.

e S = {state, stuck}, with dom(state) = {open, close} and dom(stuck) = {true, false}.

o Fi" = {inFlow}, F°“ = {outFlow}, with dom(inFlow) = dom(outFlow) = {null,
low, medium, high}.

¥ = {open, close, fail}.

e) and o are defined as pictured Fig. 1 (b).

T = (open, false).

2.3 Reachable modes

A mode automaton describes a set of possible behaviours: from its initial mode, it may
evolve and change of mode by executing transitions. Let A = (D, dom, S, F™™, Fout % 6§, 0,T)
be a mode automaton. The set of reachable modes of A, denoted by Reach(A) is the small-
est subset of dom(S) such that:

e 7 € Reach(A).

e If S € Reach(A) and it exists I € dom(F™), e € ¥ and T € dom(S) such that
T =6(S,1,e), then T is in Reach(A).

In the above definition, we assumed finite domains. Therefore, the set of reachable
modes is finite as well. All of the classical questions about behavioral properties (reach-
ability, deadlock freeness, liveness, model checking, ...) are thus decidable. Since mode
automata are very similar to n-bounded Petri-nets, it is easy to prove that they are of the
same complexity in both formalisms (namely PSPACE-hard, see [8] for an survey of this
topics). If the definition is modified to allow infinite domains, it is easy to see that mode
automata are a superset of Petri nets with inhibitor arcs. Since the latters have the power
of Tiiring machines, almost all of the above questions are undecidable [8].

2.4 Textual and Graphical Constructs

To describe mode automata, one needs some syntactic constructs. For instance, transitions
can be represented as triples (G, e, A), denoted by G — A, where

e (7 is a Boolean formula involving state variables, input flows and output flows. G is
called the guard, or the pre-condition, of the transition.

e ccC .

e A is a set of assignments in the form v := exp, where v is a state variable and exp is
an expression involving state variables, input flows and output flows. A is called the
action, or the post-condition, of the transition.

For instance, the failure transition of the valve can be written not stuck lwe stuck = true.

In a similar way, transfer functions can be represented as equations in the form o = 5,
where o is an output flow and S is a formula that involves state variables and input flows.

Mode automata can be also represented graphically in different ways. Fig. 2 shows
three different representations of the mode automaton pictured Fig. 1 (b). Fig. 2 (a) puts
the emphasis on the transfer function. A generic mode is defined for each transfer function.
Transitions are labeled with their guards, events and actions. Fig. 2 (b) presents the valve
as a component to be inserted in a more general (functional) description. The component is
represented by a box. Its input and output flows are represented by arrows that respectively
come in and go out the component. Fig. 2 (c¢) is a Petri net like representation. It puts
the emphasis on state variables.

stuck=false
not stuck/fail/stuck:=true

outFlow=inFlow

valve
outFlow=null not stuck/fail/stuck:=true inFlow outFlow

(a) (b)

not stuck/close

close fail

open

. /_
i Closed |
1 outFlow=null,

,,,,,,,,

Figure 2: Three alternative representations for a mode automaton.

Fig. 1 and 2 illustrate that different representations may contain a different information.
In general, it is not possible to display all of the data associated with a model within a

single figure. Specification languages such as UML [20] advocate that it is often much more
convenient to have several views of the same object than to have a single overloaded view.
Graphical notations associated with mode automata provide the designer with this ability.

3 Composition of mode automata

A major prerequisite for a high level description language is to be compositional, i.e. to
allow the description of systems as hierarchies of (reusable) components. Mode automata
can assembled by means of three operations: parallel composition, connection and syn-
chronization. These operations produce mode automata: any hierarchy can be “flattened”
into an equivalent mode automaton. Moreover, this process is efficient because it involves
only very simple syntactic operations.

3.1 Parallel composition

Let Ai,..., A, be n mode automata (A; = (D,dom, S;, Fi", Ff", %, 6,04, L;)). We can
assume without a loss of generality that their vocabularies are distinct, i.e. that for any ¢
and j, 1 <i<j<n, (SUF"UF“)N(S;UF"UFM)=0and Z;NE; = 0.

The parallel composition of A;,...,A,, denoted by II" ,.A;, is a mode automaton A =
(D,dom, S, Fn, Fout 33 6, 0,T) such that:

e S= U?:l Si, Fn = U?:l]:iin, Fout = U?:1 -Eouta Y= U?:l ;.

e § is obtained by lifting the d;’s up to A: Let Sy € dom(Sy), ..., Sp € dom(S,,). Let
I, € dom(Fi"), ..., I, € dom(F™). Finally, let T; € dom(S;) and e € ¥; such that
T, = 51(521 Iia 6). Thena

(5(51,...,Sn,[1,...,fn,e) = <S’1,...,Si,l,ﬂ,5i+1,...,5n>

e Similarly o is obtained by lifting up the o;’s:

O'(Sl, .. -;Sn;[h e ,In) = <O'1(Sl,11), .. -;O.n(STL;In)>

e Finally, T = (7y,...,Z,).

In other words, the parallel composition consists in glueing together the A4;’s. This
operation is sometimes called a free product [3]. From a graphical point of view, the
parallel composition consists in drawing a box to surround the graphical representation of
its components, as illustrated Fig. 3 (a) for components A, B and C.

i o]

T

(0]

(a) Parallel composition of A, B and C (b) Connection of B.i and C.ito A.o

Figure 3: Parallel composition and connection of mode automata.

3.2 Connection

The connection consists in compelling one or more input variables to be equal to an output
variable. This process is illustrated Fig. 3 (b) where input flows of components B and C
are plugged in the output flow of the component A.

To be valid, a connection must introduce no loop. This is the causality problem, that
has been extensively studied in the framework of reactive languages [10]. We introduce
here the notion of causal dependence, which is specific to mode automata.

Let A = (D,dom,S, F", Fou 3. §,0,T), let i € F™ and let 0 € F°“. o is said causaly
independent from i, if the following property holds.

VS € dom(S), VI € dom(F™), Ve € dom(i) o(S,I)[o] = a(S,I[i < c])[o]

o is said causaly dependent of 7 otherwise.

This definition of causality is indeed very costly to check. Fortunately, there are very
simple syntactic conditions that ensure causal independence. For instance, it suffices that
¢ does not occur in the equations that define the value of o.

Let A = (D,dom,S,F™, Fout % 6,0,7) be a mode automaton, let o € F°“* and let
01,1 € F™ such that o is causaly independent of iy, ..., it and dom(o) C dom(i,),
..., dom(o) C dom/(iy,).

Let Fim = Fin\ {iy,...,ix}, let S € dom(S) and let I € dom(F™). We denote by
Is/is,....0/i, the valuation of F™ such that:

Isojinnopn o] 110 ifve 7
5,0/i1,0e0s0/ i o(S,I')[o] otherwise

where I’ is any extension of I into a valuation of F™ (by definition, (S, I')[0] is the same,
no matter what this extension is).

The mode automaton A in which iy, ..., i, are connected to o is the mode automaton
Aosiv.ofin = (D,dom, S, Fi*, Fo' 52§, o', I), where §' and o' are defined as follows.

A R getl get2
R\ NGOG
- — — —
repair endl end2
failure
T s _7 C T 7 777777 |
| start=<A.start> repairA=<A.repair,R.end1> |
: rescue=<A .failure,B.start,R.get1> repairA=<A.repair,R.end2> :
:failureA:<A.faiIure,R.get2> repairB=<B.repair,R.end1> :
| failureB =<B failure,R.get2> |

Figure 4: Two identical engines A and B, and a repairer R, with B is in cold redundancy.

e For all S € dom(S), I € dom(F™) and e € %, if §(S, Is.0/ir...0fins €) is defined, then
8'(S,I,e) is defined and

51(57 Ia 6) = 5(57 IS,O/il...O/inJ 6)

e For all S € dom(S), I € dom(Fm),

o'(S,I) = o(S, Isiy...0fin)

In practice, to realize a connection, it suffices to substitute o for the i;’s. Therefore, a
connection can be seen just as a renaming.

3.3 Synchronization

As in other states/events formalisms such as Petri nets, transitions of mode automata
are assumed to be asynchronous: two transitions cannot be fired simultaneously. A syn-
chronization consists in compelling a set of events to occur simultaneoulsy. The set itself,
so-called a synchronization vector [3], can be seen as a macro-event. Intuitively, the syn-
chronization of a mode automaton A with synchronization vectors e, ...,é€,, consists in
two steps. First, events that occur in the €;’s are removed together with transitions they
label. Second, transitions labeled with each ¢é; are created by gathering (according to the
é;’s) guards and actions of the removed transitions.

As an illustration, consider the system pictured Fig. 4. It is made of two identical
components A and B — say two engines — and a repairer R. B is in cold-redundancy, i.e.
it is started only if A fails. The repair of A preempts the repair of B.

The three events “A fails”, “B starts” and “R gets a first engine to repair” can be consid-
ered as simultaneous, therefore a synchronization vector rescue = (A. failure, B.starts, R.get1)

working,idle,s=0
start rescue

A.stop
idleidle,s=0 failed,working,s=
7 4

repairA
failed,idies=1 ¥ B-SoP

-

repairB

failureB

working,failed,s=

idlefailed,s=1

Figure 5: The synchronized system.

is created. The other the synchronization vectors given Fig. 4 describe the synchronization
resulting of the repairing policy. Now, the synchronization removes the three transitions:

A failure

A.state = working ~—— A.state := failed
B.state = idle 23" B.state := working
Rs=0 2% Rs:=1
and creates the new one:
A.state = working A.state := failed
A B.state = idle EX | B.state := working
AN Rs=0 R.s:=1

Fig. 5 shows a fully expanded version of the mode automaton pictured Fig. 4.
In order to define formally the synchronization, we need to introduce the notions of

compatibility and composition of valuations.

Let S be a subset of V and let S, S" and S” € dom(S).

S" and S" are said incompatible w.r.t. S if it exists v € S such that S[v], S'[v] and
S"[v] are all distinct. They are said compatible otherwise.

The composition of S’ and S” w.r.t. S, denoted S’ og S”, is the valuation defined as
follows.

wes S og g" def { S,[’U] if S,[’U] 7A S[’U]

N S"lv] otherwise
The following property holds.

Property 1 (Composition) Let S be a subset of V and let S € dom(S). Applied to
valuations that are pairwisely compatible w.r.t. S, og is commutative and associative.

We can now define formally the synchronization.
Let A = (D,dom,S, F™™, Fout 3 6,0,T) be a mode automaton and let €;,...,6 be r
synchronization vectors. Let ¥’ be the subset of ¥ of the events that occur in the €;'s. The

synchronization of A by €1, .. .,€. is a mode automaton Aléi, . .., 6. = (D, dom, S, F", Fou (\

Yyuieé,...,e},8,0,Z), where ¢’ is defined as follows.

e For any e € ¥\ ¥, S € dom(S) and I € dom(F™), if §(S,1,e) is defined then
8'(S,I,e) is defined as well and

§'(S,I,e) < 5(S,1e)

e For any ¢; = (ey,...,e;), S € dom(8S) and I € dom(F™),if §(S,I,e1), ..., 8(S,T,ex)
are defined and pairwisely compatible, then §'(S, I, é;) is defined and

§'(S,1,6) % 6(S,1,e1)os...056(S,1,e)

4 Compilation into Boolean formulae

By compiling mode automata into Boolean formulae, one expects two benefits: a better
efficiency in the assessment of the models and a simplification of the design and the main-
tenance of Boolean models. The price to pay is the loss of the sequencing among events:
sequences of events are compiled into conjuncts of events.

In this section, we propose a compilation algorithm that works well on models that are
close to a block diagram representation. Many real-life models are actually conceptually
simple, nevertheless hard to assess because of their sizes. Therefore, a good compiler should
first of all compile efficiently this kind of models.

4.1 Principle of the compilation

We assume from now that the mode automaton A = (D, dom, S, F"*, F°' 3., §, 0, T) under
study describes a system that may fail. The initial mode Z represents the nominal state
of the system. Events represent failures of its components. Some modes represent failure
states. Paths from Z to these modes represent scenarios of failure.

The compilation captures failure scenarios into a set of Boolean equations. It produces
a Boolean formula ¢, . for each pair (v,¢), v € SU F, ¢ € dom(v), such that:

e The variables of ¢, . are the events of 3.

e The minimal cutsets of ¢, . one-to-one correspond with sets of events {ey,...,ex}
such that there exists a sequence of modes M,. .. ,M; such that:
- MU - Z

— 6(My, I, ey) = My, ..., 6(My_1, I, ex) = My, for some Iy, ..., I}, € dom(F™).

10

— o(My, I)[v] = c.

The algorithm works from reachability graph of A (that can be seen as a reliability
network [21]): First, the hierarchy is flattened into a single mode automaton according
to the semantics described section 3. Second, the reachability graph is computed. Third,
one associates with each mode M of this graph the disjunct over the paths 7 from Z to
M of the conjunct of events that label 7. Fourth and last, one associates with each pair
(v, ¢) the disjunct of formulae that are associated with the modes M for which there exists
I € dom(F™) such that o(M,I)[v] = c.

4.2 Problems raised by the compilation

The above algorithm raises several problems.

The first one stands in the exponential blow up of the number of modes. Consider, for
instance, the series-parallel system with m lines of n components pictured in Fig. 6 (a).
This automaton has about 2" modes — a huge number even for small values of n and m.
Means should therefore be found to take advantage of independence of subsystems.

The second problem stands in the exponential blow up of the number of paths. Con-
sider, for instance, the graph pictured in Fig. 6 (b). Assume that the initial mode is the left
inferior corner and that the failure mode is the right superior corner. Such a grid has only
m X n modes but (n jm) failure paths. A solution to this problem consists in constructing
the formula associated with a vertex from the formulae associated with its neighbours.
Such a local compilation is however not possible if the graph contains loops [19].

The third problem, which is related to the previous one, stands in the composition of
components. Consider, for instance, the mode automaton pictured in Fig. 6 (c¢). If one
would compile the three components A, B and C separately, one would obtain something
as the following equations (assuming that all the variables are Boolean).

Aol=Aa Ao2=Ab B.o=B.a
C.o= (A.01 AN A.02)V (A.ol A B.o)V (A.02 A\ B.o)

C.0 admits three minimal cutsets {A.a, A.b}, {A.a, B.a} and {A.b, B.a}. However, by
construction of the component A, events A.a and A.b cannot both occur. In order to deal
with this kind of conflicts, the compilation algorithm has actually to consider not only
events occurs along the paths but also those that do not.

In the next section, we explain how the latter problem can be solved. In section 4.4,
we show how to compute the reachability graph by parts.

4.3 A Modified Algorithm

The third step of the algorithm is modified as follows. The paths (starting from the initial
mode Z) of the reachability graph are computed by means of the algorithm given Fig. 7.
This algorithm computes all pairs (M, €), where M is a mode and € is a vector of Boolean

11

cUo0

(b) A “grid” mode automaton

i

Y a—

0=2/3(11,i2,i3)

i3

o

=1

(¢) A non compositional mode automaton

Figure 6: Three mode automata that illustrate difficulties of the compilation

values (one per event), such that there exists a path from Z to M labelled with the events
e; such that ele;] = 1.

Then, the (modified) fourth step builds the ¢, ’s as follows. First, a formula ¢z is
created for each pair (M, &) produced by the above algoritm.

¢M,é‘: /\ e N /\ —-e;

éle;]=1 éele;]=0

Second, a formula ¢, is associated with each mode M.

On = \/ Oune

(M)

Finally, for each output flow v and each ¢ € dom(v) a formula ¢, , is created.

d)c,v = \/ d)M

Meéedom(S), ITedom(Fim) s.t. o(M,I)[v]=c

12

C«— {(Z,0)},D 0
while C' # () do
Let (M,é) € C
C« C\{(M,&)}, D« DU{(M,é)}
forall e; € X, I € dom(F™), M' € dom(S) such that M' = 6(M,e;, I) do
C + CU{(M ele;] + 1)}
done
done

Figure 7: The algorithm to compile paths

Consider, for instance, the component A of Fig. 6 (c). The formulae built by the
algorithm are as follows.

Gs—0 = Ps—0,0,0) = 7a A —b Gor=0 = Ps—0 V Ps—2 = 7@
Gs=1 = ¢s:1,<1,0> =aA b ¢01:1 =¢s—1=aA b
Ps=2 = ¢s:2,<0,1> =-aAb ¢01:0 = Qs=0 V Ps=1 = b

d)ozzl = d)szl =-aAb

The formulae ¢,;’s take into account not only the events that label each Z-M path, but
also those that do not label the path. Therefore, the above algorithm avoids the pitfall of
output flow composition. However, it is also clearly subject to the combinatorial explosion
of the number of modes and paths. Fortunately, in many practical cases, it is possible to
split the mode automaton into several independent parts and to compile it accordingly.

4.4 Application of Partial Order techniques

Consider for instance the series system pictured in Fig. 8. The transition B.b is neither
enabled nor disabled by the the transition A.a, and vice versa. A.a depends only on A.s,
B.b depends only on B.s, none of them depends on A.o and B.o. Therefore, state variables
(and input flows) can be splitted two groups: {A.s} and {B.s}. Each of this group can be
analyzed independently. The two groups of equations for transitions are as follows.

A.s B.s
Pas=0 = Qo) = ~Aa $Bs=0 = ¢o) = "B.b
Pas=1 = P10y = Aa ¢Bs—1 = ¢y = B.b

The third step of the algorithm can be now achieved by considering the textual (or

13

B
by (= (]
GE

o=i+

(a) System

'/

A.s=1B.s=0

A.s=0,B.s=0
B.o=2

As1B.s1
B.o=0

A.s=0B.s=1

(b) Reachability graph

Figure 8: A series system and its reachability graph

graphical) description of the automaton.

A.o,B.o

d)A.o:l
¢A.o:0
¢B.o:2
¢B.o:1
d)B.o:O

d)A.s:O

¢A.s:1

¢A.o:1 A ¢B.s:0

(¢A.o:1 A ¢B.s:1) \ (¢A.o:0 A ¢B.s:0)
Pa.0=0 N\ PB.s=1

= —Aa
A.a
= =A.aAN-B.b
= (nA.aANB.b)V (A.a A —B.b)
= A.aANB.b

The above idea is an application of the so-called Partial-Order methods [9].

Let A = (D,dom,S, F™", Fou, 5§, 0,7) be a mode automaton. R is a valid dependency
relation over ¥ if for all e, ey € X, (e1,e3) € R (e; and ey are independent) implies that

the two following properties hold for all reachable modes M € dom(S):

1. If there exists I, € dom(F™) such that 6(M, I, e;) is defined, then there exists
I, € dom(F™) such that 6(M, I, ey) is defined iff §(M, I, e5) is defined (independent

transitions can neither disable nor enable each other); and

2. If both §(M, I;,e;) and 6(M, I, es) are defined then the following equality holds:
§(O(M, I, e1), Iz, e5) = 6(8(M, I, e3), I1,e;) (commutativity of enabled independent

transitions).

Now, consider a path in the reachability graph. By applying the commutativity rule,
it is possible to group together the dependent events without changing the first and last
mode. In other words, the path can be decomposed into several independent sequences of
dependent events. As a consequence, in our compilation algorithm, equivalence classes for
the valid dependency relation R can be considered separately. This is actually what we

did on the above example.

In practice, we define the relation R as follows. First, we define the notion of immediate
dependence between variables and events. Let e € ¥ and let v € §. We say that e depends

14

immediately on v if there exists a reachable mode M € dom(S U F™), I € dom(F™) and
¢ € dom(v) such that at least one of the three following conditions is satisfied:

e Either v € F™, §(M,1,e) is defined and either (M, I[v < c],e) is not defined or
§(M, Iv < c],e) # 6(M,1,e); or

e v ES, §(M,I,e)is defined and either 6(M[v < c|, I, e) is not defined or §(M[v +
d.T,e) # 6(M, I,e); or

e ve S and Mv] #6(M,I,e)[v].

Simple syntactic conditions ensure immediate dependence.

Second, we consider the relation ~ over ¥ defined as follows. e; ~ ey if there exists a
variable v such that v depends immediately on both e; and e;. Finally, we consider the
transitive closure of ~, which we denote by abuse ~ as well. It is easy to verify that ~
is a valid dependency relation over ¥. The relation ~ splits ¥ into one or more groups of
events and associates a disjoint set of variables with each group. Steps third and fourth of
then algorithm can be applied separately on each group. Step fourth is modified in order
to take into account that an output flow may depend on state variables and input flows
that belong to different groups.

5 Related Formalisms

Mode automata are related to the formalisms used in both formal methods and reliability
engineering frameworks. This section discusses their relationships with these formalisms.

5.1 Block diagrams

Mode automata are clearly a generalization of block diagrams [2]. The translation from
the latters to the formers is straightforward, as illustrated Fig. 9. Each block is translated
into the small automaton pictured Fig. 9 (b). Then, the diagram is translated element by
element. All flows are assumed to be Boolean.

Mode automata generalize block diagrams into several directions:

e Blocks may have several input and output flows.

Input and output flows may be multivalued (not restricted to Boolean values).

Blocks may be in more than two modes (working or failed).

There may be other events than the failures of components.

Synchronizations can be used to model complex behaviors, such as cold redundancies
(as illustrated section 3.3).

15

2/3

Bl
Al
Se | B2|| o T -
A2 Al
B3 2/3
or
S B2
) T
(a) A block diagram * I »—
B3
fail

W @ (c) Translation of the diagram

(b) Translation of a block

Figure 9: A block diagram and the corresponding mode automaton

5.2 Finite state machines

Mode automata generalize Mealy machines. Mealy machines are also input/output au-
tomata, with Boolean inputs and outputs (see [12] for an introduction). They are widely
used in the circuit verification framework. The SMV model checker [16], for instance, is
based on this formalism (in SMV however, transitions are anonymous).

The notion of synchronization vector comes from the seminal work by Arnold and Nivat
on the semantics of concurrent processes [3]. Arnold and Nivat restricted their attention to
finite state machines without input and output. Mode automata can be seen as generalized
Mealy machines with Arnold-Nivat composition mechanisms.

5.3 Petri nets

Petri nets [17] deserve a special mention because for they are often considered as the main
alternative to Boolean models (fault trees and block diagrams) for reliability studies.

The translation from finite capacity Petri nets to mode automata is straightforward: it
suffices to define an integral state variable for each place and a transition for each transition.
For instance, the Petri net transition pictured Fig. 10 (a) is translated as follows.

Pl>0AP2=0A P3>0 —» Pl:=Pl—1, P4:= P4+2

Named values give a mean to simplify descriptions. Consider for instance the Petri
net pictured Fig. 10 (b), which is taken from [7] (Fig. 1.9, page 16). The upper row
of places describe the successive steps of a production process. In order to translate
this Petri net, we could apply the method sketched above. However, a much simpler

16

P1 P2 P3
T (E
2

P4

unload au wait with. = withdrawal

P2

(a) A transition of a Petri net (b) A Petri net for production cell

Figure 10: Petri nets

solution consists in creating only one state variable per component of the production
cell: the state of machine is described by means of a variable M1 ranging in the do-
main {wait Raw, load, opl, wait Deposit, deposit}. Transitions can still be translated in a
straightforward way. For instance, the transition 1 is translated as follows.

M1 = waitRaw A Robot =idle — M1 := load, Robot := busy

Not only the description is simpler, but it contains less variables and can therefore be
assessed more efficiently.

In the same vein, synchronization vectors avoid many gadgets, i.e. additional places
and arcs that are required to capture simultaneous (or quasi-simultaneous) behaviors with
Petri nets (see [17] for a discussion on these gadgets).

Petri nets can be seen as mode automata with several restrictions:

e They have only state variables. Indeed, flows can be replaced by state variables.
However, the formers are often much more convenient to model the propagation of
an information.

e They put strong requirements on guards and actions of transitions. Namely, guards
can be only conjuncts of inequalities of the form place > constant (possibly place = 0
if inhibitor arcs are allowed) and assignments can be only of the form place :=
place + constant. Several authors suggested to overcome this restriction by introduc-
ing extended guards (see for instance [6, 5]).

e They provide no natural synchronization mechanism.

Our feeling is that all of these restrictions are justified more by historical reasons than
by technical issues (graphical considerations play a role as well): linear algebra methods
cannot work without these restrictions. However, linear algebra methods are seldom used
in practice. This is especially true in reliability analysis framework where basically two
kinds of assessment methods are used (for a comprehensive survey see [1]): Markovian

17

assessment method and Monte-Carlo simulations. In both cases, there is no mathematical
or algorithmic need for the Petri net restrictions.

Finally, it is worth noticing that the graphical formalism of Petri nets can be applied
to mode automata (as illustrated Fig. 2 (c)), up to small changes in the interpretation of
arcs entering and going out transitions.

5.4 Reactive Languages

Mode automata are stronlgy related to visual specification languages such as StateCharts [11]
or Argos [13]. They are also close to the underlying model of reactive languages such as
Lustre [10]. The differences between mode automata and these formalisms stand mainly
in the way they are used. Lustre, for instance, is a high level language to program appli-
cations that interact continuously with their environment. As a consequence, it puts the
emphasis on modes and transfer functions (that describe actually the interaction of the
program with its environment). On the converse, mode automata are used to design and to
study models. The emphasis is put on (sequences of) events: failure scenarios, probability
of failure, importance factors of components

The term “mode automata” is borrowed from references [14, 15]. These articles propose
to extend Lustre with a construct that supports the description of running modes. Since a
dataflow program is basically a Mealy machine, our notion of mode automata is very close
to the notion of Maraninchi & al. However, the composition operations proposed in [14]
are different from the ones we proposed here (the formers are inherited from Argos parallel
and hierarchical compositions).

5.5 AltaRica

AltaRica is a high level description language. Its syntax and semantics have been described
in references [18, 4]. The full AltaRica language embeds several features, such as bidirec-
tional flows or broadcasting, that make its compilation into Boolean formulae difficult.
For this reason, a restriction of AltaRica has been defined that drops out these features.
The resulting language, so-called AltaRica data flow, is much easier to compile. Mode
automata are the underlying mathematical model of this language.

Fig. 11 shows two typical AltaRica data flow declarations. Fig. 11(a) shows the decla-
ration of the mode automaton that describes the valve of our introductory example (see
Fig. 1). Fig. 11(b) shows the declaration of a system that contains three subsystems: a
valve, a pipe and an operator. The system has an input flow connected to the input flow of
the valve. The output flow of the valve is connected to the input flow of the pipe. Finally,
the output flow of the pipe is connected to the output flow of the system. The opening
and closing of the valve are synchronized with the corresponding actions of the operator.

18

node Valve; node System;

state open:bool, stuck:bool; state open:bool, stuck:bool;

flow i:bool:in, o:bool:out; flow I:bool:in, 0:bool:out;

event open, close, fail; sub V:Valve, P:Pipe, D:operator;

trans assertI=V.i, P.i=V.o, 0=V.o;
open and not stuck |- close -> open:=false; sync close = <V.close,0.closeValve>,
not open and not stuck |- open -> open:=true; open = <V.open,0.openValve>;
not stuck |- fail -> stuck:=true; edon

assert not open => i=o, open => not o;
init open=true, stuck=false;
edon

(a) component declaration (b) node declaration

Figure 11: Two AltaRica data flow declarations

6 Conclusion

In this article, we introduced mode automata. We advocated their use as a high level
language to design reliability models. Mode automata embed a number of interesting
features that are borrowed from different formalisms.

e They are a states/events based formalism, like finite state machines and Petri nets.

e They are a data flow language, like block diagrams and reactive languages.

They are both mathematically well defined and graphically easy to represent (with
the ability to have different views of the same object as in UML).

They are a hierarchical language with different composition operations: parallel com-
position, connection and synchronization.

They can be interpreted stochastically to perform probabilistic analyses, in the same
way Petri nets are.

These features make it possible to describe within a single formalism both functional and
dysfonctional aspects of the systems under study.

Since mode automata are a high level language with a great expressiveness, the assess-
ment of models is in general a difficult task. In this article, we proposed an algorithm
to compile mode automata into fault trees in order to overcome this problem. This algo-
rithm works well in practice. The idea is that simple models (those that are close to a
block diagram) can be compiled simply. More complex models should be assessed by other
means. For instance, it would be possible to compile complex models into Petri nets. Such
a compilation could be interesting to be able to use the many available Petri net tools.

19

References

1]

[10]

[11]

[12]

[13]

M. AjmoneMarsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Modelling
with Generalized Stochastic Petri Nets. Wiley Series in Parallel Computing. John
Wiley and Sons, 1994.

J.D. Andrews and T.R. Moss. Reliability and Risk Assessment. John Wiley & Sons,
1993. ISBN 0-582-09615-4.

A. Arnold. Finite Transition Systems. C.A.R Hoare. Prentice Hall, 1994. ISBN
0-13-092990-5.

A. Arnold, A. Griffault, G. Point, and A. Rauzy. The altarica language and its
semantics. Fundamenta Informaticae, 34:109-124, 2000.

G. Ciardo, A. Blakemore, P.F. Chimento, J. Muppala, and K. S. Trivedi. Automated
Generation and Analysis of Markov Reward Models using Stochastic Petri Nets. In
C. Meyer and R.J. Plemmons, editors, Linear Algebra, Markov Chains and Queueing
Models, volume 48 of IMA Volumes in Mathematics and Applications, pages 145-191.
Springer Verlag, 1993.

G. Ciardo, J. Muppala, and K. S. Trivedi. SPNP: Stochastic Petri Net Package. In Pro-
ceedings of Third Int. Workshop on Petri Nets and Performance Models, (PNPM89),
pages 142-152, 19809.

F. DiCesare, G. Harhalakis, J.M. Proth, M. Silva, and F.B. Vernadat. Practice of
Petri Nets in Manufacturing. Chapman and Hall, 1993.

J. Esperza. Decidability and complexity of petri nets problems — an introduction. In
W. Reisig and G. Rozenberg, editors, Lectures on Petri Nets I: Basic Models, volume
1491 of LNC'S, pages 374-428. Springer, 1998. ISBN 3-540-65306-6.

P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems, vol-
ume 1032. LNCS, 1996. ISBN 3-540-60761-1.

N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer Academic
Publisher, 1993. ISBN 0-7923-9311-2.

D. Harel. Statecharts: A visual approach to complex systems. Science of Computer
Programming, 8(3), 1987.

J.E. Hopcroft and J.D. Ullman. Introduction to automata theory languages and com-
putation. Addison Wesley, 1979. ISBN 0-201-1988-X.

F. Maraninchi. Argonaute: graphical description, semantics and verification of re-
active systems by using a process algebra. In J. Sifakis, editor, Proceedings of the
International Workshop on Automatic Verification Methods for Finite State Systems,
volume 407 of LNCS. Springer Verlag, June 1989.

20

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

F. Maraninchi and Y. Rémond. Mode-automata: About modes and states for reactive
systems. In Furopean Symposium On Programming, Lisbon (Portugal), March 1998.
Springer verlag.

F. Maraninchi, Y. Rémond, and Y. Raoul. Matou : An implementation of mode-
automata into dc. In Compiler Construction, Berlin (Germany), March 2000. Springer
verlag.

K. McMillan. Symbolic Model Checking. Kluwer Academic Publisher, 1993. ISBN
0-7923-9380-5.

T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of the
IEEE, 77(4):541-580, April 1989.

G. Point and A. Rauzy. AltaRica — constraint automata as a description language.
Journal Européen des Systémes Automatisés, 33(8-9):1033-1052, 1999.

A. Rauzy. A new methodology to handle boolean models with loops. IEEE Transac-
tions on Reliability, 2001. To appear.

J. Rumbaugh, 1. Jacobson, and G. Booch. The Unified Modeling Language. Reference
Manual. Addison Wesley, 1999. ISBN 0-201-30998-X.

D.R. Shier. Network Reliability and Algebraic Structures. Oxford Science Publications,
1991.

21

