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edex 9 { FRANCEarauzy�iml.univ-mrs.frSummary & Con
lusionsThe main Boolean risk assessment models (Fault Trees, Event Trees, Blo
k Diagrams,Reliability Networks) 
an be seen as sets of Boolean equations. In general, they are hier-ar
hi
al. In some 
ases however, the model 
ontains loops, be
ause the system embeds atleast two 
omponents whose states depend one another. Reliability networks are a typi
alexample of looped models. Classi
al fault tree assessment methods fail to assess this kindof model, at least without a 
ostly prepro
essing. In this arti
le, we propose a logi
alframework to 
larify the meaning looped of sets of Boolean equations. We propose also aBinary De
ision Diagrams based method to assess them. We illustrate our approa
h byproviding experimental results on a ben
hmark of reliability networks.keywords Reliability networks, Boolean reliability models with loops, Binary De
isionDiagrams1 Introdu
tionThe main Boolean risk assessment models (Fault Trees, Event Trees, Blo
k Diagrams,Reliability Networks) 
an be seen as sets (
onjun
ts) of Boolean equations in the formg , F , where g is a Boolean variable and F is a Boolean formula. These equationsdes
ribe the global state of the system as a (Boolean) fun
tion of the states of its basi

omponents. In su
h a model, there are two kinds of variables:� Input variables that o

ur only in right members of equations. These variables de-s
ribe states of basi
 
omponents.� Gate variables that o

ur as the left member of an equation. These variables representfun
tionalities of the system or states of non-basi
 
omponents.1



Fault trees, event trees and blo
k diagrams are built by means of a hierar
hi
al de
omposi-tion of the system under study. The 
orresponding sets of Boolean equations are hiera
hi
aland the values of gate variables are uniquely determined by the values of input variables.Sometimes 
omponents intera
t in su
h way that no hiera
hi
al des
ription is suitable.This is for instan
e the 
ase if two 
omponents A and B are su
h that the state of Adepends on the state of B and vi
e versa. Reliability networks [1℄ examplify this generalproblem. The sets of Boolean equations that des
ribe this kind of systems may 
ontainloops, i.e. 
ir
ular de�nitions su
h as g1 , F1(g2); g2 , F2(g3); : : : ; gr , Fr(g1). In this
ase, the values of input variables do not determine uniquely the values of gate variables.However, this underterminism does not 
ome from the physi
s. It 
omes from the model.The physi
s \prefers" one of the possible valuations. Consider, for instan
e, to an ele
tri

ir
uit with no power sour
e. The equations may let the 
ir
uit 
omponents either poweredor not powered. The physi
s tells us they are not powered. The problem 
omes from thefa
t that there is no tra
table logi
al mean to express preferen
es.In this arti
le, we propose a formal framework to ta
kle this diÆ
ulty.We show that, in some restri
ted 
ases, preferen
es 
an be expressed by logi
al meansonly, through the use of quanti�ed formulae. This 
lari�es and generalizes an idea byMadre et al [2℄.We establish a de
omposition theorem that makes it possible to assess looped modelsby means of Binary De
ision Diagrams (BDDs) [3, 4℄. BDDs are the state-of-the-art datastru
ture to handle boolean fun
tions [5℄. Sin
e their introdu
tion in the reliability �eld[6, 7℄, they have proved to be the most eÆ
ient tool to assess Boolean reliability modelssu
h as fault trees. One of the key issues to take fully advantage of BDDs is to �nda good variable ordering. The size of BDDs, and therefore the eÆ
ien
y of the wholemethodology, depends dramati
ally on the 
hosen ordering. Several domain dependentheuristi
s have been proposed for 
ir
uits (see for instan
e [8, 9, 10℄) and fault trees (seefor instan
e [11, 12℄). We propose a heuristi
 devoted to the assessment of sets of equations.Experimental results on a ben
hmark of reliability networks give eviden
e of the interest ofthe whole approa
h. Our algorithm gives better results than the spe
ialized BDD methodproposed re
ently by Kuo, Lu and Yeh [13℄.The remainder of this arti
le is organized as follows. First, we introdu
e quanti�edBoolean formulae and sets of equations se
tion 2. The general framework we propose todeal with su
h models is presented se
tion 3. In se
tion 4, we re
all basi
s about BDDsand we dis
uss the variable ordering problem. Experimental results are reported se
tion 5.Finally, related works are examined se
tion 6.2 Boolean Models2.1 Quanti�ed Boolean FormulaeIn this arti
le, we 
onsider Boolean formulae built over the two (Boolean) 
onstants 0(False) and 1 (True), a denumerable set of variables fv1; v2; : : :g, and the usual logi
al2




onne
tives \:" (and), \+" (or), \ " (not). The set of variables that o

ur in the formulaF is denoted by var(F ).For the sake of the 
onvenien
e, we shall use the 
onne
tives ) and, that are de�nedas follows. F ) G def= F +G F , G def= F:G+ F :GLet F be a formula and v a variable. We denote by F [1=v℄ (respe
tively F [0=v℄) theformula obtained by substituting in F the 
onstant 1 (respe
tively 0) for the variable v.Consider, for instan
e, the formula F = ab + a
. Then, F [1=a℄ = 1b + 1
 = b andF [0=a℄ = 0b+ 0
 = 
. We denote by F [
1=v1; : : : ; 
k=vk℄ the formula F [
1=v1℄ : : : [
k=vk℄.In the above example, we use impli
itely Boolean simpli�
ation rules (
onstant propaga-tion): for any formula F , 1 = 0, 0 = 1, F:0 = 0:F = 0, F:1 = 1:F = F , F+0 = 0+F = F ,F +1 = 1+F = 1, . . . . Throughout this arti
le, we shall keep impli
it su
h simpli�
ations.The treatment of Boolean models with loops introdu
es formulae with the universalquanti�er 8 and the existential quanti�er 9. They are de�ned as follows.8v F def= F [1=v℄:F [0=v℄ 9v F def= F [1=v℄ + F [0=v℄Consider, for instan
e, the formula F = ab + a
. Then, 8aF = b
 and 9aF = b + 
. Wedenote by Qv1; : : : ; vk F , Q 2 f8; 9g, the formula Qv1 (Qv2 : : : (Qvk F ) : : :).2.2 Boolean EquationsA Boolean equation is a formula in the form v , F , where v is a variable and F is aformula. A set of Boolean equations E is assimilated with the 
onjun
t of its elements.It is assumed that for ea
h variable v there is at most one equation v , F in E. Ifsu
h a equation belongs to E, F is 
alled the de�nition of v. It is moreover assumed thatv 62 var(F ).We 
all (i) output-, (ii) input- and (iii) gate-variables of E the variables that respe
tively(i) o

ur as a left member of an equation and do not o

ur in a right member, (ii) do noto

ur as a left member and (iii) o

ur as a left member.In reliability models, input variables represent in general events that 
hange the internalstate of basi
 
omponents. Input variables are typi
ally the basi
 events of fault trees orrepresent failures of edges and nodes in reliability networks. Gate variables represent fun
-tionalities of the system or states of non-basi
 
omponents. Gates variables are typi
allygates of fault trees or used to des
ribe whether a node of a network is feeded.We de�ne an
estorsE(v) as follows.an
estorsE(v) def= � var(F ) [Sw2var(F ) an
estorsE(w) if E 3 v , F; otherwiseIn other words, an
estorsE(v) is the set of variables w su
h that v depends on w.A set of Boolean equations E is said looped if there is a variable v su
h that v 2an
estorsE(v). It is said hierar
hi
al otherwise.3



Fault trees are hierar
hi
al formulae. It is worth noti
ing that any hierar
hi
al set ofequations with a single ouput variable r 
an be rewritten into a equivalent equation r, Fby repla
ing bottom-up the other gate variables by their de�nitions.2.3 Literals, Produ
ts, Minterms, Prime Impli
antsA literal is either a variable v or its negation v . v is a positive literal. v is a negativeliteral. They are said opposite. The opposite of a literal p is denoted by p ( p = p).A produ
t is a set of literals that does not 
ontain both a literal and its opposite. Aprodu
t is assimilated with the 
onjun
t of its elements.Let V be a �nite set of variables. A produ
t that 
ontains a literal built over ea
hvariable of V is 
alled a minterm of V. We denote by minterms(V) the set of minterms that
an be built over V. Any formula 
an rewritten as a disjun
t of minterms. This disjun
tof mintems is unique (up to a permutation). E.g. F = ab + a
 = ab
 + ab
 + ab
 + a b
.It is therefore often 
onvenient to write that a minterm � belongs to a formula F (� 2 F )when F 
an be rewritten as � + F 0. Note that for any minterm � either � 2 F or � 2 F .A produ
t � is an impli
ant of a formula F if, for any � 2 minterms(var(F )), if � � �,then � 2 F . An impli
ant � is said prime if there is no impli
ant � of F su
h that � � �.We denote by PI[F ℄ the set of prime impli
ants of the formula F .The formula F = ab+ a
 admits 7 impli
ants ab, ab
, ab
 , ab
, a
, a b
 and b
 and 3prime impli
ants ab and a
, b
.Prime impli
ants play a 
entral role in reliability studies. They represent minimals
enarii of failure in fault trees (minimal 
utsets), minimal s-t 
onne
ting paths in reliabilitynetworks, . . . Note however that there are slight di�eren
es between the the notions of primeimpli
ants and minimal 
utsets as we showed in [14℄. These di�eren
es do not matter forthe purpose of this arti
le.2.4 OrderIn Boolean risk assessment models, positive literals represent in general the relevant fa
ts(failures of 
omponents), while negative literals represent in some sense nominal situations.It is therefore natural to introdu
e an order among literals.By 
onvention, we shall 
onsider that the negative literal is smaller than the positiveliteral, whi
h is denoted by e � e. Given two literals p and q, p v q if either p = q or p � q.This order 
an be extended into a partial order v over minterms: p1: : : : :pn v q1: : : : :qn ifpi v qi for i = 1; : : : ; n.A formula F is monotone in
reasing if for any two minterms � and � su
h that � v �,then � 2 F implies that � 2 F . Coherent fault trees are monotone in
reasing formulae. Aformula F is monotone de
reasing if for any two minterms � and � su
h that � v �, then� 2 F implies that � 2 F .
4



r rr r����*HHHHj����*HHHHj?6s tn1n2e1e2 e5e3 e4Figure 1: The bridge network.3 A Logi
al Framework to Handle Looped Models3.1 Introdu
tory ExampleConsider for instan
e the network pi
tured Fig. 1. Assume that all nodes but s are perfe
tlyreliable and that s and all edges may fail independently. The set of Boolean equations thatdes
ribe working s,t-paths of this network 
ould be as follows.pwr(n1) , pwr(s):wrk(e1) + pwr(n2):wrk(e3)pwr(n2) , pwr(s):wrk(e2) + pwr(n1):wrk(e3)pwr(t) , pwr(n1):wrk(e4) + pwr(n2):wrk(e5)Ea
h wrk(e) represents the event \the edge e is working". Ea
h pwr(v) represents theevent \the vertex v is powered". pwr(s) and the wrk(e)'s are input variables. pwr(n1),pwr(n2) and pwr(t) are gate variables. pwr(t) represents the question we are asking aboutthe network, namely \is the target state powered ?".The 
onjun
t E of the above equations des
ribes, in a natural way, the physi
s of thenetwork. It is looped sin
e pwr(n1) depends on pwr(n2) and vi
e-versa. This has two
onsequen
es. First, pwr(n1) and pwr(n2) are not gates in the usual sense. It follows that
lassi
al fault tree assessment te
hniques 
annot be used to assess E, at least withouta prepro
essing. Se
ond, the values of the pwr(v)'s (v 2 fn1; n2; tg) are not uniquelydetermined by the values of pwr(s) and the wrk(x)'s. Consider, for instan
e, the 
asewhere vertex s and edges e1 and e2 are down while edges e3, e4 and e5 are working. Theformula E[0=pwr(s); 0=wrk(e1); 0=wrk(e2); 1=wrk(e3); 1=wrk(e4); 1=wrk(e5)℄
an be simpli�ed into the following set of equations.pwr(n1), pwr(n2)pwr(t), pwr(n1)Two valuations satisfy this set: pwr(n1) = pwr(n2) = pwr(t) = 0 whi
h 
orresponds to thephysi
s and pwr(n1) = pwr(n2) = pwr(t) = 1.This example illustrate a general problem: the model is looped, therefore undertermin-isti
. However, this underterminism does not 
ome from the physi
s. It 
omes from themodel. The physi
s has a prefered interpretation. This prefered interpretation is smallest5



one with respe
t to the order � we de�ned se
tion 2.4. The main problem when dealingwith looped system is to eliminate unwanted, i.e. non-minimal, interpretations.3.2 FrameworkThe problem of looped systems 
an be stated in the following way.Let E = �mi=1 (gi , Fi) be a set (a 
onjun
t) of Boolean equations that des
ribe thephysi
s of the system under study. E is built over two distin
t sets of variables: the setG = fg1; : : : ; gmg of gate variables and the set E = fe1; : : : ; eng of input variables.Two generi
 questions may be answered about E. They 
an be stated as follows.(A) What are the minimal sets of basi
 events that lead the system in a 
on�guration inwhi
h a given property P is realized ?(B) What is the probability that at least one of these 
on�gurations is realized ?We have �rst to set in a formal way whi
h valuations of the variables 
orrespond tothe physi
s. Consider the minterms �� over E [ G, where � is a minterm over E and � is aminterm over G. �� obeys the physi
s if it ful�lls the following requirements.1. �� veri�es the equations of the model, i.e. �� 2 E.2. �� is minimal w.r.t. �, i.e. 8�0 2 minterms(G); �0 � � ) ��0 2 E .Therefore, we 
an de�ned the set ME of the minterms that obey the physi
s as follows.ME def= f��; � 2 minterms(E); � 2 minterms(G);�� 2 E ^ 8�0 2 minterms(G); �0 � � ) ��0 2 Eg (1)A set of equations E is 
orre
t if, for ea
h 
on�guration of the basi
 events, it exists aunique 
on�guration of the other events that obeys the physi
s. Formally,8� 2 minterms(E);9� 2 minterms(G) �� 2ME^ 8�; �0 2 minterms(G) �� 2 ME ^ ��0 2ME ) � = �0 (2)In the sequel, we shall 
onsider only 
orre
t sets of equations. It is worth noti
ing thatME a
ts as a fun
tion from minterms(E) to minterms(G). We denote by ME(�), � 2minterms(E) the unique � 2 minterms(G) su
h that �� 2 ME. The following lemmaholds.Lemma 1 Let � 2 minterms(E) and let � 2 minterms(G) su
h that �� 2 E. Then,ME(�) v �. 6



This follows immediately from the uniqueness of ME(�). �The minterms that obeys the physi
s for the bridge network are given in appendix A.1.To answer the generi
 questions (A) and (B), the idea is to build a formula Q over Esu
h that a minterm � over E belongs to Q if and only if it obeys the physi
s and it veri�esthe property P . Formally, Q is de�ned as follows.Q def= f� 2 minterms(E); 9� 2 minterms(G); �� 2ME:Pg (3)The prime impli
ants of Q and its probability are respe
tively the minimal set of eventsand the probability we are looking for. The problem is to make 
on
rete the 
onstru
tionof su
h a formula Q.3.3 The Case of Monotone PropertiesIn the 
ase where P is a monotone formula, the query Q 
an be written in a purely logi
alway, as stated by the two following theorems.Theorem 2 (Monotone de
reasing property) If P is a monotone de
reasing formulathen Q is equivalent to the formula QMD de�ned as follows.QMD def= f� 2 minterms(E); 9� 2 minterms(G) �� 2 E:Pg (4)Q) QMD. By de�nition.QMD ) Q. Consider a minterm � 2 QMD. Let �0 = ME(�) and assume ��0 62 P . Let� be one of the minterms over G su
h that �� 2 E:P . By lemma 1, �0 � �. Sin
e P ismonotone de
reasing, ��0 2 P . A 
ontradi
tion. �The theorem 2 
an be used to get the s; t dis
onne
ting 
uts of a reliability network.The 
ase of the bridge network is treated in appendix A.2.Theorem 3 (Monotone in
reasing property) If P is a monotone in
reasing formulathen Q is equivalent to the formula QMI de�ned as follows.QMI def= f� 2 minterms(E); 8� 2 minterms(G) �� 2 E ) �� 2 Pg (5)Q ) QMI . Let � 2 Q and let � = ME(�). By lemma 1, forall �0 2 minterms(G) either�0 62 E or � v �0. In the latter 
ase, sin
e P is monotone in
reasing, �0 2 P .QMI ) Q. By de�nition. �The theorem 3 
an be used to get the s; t-
onne
ting paths of a reliability network.The 
ase of the bridge network is treated in appendix A.3.The formula QMI is, up to slight di�eren
es, the one proposed by Madre et al to
ompile digraphs [2℄. The theorem 3 provides a formal framework to understand whyMadre's method works. 7



3.4 De
omposition TheoremPreferen
es indu
ed by the partial order � 
annot be expressed in a purely logi
al way,i.e. using only the usual 
onne
tives and possibly some quanti�ers. We will dis
uss whyin the next se
tion. In other words, the formula ME 
annot be derived by purely logi
almeans from the formula E. A fortiori the query Q 
annot be derived from E and P if noassumption is made on P . This does not mean however that the formula ME 
annot be
omputed from the formula E. In this se
tion, we show how to 
ompute Q from E and Pin the Binary De
ision Diagram framework.BDDs make an extensive use of the Shannon de
omposition: Let F be a formula andlet v be a variable of F , then the following equality holds.F = v:F [1=v℄ + v :F [0=v℄ (6)The Shannon de
omposition 
an be mixed together other operations in order to produ
eso-
alled de
omposition theorems. Let, for instan
e, F = v:F1+ v :F0 and G = v:G1+ v :G0be two formulae. Then F �G = v:(F1�G1)+ v :(F0�G0) for any binary 
onne
tive � (+,:, ), ,, . . . ). Most of BDD algorithm rely on su
h de
omposition theorems that make itpossible to 
ompute re
ursively a given quantity or fun
tion.We will give a de
omposition theorem to 
ompute Q from E and P . The 
omputationof Q 
onsists in three steps:1. One 
omputes Q0 = E:P .2. One removes from Q0 the minterms �� for whi
h there exists a minterm �0 su
h that� � �0 and ��0 2 E. Let Q1 be the result.3. One quanti�es existentially the G's in Q1 to get Q.As we will see, the se
ond and third steps are a
tually a
hieved at on
e.Let F and G be two formulae built over E [ G. The formulae F 
G G and F #G G arede�ned as follows.F 
G G def= f��; � 2 minterms(E); � 2 minterms(G);�� 2 F ^ 8�0 2 minterms(G); �0 � � ) ��0 2 Gg (7)F #G G def= 9G (F 
G G) (8)We 
an now state the de
omposition theorem.Theorem 4 (De
omposition of F #U G) Let v 2 E [ G and let F = v:F1 + v :F0 andG = v:G1 + v :G0 be two formulae built over E [ G. The following equality holds.F #G G = � v:(F1 #G G1) + v :(F0 #G G0) if v 2 E(F1 #G G1):G0 + (F0 #G G0) if v 2 G8



ts

1 2 n-1 nFigure 2: A network with 2n+ 2 verti
es, 4n+ 2 edges and 2n s; t-paths.The proof is a straightforward appli
ation of the de�nitions 7 and 8.The following 
orollary, that follows from the de�nition 3, gives a mean to 
ompute Q.Corollary 5 (Computation of Q) The following equivalen
e holds.Q = E:P #G E3.5 Dis
ussionIn order to remove undesirable minterms, we have used so far extra-logi
al means (via thepartial order �). It is questionable whether it is possible to handle looped des
riptions bymeans of purely logi
al expressions.In the 
ase of reliability networks, it is possible to write a formula F that enumeratess; t-paths, therefore avoiding all diÆ
ulties. However, enumerating good 
on�gurations (s-tpaths) has a serious drawba
k: the number of su
h 
on�gurations may be exponentiallylarger than the number of 
omponents of the system under study. The family of networkspi
tured Fig. 2 is a good witness of this problem.Unfortunately a method to des
ribe s; t-paths lo
ally 
annot exist. Let ~ai denotes thenodes and edges that are adja
ent to the vertex vi. Assume there exist formulae Ri(vi; ~ai)(one per vertex) su
h that the 
onjun
t of the Ri's express that ea
h vertex vi is rea
hablefrom the sour
e vertex s. It is 
lear that to determine s; t-paths one needs a formulaof this kind. Now, it should be possible to standardize the Ri's into a single �rst-orderpredi
ate R(~v). The number of parameters of R depends only on the maximal degree d ofthe graph. By quantifying universally the 
onjun
t of the appli
ations of R to ea
h vertexof the network, one gets a �rst order formula that is a tautology if and only if ea
h vertexof the network is rea
hable from the sour
e vertex. Moreover, R 
ould be used for anynetwork of maximal degree less than d. But, it is a 
entral result of des
riptive 
omplexitytheory that su
h a formula 
annot exist. This is a 
onsequen
e of the L�owenheim-Skolemtheorem that asserts that any formula with a arbitrary large model has a in�nite model(see for instan
e [15℄ for a simple demonstration, and [16℄ for a monograph on des
riptive
omplexity).The use of preferen
es is thus the pri
e to pay to write lo
al des
riptions, i.e. des
rip-tions su
h that the status of a node depends only on the status of nodes and edges of itsimmediate neighbourhood. 9
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Figure 3: From the Shannon tree to the BDD en
oding ab + �a
.4 Binary De
ision DiagramsIn this se
tion, we re
all basi
s about BDDs. The reader interested in a more detailedpresentation should see the referen
e [4℄.4.1 BDDsThe BDD asso
iated with a formulae is a 
ompa
t en
oding of the truth table of thisformula. This representation is based on the Shannon de
omposition (equation 6). By
hoosing a total order over the variables and applying re
ursively the Shannon de
omposi-tion, the truth table of any formula 
an be graphi
ally represented as a binary tree. Ea
hinternal node en
odes a formula F . It is labeled with a variable v and has two outedges(a then-outedge that points to the node that en
odes F [1=v℄, and a else-outedge thatpoints to the node that en
odes F [0=v℄). The leaves are labeled with either 0 or 1. Thevalue of the formula for a given valuation of the variables is obtained by des
ending alongthe 
orresponding bran
h of the tree. The Shannon tree for the formula ab + �a
 and thelexi
ographi
 order is pi
tured Fig. 3 (dashed lines represent else-outedges).Indeed, su
h a representation is spa
e 
onsuming. It is however possible to shrink it bymeans of the following two redu
tion rules.Isomorphi
 subtrees merging. Sin
e two isomorphi
 subtrees en
ode the same formula, atleast one is useless.Useless nodes deletion. A node with two equal sons is useless sin
e it is equivalent to itsunique son (v:F + �v:F = F ).By applying these two rules as far as possible, one gets the BDD asso
iated with theformula. A BDD is therefore a dire
ted a
y
li
 graph. It is unique, up to an isomorphism[3℄. This pro
ess is illustrated on Fig. 3.Logi
al operations (and, or, not, quanti�
ations, ...) 
an be dire
tly performed onBDDs. This results from the orthogonality of usual 
onne
tives and the Shannon de
om-position. The 
omplete binary tree is never built and then shrunk: the BDD that en
odes10
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b2

1 0

b2

b3Figure 4: The BDDs en
oding a1:b1 + a2:b2 + a3:b3 for two variable orderings.a formula is obtained by 
omposing the BDDs that en
ode its subformulae. Moreover, a
a
hing prin
iple is used to store intermediate results of 
omputations. This makes theusual logi
al operations (
onjun
tion, disjun
tion, quanti�
ation) polynomial in the sizesof their operands. A 
omplete implementation of a BDD pa
kage is des
ribed in [4℄. Thereader interested in details should thus refer to this arti
le.The theorem 4 applies dire
tly on BDDs (in
luding 
a
hing). It 
an be used to 
omputethe BDD that en
odes the minterms that 
orresponds to the physi
s of a given set ofequations.4.2 The Variable Ordering ProblemOne of the key issues to take fully advantage of BDDs is to �nd a good variable ordering.The size of BDDs, and therefore the eÆ
ien
y of the whole methodology, depends dramat-i
ally on the 
hosen ordering. The following example, already given in [3℄, illustrates theproblem. Let Fn be the following parametri
 formula Fn = a1:b1 + a2:b2 + : : :+ an:bn. Thesize of the BDD that en
odes Fn is linear in n for the ordering a1 < b1 < : : : < an < bn,while it is exponential for the ordering a1 < : : : < an < b1 < : : : < bn. The BDDs for thetwo variable orderings and n = 3 are pi
tured on Fig. 4.Finding a good variable ordering is a diÆ
ult problem. The only means to predi
t thesize of a BDD is more or less to build it (see for instan
e [17℄ for theoreti
al insights aboutthis question). Several domain dependent heuristi
s have been proposed for 
ir
uits (seefor instan
e [8, 9, 10℄) and fault trees (see for instan
e [11, 12℄). These heuristi
s rely ondi�erent prin
iples. However, they both try to put 
lose in the order the variables that are
lose in the formula, as illustrated by the ai=bi of the previous example.4.3 Heuristi
s for Sets of EquationsThe problem of �nding a good heuristi
s is therefore twofold. First, one has to de�neformally the notion of proximity between variables. Se
ond, on
e su
h a formal model isfound, one has to determine whi
h ordering is optimum.11



In the 
ase of sets of equations, we 
an assume that right members of equations aresmall formulae. Therefore, we 
an ignore what happens inside ea
h equation. A formalway to de�ne the proximity is thus to asso
iate an undire
ted graph GE with the set ofequations E(E ;G) under study. The verti
es of G are the variables of E. G 
ontains anedge for ea
h pair (v; w) of variables su
h that v is left member of an equation v , Fand w o

urs in F . An alternative 
ould be to 
reate an edge for ea
h pair of variableso

urring in the equation.An ordering I asso
iates an index (a positive integer) I(v) with ea
h variable v. I(v) 2[0; m + n℄ where m and n denote respe
tively the number of variables of E and G. Theweight !(I) of an ordering I is de�ned as follows.!(I) def= X(v;w)2GE jI(v)� I(w)j (9)It is expe
ted that the best ordering is the one of minimum weight.Unfortunately, the problem of determining whi
h ordering minimizes ! is NP-Complete(it is referen
ed as \Optimal Linear Arrangement" in [18℄). It is a
tually intra
table to getthe best solution as soon as GE 
ontains more than few dozens of variables.Fortunately, approximate solutions are relatively easy to �nd by means of lo
al sear
halgorithms. We use the following method.1. Start with a presumably good ordering. In the 
ase of fault trees, the orderingobtained by means of a depth-�rst left-most traversal of the tree is often good. Inthe 
ase of reliability networks, the ordering obtained by means of a breadth-�rsttraversal of the network starting from its sour
e is a good 
andidate.2. Try to improve the 
urrent order by 
ipping two 
onse
utive variables. The variableto 
ip is either the one that improve the most the weight or, in 
ase of tie, it ispi
ked at random among those that give the best weight improvement. This pro
essis reiterated until there is no mean to improve further the 
urrent ordering or aprede�ned number of sideway moves is rea
hed.Indeed, many variations 
an be imagined on this s
heme (see for instan
e [19, 20℄ for reviewsof re
ent developments on lo
al sear
h algorithms). The main interest of the method wepropose is that in pra
ti
e it leads qui
kly to a good solution.5 Experimental ResultsIn order to test our method (treatment of looped systems of equations plus variable orderingheuristi
s), we 
onsidered the ben
hmark of networks 
olle
ted in literature by Kuo, Luand Yeh. In [13℄, these authors propose a BDD based approa
h to 
ompute the terminal-pair reliability of a network. Their method relies on a re
ursive de
omposition of thenetwork (and uses spe
i�
 data stru
tures in addition to BDDs). They provide a number12
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of experimental results on the networks pi
tured on Fig. 5 (most of them are taken from [21℄and [22℄).We wrote sets of equations for these networks in the same way we did for the bridgenetwork in se
tion 3.1. Then, we applied the variable ordering heuristi
s des
ribed inse
tion 4.3. Finally, we 
omputed the BDD that en
odes the query as de�ned in se
tion 3,the ZBDD that en
odes the prime impli
ants of the query (with the algorithm proposedin [7℄) and the probability there is an operating s-t paths (edge reliabilities are all set to0.9).The table 1 reports the results we obtained and 
ompares them with Kuo, Lu and Yehresults. The running time for the formers are those for the 
omputation of BDD plus the
omputation of the ZBDD plus the assessment of the reliability. For the latters, the tablegives the running time to 
ompute the BDD that en
odes the s-t paths as well as thesize of this BDD for the two best methods proposed in the arti
le, namely EED BFS andEED SIFT. EED BFS uses a breadth-�rst variable ordering heuristi
s. EED SIFT appliesthe sifting post-pro
essing to redu
e the sizes of BDDs [23℄.It is worth noti
ing that running times were measured on di�erent pro
essors (althoughroughly equivalent).The following 
on
lusions 
an be drawn from these results.� Our method performs well both in terms of running times and in terms of BDD sizes
ompared to the algorithm by Kuo, Lu and Yeh.� It is mu
h more general for it works on any set of equations and it makes it possibleto answer mu
h more general questions about the models.6 Related Works and Con
lusionsThe framework we proposed in this arti
le generalizes and explains the work by Madre etal. [2℄. The heuristi
s is also a formalization and a generalization of our own preliminaryworks on the topi
s [24℄. Our method has three main interests:� It is powerful sin
e it 
an be applied to a large 
lass of Boolean models that in
ludesat least both fault trees and reliability networks.� The models and the queries are very easy to write. They are obtained from lo
albehavior des
riptions only. Their size is linear in the size of the studied system.This makes a de�nitive di�eren
e with other te
hniques to deal with looped modelsthat are either un
omplete or of an exponential worst 
ase 
omplexity (whi
h is forinstan
e the 
ase of those proposed in [25, 26℄).� It 
an eÆ
iently implemented by means of Binary De
ision Diagrams. There is nopri
e to pay for the generality of the method: it is eÆ
ient even 
ompared to thespe
ialized algorithm by Kuo, Lu and Yeh [13℄.14



Table 1: Results on the ben
hmark networksEED BFS EED SIFT Our methodnet #paths reliability jBDDj time jBDDj time jBDDj jZBDDj time01 4 0.978480 10 0.00 9 0.00 9 7 0.0002 7 0.968425 15 0.00 15 0.02 20 13 0.0003 9 0.997632 26 0.00 24 0.02 24 14 0.0004 13 0.977184 22 0.00 17 0.00 17 15 0.0005 13 0.964855 50 0.00 23 0.00 29 20 0.0106 14 0.996664 39 0.00 32 0.02 42 20 0.0007 25 0.997494 51 0.00 45 0.02 57 29 0.0108 29 0.996217 66 0.00 50 0.03 53 21 0.0009 24 0.975116 36 0.00 27 0.00 32 24 0.0010 20 0.984068 68 0.00 27 0.02 33 22 0.0111 18 0.969112 48 0.00 41 0.02 42 28 0.0112 36 0.997186 548 0.03 129 0.03 112 58 0.0113 18 0.994076 157 0.00 43 0.03 135 39 0.0114 44 0.904577 126 0.00 64 0.05 97 51 0.0115 44 0.974145 40 0.00 36 0.02 43 29 0.0016 64 0.997506 407 0.02 134 0.13 135 68 0.0117 145 0.985357 643 0.05 153 0.27 274 112 0.0118 269 0.987310 292 0.03 134 0.15 136 84 0.0119 780 0.997120 3591 0.35 2182 3.38 2032 450 0.2020 98 0.987831 177 0.02 128 0.01 178 100 0.0221 8512 0.975557 1148 0.43 1111 4.03 1148 705 0.1722? 192 0.998171 1505 0.08 886 0.77 386 137 0.0223 100 0.959624 46 0.00 35 0.03 45 33 0.0024 102 0.995447 250 0.03 139 0.13 161 77 0.0125 109601 1.000000 49785 14.10 37371 142.75 49785 5828 5.4326 1262816 0.975645 4970 15.75 4863 148.63 4970 3153 0.3527 538020 0.961730 317 3.65 307 5.06 316 199 0.0228 64019918 0.956266 437 70.73 427 82.42 436 275 0.0329 524288 0.784482 115 0.02 114 0.20 114 76 0.0130 299 0.304293 595 2.52 594 10.25 594 396 0.27
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The notion of preferen
e has been already used in di�erent 
ontexts. In arti�
ial in-telligen
e and data bases, the 
lose world assumption (all what was not told true shouldbe 
onsidered as false) 
an be interpreted in terms of preferen
es. In [27℄, Besnard andSiegel 
ompared several non-monotoni
 logi
s through the notion of preferential models.Our treatment of looped system 
an be interpreted in their framework. More re
ently, weused the partial order � to give a 
lear algebrai
 interpretation for the notion of minimal
utsets [14℄.The present work is also related with, although di�erent from, algorithms proposed toremove loops in sequential 
ir
uits [28, 29, 30℄. It would be interesting to study whetherte
hniques su
h as those proposed in [30℄ 
an be used to perform a more eÆ
ient 
ompila-tion (i.e. to generate a formula that 
an more easily handled by means of BDD's).Referen
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h 1996.A The Bridge Example (
ontinued)The equations that des
ribe the bridge example pi
tured Fig. 1 are give se
tion 3.1. Basi
events are pwr(s), wrk(e1), . . . , wrk(e5). Non-basi
 events are pwr(n1), pwr(n2), pwr(t).A.1 The Physi
sThe �rst problem is to determine whi
h minterms 
orrespond to the physi
s. Some of theminterms over E determine fully the values of non-basi
 events. Some other do not. Thetable 2 summarizes the relationship between the values of the E 's and the values of the18



Table 2: The values of the G's from the values of the E 's.pwr(s) wrk(e1) wrk(e2) wrk(e3) wrk(e4) wrk(e5) pwr(n1) pwr(n2) pwr(t)1 1 1 f0; 1g v4 v5 1 1 v4 + v51 1 0 1 v4 v5 1 1 v4 + v51 1 0 0 v4 f0; 1g 1 0 v41 0 1 1 v4 v5 1 1 v4 + v51 0 1 0 f0; 1g v5 1 1 v5f0; 1g 0 0 1 v4 v5 w w w:(v4 + v5)f0; 1g 0 0 0 f0; 1g f0; 1g 0 0 00 f0; 1g f0; 1g 1 v4 v5 w w w:(v4 + v5)0 f0; 1g f0; 1g 0 f0; 1g f0; 1g 0 0 0G's. The problemati
 situations are those where either pwr(s) is false or both wrk(e1) andwrk(e2) are false. In these 
ases, the physi
s prefers the valuation with w = 0.It is worth noti
ing that our model for the bridge is 
orre
t: on
e w set to 0, the valuesof the G's are uniquely determined by the values of the E 's.A.2 Monotone De
reasing PropertiesThe theorem 2 
an be used to get the s; t dis
onne
ting 
uts. In this 
ase, the property Pis redu
ed to pwr(t) (therefore monotone de
reasing) and QMD is de�ned as follows.QMD = 9 pwr(n1); pwr(n2); pwr(t) E:pwr(t)QMD is therefore equivalent to the following formula.QMD � Xv12f0;1g;v22f0;1gE[v1=pwr(n1); v2=pwr(n2); 0=pwr(t)℄The table 3 gives the terms of this disjun
t.By applying further simpli�
ations to the formula QMD, it is easy to show its prime im-pli
ants ofQMD are pwr(s), wrk(e1):wrk(e2), wrk(e1):wrk(e3):wrk(e5), wrk(e2):wrk(e3):wrk(e4)and wrk(e4) :wrk(e5).A.3 Monotone In
reasing PropertiesThe theorem 3 
an be used to get the s; t 
onne
ting paths. In this 
ase, the property Pis redu
ed to pwr(t) (therefore monotone in
reasing) and QMI is de�ned as follows.QMI = 8 pwr(n1); pwr(n2); pwr(t) E ) pwr(t)QMI is therefore equivalent to the following formula.QMI � �v12f0;1g;v22f0;1gE[v1=pwr(n1); v2=pwr(n2); 0=pwr(t)℄19



Table 3: De
omposition of 9 pwr(n1); pwr(n2); pwr(t) E:pwr(t)v1 v2 E[v1=pwr(n1); v2=pwr(n2); 0=pwr(t)℄1 1 (pwr(s):wrk(e1) + wrk(e3)):(pwr(s):wrk(e2) + wrk(e3)):wrk(e4) + wrk(e5)= (pwr(s):wrk(e1):wrk(e2) + wrk(e3)):wrk(e4) :wrk(e5)1 0 (pwr(s):wrk(e1)):pwr(s):wrk(e2) + wrk(e3) :wrk(e4)= pwr(s):wrk(e1):wrk(e2) :wrk(e3) :wrk(e4)0 1 pwr(s):wrk(e1) + wrk(e3) :(pwr(s):wrk(e2)):wrk(e5)= pwr(s):wrk(e1) :wrk(e2):wrk(e3) :wrk(e5)0 0 pwr(s):wrk(e1) :pwr(s):wrk(e2)= pwr(s) + wrk(e1) :wrk(e2)The reader may verify that, by taking the disjun
t of the negation of the termsgiven by the table 3 and then applying some simpli�
ations, it is easy to show thatthe prime impli
ants of QMI are pwr(s):wrk(e1):wrk(e4), pwr(s):wrk(e1):wrk(e3):wrk(e5),pwr(s):wrk(e2):wrk(e2):wrk(e4) and pwr(s):wrk(e2):wrk(e5).Antoine Rauzy is with the Fren
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 Resear
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