
Mode Automataand their Compilation into Fault TreesAntoine RauzyInstitut de Math�ematique de Luminy163, avenue de Luminy, Case 90713288 Marseille edex 9 { FRANCEarauzy�iml.univ-mrs.frAbstratIn this artile, we advoate the use of mode automata as a high level represen-tation language for reliability studies. Mode automata are states/transitions basedrepresentations with the additional notion of ow. They an be seen as a generaliza-tion of both �nite apaity Petri nets and blok diagrams. They an be assembledinto hierarhies by means of omposition operations.The ontribution of this artile is twofold. First, we introdue mode automataand we disuss their relationship with other formalisms. Seond, we propose analgorithm to ompile mode automata into Boolean equations (fault trees). Suha ompilation is of interest for two reasons. First, assessment tools for Booleanmodels are muh more eÆient than those for states/transitions models. Seond, theautomated generation of fault trees from higher level representations makes easiertheir maintenane through the life yle of systems under study.1 IntrodutionDi�erent formalisms are used in the reliability engineering framework in order to designmodels of the systems under study: Boolean formalisms (e.g. Fault Trees, Blok Diagrams)and states/transitions formalisms (e.g. Petri Nets, Markov Graphs). All of them stand ata rather low level whih makes their design and their maintenane a diÆult task. Higherlevel formalims are needed to �ll the gap between systems and models.In this artile, we advoate the use of mode automata as suh a formalism. A modeautomaton is a states/transitions system with input and output ows. States are alledmodes for in eah mode a di�erent transfer funtion determines the values of output owsfrom the values of input ows. Mode automata an be ombined in order to design hier-arhial models. They generalize both bounded Petri nets and blok diagrams. The term\mode automaton" itself is borrowed from the work by Maraninhi & al. [14, 15℄ on the1



introdution of modes into reative languages. We use this term here in a di�erent way,although the two onepts are strongly related.The popularity of above mentioned formalisms (Fault Trees, Petri nets, . . . ) relies notonly on their mathematial soundness, but also on the possibility to represent graphiallyeah mathematial onstrut. Mode automata have also this property. Moreover, di�erentviews of the same automaton an be given in order to emphasize an aspet or anotherof the model. Two main ategories of views are provided: states/transitions views andhierahial views. The latters are lose to funtional representations (e.g. blok diagrams).The design of a model always results of a tradeo� between the auray of the desriptionand the tratability of omputations to be performed. For instane, the fault tree methodignores deliberately the sequening among events in order to derease the omplexity ofqualitative and probabilisti assessments. As a generalization of Petri nets, mode automatamake it possible to desribe omplex phenomena, leading to diÆult assessment problems.However, a key idea is that they an be ompiled eÆiently into Boolean formulae (faulttrees). Indeed, this ompilation proess loses some information. This is the prie to payto pass from a funtional states/transitions desription to a fault tree. However, the learmathematial semantis of mode automata makes expliit what is lost during this proess.The ontribution of this artile is thus twofold. First, we introdue mode automata andwe disuss their relationship with lassial formalisms. Seond, we propose an algorithmto ompile mode automata into Boolean formulae. This algorithm ould be adapted toother high level desription formalisms. This work is a part of a larger projet, so-alledAltaRia, that aims to design a normalized high level language for reliability studies aswell as a workbenh supporting this language [18, 4℄.The remainder of this artile is organized as follows. Setion 2 presents mode automata.Setion 3 explains the di�erent mehanisms to ombine them. Setion 4 is devoted to theirompilation into Boolean formulae. Finally, setion 5 examines related formalims.2 Mode Automata2.1 Informal presentationA mode automaton is an input/output automaton. It has a �nite number of states, thatare alled modes. At eah instant, it is in one (and only one) mode. It may hange ofmode when an event ours. In eah mode, a transfer funtion determines the values ofoutput ows from the values of input ows.Consider, for instane, the valve pitured Fig. 1 (a). Assume that it an be either openor losed and that it may be stuk, either open or losed. The valve hanges from opento losed (resp. from lose to open) if it is not stuk and if the event lose (resp. open)ours. It gets stuk when the event fail ours. If the valve is open, its output ow equalsits input ow. Otherwise, its output ow is null.Fig. 1 (b) shows the mode automaton that desribes suh a valve. Modes are representedby retangles with rounded orners. The mode itself and the transfer funtion are desribed2



respetively above and under the separation line. The initial mode is pointed by an arrow.Transitions are represented by arrows joining modes.Suh normalized graphial notations | and the orrespondane between graphial andtextual onstruts | is atually essential to make the formalism both mathematiallysound and user friendly.2.2 Formal de�nitionLet D be a �nite set of symbols alled onstants and let V be a �nite set of symbols alledvariables (D \ V = ;). D is alled a domain. We assume given a mapping dom from V to2D (the powerset of D), suh that forall v in V, dom(v) 6= ;. dom(v) is alled the domainof the variable v, i.e. dom(v) is the set of possible values of v.Let U � V. We denote by dom(U) the artesian produt of the domains of the variablesof U : dom(U) = �v2U dom(v). In other words, dom(U) is the set of all possible valuationsof the variables of U . Let U 2 dom(U). We denote by U [v℄ the value of the variable v inthe valuation U and by U [v  ℄,  2 dom(v), the valuation that is equal everywhere to Ubut possibly in v, where it is equal to .A mode automaton is a ninetuple A = hD; dom;S;F in;Fout;�; Æ; �; Ii, where� D and dom are a domain and domain funtion de�ned as above.� S, F in, Fout are three pairwisely disjoint subsets of V. Variables of S, F in and Foutare alled respetively state variables, input ows and output ows.� � is a �nite set of symbols alled events.� Æ is a partial funtion from dom(S) � dom(F in) � � to dom(S). Æ gives the nextvalues of state variables from their urrent values, the values of input ows and theevent the ourrene of whih indues a hange of mode.� � is a total funtion from dom(S) � dom(F in) to dom(Fout). � gives the values ofoutput ows from the urrent values of state variables and input ows.
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� Finally, I belongs to dom(S) and is alled the initial mode.Example: Consider again the valve pitured Fig. 1. Assume that its input and outputows range in the set fnull; low;medium; highg. The mode automaton that desribes thevalve is formally de�ned as follows.� S = fstate; stukg, with dom(state) = fopen; loseg and dom(stuk) = ftrue; falseg.� F in = finF lowg, Fout = foutF lowg, with dom(inF low) = dom(outF low) = fnull;low;medium; highg.� � = fopen; lose; failg.� Æ and � are de�ned as pitured Fig. 1 (b).� I = hopen; falsei.2.3 Reahable modesA mode automaton desribes a set of possible behaviours: from its initial mode, it mayevolve and hange of mode by exeuting transitions. LetA = hD; dom;S;F in;Fout;�; Æ; �; Iibe a mode automaton. The set of reahable modes of A, denoted by Reah(A) is the small-est subset of dom(S) suh that:� I 2 Reah(A).� If S 2 Reah(A) and it exists I 2 dom(F in), e 2 � and T 2 dom(S) suh thatT = Æ(S; I; e), then T is in Reah(A).In the above de�nition, we assumed �nite domains. Therefore, the set of reahablemodes is �nite as well. All of the lassial questions about behavioral properties (reah-ability, deadlok freeness, liveness, model heking, . . . ) are thus deidable. Sine modeautomata are very similar to n-bounded Petri-nets, it is easy to prove that they are of thesame omplexity in both formalisms (namely PSPACE-hard, see [8℄ for an survey of thistopis). If the de�nition is modi�ed to allow in�nite domains, it is easy to see that modeautomata are a superset of Petri nets with inhibitor ars. Sine the latters have the powerof T�uring mahines, almost all of the above questions are undeidable [8℄.2.4 Textual and Graphial ConstrutsTo desribe mode automata, one needs some syntati onstruts. For instane, transitionsan be represented as triples hG; e; Ai, denoted by G e�! A, where� G is a Boolean formula involving state variables, input ows and output ows. G isalled the guard, or the pre-ondition, of the transition.4



� e 2 �.� A is a set of assignments in the form v := exp, where v is a state variable and exp isan expression involving state variables, input ows and output ows. A is alled theation, or the post-ondition, of the transition.For instane, the failure transition of the valve an be written not stuk failure�! stuk := true.In a similar way, transfer funtions an be represented as equations in the form o = S,where o is an output ow and S is a formula that involves state variables and input ows.Mode automata an be also represented graphially in di�erent ways. Fig. 2 showsthree di�erent representations of the mode automaton pitured Fig. 1 (b). Fig. 2 (a) putsthe emphasis on the transfer funtion. A generi mode is de�ned for eah transfer funtion.Transitions are labeled with their guards, events and ations. Fig. 2 (b) presents the valveas a omponent to be inserted in a more general (funtional) desription. The omponent isrepresented by a box. Its input and output ows are represented by arrows that respetivelyome in and go out the omponent. Fig. 2 () is a Petri net like representation. It putsthe emphasis on state variables.
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single �gure. Spei�ation languages suh as UML [20℄ advoate that it is often muh moreonvenient to have several views of the same objet than to have a single overloaded view.Graphial notations assoiated with mode automata provide the designer with this ability.3 Composition of mode automataA major prerequisite for a high level desription language is to be ompositional, i.e. toallow the desription of systems as hierarhies of (reusable) omponents. Mode automataan assembled by means of three operations: parallel omposition, onnetion and syn-hronization. These operations produe mode automata: any hierarhy an be \attened"into an equivalent mode automaton. Moreover, this proess is eÆient beause it involvesonly very simple syntati operations.3.1 Parallel ompositionLet A1,. . . ,An be n mode automata (Ai = hD; dom;Si;F ini ;Fouti ;�i; Æi; �i; Iii). We anassume without a loss of generality that their voabularies are distint, i.e. that for any iand j, 1 � i < j � n, (Si [ F ini [ Fouti ) \ (Sj [ F inj [ Foutj ) = ; and �i \ �j = ;.The parallel omposition of A1,. . . ,An, denoted by �ni=1Ai, is a mode automaton A =hD; dom;S;F in;Fout;�; Æ; �; Ii suh that:� S = Sni=1 Si, F in = Sni=1F ini , Fout = Sni=1Fouti , � = Sni=1�i.� Æ is obtained by lifting the Æi's up to A: Let S1 2 dom(S1), . . . , Sn 2 dom(Sn). LetI1 2 dom(F in1 ), . . . , In 2 dom(F inn ). Finally, let Ti 2 dom(Si) and e 2 �i suh thatTi = Æi(Si; Ii; e). Then,Æ(S1; : : : ; Sn; I1; : : : ; In; e) = hS1; : : : ; Si�1; Ti; Si+1; : : : ; Sni� Similarly � is obtained by lifting up the �i's:�(S1; : : : ; Sn; I1; : : : ; In) = h�1(S1; I1); : : : ; �n(Sn; In)i� Finally, I = hI1; : : : ; Ini.In other words, the parallel omposition onsists in glueing together the Ai's. Thisoperation is sometimes alled a free produt [3℄. From a graphial point of view, theparallel omposition onsists in drawing a box to surround the graphial representation ofits omponents, as illustrated Fig. 3 (a) for omponents A, B and C.
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(b) Connetion of B.i and C.i to A.oFigure 3: Parallel omposition and onnetion of mode automata.3.2 ConnetionThe onnetion onsists in ompelling one or more input variables to be equal to an outputvariable. This proess is illustrated Fig. 3 (b) where input ows of omponents B and Care plugged in the output ow of the omponent A.To be valid, a onnetion must introdue no loop. This is the ausality problem, thathas been extensively studied in the framework of reative languages [10℄. We introduehere the notion of ausal dependene, whih is spei� to mode automata.Let A = hD; dom;S;F in;Fout;�; Æ; �; Ii, let i 2 F in and let o 2 Fout. o is said ausalyindependent from i, if the following property holds.8S 2 dom(S); 8I 2 dom(F in); 8 2 dom(i) �(S; I)[o℄ = �(S; I[i ℄)[o℄o is said ausaly dependent of i otherwise.This de�nition of ausality is indeed very ostly to hek. Fortunately, there are verysimple syntati onditions that ensure ausal independene. For instane, it suÆes thati does not our in the equations that de�ne the value of o.Let A = hD; dom;S;F in;Fout;�; Æ; �; Ii be a mode automaton, let o 2 Fout and leti1; : : : ; ik 2 F in suh that o is ausaly independent of i1, . . . , ik and dom(o) � dom(i1),. . . , dom(o) � dom(ik).Let F in? = F in n fi1; : : : ; ikg, let S 2 dom(S) and let I 2 dom(F in? ). We denote byIS;o=i1;:::;o=ik the valuation of F in suh that:IS;o=i1;:::;o=ik [v℄ def= � I[v℄ if v 2 F in?�(S; I 0)[o℄ otherwisewhere I 0 is any extension of I into a valuation of F in (by de�nition, �(S; I 0)[o℄ is the same,no matter what this extension is).The mode automaton A in whih i1, . . . , ik are onneted to o is the mode automatonAo=i1;:::;o=in = hD; dom;S;F in? ;Fout;�; Æ0; �0; Ii, where Æ0 and �0 are de�ned as follows.7
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We an now de�ne formally the synhronization.Let A = hD; dom;S;F in;Fout;�; Æ; �; Ii be a mode automaton and let ~e1,. . . ,~er be rsynhronization vetors. Let �0 be the subset of � of the events that our in the ~ei0s. Thesynhronization ofA by ~e1, . . . ,~er is a mode automatonAj~e1; : : : ; ~er = hD; dom;S;F in;Fout; (�n�0) [ f~e1; : : : ; ~erg; Æ0; �; Ii, where Æ0 is de�ned as follows.� For any e 2 � n �0, S 2 dom(S) and I 2 dom(F in), if Æ(S; I; e) is de�ned thenÆ0(S; I; e) is de�ned as well andÆ0(S; I; e) def= Æ(S; I; e)� For any ~ei = he1; : : : ; eki, S 2 dom(S) and I 2 dom(F in), if Æ(S; I; e1), . . . , Æ(S; I; ek)are de�ned and pairwisely ompatible, then Æ0(S; I; ~ei) is de�ned andÆ0(S; I; ~ei) def= Æ(S; I; e1) ÆS : : : ÆS Æ(S; I; ek)4 Compilation into Boolean formulaeBy ompiling mode automata into Boolean formulae, one expets two bene�ts: a bettereÆieny in the assessment of the models and a simpli�ation of the design and the main-tenane of Boolean models. The prie to pay is the loss of the sequening among events:sequenes of events are ompiled into onjunts of events.In this setion, we propose a ompilation algorithm that works well on models that arelose to a blok diagram representation. Many real-life models are atually oneptuallysimple, nevertheless hard to assess beause of their sizes. Therefore, a good ompiler should�rst of all ompile eÆiently this kind of models.4.1 Priniple of the ompilationWe assume from now that the mode automatonA = hD; dom;S;F in;Fout;�; Æ; �; Ii understudy desribes a system that may fail. The initial mode I represents the nominal stateof the system. Events represent failures of its omponents. Some modes represent failurestates. Paths from I to these modes represent senarios of failure.The ompilation aptures failure senarios into a set of Boolean equations. It produesa Boolean formula �v; for eah pair (v; ), v 2 S [ Fout,  2 dom(v), suh that:� The variables of �v; are the events of �.� The minimal utsets of �v; one-to-one orrespond with sets of events fe1; : : : ; ekgsuh that there exists a sequene of modes M0,. . . ,Mk suh that:{ M0 = I.{ Æ(M0; I1; e1) = M1, . . . , Æ(Mk�1; Ik; ek) =Mk for some I1, . . . , Ik 2 dom(F in).10



{ �(Mk; Ik)[v℄ = .The algorithm works from reahability graph of A (that an be seen as a reliabilitynetwork [21℄): First, the hierarhy is attened into a single mode automaton aordingto the semantis desribed setion 3. Seond, the reahability graph is omputed. Third,one assoiates with eah mode M of this graph the disjunt over the paths � from I toM of the onjunt of events that label �. Fourth and last, one assoiates with eah pair(v; ) the disjunt of formulae that are assoiated with the modes M for whih there existsI 2 dom(F in) suh that �(M; I)[v℄ = .4.2 Problems raised by the ompilationThe above algorithm raises several problems.The �rst one stands in the exponential blow up of the number of modes. Consider, forinstane, the series-parallel system with m lines of n omponents pitured in Fig. 6 (a).This automaton has about 2nm modes | a huge number even for small values of n and m.Means should therefore be found to take advantage of independene of subsystems.The seond problem stands in the exponential blow up of the number of paths. Con-sider, for instane, the graph pitured in Fig. 6 (b). Assume that the initial mode is the leftinferior orner and that the failure mode is the right superior orner. Suh a grid has onlym� n modes but � nn+m� failure paths. A solution to this problem onsists in onstrutingthe formula assoiated with a vertex from the formulae assoiated with its neighbours.Suh a loal ompilation is however not possible if the graph ontains loops [19℄.The third problem, whih is related to the previous one, stands in the omposition ofomponents. Consider, for instane, the mode automaton pitured in Fig. 6 (). If onewould ompile the three omponents A, B and C separately, one would obtain somethingas the following equations (assuming that all the variables are Boolean).A:o1 = A:a A:o2 = A:b B:o = B:aC:o = (A:o1 ^ A:o2) _ (A:o1 ^ B:o) _ (A:o2 ^B:o)C:o admits three minimal utsets fA:a; A:bg, fA:a; B:ag and fA:b; B:ag. However, byonstrution of the omponent A, events A:a and A:b annot both our. In order to dealwith this kind of onits, the ompilation algorithm has atually to onsider not onlyevents ours along the paths but also those that do not.In the next setion, we explain how the latter problem an be solved. In setion 4.4,we show how to ompute the reahability graph by parts.4.3 A Modi�ed AlgorithmThe third step of the algorithm is modi�ed as follows. The paths (starting from the initialmode I) of the reahability graph are omputed by means of the algorithm given Fig. 7.This algorithm omputes all pairs hM;~ei, where M is a mode and ~e is a vetor of Boolean11
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C  fhI;~0ig; D ;while C 6= ; doLet hM;~ei 2 CC  C n fhM;~eig, D  D [ fhM;~eigforall ei 2 �, I 2 dom(F in), M 0 2 dom(S) suh that M 0 = Æ(M; ei; I) doC  C [ fhM 0; ~e[ei℄ 1igdonedone Figure 7: The algorithm to ompile pathsConsider, for instane, the omponent A of Fig. 6 (). The formulae built by thealgorithm are as follows.�s=0 = �s=0;h0;0i = :a ^ :b �o1=0 = �s=0 _ �s=2 = :a�s=1 = �s=1;h1;0i = a ^ :b �o1=1 = �s=1 = a ^ :b�s=2 = �s=2;h0;1i = :a ^ b �o1=0 = �s=0 _ �s=1 = :b�o2=1 = �s=1 = :a ^ bThe formulae �M 's take into aount not only the events that label eah I-M path, butalso those that do not label the path. Therefore, the above algorithm avoids the pitfall ofoutput ow omposition. However, it is also learly subjet to the ombinatorial explosionof the number of modes and paths. Fortunately, in many pratial ases, it is possible tosplit the mode automaton into several independent parts and to ompile it aordingly.4.4 Appliation of Partial Order tehniquesConsider for instane the series system pitured in Fig. 8. The transition B:b is neitherenabled nor disabled by the the transition A:a, and vie versa. A:a depends only on A:s,B:b depends only on B:s, none of them depends on A:o and B:o. Therefore, state variables(and input ows) an be splitted two groups: fA:sg and fB:sg. Eah of this group an beanalyzed independently. The two groups of equations for transitions are as follows.A:s B:s�A:s=0 = �0;h0i = :A:a �B:s=0 = �0;h0i = :B:b�A:s=1 = �1;h1i = A:a �B:s=1 = �1;h1i = B:bThe third step of the algorithm an be now ahieved by onsidering the textual (or
13
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(b) Reahability graphFigure 8: A series system and its reahability graphgraphial) desription of the automaton.A:o; B:o�A:o=1 = �A:s=0 = :A:a�A:o=0 = �A:s=1 = A:a�B:o=2 = �A:o=1 ^ �B:s=0 = :A:a ^ :B:b�B:o=1 = (�A:o=1 ^ �B:s=1) _ (�A:o=0 ^ �B:s=0) = (:A:a ^ B:b) _ (A:a ^ :B:b)�B:o=0 = �A:o=0 ^ �B:s=1 = A:a ^ B:bThe above idea is an appliation of the so-alled Partial-Order methods [9℄.LetA = hD; dom;S;F in;Fout;�; Æ; �; Ii be a mode automaton. R is a valid dependenyrelation over � if for all e1; e2 2 �. (e1; e2) 62 R (e1 and e2 are independent) implies thatthe two following properties hold for all reahable modes M 2 dom(S):1. If there exists I1 2 dom(F in) suh that Æ(M; I1; e1) is de�ned, then there existsI2 2 dom(F in) suh that Æ(M; I2; e2) is de�ned i� Æ(M; I2; e2) is de�ned (independenttransitions an neither disable nor enable eah other); and2. If both Æ(M; I1; e1) and Æ(M; I2; e2) are de�ned then the following equality holds:Æ(Æ(M; I1; e1); I2; e2) = Æ(Æ(M; I2; e2); I1; e1) (ommutativity of enabled independenttransitions).Now, onsider a path in the reahability graph. By applying the ommutativity rule,it is possible to group together the dependent events without hanging the �rst and lastmode. In other words, the path an be deomposed into several independent sequenes ofdependent events. As a onsequene, in our ompilation algorithm, equivalene lasses forthe valid dependeny relation R an be onsidered separately. This is atually what wedid on the above example.In pratie, we de�ne the relation R as follows. First, we de�ne the notion of immediatedependene between variables and events. Let e 2 � and let v 2 S. We say that e depends14



immediately on v if there exists a reahable mode M 2 dom(S [ F in), I 2 dom(F in) and 2 dom(v) suh that at least one of the three following onditions is satis�ed:� Either v 2 F in, Æ(M; I; e) is de�ned and either Æ(M; I[v  ℄; e) is not de�ned orÆ(M; I[v  ℄; e) 6= Æ(M; I; e); or� v 2 S, Æ(M; I; e) is de�ned and either Æ(M [v  ℄; I; e) is not de�ned or Æ(M [v  ℄; I; e) 6= Æ(M; I; e); or� v 2 S and M [v℄ 6= Æ(M; I; e)[v℄.Simple syntati onditions ensure immediate dependene.Seond, we onsider the relation � over � de�ned as follows. e1 � e2 if there exists avariable v suh that v depends immediately on both e1 and e2. Finally, we onsider thetransitive losure of �, whih we denote by abuse � as well. It is easy to verify that �is a valid dependeny relation over �. The relation � splits � into one or more groups ofevents and assoiates a disjoint set of variables with eah group. Steps third and fourth ofthen algorithm an be applied separately on eah group. Step fourth is modi�ed in orderto take into aount that an output ow may depend on state variables and input owsthat belong to di�erent groups.5 Related FormalismsMode automata are related to the formalisms used in both formal methods and reliabilityengineering frameworks. This setion disusses their relationships with these formalisms.5.1 Blok diagramsMode automata are learly a generalization of blok diagrams [2℄. The translation fromthe latters to the formers is straightforward, as illustrated Fig. 9. Eah blok is translatedinto the small automaton pitured Fig. 9 (b). Then, the diagram is translated element byelement. All ows are assumed to be Boolean.Mode automata generalize blok diagrams into several diretions:� Bloks may have several input and output ows.� Input and output ows may be multivalued (not restrited to Boolean values).� Bloks may be in more than two modes (working or failed).� There may be other events than the failures of omponents.� Synhronizations an be used to model omplex behaviors, suh as old redundanies(as illustrated setion 3.3). 15
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Figure 9: A blok diagram and the orresponding mode automaton5.2 Finite state mahinesMode automata generalize Mealy mahines. Mealy mahines are also input/output au-tomata, with Boolean inputs and outputs (see [12℄ for an introdution). They are widelyused in the iruit veri�ation framework. The SMV model heker [16℄, for instane, isbased on this formalism (in SMV however, transitions are anonymous).The notion of synhronization vetor omes from the seminal work by Arnold and Nivaton the semantis of onurrent proesses [3℄. Arnold and Nivat restrited their attention to�nite state mahines without input and output. Mode automata an be seen as generalizedMealy mahines with Arnold-Nivat omposition mehanisms.5.3 Petri netsPetri nets [17℄ deserve a speial mention beause for they are often onsidered as the mainalternative to Boolean models (fault trees and blok diagrams) for reliability studies.The translation from �nite apaity Petri nets to mode automata is straightforward: itsuÆes to de�ne an integral state variable for eah plae and a transition for eah transition.For instane, the Petri net transition pitured Fig. 10 (a) is translated as follows.P1 > 0 ^ P2 = 0 ^ P3 > 0 T�! P1 := P1� 1; P4 := P4 + 2Named values give a mean to simplify desriptions. Consider for instane the Petrinet pitured Fig. 10 (b), whih is taken from [7℄ (Fig. 1.9, page 16). The upper rowof plaes desribe the suessive steps of a prodution proess. In order to translatethis Petri net, we ould apply the method skethed above. However, a muh simpler16
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(b) A Petri net for prodution ellFigure 10: Petri netssolution onsists in reating only one state variable per omponent of the produtionell: the state of mahine is desribed by means of a variable M1 ranging in the do-main fwaitRaw; load; op1; waitDeposit; depositg. Transitions an still be translated in astraightforward way. For instane, the transition t1 is translated as follows.M1 = waitRaw ^ Robot = idle P1�! M1 := load; Robot := busyNot only the desription is simpler, but it ontains less variables and an therefore beassessed more eÆiently.In the same vein, synhronization vetors avoid many gadgets, i.e. additional plaesand ars that are required to apture simultaneous (or quasi-simultaneous) behaviors withPetri nets (see [17℄ for a disussion on these gadgets).Petri nets an be seen as mode automata with several restritions:� They have only state variables. Indeed, ows an be replaed by state variables.However, the formers are often muh more onvenient to model the propagation ofan information.� They put strong requirements on guards and ations of transitions. Namely, guardsan be only onjunts of inequalities of the form plae > onstant (possibly plae = 0if inhibitor ars are allowed) and assignments an be only of the form plae :=plae�onstant. Several authors suggested to overome this restrition by introdu-ing extended guards (see for instane [6, 5℄).� They provide no natural synhronization mehanism.Our feeling is that all of these restritions are justi�ed more by historial reasons thanby tehnial issues (graphial onsiderations play a role as well): linear algebra methodsannot work without these restritions. However, linear algebra methods are seldom usedin pratie. This is espeially true in reliability analysis framework where basially twokinds of assessment methods are used (for a omprehensive survey see [1℄): Markovian17



assessment method and Monte-Carlo simulations. In both ases, there is no mathematialor algorithmi need for the Petri net restritions.Finally, it is worth notiing that the graphial formalism of Petri nets an be appliedto mode automata (as illustrated Fig. 2 ()), up to small hanges in the interpretation ofars entering and going out transitions.5.4 Reative LanguagesMode automata are stronlgy related to visual spei�ation languages suh as StateCharts [11℄or Argos [13℄. They are also lose to the underlying model of reative languages suh asLustre [10℄. The di�erenes between mode automata and these formalisms stand mainlyin the way they are used. Lustre, for instane, is a high level language to program appli-ations that interat ontinuously with their environment. As a onsequene, it puts theemphasis on modes and transfer funtions (that desribe atually the interation of theprogram with its environment). On the onverse, mode automata are used to design and tostudy models. The emphasis is put on (sequenes of) events: failure senarios, probabilityof failure, importane fators of omponents . . . .The term \mode automata" is borrowed from referenes [14, 15℄. These artiles proposeto extend Lustre with a onstrut that supports the desription of running modes. Sine adataow program is basially a Mealy mahine, our notion of mode automata is very loseto the notion of Maraninhi & al. However, the omposition operations proposed in [14℄are di�erent from the ones we proposed here (the formers are inherited from Argos paralleland hierarhial ompositions).5.5 AltaRiaAltaRia is a high level desription language. Its syntax and semantis have been desribedin referenes [18, 4℄. The full AltaRia language embeds several features, suh as bidire-tional ows or broadasting, that make its ompilation into Boolean formulae diÆult.For this reason, a restrition of AltaRia has been de�ned that drops out these features.The resulting language, so-alled AltaRia data ow, is muh easier to ompile. Modeautomata are the underlying mathematial model of this language.Fig. 11 shows two typial AltaRia data ow delarations. Fig. 11(a) shows the dela-ration of the mode automaton that desribes the valve of our introdutory example (seeFig. 1). Fig. 11(b) shows the delaration of a system that ontains three subsystems: avalve, a pipe and an operator. The system has an input ow onneted to the input ow ofthe valve. The output ow of the valve is onneted to the input ow of the pipe. Finally,the output ow of the pipe is onneted to the output ow of the system. The openingand losing of the valve are synhronized with the orresponding ations of the operator.
18



node Valve;state open:bool, stuk:bool;flow i:bool:in, o:bool:out;event open, lose, fail;transopen and not stuk |- lose -> open:=false;not open and not stuk |- open -> open:=true;not stuk |- fail -> stuk:=true;assert not open => i=o, open => not o;init open=true, stuk=false;edon (a) omponent delaration
node System;state open:bool, stuk:bool;flow I:bool:in, O:bool:out;sub V:Valve, P:Pipe, O:operator;assertI=V.i, P.i=V.o, O=V.o;syn lose = <V.lose,O.loseValve>,open = <V.open,O.openValve>;edon (b) node delarationFigure 11: Two AltaRia data ow delarations6 ConlusionIn this artile, we introdued mode automata. We advoated their use as a high levellanguage to design reliability models. Mode automata embed a number of interestingfeatures that are borrowed from di�erent formalisms.� They are a states/events based formalism, like �nite state mahines and Petri nets.� They are a data ow language, like blok diagrams and reative languages.� They are both mathematially well de�ned and graphially easy to represent (withthe ability to have di�erent views of the same objet as in UML).� They are a hierarhial language with di�erent omposition operations: parallel om-position, onnetion and synhronization.� They an be interpreted stohastially to perform probabilisti analyses, in the sameway Petri nets are.These features make it possible to desribe within a single formalism both funtional anddysfontional aspets of the systems under study.Sine mode automata are a high level language with a great expressiveness, the assess-ment of models is in general a diÆult task. In this artile, we proposed an algorithmto ompile mode automata into fault trees in order to overome this problem. This algo-rithm works well in pratie. The idea is that simple models (those that are lose to ablok diagram) an be ompiled simply. More omplex models should be assessed by othermeans. For instane, it would be possible to ompile omplex models into Petri nets. Suha ompilation ould be interesting to be able to use the many available Petri net tools.
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