
A New Methodology to HandleBoolean Models with LoopsA. RauzyIML, UPR CNRS 9016163, avenue de Luminy { Case 907F-13288 Marseille edex 9 { FRANCEarauzy�iml.univ-mrs.frSummary & ConlusionsThe main Boolean risk assessment models (Fault Trees, Event Trees, Blok Diagrams,Reliability Networks) an be seen as sets of Boolean equations. In general, they are hier-arhial. In some ases however, the model ontains loops, beause the system embeds atleast two omponents whose states depend one another. Reliability networks are a typialexample of looped models. Classial fault tree assessment methods fail to assess this kindof model, at least without a ostly preproessing. In this artile, we propose a logialframework to larify the meaning looped of sets of Boolean equations. We propose also aBinary Deision Diagrams based method to assess them. We illustrate our approah byproviding experimental results on a benhmark of reliability networks.keywords Reliability networks, Boolean reliability models with loops, Binary DeisionDiagrams1 IntrodutionThe main Boolean risk assessment models (Fault Trees, Event Trees, Blok Diagrams,Reliability Networks) an be seen as sets (onjunts) of Boolean equations in the formg , F , where g is a Boolean variable and F is a Boolean formula. These equationsdesribe the global state of the system as a (Boolean) funtion of the states of its basiomponents. In suh a model, there are two kinds of variables:� Input variables that our only in right members of equations. These variables de-sribe states of basi omponents.� Gate variables that our as the left member of an equation. These variables representfuntionalities of the system or states of non-basi omponents.1



Fault trees, event trees and blok diagrams are built by means of a hierarhial deomposi-tion of the system under study. The orresponding sets of Boolean equations are hierahialand the values of gate variables are uniquely determined by the values of input variables.Sometimes omponents interat in suh way that no hierahial desription is suitable.This is for instane the ase if two omponents A and B are suh that the state of Adepends on the state of B and vie versa. Reliability networks [1℄ examplify this generalproblem. The sets of Boolean equations that desribe this kind of systems may ontainloops, i.e. irular de�nitions suh as g1 , F1(g2); g2 , F2(g3); : : : ; gr , Fr(g1). In thisase, the values of input variables do not determine uniquely the values of gate variables.However, this underterminism does not ome from the physis. It omes from the model.The physis \prefers" one of the possible valuations. Consider, for instane, to an eletriiruit with no power soure. The equations may let the iruit omponents either poweredor not powered. The physis tells us they are not powered. The problem omes from thefat that there is no tratable logial mean to express preferenes.In this artile, we propose a formal framework to takle this diÆulty.We show that, in some restrited ases, preferenes an be expressed by logial meansonly, through the use of quanti�ed formulae. This lari�es and generalizes an idea byMadre et al [2℄.We establish a deomposition theorem that makes it possible to assess looped modelsby means of Binary Deision Diagrams (BDDs) [3, 4℄. BDDs are the state-of-the-art datastruture to handle boolean funtions [5℄. Sine their introdution in the reliability �eld[6, 7℄, they have proved to be the most eÆient tool to assess Boolean reliability modelssuh as fault trees. One of the key issues to take fully advantage of BDDs is to �nda good variable ordering. The size of BDDs, and therefore the eÆieny of the wholemethodology, depends dramatially on the hosen ordering. Several domain dependentheuristis have been proposed for iruits (see for instane [8, 9, 10℄) and fault trees (seefor instane [11, 12℄). We propose a heuristi devoted to the assessment of sets of equations.Experimental results on a benhmark of reliability networks give evidene of the interest ofthe whole approah. Our algorithm gives better results than the speialized BDD methodproposed reently by Kuo, Lu and Yeh [13℄.The remainder of this artile is organized as follows. First, we introdue quanti�edBoolean formulae and sets of equations setion 2. The general framework we propose todeal with suh models is presented setion 3. In setion 4, we reall basis about BDDsand we disuss the variable ordering problem. Experimental results are reported setion 5.Finally, related works are examined setion 6.2 Boolean Models2.1 Quanti�ed Boolean FormulaeIn this artile, we onsider Boolean formulae built over the two (Boolean) onstants 0(False) and 1 (True), a denumerable set of variables fv1; v2; : : :g, and the usual logial2



onnetives \:" (and), \+" (or), \ " (not). The set of variables that our in the formulaF is denoted by var(F ).For the sake of the onveniene, we shall use the onnetives ) and, that are de�nedas follows. F ) G def= F +G F , G def= F:G+ F :GLet F be a formula and v a variable. We denote by F [1=v℄ (respetively F [0=v℄) theformula obtained by substituting in F the onstant 1 (respetively 0) for the variable v.Consider, for instane, the formula F = ab + a. Then, F [1=a℄ = 1b + 1 = b andF [0=a℄ = 0b+ 0 = . We denote by F [1=v1; : : : ; k=vk℄ the formula F [1=v1℄ : : : [k=vk℄.In the above example, we use impliitely Boolean simpli�ation rules (onstant propaga-tion): for any formula F , 1 = 0, 0 = 1, F:0 = 0:F = 0, F:1 = 1:F = F , F+0 = 0+F = F ,F +1 = 1+F = 1, . . . . Throughout this artile, we shall keep impliit suh simpli�ations.The treatment of Boolean models with loops introdues formulae with the universalquanti�er 8 and the existential quanti�er 9. They are de�ned as follows.8v F def= F [1=v℄:F [0=v℄ 9v F def= F [1=v℄ + F [0=v℄Consider, for instane, the formula F = ab + a. Then, 8aF = b and 9aF = b + . Wedenote by Qv1; : : : ; vk F , Q 2 f8; 9g, the formula Qv1 (Qv2 : : : (Qvk F ) : : :).2.2 Boolean EquationsA Boolean equation is a formula in the form v , F , where v is a variable and F is aformula. A set of Boolean equations E is assimilated with the onjunt of its elements.It is assumed that for eah variable v there is at most one equation v , F in E. Ifsuh a equation belongs to E, F is alled the de�nition of v. It is moreover assumed thatv 62 var(F ).We all (i) output-, (ii) input- and (iii) gate-variables of E the variables that respetively(i) our as a left member of an equation and do not our in a right member, (ii) do notour as a left member and (iii) our as a left member.In reliability models, input variables represent in general events that hange the internalstate of basi omponents. Input variables are typially the basi events of fault trees orrepresent failures of edges and nodes in reliability networks. Gate variables represent fun-tionalities of the system or states of non-basi omponents. Gates variables are typiallygates of fault trees or used to desribe whether a node of a network is feeded.We de�ne anestorsE(v) as follows.anestorsE(v) def= � var(F ) [Sw2var(F ) anestorsE(w) if E 3 v , F; otherwiseIn other words, anestorsE(v) is the set of variables w suh that v depends on w.A set of Boolean equations E is said looped if there is a variable v suh that v 2anestorsE(v). It is said hierarhial otherwise.3



Fault trees are hierarhial formulae. It is worth notiing that any hierarhial set ofequations with a single ouput variable r an be rewritten into a equivalent equation r, Fby replaing bottom-up the other gate variables by their de�nitions.2.3 Literals, Produts, Minterms, Prime ImpliantsA literal is either a variable v or its negation v . v is a positive literal. v is a negativeliteral. They are said opposite. The opposite of a literal p is denoted by p ( p = p).A produt is a set of literals that does not ontain both a literal and its opposite. Aprodut is assimilated with the onjunt of its elements.Let V be a �nite set of variables. A produt that ontains a literal built over eahvariable of V is alled a minterm of V. We denote by minterms(V) the set of minterms thatan be built over V. Any formula an rewritten as a disjunt of minterms. This disjuntof mintems is unique (up to a permutation). E.g. F = ab + a = ab + ab + ab + a b.It is therefore often onvenient to write that a minterm � belongs to a formula F (� 2 F )when F an be rewritten as � + F 0. Note that for any minterm � either � 2 F or � 2 F .A produt � is an impliant of a formula F if, for any � 2 minterms(var(F )), if � � �,then � 2 F . An impliant � is said prime if there is no impliant � of F suh that � � �.We denote by PI[F ℄ the set of prime impliants of the formula F .The formula F = ab+ a admits 7 impliants ab, ab, ab , ab, a, a b and b and 3prime impliants ab and a, b.Prime impliants play a entral role in reliability studies. They represent minimalsenarii of failure in fault trees (minimal utsets), minimal s-t onneting paths in reliabilitynetworks, . . . Note however that there are slight di�erenes between the the notions of primeimpliants and minimal utsets as we showed in [14℄. These di�erenes do not matter forthe purpose of this artile.2.4 OrderIn Boolean risk assessment models, positive literals represent in general the relevant fats(failures of omponents), while negative literals represent in some sense nominal situations.It is therefore natural to introdue an order among literals.By onvention, we shall onsider that the negative literal is smaller than the positiveliteral, whih is denoted by e � e. Given two literals p and q, p v q if either p = q or p � q.This order an be extended into a partial order v over minterms: p1: : : : :pn v q1: : : : :qn ifpi v qi for i = 1; : : : ; n.A formula F is monotone inreasing if for any two minterms � and � suh that � v �,then � 2 F implies that � 2 F . Coherent fault trees are monotone inreasing formulae. Aformula F is monotone dereasing if for any two minterms � and � suh that � v �, then� 2 F implies that � 2 F .
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r rr r����*HHHHj����*HHHHj?6s tn1n2e1e2 e5e3 e4Figure 1: The bridge network.3 A Logial Framework to Handle Looped Models3.1 Introdutory ExampleConsider for instane the network pitured Fig. 1. Assume that all nodes but s are perfetlyreliable and that s and all edges may fail independently. The set of Boolean equations thatdesribe working s,t-paths of this network ould be as follows.pwr(n1) , pwr(s):wrk(e1) + pwr(n2):wrk(e3)pwr(n2) , pwr(s):wrk(e2) + pwr(n1):wrk(e3)pwr(t) , pwr(n1):wrk(e4) + pwr(n2):wrk(e5)Eah wrk(e) represents the event \the edge e is working". Eah pwr(v) represents theevent \the vertex v is powered". pwr(s) and the wrk(e)'s are input variables. pwr(n1),pwr(n2) and pwr(t) are gate variables. pwr(t) represents the question we are asking aboutthe network, namely \is the target state powered ?".The onjunt E of the above equations desribes, in a natural way, the physis of thenetwork. It is looped sine pwr(n1) depends on pwr(n2) and vie-versa. This has twoonsequenes. First, pwr(n1) and pwr(n2) are not gates in the usual sense. It follows thatlassial fault tree assessment tehniques annot be used to assess E, at least withouta preproessing. Seond, the values of the pwr(v)'s (v 2 fn1; n2; tg) are not uniquelydetermined by the values of pwr(s) and the wrk(x)'s. Consider, for instane, the asewhere vertex s and edges e1 and e2 are down while edges e3, e4 and e5 are working. Theformula E[0=pwr(s); 0=wrk(e1); 0=wrk(e2); 1=wrk(e3); 1=wrk(e4); 1=wrk(e5)℄an be simpli�ed into the following set of equations.pwr(n1), pwr(n2)pwr(t), pwr(n1)Two valuations satisfy this set: pwr(n1) = pwr(n2) = pwr(t) = 0 whih orresponds to thephysis and pwr(n1) = pwr(n2) = pwr(t) = 1.This example illustrate a general problem: the model is looped, therefore undertermin-isti. However, this underterminism does not ome from the physis. It omes from themodel. The physis has a prefered interpretation. This prefered interpretation is smallest5



one with respet to the order � we de�ned setion 2.4. The main problem when dealingwith looped system is to eliminate unwanted, i.e. non-minimal, interpretations.3.2 FrameworkThe problem of looped systems an be stated in the following way.Let E = �mi=1 (gi , Fi) be a set (a onjunt) of Boolean equations that desribe thephysis of the system under study. E is built over two distint sets of variables: the setG = fg1; : : : ; gmg of gate variables and the set E = fe1; : : : ; eng of input variables.Two generi questions may be answered about E. They an be stated as follows.(A) What are the minimal sets of basi events that lead the system in a on�guration inwhih a given property P is realized ?(B) What is the probability that at least one of these on�gurations is realized ?We have �rst to set in a formal way whih valuations of the variables orrespond tothe physis. Consider the minterms �� over E [ G, where � is a minterm over E and � is aminterm over G. �� obeys the physis if it ful�lls the following requirements.1. �� veri�es the equations of the model, i.e. �� 2 E.2. �� is minimal w.r.t. �, i.e. 8�0 2 minterms(G); �0 � � ) ��0 2 E .Therefore, we an de�ned the set ME of the minterms that obey the physis as follows.ME def= f��; � 2 minterms(E); � 2 minterms(G);�� 2 E ^ 8�0 2 minterms(G); �0 � � ) ��0 2 Eg (1)A set of equations E is orret if, for eah on�guration of the basi events, it exists aunique on�guration of the other events that obeys the physis. Formally,8� 2 minterms(E);9� 2 minterms(G) �� 2ME^ 8�; �0 2 minterms(G) �� 2 ME ^ ��0 2ME ) � = �0 (2)In the sequel, we shall onsider only orret sets of equations. It is worth notiing thatME ats as a funtion from minterms(E) to minterms(G). We denote by ME(�), � 2minterms(E) the unique � 2 minterms(G) suh that �� 2 ME. The following lemmaholds.Lemma 1 Let � 2 minterms(E) and let � 2 minterms(G) suh that �� 2 E. Then,ME(�) v �. 6



This follows immediately from the uniqueness of ME(�). �The minterms that obeys the physis for the bridge network are given in appendix A.1.To answer the generi questions (A) and (B), the idea is to build a formula Q over Esuh that a minterm � over E belongs to Q if and only if it obeys the physis and it veri�esthe property P . Formally, Q is de�ned as follows.Q def= f� 2 minterms(E); 9� 2 minterms(G); �� 2ME:Pg (3)The prime impliants of Q and its probability are respetively the minimal set of eventsand the probability we are looking for. The problem is to make onrete the onstrutionof suh a formula Q.3.3 The Case of Monotone PropertiesIn the ase where P is a monotone formula, the query Q an be written in a purely logialway, as stated by the two following theorems.Theorem 2 (Monotone dereasing property) If P is a monotone dereasing formulathen Q is equivalent to the formula QMD de�ned as follows.QMD def= f� 2 minterms(E); 9� 2 minterms(G) �� 2 E:Pg (4)Q) QMD. By de�nition.QMD ) Q. Consider a minterm � 2 QMD. Let �0 = ME(�) and assume ��0 62 P . Let� be one of the minterms over G suh that �� 2 E:P . By lemma 1, �0 � �. Sine P ismonotone dereasing, ��0 2 P . A ontradition. �The theorem 2 an be used to get the s; t disonneting uts of a reliability network.The ase of the bridge network is treated in appendix A.2.Theorem 3 (Monotone inreasing property) If P is a monotone inreasing formulathen Q is equivalent to the formula QMI de�ned as follows.QMI def= f� 2 minterms(E); 8� 2 minterms(G) �� 2 E ) �� 2 Pg (5)Q ) QMI . Let � 2 Q and let � = ME(�). By lemma 1, forall �0 2 minterms(G) either�0 62 E or � v �0. In the latter ase, sine P is monotone inreasing, �0 2 P .QMI ) Q. By de�nition. �The theorem 3 an be used to get the s; t-onneting paths of a reliability network.The ase of the bridge network is treated in appendix A.3.The formula QMI is, up to slight di�erenes, the one proposed by Madre et al toompile digraphs [2℄. The theorem 3 provides a formal framework to understand whyMadre's method works. 7



3.4 Deomposition TheoremPreferenes indued by the partial order � annot be expressed in a purely logial way,i.e. using only the usual onnetives and possibly some quanti�ers. We will disuss whyin the next setion. In other words, the formula ME annot be derived by purely logialmeans from the formula E. A fortiori the query Q annot be derived from E and P if noassumption is made on P . This does not mean however that the formula ME annot beomputed from the formula E. In this setion, we show how to ompute Q from E and Pin the Binary Deision Diagram framework.BDDs make an extensive use of the Shannon deomposition: Let F be a formula andlet v be a variable of F , then the following equality holds.F = v:F [1=v℄ + v :F [0=v℄ (6)The Shannon deomposition an be mixed together other operations in order to produeso-alled deomposition theorems. Let, for instane, F = v:F1+ v :F0 and G = v:G1+ v :G0be two formulae. Then F �G = v:(F1�G1)+ v :(F0�G0) for any binary onnetive � (+,:, ), ,, . . . ). Most of BDD algorithm rely on suh deomposition theorems that make itpossible to ompute reursively a given quantity or funtion.We will give a deomposition theorem to ompute Q from E and P . The omputationof Q onsists in three steps:1. One omputes Q0 = E:P .2. One removes from Q0 the minterms �� for whih there exists a minterm �0 suh that� � �0 and ��0 2 E. Let Q1 be the result.3. One quanti�es existentially the G's in Q1 to get Q.As we will see, the seond and third steps are atually ahieved at one.Let F and G be two formulae built over E [ G. The formulae F 
G G and F #G G arede�ned as follows.F 
G G def= f��; � 2 minterms(E); � 2 minterms(G);�� 2 F ^ 8�0 2 minterms(G); �0 � � ) ��0 2 Gg (7)F #G G def= 9G (F 
G G) (8)We an now state the deomposition theorem.Theorem 4 (Deomposition of F #U G) Let v 2 E [ G and let F = v:F1 + v :F0 andG = v:G1 + v :G0 be two formulae built over E [ G. The following equality holds.F #G G = � v:(F1 #G G1) + v :(F0 #G G0) if v 2 E(F1 #G G1):G0 + (F0 #G G0) if v 2 G8
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1 2 n-1 nFigure 2: A network with 2n+ 2 verties, 4n+ 2 edges and 2n s; t-paths.The proof is a straightforward appliation of the de�nitions 7 and 8.The following orollary, that follows from the de�nition 3, gives a mean to ompute Q.Corollary 5 (Computation of Q) The following equivalene holds.Q = E:P #G E3.5 DisussionIn order to remove undesirable minterms, we have used so far extra-logial means (via thepartial order �). It is questionable whether it is possible to handle looped desriptions bymeans of purely logial expressions.In the ase of reliability networks, it is possible to write a formula F that enumeratess; t-paths, therefore avoiding all diÆulties. However, enumerating good on�gurations (s-tpaths) has a serious drawbak: the number of suh on�gurations may be exponentiallylarger than the number of omponents of the system under study. The family of networkspitured Fig. 2 is a good witness of this problem.Unfortunately a method to desribe s; t-paths loally annot exist. Let ~ai denotes thenodes and edges that are adjaent to the vertex vi. Assume there exist formulae Ri(vi; ~ai)(one per vertex) suh that the onjunt of the Ri's express that eah vertex vi is reahablefrom the soure vertex s. It is lear that to determine s; t-paths one needs a formulaof this kind. Now, it should be possible to standardize the Ri's into a single �rst-orderprediate R(~v). The number of parameters of R depends only on the maximal degree d ofthe graph. By quantifying universally the onjunt of the appliations of R to eah vertexof the network, one gets a �rst order formula that is a tautology if and only if eah vertexof the network is reahable from the soure vertex. Moreover, R ould be used for anynetwork of maximal degree less than d. But, it is a entral result of desriptive omplexitytheory that suh a formula annot exist. This is a onsequene of the L�owenheim-Skolemtheorem that asserts that any formula with a arbitrary large model has a in�nite model(see for instane [15℄ for a simple demonstration, and [16℄ for a monograph on desriptiveomplexity).The use of preferenes is thus the prie to pay to write loal desriptions, i.e. desrip-tions suh that the status of a node depends only on the status of nodes and edges of itsimmediate neighbourhood. 9
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Figure 3: From the Shannon tree to the BDD enoding ab + �a.4 Binary Deision DiagramsIn this setion, we reall basis about BDDs. The reader interested in a more detailedpresentation should see the referene [4℄.4.1 BDDsThe BDD assoiated with a formulae is a ompat enoding of the truth table of thisformula. This representation is based on the Shannon deomposition (equation 6). Byhoosing a total order over the variables and applying reursively the Shannon deomposi-tion, the truth table of any formula an be graphially represented as a binary tree. Eahinternal node enodes a formula F . It is labeled with a variable v and has two outedges(a then-outedge that points to the node that enodes F [1=v℄, and a else-outedge thatpoints to the node that enodes F [0=v℄). The leaves are labeled with either 0 or 1. Thevalue of the formula for a given valuation of the variables is obtained by desending alongthe orresponding branh of the tree. The Shannon tree for the formula ab + �a and thelexiographi order is pitured Fig. 3 (dashed lines represent else-outedges).Indeed, suh a representation is spae onsuming. It is however possible to shrink it bymeans of the following two redution rules.Isomorphi subtrees merging. Sine two isomorphi subtrees enode the same formula, atleast one is useless.Useless nodes deletion. A node with two equal sons is useless sine it is equivalent to itsunique son (v:F + �v:F = F ).By applying these two rules as far as possible, one gets the BDD assoiated with theformula. A BDD is therefore a direted ayli graph. It is unique, up to an isomorphism[3℄. This proess is illustrated on Fig. 3.Logial operations (and, or, not, quanti�ations, ...) an be diretly performed onBDDs. This results from the orthogonality of usual onnetives and the Shannon deom-position. The omplete binary tree is never built and then shrunk: the BDD that enodes10
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b3Figure 4: The BDDs enoding a1:b1 + a2:b2 + a3:b3 for two variable orderings.a formula is obtained by omposing the BDDs that enode its subformulae. Moreover, aahing priniple is used to store intermediate results of omputations. This makes theusual logial operations (onjuntion, disjuntion, quanti�ation) polynomial in the sizesof their operands. A omplete implementation of a BDD pakage is desribed in [4℄. Thereader interested in details should thus refer to this artile.The theorem 4 applies diretly on BDDs (inluding ahing). It an be used to omputethe BDD that enodes the minterms that orresponds to the physis of a given set ofequations.4.2 The Variable Ordering ProblemOne of the key issues to take fully advantage of BDDs is to �nd a good variable ordering.The size of BDDs, and therefore the eÆieny of the whole methodology, depends dramat-ially on the hosen ordering. The following example, already given in [3℄, illustrates theproblem. Let Fn be the following parametri formula Fn = a1:b1 + a2:b2 + : : :+ an:bn. Thesize of the BDD that enodes Fn is linear in n for the ordering a1 < b1 < : : : < an < bn,while it is exponential for the ordering a1 < : : : < an < b1 < : : : < bn. The BDDs for thetwo variable orderings and n = 3 are pitured on Fig. 4.Finding a good variable ordering is a diÆult problem. The only means to predit thesize of a BDD is more or less to build it (see for instane [17℄ for theoretial insights aboutthis question). Several domain dependent heuristis have been proposed for iruits (seefor instane [8, 9, 10℄) and fault trees (see for instane [11, 12℄). These heuristis rely ondi�erent priniples. However, they both try to put lose in the order the variables that arelose in the formula, as illustrated by the ai=bi of the previous example.4.3 Heuristis for Sets of EquationsThe problem of �nding a good heuristis is therefore twofold. First, one has to de�neformally the notion of proximity between variables. Seond, one suh a formal model isfound, one has to determine whih ordering is optimum.11



In the ase of sets of equations, we an assume that right members of equations aresmall formulae. Therefore, we an ignore what happens inside eah equation. A formalway to de�ne the proximity is thus to assoiate an undireted graph GE with the set ofequations E(E ;G) under study. The verties of G are the variables of E. G ontains anedge for eah pair (v; w) of variables suh that v is left member of an equation v , Fand w ours in F . An alternative ould be to reate an edge for eah pair of variablesourring in the equation.An ordering I assoiates an index (a positive integer) I(v) with eah variable v. I(v) 2[0; m + n℄ where m and n denote respetively the number of variables of E and G. Theweight !(I) of an ordering I is de�ned as follows.!(I) def= X(v;w)2GE jI(v)� I(w)j (9)It is expeted that the best ordering is the one of minimum weight.Unfortunately, the problem of determining whih ordering minimizes ! is NP-Complete(it is referened as \Optimal Linear Arrangement" in [18℄). It is atually intratable to getthe best solution as soon as GE ontains more than few dozens of variables.Fortunately, approximate solutions are relatively easy to �nd by means of loal searhalgorithms. We use the following method.1. Start with a presumably good ordering. In the ase of fault trees, the orderingobtained by means of a depth-�rst left-most traversal of the tree is often good. Inthe ase of reliability networks, the ordering obtained by means of a breadth-�rsttraversal of the network starting from its soure is a good andidate.2. Try to improve the urrent order by ipping two onseutive variables. The variableto ip is either the one that improve the most the weight or, in ase of tie, it ispiked at random among those that give the best weight improvement. This proessis reiterated until there is no mean to improve further the urrent ordering or aprede�ned number of sideway moves is reahed.Indeed, many variations an be imagined on this sheme (see for instane [19, 20℄ for reviewsof reent developments on loal searh algorithms). The main interest of the method wepropose is that in pratie it leads quikly to a good solution.5 Experimental ResultsIn order to test our method (treatment of looped systems of equations plus variable orderingheuristis), we onsidered the benhmark of networks olleted in literature by Kuo, Luand Yeh. In [13℄, these authors propose a BDD based approah to ompute the terminal-pair reliability of a network. Their method relies on a reursive deomposition of thenetwork (and uses spei� data strutures in addition to BDDs). They provide a number12
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of experimental results on the networks pitured on Fig. 5 (most of them are taken from [21℄and [22℄).We wrote sets of equations for these networks in the same way we did for the bridgenetwork in setion 3.1. Then, we applied the variable ordering heuristis desribed insetion 4.3. Finally, we omputed the BDD that enodes the query as de�ned in setion 3,the ZBDD that enodes the prime impliants of the query (with the algorithm proposedin [7℄) and the probability there is an operating s-t paths (edge reliabilities are all set to0.9).The table 1 reports the results we obtained and ompares them with Kuo, Lu and Yehresults. The running time for the formers are those for the omputation of BDD plus theomputation of the ZBDD plus the assessment of the reliability. For the latters, the tablegives the running time to ompute the BDD that enodes the s-t paths as well as thesize of this BDD for the two best methods proposed in the artile, namely EED BFS andEED SIFT. EED BFS uses a breadth-�rst variable ordering heuristis. EED SIFT appliesthe sifting post-proessing to redue the sizes of BDDs [23℄.It is worth notiing that running times were measured on di�erent proessors (althoughroughly equivalent).The following onlusions an be drawn from these results.� Our method performs well both in terms of running times and in terms of BDD sizesompared to the algorithm by Kuo, Lu and Yeh.� It is muh more general for it works on any set of equations and it makes it possibleto answer muh more general questions about the models.6 Related Works and ConlusionsThe framework we proposed in this artile generalizes and explains the work by Madre etal. [2℄. The heuristis is also a formalization and a generalization of our own preliminaryworks on the topis [24℄. Our method has three main interests:� It is powerful sine it an be applied to a large lass of Boolean models that inludesat least both fault trees and reliability networks.� The models and the queries are very easy to write. They are obtained from loalbehavior desriptions only. Their size is linear in the size of the studied system.This makes a de�nitive di�erene with other tehniques to deal with looped modelsthat are either unomplete or of an exponential worst ase omplexity (whih is forinstane the ase of those proposed in [25, 26℄).� It an eÆiently implemented by means of Binary Deision Diagrams. There is noprie to pay for the generality of the method: it is eÆient even ompared to thespeialized algorithm by Kuo, Lu and Yeh [13℄.14



Table 1: Results on the benhmark networksEED BFS EED SIFT Our methodnet #paths reliability jBDDj time jBDDj time jBDDj jZBDDj time01 4 0.978480 10 0.00 9 0.00 9 7 0.0002 7 0.968425 15 0.00 15 0.02 20 13 0.0003 9 0.997632 26 0.00 24 0.02 24 14 0.0004 13 0.977184 22 0.00 17 0.00 17 15 0.0005 13 0.964855 50 0.00 23 0.00 29 20 0.0106 14 0.996664 39 0.00 32 0.02 42 20 0.0007 25 0.997494 51 0.00 45 0.02 57 29 0.0108 29 0.996217 66 0.00 50 0.03 53 21 0.0009 24 0.975116 36 0.00 27 0.00 32 24 0.0010 20 0.984068 68 0.00 27 0.02 33 22 0.0111 18 0.969112 48 0.00 41 0.02 42 28 0.0112 36 0.997186 548 0.03 129 0.03 112 58 0.0113 18 0.994076 157 0.00 43 0.03 135 39 0.0114 44 0.904577 126 0.00 64 0.05 97 51 0.0115 44 0.974145 40 0.00 36 0.02 43 29 0.0016 64 0.997506 407 0.02 134 0.13 135 68 0.0117 145 0.985357 643 0.05 153 0.27 274 112 0.0118 269 0.987310 292 0.03 134 0.15 136 84 0.0119 780 0.997120 3591 0.35 2182 3.38 2032 450 0.2020 98 0.987831 177 0.02 128 0.01 178 100 0.0221 8512 0.975557 1148 0.43 1111 4.03 1148 705 0.1722? 192 0.998171 1505 0.08 886 0.77 386 137 0.0223 100 0.959624 46 0.00 35 0.03 45 33 0.0024 102 0.995447 250 0.03 139 0.13 161 77 0.0125 109601 1.000000 49785 14.10 37371 142.75 49785 5828 5.4326 1262816 0.975645 4970 15.75 4863 148.63 4970 3153 0.3527 538020 0.961730 317 3.65 307 5.06 316 199 0.0228 64019918 0.956266 437 70.73 427 82.42 436 275 0.0329 524288 0.784482 115 0.02 114 0.20 114 76 0.0130 299 0.304293 595 2.52 594 10.25 594 396 0.27
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The notion of preferene has been already used in di�erent ontexts. In arti�ial in-telligene and data bases, the lose world assumption (all what was not told true shouldbe onsidered as false) an be interpreted in terms of preferenes. In [27℄, Besnard andSiegel ompared several non-monotoni logis through the notion of preferential models.Our treatment of looped system an be interpreted in their framework. More reently, weused the partial order � to give a lear algebrai interpretation for the notion of minimalutsets [14℄.The present work is also related with, although di�erent from, algorithms proposed toremove loops in sequential iruits [28, 29, 30℄. It would be interesting to study whethertehniques suh as those proposed in [30℄ an be used to perform a more eÆient ompila-tion (i.e. to generate a formula that an more easily handled by means of BDD's).Referenes[1℄ D. Shier, Network Reliability and Algebrai Strutures. Oxford Siene Publiations,1991.[2℄ J.-C. Madre, O. Coudert, H. Fra��ss�e, and M. Bouissou, \Appliation of a New LogiallyComplete ATMS to Digraph and Network-Connetivity Analysis," in Proeedings ofthe Annual Reliability and Maintainability Symposium, ARMS'94, pp. 118{123, 1994.Annaheim, California.[3℄ R. Bryant, \Graph Based Algorithms for Boolean Fontion Manipulation," IEEETransations on Computers, vol. 35, pp. 677{691, August 1986.[4℄ K. Brae, R. Rudell, and R. Bryant, \EÆient Implementation of a BDD Pakage," inProeedings of the 27th ACM/IEEE Design Automation Conferene, pp. 40{45, IEEE0738, 1990.[5℄ R. Bryant, \Symboli Boolean Manipulation with Ordered Binary Deision Dia-grams," ACM Computing Surveys, vol. 24, pp. 293{318, September 1992.[6℄ O. Coudert and J.-C. Madre, \A New Method to Compute Prime and Essential PrimeImpliants of Boolean Funtions," in Advaned Researh in VLSI and Parallel Systems(T. Knight and J. Savage, eds.), pp. 113{128, Marh 1992.[7℄ A. Rauzy, \New Algorithms for Fault Trees Analysis," Reliability Engineering & Sys-tem Safety, vol. 05, no. 59, pp. 203{211, 1993.[8℄ M. Fujita, H. Fujisawa, and N. Kawato, \Evaluation and Improvements of BooleanComparison Method Based on Binary Deision Diagrams," in Proeedings of IEEEInternational Conferene on Computer Aided Design, ICCAD'88, pp. 2{5, 1988.
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[9℄ H. Cho, G. Hathel, S. Jeong, B. Plessier, E. Swharz, and F. Somenzi, \ATPG Aspetof FSM Veri�ation," in Proeedings of IEEE International Conferene on ComputerAided Design, ICCAD'90, November 1990.[10℄ K. Butler, D. Ross, R. Kapur, and M. Merer, \Heuristis to Compute VariableOrderings for EÆient Manipulation of Ordered BDDs," in Proeedings of the 28thDesign Automation Conferene, DAC'91, June 1991. San Franiso, California.[11℄ M. Bouissou, F. Bruy�ere, and A. Rauzy, \BDD based Fault-Tree Proessing: A Com-parison of Variable Ordering Heuristis," in Proeedings of European Safety and Reli-ability Assoiation Conferene, ESREL'97 (C. G. Soares, ed.), vol. 3, pp. 2045{2052,Pergamon, 1997. ISBN 0-08-042835-5.[12℄ J. Andrews and L. Barlett, \EÆient Basi Event Orderings for Binary Deision Di-agrams," in Proeedings of the Annual Reliability and Maintainability Symposium,ARMS'98, pp. 61{67, 1998. ISSN 0149-144X.[13℄ S.-Y. Kuo, S.-K. Lu, and F.-M. Yeh, \Determining Terminal-Pair Reliability Based onEedge Expansion Diagrams Using OBDD," IEEE Transations on Reliability, vol. 48,pp. 234{246, September 1999.[14℄ A. Rauzy, \Mathematial Foundation of Minimal Cutsets," IEEE Transations onReliability, 2000. to appear.[15℄ C. Papadimitriou, Computational Complexity. Addison Wesley, 1994. ISBN 0-201-53082-1.[16℄ N. Immerman, Desriptive Complexity. Springer Verlag, 1998. ISBN 0387-98600-6.[17℄ I. Wegener, Branhing Programs and Binary Deision Diagrams - Theory and Appli-ations. SIAM Monographs on Disrete Mathematis and Appliations, 2000. ISBN0-89871-458-3.[18℄ M. Garey and D. Johnson, Computers and Intratability: A Guide to the Theory ofNP-Completeness. Freeman, San Fransiso, 1979.[19℄ C. Reeves, ed., Modern Heuristis Tehniques for Combinatorial Problems. MaGrawHill, 1995. ISBN 0-07-709239-2.[20℄ E. Aarts and J. Lenstra, eds., Loal Searh in Combinatorial Optimization. JohnWiley & Sons, 1997. ISBN 0-471-94822-5.[21℄ S. Soh and S. Rai, \Experimental results on preproessing of path/ut terms in sum ofdisjoint produts tehnique," IEEE Transations on Reliability, vol. 42, no. 1, pp. 24{33, 1993. 17



[22℄ L. Page and J. Perry, \A Pratial Implementation of the Fatoring Theorem forNewtork Reliability," IEEE Transations on Reliability, vol. 37, pp. 259{267, 1988.[23℄ R. Rudell, \Dynami Variable Ordering for Ordered Binary Deision Diagrams," inProeedings of IEEE International Conferene on Computer Aided Design, ICCAD'93,pp. 42{47, November 1993.[24℄ Y. Dutuit, A. Rauzy, and J.-P. Signoret, \R�es�eda: a Reliability Network Analyser,"in Proeedings of European Safety and Reliability Assoiation Conferene, ESREL'96(C. Caiabue and I. Papazoglou, eds.), vol. 3, pp. 1947{1952, Springer Verlag, 1996.ISBN 3-540-76051-2.[25℄ S. Lajeunesse, T. Hutinet, and J.-P. Signoret, \Automati Fault Trees Generation onDynami Systems," in Proeedings of the European Safety and Reliability AssoiationConferene, ESREL'96, pp. 1553{1559, European Safety and Reliability Assoiation,1996.[26℄ E. Duhesme, J.-C. Laleuf, J.-F. Hery, and M. Bouissou, \De la mod�elisation dessyst�emes boul�es �a la g�en�eration automatique d'arbres de d�efaillanes," in Ates duongr�es ��10, (Saint Malo), Otober 1996.[27℄ P. Besnard and P. Siegel, \The preferential-models approah to non-monotoni logis,"in Non-Standard Logis for Automated Reasonning (P. S. et al., ed.), pp. 127{161,Aademi Press, 1988.[28℄ S. Malik, \Analysis of yli ombinational iruits," IEEE Transations onComputer-Aided Design, vol. 13, pp. 950{956, July 1994.[29℄ N. Halbwahs and F. Maraninhi, \On the symboli analysis of ombinational loops iniruits and synhronous programs," in Proeedings Euromiro'95, September 1995.[30℄ T. Shiple, G. Berry, and H. Touati, \Construtive Analysis of Cyli Ciruits," inPro. International Design and Testing Conf (ITDC), Paris, Marh 1996.A The Bridge Example (ontinued)The equations that desribe the bridge example pitured Fig. 1 are give setion 3.1. Basievents are pwr(s), wrk(e1), . . . , wrk(e5). Non-basi events are pwr(n1), pwr(n2), pwr(t).A.1 The PhysisThe �rst problem is to determine whih minterms orrespond to the physis. Some of theminterms over E determine fully the values of non-basi events. Some other do not. Thetable 2 summarizes the relationship between the values of the E 's and the values of the18



Table 2: The values of the G's from the values of the E 's.pwr(s) wrk(e1) wrk(e2) wrk(e3) wrk(e4) wrk(e5) pwr(n1) pwr(n2) pwr(t)1 1 1 f0; 1g v4 v5 1 1 v4 + v51 1 0 1 v4 v5 1 1 v4 + v51 1 0 0 v4 f0; 1g 1 0 v41 0 1 1 v4 v5 1 1 v4 + v51 0 1 0 f0; 1g v5 1 1 v5f0; 1g 0 0 1 v4 v5 w w w:(v4 + v5)f0; 1g 0 0 0 f0; 1g f0; 1g 0 0 00 f0; 1g f0; 1g 1 v4 v5 w w w:(v4 + v5)0 f0; 1g f0; 1g 0 f0; 1g f0; 1g 0 0 0G's. The problemati situations are those where either pwr(s) is false or both wrk(e1) andwrk(e2) are false. In these ases, the physis prefers the valuation with w = 0.It is worth notiing that our model for the bridge is orret: one w set to 0, the valuesof the G's are uniquely determined by the values of the E 's.A.2 Monotone Dereasing PropertiesThe theorem 2 an be used to get the s; t disonneting uts. In this ase, the property Pis redued to pwr(t) (therefore monotone dereasing) and QMD is de�ned as follows.QMD = 9 pwr(n1); pwr(n2); pwr(t) E:pwr(t)QMD is therefore equivalent to the following formula.QMD � Xv12f0;1g;v22f0;1gE[v1=pwr(n1); v2=pwr(n2); 0=pwr(t)℄The table 3 gives the terms of this disjunt.By applying further simpli�ations to the formula QMD, it is easy to show its prime im-pliants ofQMD are pwr(s), wrk(e1):wrk(e2), wrk(e1):wrk(e3):wrk(e5), wrk(e2):wrk(e3):wrk(e4)and wrk(e4) :wrk(e5).A.3 Monotone Inreasing PropertiesThe theorem 3 an be used to get the s; t onneting paths. In this ase, the property Pis redued to pwr(t) (therefore monotone inreasing) and QMI is de�ned as follows.QMI = 8 pwr(n1); pwr(n2); pwr(t) E ) pwr(t)QMI is therefore equivalent to the following formula.QMI � �v12f0;1g;v22f0;1gE[v1=pwr(n1); v2=pwr(n2); 0=pwr(t)℄19



Table 3: Deomposition of 9 pwr(n1); pwr(n2); pwr(t) E:pwr(t)v1 v2 E[v1=pwr(n1); v2=pwr(n2); 0=pwr(t)℄1 1 (pwr(s):wrk(e1) + wrk(e3)):(pwr(s):wrk(e2) + wrk(e3)):wrk(e4) + wrk(e5)= (pwr(s):wrk(e1):wrk(e2) + wrk(e3)):wrk(e4) :wrk(e5)1 0 (pwr(s):wrk(e1)):pwr(s):wrk(e2) + wrk(e3) :wrk(e4)= pwr(s):wrk(e1):wrk(e2) :wrk(e3) :wrk(e4)0 1 pwr(s):wrk(e1) + wrk(e3) :(pwr(s):wrk(e2)):wrk(e5)= pwr(s):wrk(e1) :wrk(e2):wrk(e3) :wrk(e5)0 0 pwr(s):wrk(e1) :pwr(s):wrk(e2)= pwr(s) + wrk(e1) :wrk(e2)The reader may verify that, by taking the disjunt of the negation of the termsgiven by the table 3 and then applying some simpli�ations, it is easy to show thatthe prime impliants of QMI are pwr(s):wrk(e1):wrk(e4), pwr(s):wrk(e1):wrk(e3):wrk(e5),pwr(s):wrk(e2):wrk(e2):wrk(e4) and pwr(s):wrk(e2):wrk(e5).Antoine Rauzy is with the Frenh National Center for Sienti� Researh (CNRS)and the \Institut de Math�ematique de Luminy". His topis of interest are formal methodsand reliability engineering. His bakground is in omputer siene (PhD, Habilitation �aDiriger des Reherhes).
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