
Mode Automataand their Compilation into Fault TreesAntoine RauzyInstitut de Math�ematique de Luminy163, avenue de Luminy, Case 90713288 Marseille
edex 9 { FRANCEarauzy�iml.univ-mrs.frAbstra
tIn this arti
le, we advo
ate the use of mode automata as a high level represen-tation language for reliability studies. Mode automata are states/transitions basedrepresentations with the additional notion of
ow. They
an be seen as a generaliza-tion of both �nite
apa
ity Petri nets and blo
k diagrams. They
an be assembledinto hierar
hies by means of
omposition operations.The
ontribution of this arti
le is twofold. First, we introdu
e mode automataand we dis
uss their relationship with other formalisms. Se
ond, we propose analgorithm to
ompile mode automata into Boolean equations (fault trees). Su
ha
ompilation is of interest for two reasons. First, assessment tools for Booleanmodels are mu
h more eÆ
ient than those for states/transitions models. Se
ond, theautomated generation of fault trees from higher level representations makes easiertheir maintenan
e through the life
y
le of systems under study.1 Introdu
tionDi�erent formalisms are used in the reliability engineering framework in order to designmodels of the systems under study: Boolean formalisms (e.g. Fault Trees, Blo
k Diagrams)and states/transitions formalisms (e.g. Petri Nets, Markov Graphs). All of them stand ata rather low level whi
h makes their design and their maintenan
e a diÆ
ult task. Higherlevel formalims are needed to �ll the gap between systems and models.In this arti
le, we advo
ate the use of mode automata as su
h a formalism. A modeautomaton is a states/transitions system with input and output
ows. States are
alledmodes for in ea
h mode a di�erent transfer fun
tion determines the values of output
owsfrom the values of input
ows. Mode automata
an be
ombined in order to design hier-ar
hi
al models. They generalize both bounded Petri nets and blo
k diagrams. The term\mode automaton" itself is borrowed from the work by Maranin
hi & al. [14, 15℄ on the1

introdu
tion of modes into rea
tive languages. We use this term here in a di�erent way,although the two
on
epts are strongly related.The popularity of above mentioned formalisms (Fault Trees, Petri nets, . . .) relies notonly on their mathemati
al soundness, but also on the possibility to represent graphi
allyea
h mathemati
al
onstru
t. Mode automata have also this property. Moreover, di�erentviews of the same automaton
an be given in order to emphasize an aspe
t or anotherof the model. Two main
ategories of views are provided: states/transitions views andhiera
hi
al views. The latters are
lose to fun
tional representations (e.g. blo
k diagrams).The design of a model always results of a tradeo� between the a
ura
y of the des
riptionand the tra
tability of
omputations to be performed. For instan
e, the fault tree methodignores deliberately the sequen
ing among events in order to de
rease the
omplexity ofqualitative and probabilisti
 assessments. As a generalization of Petri nets, mode automatamake it possible to des
ribe
omplex phenomena, leading to diÆ
ult assessment problems.However, a key idea is that they
an be
ompiled eÆ
iently into Boolean formulae (faulttrees). Indeed, this
ompilation pro
ess loses some information. This is the pri
e to payto pass from a fun
tional states/transitions des
ription to a fault tree. However, the
learmathemati
al semanti
s of mode automata makes expli
it what is lost during this pro
ess.The
ontribution of this arti
le is thus twofold. First, we introdu
e mode automata andwe dis
uss their relationship with
lassi
al formalisms. Se
ond, we propose an algorithmto
ompile mode automata into Boolean formulae. This algorithm
ould be adapted toother high level des
ription formalisms. This work is a part of a larger proje
t, so-
alledAltaRi
a, that aims to design a normalized high level language for reliability studies aswell as a workben
h supporting this language [18, 4℄.The remainder of this arti
le is organized as follows. Se
tion 2 presents mode automata.Se
tion 3 explains the di�erent me
hanisms to
ombine them. Se
tion 4 is devoted to their
ompilation into Boolean formulae. Finally, se
tion 5 examines related formalims.2 Mode Automata2.1 Informal presentationA mode automaton is an input/output automaton. It has a �nite number of states, thatare
alled modes. At ea
h instant, it is in one (and only one) mode. It may
hange ofmode when an event o

urs. In ea
h mode, a transfer fun
tion determines the values ofoutput
ows from the values of input
ows.Consider, for instan
e, the valve pi
tured Fig. 1 (a). Assume that it
an be either openor
losed and that it may be stu
k, either open or
losed. The valve
hanges from opento
losed (resp. from
lose to open) if it is not stu
k and if the event
lose (resp. open)o

urs. It gets stu
k when the event fail o

urs. If the valve is open, its output
ow equalsits input
ow. Otherwise, its output
ow is null.Fig. 1 (b) shows the mode automaton that des
ribes su
h a valve. Modes are representedby re
tangles with rounded
orners. The mode itself and the transfer fun
tion are des
ribed2

respe
tively above and under the separation line. The initial mode is pointed by an arrow.Transitions are represented by arrows joining modes.Su
h normalized graphi
al notations | and the
orrespondan
e between graphi
al andtextual
onstru
ts | is a
tually essential to make the formalism both mathemati
allysound and user friendly.2.2 Formal de�nitionLet D be a �nite set of symbols
alled
onstants and let V be a �nite set of symbols
alledvariables (D \ V = ;). D is
alled a domain. We assume given a mapping dom from V to2D (the powerset of D), su
h that forall v in V, dom(v) 6= ;. dom(v) is
alled the domainof the variable v, i.e. dom(v) is the set of possible values of v.Let U � V. We denote by dom(U) the
artesian produ
t of the domains of the variablesof U : dom(U) = �v2U dom(v). In other words, dom(U) is the set of all possible valuationsof the variables of U . Let U 2 dom(U). We denote by U [v℄ the value of the variable v inthe valuation U and by U [v
℄,
 2 dom(v), the valuation that is equal everywhere to Ubut possibly in v, where it is equal to
.A mode automaton is a ninetuple A = hD; dom;S;F in;Fout;�; Æ; �; Ii, where� D and dom are a domain and domain fun
tion de�ned as above.� S, F in, Fout are three pairwisely disjoint subsets of V. Variables of S, F in and Foutare
alled respe
tively state variables, input
ows and output
ows.� � is a �nite set of symbols
alled events.� Æ is a partial fun
tion from dom(S) � dom(F in) � � to dom(S). Æ gives the nextvalues of state variables from their
urrent values, the values of input
ows and theevent the o

urren
e of whi
h indu
es a
hange of mode.� � is a total fun
tion from dom(S) � dom(F in) to dom(Fout). � gives the values ofoutput
ows from the
urrent values of state variables and input
ows.
valve

outFlowinFlow (a)
outFlow=inFlow

not stuck

not stuck

stuck

stuckclose

open

close

open

outFlow=inFlow

open

outFlow=null outFlow=null

fail

fail
close

(b)Figure 1: A valve and the mode automaton that des
ribes it.3

� Finally, I belongs to dom(S) and is
alled the initial mode.Example: Consider again the valve pi
tured Fig. 1. Assume that its input and output
ows range in the set fnull; low;medium; highg. The mode automaton that des
ribes thevalve is formally de�ned as follows.� S = fstate; stu
kg, with dom(state) = fopen;
loseg and dom(stu
k) = ftrue; falseg.� F in = finF lowg, Fout = foutF lowg, with dom(inF low) = dom(outF low) = fnull;low;medium; highg.� � = fopen;
lose; failg.� Æ and � are de�ned as pi
tured Fig. 1 (b).� I = hopen; falsei.2.3 Rea
hable modesA mode automaton des
ribes a set of possible behaviours: from its initial mode, it mayevolve and
hange of mode by exe
uting transitions. LetA = hD; dom;S;F in;Fout;�; Æ; �; Iibe a mode automaton. The set of rea
hable modes of A, denoted by Rea
h(A) is the small-est subset of dom(S) su
h that:� I 2 Rea
h(A).� If S 2 Rea
h(A) and it exists I 2 dom(F in), e 2 � and T 2 dom(S) su
h thatT = Æ(S; I; e), then T is in Rea
h(A).In the above de�nition, we assumed �nite domains. Therefore, the set of rea
hablemodes is �nite as well. All of the
lassi
al questions about behavioral properties (rea
h-ability, deadlo
k freeness, liveness, model
he
king, . . .) are thus de
idable. Sin
e modeautomata are very similar to n-bounded Petri-nets, it is easy to prove that they are of thesame
omplexity in both formalisms (namely PSPACE-hard, see [8℄ for an survey of thistopi
s). If the de�nition is modi�ed to allow in�nite domains, it is easy to see that modeautomata are a superset of Petri nets with inhibitor ar
s. Sin
e the latters have the powerof T�uring ma
hines, almost all of the above questions are unde
idable [8℄.2.4 Textual and Graphi
al Constru
tsTo des
ribe mode automata, one needs some synta
ti

onstru
ts. For instan
e, transitions
an be represented as triples hG; e; Ai, denoted by G e�! A, where� G is a Boolean formula involving state variables, input
ows and output
ows. G is
alled the guard, or the pre-
ondition, of the transition.4

� e 2 �.� A is a set of assignments in the form v := exp, where v is a state variable and exp isan expression involving state variables, input
ows and output
ows. A is
alled thea
tion, or the post-
ondition, of the transition.For instan
e, the failure transition of the valve
an be written not stu
k failure�! stu
k := true.In a similar way, transfer fun
tions
an be represented as equations in the form o = S,where o is an output
ow and S is a formula that involves state variables and input
ows.Mode automata
an be also represented graphi
ally in di�erent ways. Fig. 2 showsthree di�erent representations of the mode automaton pi
tured Fig. 1 (b). Fig. 2 (a) putsthe emphasis on the transfer fun
tion. A generi
 mode is de�ned for ea
h transfer fun
tion.Transitions are labeled with their guards, events and a
tions. Fig. 2 (b) presents the valveas a
omponent to be inserted in a more general (fun
tional) des
ription. The
omponent isrepresented by a box. Its input and output
ows are represented by arrows that respe
tively
ome in and go out the
omponent. Fig. 2 (
) is a Petri net like representation. It putsthe emphasis on state variables.
outFlow=inFlow

open

closed

outFlow=null

stuck=false

not stuck/open/

not stuck/fail/stuck:=true

not stuck/fail/stuck:=true

not stuck/close/

(a) outFlowinFlow

valve(b)
open

outFlow=null

open

fail

outFlow=inFlow

stuck

not stuck

closed

close

(
)Figure 2: Three alternative representations for a mode automaton.Fig. 1 and 2 illustrate that di�erent representations may
ontain a di�erent information.In general, it is not possible to display all of the data asso
iated with a model within a5

single �gure. Spe
i�
ation languages su
h as UML [20℄ advo
ate that it is often mu
h more
onvenient to have several views of the same obje
t than to have a single overloaded view.Graphi
al notations asso
iated with mode automata provide the designer with this ability.3 Composition of mode automataA major prerequisite for a high level des
ription language is to be
ompositional, i.e. toallow the des
ription of systems as hierar
hies of (reusable)
omponents. Mode automata
an assembled by means of three operations: parallel
omposition,
onne
tion and syn-
hronization. These operations produ
e mode automata: any hierar
hy
an be \
attened"into an equivalent mode automaton. Moreover, this pro
ess is eÆ
ient be
ause it involvesonly very simple synta
ti
 operations.3.1 Parallel
ompositionLet A1,. . . ,An be n mode automata (Ai = hD; dom;Si;F ini ;Fouti ;�i; Æi; �i; Iii). We
anassume without a loss of generality that their vo
abularies are distin
t, i.e. that for any iand j, 1 � i < j � n, (Si [F ini [Fouti) \ (Sj [F inj [Foutj) = ; and �i \ �j = ;.The parallel
omposition of A1,. . . ,An, denoted by �ni=1Ai, is a mode automaton A =hD; dom;S;F in;Fout;�; Æ; �; Ii su
h that:� S = Sni=1 Si, F in = Sni=1F ini , Fout = Sni=1Fouti , � = Sni=1�i.� Æ is obtained by lifting the Æi's up to A: Let S1 2 dom(S1), . . . , Sn 2 dom(Sn). LetI1 2 dom(F in1), . . . , In 2 dom(F inn). Finally, let Ti 2 dom(Si) and e 2 �i su
h thatTi = Æi(Si; Ii; e). Then,Æ(S1; : : : ; Sn; I1; : : : ; In; e) = hS1; : : : ; Si�1; Ti; Si+1; : : : ; Sni� Similarly � is obtained by lifting up the �i's:�(S1; : : : ; Sn; I1; : : : ; In) = h�1(S1; I1); : : : ; �n(Sn; In)i� Finally, I = hI1; : : : ; Ini.In other words, the parallel
omposition
onsists in glueing together the Ai's. Thisoperation is sometimes
alled a free produ
t [3℄. From a graphi
al point of view, theparallel
omposition
onsists in drawing a box to surround the graphi
al representation ofits
omponents, as illustrated Fig. 3 (a) for
omponents A, B and C.
6

A

B

C

i

i o

i o

o

(a) Parallel
omposition of A, B and C
A

B

C

i

i o

i o

o

(b) Conne
tion of B.i and C.i to A.oFigure 3: Parallel
omposition and
onne
tion of mode automata.3.2 Conne
tionThe
onne
tion
onsists in
ompelling one or more input variables to be equal to an outputvariable. This pro
ess is illustrated Fig. 3 (b) where input
ows of
omponents B and Care plugged in the output
ow of the
omponent A.To be valid, a
onne
tion must introdu
e no loop. This is the
ausality problem, thathas been extensively studied in the framework of rea
tive languages [10℄. We introdu
ehere the notion of
ausal dependen
e, whi
h is spe
i�
 to mode automata.Let A = hD; dom;S;F in;Fout;�; Æ; �; Ii, let i 2 F in and let o 2 Fout. o is said
ausalyindependent from i, if the following property holds.8S 2 dom(S); 8I 2 dom(F in); 8
 2 dom(i) �(S; I)[o℄ = �(S; I[i
℄)[o℄o is said
ausaly dependent of i otherwise.This de�nition of
ausality is indeed very
ostly to
he
k. Fortunately, there are verysimple synta
ti

onditions that ensure
ausal independen
e. For instan
e, it suÆ
es thati does not o

ur in the equations that de�ne the value of o.Let A = hD; dom;S;F in;Fout;�; Æ; �; Ii be a mode automaton, let o 2 Fout and leti1; : : : ; ik 2 F in su
h that o is
ausaly independent of i1, . . . , ik and dom(o) � dom(i1),. . . , dom(o) � dom(ik).Let F in? = F in n fi1; : : : ; ikg, let S 2 dom(S) and let I 2 dom(F in?). We denote byIS;o=i1;:::;o=ik the valuation of F in su
h that:IS;o=i1;:::;o=ik [v℄ def= � I[v℄ if v 2 F in?�(S; I 0)[o℄ otherwisewhere I 0 is any extension of I into a valuation of F in (by de�nition, �(S; I 0)[o℄ is the same,no matter what this extension is).The mode automaton A in whi
h i1, . . . , ik are
onne
ted to o is the mode automatonAo=i1;:::;o=in = hD; dom;S;F in? ;Fout;�; Æ0; �0; Ii, where Æ0 and �0 are de�ned as follows.7

idle

working

failed

stop

start

failure

repair

idle

working

failed

BA

stop

start

failure

repair

start=<A.start>

rescue=<A.failure,B.start,R.get1>

repairA=<A.repair,R.end1>

repairB=<B.repair,R.end1>

repairA=<A.repair,R.end2>

R

s=0

get1

end2

get2

end1

s=1 s=2

failureA=<A.failure,R.get2>

failureB =<B.failure,R.get2>Figure 4: Two identi
al engines A and B, and a repairer R, with B is in
old redundan
y.� For all S 2 dom(S), I 2 dom(F in?) and e 2 �, if Æ(S; IS;o=i1:::o=in ; e) is de�ned, thenÆ0(S; I; e) is de�ned and Æ0(S; I; e) = Æ(S; IS;o=i1:::o=in ; e)� For all S 2 dom(S), I 2 dom(F in?),�0(S; I) = �(S; IS;o=i1:::o=in)In pra
ti
e, to realize a
onne
tion, it suÆ
es to substitute o for the ij's. Therefore, a
onne
tion
an be seen just as a renaming.3.3 Syn
hronizationAs in other states/events formalisms su
h as Petri nets, transitions of mode automataare assumed to be asyn
hronous: two transitions
annot be �red simultaneously. A syn-
hronization
onsists in
ompelling a set of events to o

ur simultaneoulsy. The set itself,so-
alled a syn
hronization ve
tor [3℄,
an be seen as a ma
ro-event. Intuitively, the syn-
hronization of a mode automaton A with syn
hronization ve
tors ~e1; : : : ; ~er,
onsists intwo steps. First, events that o

ur in the ~ei's are removed together with transitions theylabel. Se
ond, transitions labeled with ea
h ~ei are
reated by gathering (a

ording to the~ei's) guards and a
tions of the removed transitions.As an illustration,
onsider the system pi
tured Fig. 4. It is made of two identi
al
omponents A and B | say two engines | and a repairer R. B is in
old-redundan
y, i.e.it is started only if A fails. The repair of A preempts the repair of B.The three events \A fails", \B starts" and \R gets a �rst engine to repair"
an be
onsid-ered as simultaneous, therefore a syn
hronization ve
tor res
ue = hA:failure; B:starts; R:get1i8

idle,idle,s=0

failed,idle,s=1

working,idle,s=0

failed,working,s=1

failed,failed,s=2

idle,failed,s=1

working,failed,s=1

start

A.stop

rescue

B.stop

repairB

repairA

repairB repairA

failureA

failureB

A.stop start

Figure 5: The syn
hronized system.is
reated. The other the syn
hronization ve
tors given Fig. 4 des
ribe the syn
hronizationresulting of the repairing poli
y. Now, the syn
hronization removes the three transitions:A:state = working A:failure�! A:state := failedB:state = idle B:start�! B:state := workingR:s = 0 get1�! R:s := 1and
reates the new one:0� A:state = working^ B:state = idle^ R:s = 0 1A res
ue�! 0� A:state := failedB:state := workingR:s := 1 1AFig. 5 shows a fully expanded version of the mode automaton pi
tured Fig. 4.In order to de�ne formally the syn
hronization, we need to introdu
e the notions of
ompatibility and
omposition of valuations.Let S be a subset of V and let S, S 0 and S 00 2 dom(S).S 0 and S 00 are said in
ompatible w.r.t. S if it exists v 2 S su
h that S[v℄, S 0[v℄ andS 00[v℄ are all distin
t. They are said
ompatible otherwise.The
omposition of S 0 and S 00 w.r.t. S, denoted S 0 ÆS S 00, is the valuation de�ned asfollows. 8v 2 S; S 0 ÆS S 00 def= � S 0[v℄ if S 0[v℄ 6= S[v℄S 00[v℄ otherwiseThe following property holds.Property 1 (Composition) Let S be a subset of V and let S 2 dom(S). Applied tovaluations that are pairwisely
ompatible w.r.t. S, ÆS is
ommutative and asso
iative.9

We
an now de�ne formally the syn
hronization.Let A = hD; dom;S;F in;Fout;�; Æ; �; Ii be a mode automaton and let ~e1,. . . ,~er be rsyn
hronization ve
tors. Let �0 be the subset of � of the events that o

ur in the ~ei0s. Thesyn
hronization ofA by ~e1, . . . ,~er is a mode automatonAj~e1; : : : ; ~er = hD; dom;S;F in;Fout; (�n�0) [f~e1; : : : ; ~erg; Æ0; �; Ii, where Æ0 is de�ned as follows.� For any e 2 � n �0, S 2 dom(S) and I 2 dom(F in), if Æ(S; I; e) is de�ned thenÆ0(S; I; e) is de�ned as well andÆ0(S; I; e) def= Æ(S; I; e)� For any ~ei = he1; : : : ; eki, S 2 dom(S) and I 2 dom(F in), if Æ(S; I; e1), . . . , Æ(S; I; ek)are de�ned and pairwisely
ompatible, then Æ0(S; I; ~ei) is de�ned andÆ0(S; I; ~ei) def= Æ(S; I; e1) ÆS : : : ÆS Æ(S; I; ek)4 Compilation into Boolean formulaeBy
ompiling mode automata into Boolean formulae, one expe
ts two bene�ts: a bettereÆ
ien
y in the assessment of the models and a simpli�
ation of the design and the main-tenan
e of Boolean models. The pri
e to pay is the loss of the sequen
ing among events:sequen
es of events are
ompiled into
onjun
ts of events.In this se
tion, we propose a
ompilation algorithm that works well on models that are
lose to a blo
k diagram representation. Many real-life models are a
tually
on
eptuallysimple, nevertheless hard to assess be
ause of their sizes. Therefore, a good
ompiler should�rst of all
ompile eÆ
iently this kind of models.4.1 Prin
iple of the
ompilationWe assume from now that the mode automatonA = hD; dom;S;F in;Fout;�; Æ; �; Ii understudy des
ribes a system that may fail. The initial mode I represents the nominal stateof the system. Events represent failures of its
omponents. Some modes represent failurestates. Paths from I to these modes represent s
enarios of failure.The
ompilation
aptures failure s
enarios into a set of Boolean equations. It produ
esa Boolean formula �v;
 for ea
h pair (v;
), v 2 S [Fout,
 2 dom(v), su
h that:� The variables of �v;
 are the events of �.� The minimal
utsets of �v;
 one-to-one
orrespond with sets of events fe1; : : : ; ekgsu
h that there exists a sequen
e of modes M0,. . . ,Mk su
h that:{ M0 = I.{ Æ(M0; I1; e1) = M1, . . . , Æ(Mk�1; Ik; ek) =Mk for some I1, . . . , Ik 2 dom(F in).10

{ �(Mk; Ik)[v℄ =
.The algorithm works from rea
hability graph of A (that
an be seen as a reliabilitynetwork [21℄): First, the hierar
hy is
attened into a single mode automaton a

ordingto the semanti
s des
ribed se
tion 3. Se
ond, the rea
hability graph is
omputed. Third,one asso
iates with ea
h mode M of this graph the disjun
t over the paths � from I toM of the
onjun
t of events that label �. Fourth and last, one asso
iates with ea
h pair(v;
) the disjun
t of formulae that are asso
iated with the modes M for whi
h there existsI 2 dom(F in) su
h that �(M; I)[v℄ =
.4.2 Problems raised by the
ompilationThe above algorithm raises several problems.The �rst one stands in the exponential blow up of the number of modes. Consider, forinstan
e, the series-parallel system with m lines of n
omponents pi
tured in Fig. 6 (a).This automaton has about 2nm modes | a huge number even for small values of n and m.Means should therefore be found to take advantage of independen
e of subsystems.The se
ond problem stands in the exponential blow up of the number of paths. Con-sider, for instan
e, the graph pi
tured in Fig. 6 (b). Assume that the initial mode is the leftinferior
orner and that the failure mode is the right superior
orner. Su
h a grid has onlym� n modes but � nn+m� failure paths. A solution to this problem
onsists in
onstru
tingthe formula asso
iated with a vertex from the formulae asso
iated with its neighbours.Su
h a lo
al
ompilation is however not possible if the graph
ontains loops [19℄.The third problem, whi
h is related to the previous one, stands in the
omposition of
omponents. Consider, for instan
e, the mode automaton pi
tured in Fig. 6 (
). If onewould
ompile the three
omponents A, B and C separately, one would obtain somethingas the following equations (assuming that all the variables are Boolean).A:o1 = A:a A:o2 = A:b B:o = B:aC:o = (A:o1 ^ A:o2) _ (A:o1 ^ B:o) _ (A:o2 ^B:o)C:o admits three minimal
utsets fA:a; A:bg, fA:a; B:ag and fA:b; B:ag. However, by
onstru
tion of the
omponent A, events A:a and A:b
annot both o

ur. In order to dealwith this kind of
on
i
ts, the
ompilation algorithm has a
tually to
onsider not onlyevents o

urs along the paths but also those that do not.In the next se
tion, we explain how the latter problem
an be solved. In se
tion 4.4,we show how to
ompute the rea
hability graph by parts.4.3 A Modi�ed AlgorithmThe third step of the algorithm is modi�ed as follows. The paths (starting from the initialmode I) of the rea
hability graph are
omputed by means of the algorithm given Fig. 7.This algorithm
omputes all pairs hM;~ei, where M is a mode and ~e is a ve
tor of Boolean11

or or

1

n

1

n

1 m(a) A series-parallel mode automaton 1,1

m,n

(b) A \grid" mode automaton
s=1

o1=1
o2=0

s=2

o1=0
o2=1

s=0

o1=0
o2=0

s=0

o=0

s=1

o=1

B
a

o=2/3(i1,i2,i3)

C

a
A

b

i1

o1

o

o2

i3

i2 o

(
) A non
ompositional mode automatonFigure 6: Three mode automata that illustrate diÆ
ulties of the
ompilationvalues (one per event), su
h that there exists a path from I to M labelled with the eventsei su
h that ~e[ei℄ = 1.Then, the (modi�ed) fourth step builds the �v;
's as follows. First, a formula �M;~e is
reated for ea
h pair hM;~ei produ
ed by the above algoritm.�M;~e = ^~e[ei℄=1 ei ^ ^~e[ei℄=0:eiSe
ond, a formula �M is asso
iated with ea
h mode M .�M = _hM;~ei�M;~eFinally, for ea
h output
ow v and ea
h
 2 dom(v) a formula �
;v is
reated.�
;v = _M2dom(S); 9I2dom(F in) s:t: �(M;I)[v℄=
 �M12

C fhI;~0ig; D ;while C 6= ; doLet hM;~ei 2 CC C n fhM;~eig, D D [fhM;~eigforall ei 2 �, I 2 dom(F in), M 0 2 dom(S) su
h that M 0 = Æ(M; ei; I) doC C [fhM 0; ~e[ei℄ 1igdonedone Figure 7: The algorithm to
ompile pathsConsider, for instan
e, the
omponent A of Fig. 6 (
). The formulae built by thealgorithm are as follows.�s=0 = �s=0;h0;0i = :a ^ :b �o1=0 = �s=0 _ �s=2 = :a�s=1 = �s=1;h1;0i = a ^ :b �o1=1 = �s=1 = a ^ :b�s=2 = �s=2;h0;1i = :a ^ b �o1=0 = �s=0 _ �s=1 = :b�o2=1 = �s=1 = :a ^ bThe formulae �M 's take into a

ount not only the events that label ea
h I-M path, butalso those that do not label the path. Therefore, the above algorithm avoids the pitfall ofoutput
ow
omposition. However, it is also
learly subje
t to the
ombinatorial explosionof the number of modes and paths. Fortunately, in many pra
ti
al
ases, it is possible tosplit the mode automaton into several independent parts and to
ompile it a

ordingly.4.4 Appli
ation of Partial Order te
hniquesConsider for instan
e the series system pi
tured in Fig. 8. The transition B:b is neitherenabled nor disabled by the the transition A:a, and vi
e versa. A:a depends only on A:s,B:b depends only on B:s, none of them depends on A:o and B:o. Therefore, state variables(and input
ows)
an be splitted two groups: fA:sg and fB:sg. Ea
h of this group
an beanalyzed independently. The two groups of equations for transitions are as follows.A:s B:s�A:s=0 = �0;h0i = :A:a �B:s=0 = �0;h0i = :B:b�A:s=1 = �1;h1i = A:a �B:s=1 = �1;h1i = B:bThe third step of the algorithm
an be now a
hieved by
onsidering the textual (or
13

o
a

B

s=0 s=1 s=0

A

i

o=1 o=0 o=i+1

o
s=1

o=i

b

(a) System
a

b a

b

A.s=0,B.s=0

B.o=1

A.s=1,B.s=0

B.o=2

B.o=1

B.o=0

A.s=0,B.s=1

A.s=1,B.s=1

(b) Rea
hability graphFigure 8: A series system and its rea
hability graphgraphi
al) des
ription of the automaton.A:o; B:o�A:o=1 = �A:s=0 = :A:a�A:o=0 = �A:s=1 = A:a�B:o=2 = �A:o=1 ^ �B:s=0 = :A:a ^ :B:b�B:o=1 = (�A:o=1 ^ �B:s=1) _ (�A:o=0 ^ �B:s=0) = (:A:a ^ B:b) _ (A:a ^ :B:b)�B:o=0 = �A:o=0 ^ �B:s=1 = A:a ^ B:bThe above idea is an appli
ation of the so-
alled Partial-Order methods [9℄.LetA = hD; dom;S;F in;Fout;�; Æ; �; Ii be a mode automaton. R is a valid dependen
yrelation over � if for all e1; e2 2 �. (e1; e2) 62 R (e1 and e2 are independent) implies thatthe two following properties hold for all rea
hable modes M 2 dom(S):1. If there exists I1 2 dom(F in) su
h that Æ(M; I1; e1) is de�ned, then there existsI2 2 dom(F in) su
h that Æ(M; I2; e2) is de�ned i� Æ(M; I2; e2) is de�ned (independenttransitions
an neither disable nor enable ea
h other); and2. If both Æ(M; I1; e1) and Æ(M; I2; e2) are de�ned then the following equality holds:Æ(Æ(M; I1; e1); I2; e2) = Æ(Æ(M; I2; e2); I1; e1) (
ommutativity of enabled independenttransitions).Now,
onsider a path in the rea
hability graph. By applying the
ommutativity rule,it is possible to group together the dependent events without
hanging the �rst and lastmode. In other words, the path
an be de
omposed into several independent sequen
es ofdependent events. As a
onsequen
e, in our
ompilation algorithm, equivalen
e
lasses forthe valid dependen
y relation R
an be
onsidered separately. This is a
tually what wedid on the above example.In pra
ti
e, we de�ne the relation R as follows. First, we de�ne the notion of immediatedependen
e between variables and events. Let e 2 � and let v 2 S. We say that e depends14

immediately on v if there exists a rea
hable mode M 2 dom(S [F in), I 2 dom(F in) and
 2 dom(v) su
h that at least one of the three following
onditions is satis�ed:� Either v 2 F in, Æ(M; I; e) is de�ned and either Æ(M; I[v
℄; e) is not de�ned orÆ(M; I[v
℄; e) 6= Æ(M; I; e); or� v 2 S, Æ(M; I; e) is de�ned and either Æ(M [v
℄; I; e) is not de�ned or Æ(M [v
℄; I; e) 6= Æ(M; I; e); or� v 2 S and M [v℄ 6= Æ(M; I; e)[v℄.Simple synta
ti

onditions ensure immediate dependen
e.Se
ond, we
onsider the relation � over � de�ned as follows. e1 � e2 if there exists avariable v su
h that v depends immediately on both e1 and e2. Finally, we
onsider thetransitive
losure of �, whi
h we denote by abuse � as well. It is easy to verify that �is a valid dependen
y relation over �. The relation � splits � into one or more groups ofevents and asso
iates a disjoint set of variables with ea
h group. Steps third and fourth ofthen algorithm
an be applied separately on ea
h group. Step fourth is modi�ed in orderto take into a

ount that an output
ow may depend on state variables and input
owsthat belong to di�erent groups.5 Related FormalismsMode automata are related to the formalisms used in both formal methods and reliabilityengineering frameworks. This se
tion dis
usses their relationships with these formalisms.5.1 Blo
k diagramsMode automata are
learly a generalization of blo
k diagrams [2℄. The translation fromthe latters to the formers is straightforward, as illustrated Fig. 9. Ea
h blo
k is translatedinto the small automaton pi
tured Fig. 9 (b). Then, the diagram is translated element byelement. All
ows are assumed to be Boolean.Mode automata generalize blo
k diagrams into several dire
tions:� Blo
ks may have several input and output
ows.� Input and output
ows may be multivalued (not restri
ted to Boolean values).� Blo
ks may be in more than two modes (working or failed).� There may be other events than the failures of
omponents.� Syn
hronizations
an be used to model
omplex behaviors, su
h as
old redundan
ies(as illustrated se
tion 3.3). 15

B1

B2

B3

A1

A2

2/3

TS (a) A blo
k diagram
s=1

o=i

s=0

o=0

fail
i o(b) Translation of a blo
k

A1

A2

or

1

S B2

B1

B3

2/3

T

(
) Translation of the diagram
Figure 9: A blo
k diagram and the
orresponding mode automaton5.2 Finite state ma
hinesMode automata generalize Mealy ma
hines. Mealy ma
hines are also input/output au-tomata, with Boolean inputs and outputs (see [12℄ for an introdu
tion). They are widelyused in the
ir
uit veri�
ation framework. The SMV model
he
ker [16℄, for instan
e, isbased on this formalism (in SMV however, transitions are anonymous).The notion of syn
hronization ve
tor
omes from the seminal work by Arnold and Nivaton the semanti
s of
on
urrent pro
esses [3℄. Arnold and Nivat restri
ted their attention to�nite state ma
hines without input and output. Mode automata
an be seen as generalizedMealy ma
hines with Arnold-Nivat
omposition me
hanisms.5.3 Petri netsPetri nets [17℄ deserve a spe
ial mention be
ause for they are often
onsidered as the mainalternative to Boolean models (fault trees and blo
k diagrams) for reliability studies.The translation from �nite
apa
ity Petri nets to mode automata is straightforward: itsuÆ
es to de�ne an integral state variable for ea
h pla
e and a transition for ea
h transition.For instan
e, the Petri net transition pi
tured Fig. 10 (a) is translated as follows.P1 > 0 ^ P2 = 0 ^ P3 > 0 T�! P1 := P1� 1; P4 := P4 + 2Named values give a mean to simplify des
riptions. Consider for instan
e the Petrinet pi
tured Fig. 10 (b), whi
h is taken from [7℄ (Fig. 1.9, page 16). The upper rowof pla
es des
ribe the su

essive steps of a produ
tion pro
ess. In order to translatethis Petri net, we
ould apply the method sket
hed above. However, a mu
h simpler16

P1 P2 P3

P4

T

2

(a) A transition of a Petri net
ed

depositwait raw
P1

load
el

op1
eop1

wait dep.

empty
R

object

op2
eop2

wait free
P2

unload wait with. withdrawal
ew

t1 t2 t3 t4 t5

eu

t6 t7 t8 t9 t10

1

4

1

1 3

(b) A Petri net for produ
tion
ellFigure 10: Petri netssolution
onsists in
reating only one state variable per
omponent of the produ
tion
ell: the state of ma
hine is des
ribed by means of a variable M1 ranging in the do-main fwaitRaw; load; op1; waitDeposit; depositg. Transitions
an still be translated in astraightforward way. For instan
e, the transition t1 is translated as follows.M1 = waitRaw ^ Robot = idle P1�! M1 := load; Robot := busyNot only the des
ription is simpler, but it
ontains less variables and
an therefore beassessed more eÆ
iently.In the same vein, syn
hronization ve
tors avoid many gadgets, i.e. additional pla
esand ar
s that are required to
apture simultaneous (or quasi-simultaneous) behaviors withPetri nets (see [17℄ for a dis
ussion on these gadgets).Petri nets
an be seen as mode automata with several restri
tions:� They have only state variables. Indeed,
ows
an be repla
ed by state variables.However, the formers are often mu
h more
onvenient to model the propagation ofan information.� They put strong requirements on guards and a
tions of transitions. Namely, guards
an be only
onjun
ts of inequalities of the form pla
e >
onstant (possibly pla
e = 0if inhibitor ar
s are allowed) and assignments
an be only of the form pla
e :=pla
e�
onstant. Several authors suggested to over
ome this restri
tion by introdu
-ing extended guards (see for instan
e [6, 5℄).� They provide no natural syn
hronization me
hanism.Our feeling is that all of these restri
tions are justi�ed more by histori
al reasons thanby te
hni
al issues (graphi
al
onsiderations play a role as well): linear algebra methods
annot work without these restri
tions. However, linear algebra methods are seldom usedin pra
ti
e. This is espe
ially true in reliability analysis framework where basi
ally twokinds of assessment methods are used (for a
omprehensive survey see [1℄): Markovian17

assessment method and Monte-Carlo simulations. In both
ases, there is no mathemati
alor algorithmi
 need for the Petri net restri
tions.Finally, it is worth noti
ing that the graphi
al formalism of Petri nets
an be appliedto mode automata (as illustrated Fig. 2 (
)), up to small
hanges in the interpretation ofar
s entering and going out transitions.5.4 Rea
tive LanguagesMode automata are stronlgy related to visual spe
i�
ation languages su
h as StateCharts [11℄or Argos [13℄. They are also
lose to the underlying model of rea
tive languages su
h asLustre [10℄. The di�eren
es between mode automata and these formalisms stand mainlyin the way they are used. Lustre, for instan
e, is a high level language to program appli-
ations that intera
t
ontinuously with their environment. As a
onsequen
e, it puts theemphasis on modes and transfer fun
tions (that des
ribe a
tually the intera
tion of theprogram with its environment). On the
onverse, mode automata are used to design and tostudy models. The emphasis is put on (sequen
es of) events: failure s
enarios, probabilityof failure, importan
e fa
tors of
omponentsThe term \mode automata" is borrowed from referen
es [14, 15℄. These arti
les proposeto extend Lustre with a
onstru
t that supports the des
ription of running modes. Sin
e adata
ow program is basi
ally a Mealy ma
hine, our notion of mode automata is very
loseto the notion of Maranin
hi & al. However, the
omposition operations proposed in [14℄are di�erent from the ones we proposed here (the formers are inherited from Argos paralleland hierar
hi
al
ompositions).5.5 AltaRi
aAltaRi
a is a high level des
ription language. Its syntax and semanti
s have been des
ribedin referen
es [18, 4℄. The full AltaRi
a language embeds several features, su
h as bidire
-tional
ows or broad
asting, that make its
ompilation into Boolean formulae diÆ
ult.For this reason, a restri
tion of AltaRi
a has been de�ned that drops out these features.The resulting language, so-
alled AltaRi
a data
ow, is mu
h easier to
ompile. Modeautomata are the underlying mathemati
al model of this language.Fig. 11 shows two typi
al AltaRi
a data
ow de
larations. Fig. 11(a) shows the de
la-ration of the mode automaton that des
ribes the valve of our introdu
tory example (seeFig. 1). Fig. 11(b) shows the de
laration of a system that
ontains three subsystems: avalve, a pipe and an operator. The system has an input
ow
onne
ted to the input
ow ofthe valve. The output
ow of the valve is
onne
ted to the input
ow of the pipe. Finally,the output
ow of the pipe is
onne
ted to the output
ow of the system. The openingand
losing of the valve are syn
hronized with the
orresponding a
tions of the operator.
18

node Valve;state open:bool, stu
k:bool;flow i:bool:in, o:bool:out;event open,
lose, fail;transopen and not stu
k |-
lose -> open:=false;not open and not stu
k |- open -> open:=true;not stu
k |- fail -> stu
k:=true;assert not open => i=o, open => not o;init open=true, stu
k=false;edon (a)
omponent de
laration
node System;state open:bool, stu
k:bool;flow I:bool:in, O:bool:out;sub V:Valve, P:Pipe, O:operator;assertI=V.i, P.i=V.o, O=V.o;syn

lose = <V.
lose,O.
loseValve>,open = <V.open,O.openValve>;edon (b) node de
larationFigure 11: Two AltaRi
a data
ow de
larations6 Con
lusionIn this arti
le, we introdu
ed mode automata. We advo
ated their use as a high levellanguage to design reliability models. Mode automata embed a number of interestingfeatures that are borrowed from di�erent formalisms.� They are a states/events based formalism, like �nite state ma
hines and Petri nets.� They are a data
ow language, like blo
k diagrams and rea
tive languages.� They are both mathemati
ally well de�ned and graphi
ally easy to represent (withthe ability to have di�erent views of the same obje
t as in UML).� They are a hierar
hi
al language with di�erent
omposition operations: parallel
om-position,
onne
tion and syn
hronization.� They
an be interpreted sto
hasti
ally to perform probabilisti
 analyses, in the sameway Petri nets are.These features make it possible to des
ribe within a single formalism both fun
tional anddysfon
tional aspe
ts of the systems under study.Sin
e mode automata are a high level language with a great expressiveness, the assess-ment of models is in general a diÆ
ult task. In this arti
le, we proposed an algorithmto
ompile mode automata into fault trees in order to over
ome this problem. This algo-rithm works well in pra
ti
e. The idea is that simple models (those that are
lose to ablo
k diagram)
an be
ompiled simply. More
omplex models should be assessed by othermeans. For instan
e, it would be possible to
ompile
omplex models into Petri nets. Su
ha
ompilation
ould be interesting to be able to use the many available Petri net tools.

19

Referen
es[1℄ M. AjmoneMarsan, G. Balbo, G. Conte, S. Donatelli, and G. Fran
es
hinis. Modellingwith Generalized Sto
hasti
 Petri Nets. Wiley Series in Parallel Computing. JohnWiley and Sons, 1994.[2℄ J.D. Andrews and T.R. Moss. Reliability and Risk Assessment. John Wiley & Sons,1993. ISBN 0-582-09615-4.[3℄ A. Arnold. Finite Transition Systems. C.A.R Hoare. Prenti
e Hall, 1994. ISBN0-13-092990-5.[4℄ A. Arnold, A. Gri�ault, G. Point, and A. Rauzy. The altari
a language and itssemanti
s. Fundamenta Informati
ae, 34:109{124, 2000.[5℄ G. Ciardo, A. Blakemore, P.F. Chimento, J. Muppala, and K. S. Trivedi. AutomatedGeneration and Analysis of Markov Reward Models using Sto
hasti
 Petri Nets. InC. Meyer and R.J. Plemmons, editors, Linear Algebra, Markov Chains and QueueingModels, volume 48 of IMA Volumes in Mathemati
s and Appli
ations, pages 145{191.Springer Verlag, 1993.[6℄ G. Ciardo, J. Muppala, and K. S. Trivedi. SPNP: Sto
hasti
 Petri Net Pa
kage. In Pro-
eedings of Third Int. Workshop on Petri Nets and Performan
e Models, (PNPM89),pages 142{152, 1989.[7℄ F. DiCesare, G. Harhalakis, J.M. Proth, M. Silva, and F.B. Vernadat. Pra
ti
e ofPetri Nets in Manufa
turing. Chapman and Hall, 1993.[8℄ J. Esperza. De
idability and
omplexity of petri nets problems { an introdu
tion. InW. Reisig and G. Rozenberg, editors, Le
tures on Petri Nets I: Basi
 Models, volume1491 of LNCS, pages 374{428. Springer, 1998. ISBN 3-540-65306-6.[9℄ P. Godefroid. Partial-Order Methods for the Veri�
ation of Con
urrent Systems, vol-ume 1032. LNCS, 1996. ISBN 3-540-60761-1.[10℄ N. Halbwa
hs. Syn
hronous Programming of Rea
tive Systems. Kluwer A
ademi
Publisher, 1993. ISBN 0-7923-9311-2.[11℄ D. Harel. State
harts: A visual approa
h to
omplex systems. S
ien
e of ComputerProgramming, 8(3), 1987.[12℄ J.E. Hop
roft and J.D. Ullman. Introdu
tion to automata theory languages and
om-putation. Addison Wesley, 1979. ISBN 0-201-1988-X.[13℄ F. Maranin
hi. Argonaute: graphi
al des
ription, semanti
s and veri�
ation of re-a
tive systems by using a pro
ess algebra. In J. Sifakis, editor, Pro
eedings of theInternational Workshop on Automati
 Veri�
ation Methods for Finite State Systems,volume 407 of LNCS. Springer Verlag, June 1989.20

[14℄ F. Maranin
hi and Y. R�emond. Mode-automata: About modes and states for rea
tivesystems. In European Symposium On Programming, Lisbon (Portugal), Mar
h 1998.Springer verlag.[15℄ F. Maranin
hi, Y. R�emond, and Y. Raoul. Matou : An implementation of mode-automata into d
. In Compiler Constru
tion, Berlin (Germany), Mar
h 2000. Springerverlag.[16℄ K. M
Millan. Symboli
 Model Che
king. Kluwer A
ademi
 Publisher, 1993. ISBN0-7923-9380-5.[17℄ T. Murata. Petri Nets: Properties, Analysis and Appli
ations. Pro
eedings of theIEEE, 77(4):541{580, April 1989.[18℄ G. Point and A. Rauzy. AltaRi
a {
onstraint automata as a des
ription language.Journal Europ�een des Syst�emes Automatis�es, 33(8{9):1033{1052, 1999.[19℄ A. Rauzy. A new methodology to handle boolean models with loops. IEEE Transa
-tions on Reliability, 2001. To appear.[20℄ J. Rumbaugh, I. Ja
obson, and G. Boo
h. The Uni�ed Modeling Language. Referen
eManual. Addison Wesley, 1999. ISBN 0-201-30998-X.[21℄ D.R. Shier. Network Reliability and Algebrai
 Stru
tures. Oxford S
ien
e Publi
ations,1991.

21

