Towards an Efficient Implementation of MOCUS

A. Rauzy
IML, UPR CNRS 9016
163, avenue de Luminy — Case 907
F-13288 Marseille cedex 9 — FRANCE

arauzy@iml.univ-mrs.fr

Summary & conclusions

MOCUS is probably the most famous algorithm to compute minimal cutsets of fault trees.
It has been proposed by Fussel and Vesely in 1972. It is at the present the core method
of many fault tree assessment tools. Despite its wide use, textbooks and articles give only
few details about how to implement it.

In this article, we describe data structures as well as several improvements and heuristics
that make MOCUS robust and efficient. We introduce the notion of shadow variables in
order to deal with success branches of event trees.

We report experiments on a benchmark of the 1819 event tree sequences that were
generated during a PSA study. These results show that MOCUS is a good alternative to
Binary Decision Diagrams.

Keywords: Fault Trees, Event Trees, MOCUS

1 Introduction

MOCUS is probably the most well known algorithm to compute minimal cutsets of fault
trees, event trees, block diagrams, .... It has been proposed by Fussel and Vesely in
1972 [1]. Tt is representative of the class of top-down algorithms. It is at the present the
core method of many fault tree assessment tools, including Risk Spectrum [2] and IRRAS
(SAPHIRE) [3] that are both widely used by in nuclear enginering. Each of these tools
introduces its own refinements on the original method, but the basis remains the same.
Despite the wide use of top-down algorithms, textbooks and articles devoted to this
topic give only few details about how to implement them. For instance, the question of
data structures is almost never discussed although it plays a central role in the efficiency
of the methods. In this article, we describe a full implementation of MOCUS, including



data structures that make it robust and efficient. We try to point out all the places where
design decisions must be taken and we discuss our choices.

As a benchmark, we used the 1819 event tree sequences that were generated during
a PSA study. Some of these sequences contain more than one thousand input variables,
twice more gates, among which a significant proportion are replicated. To cope with such
large models, we introduced new ideas, such as the notion of shadow variables. This article
presents these improvements. We show also that MOCUS is sensitive to the way formulae
are written and we propose a rewriting heuristic that overcomes this problem.

During last decade, the framework of fault tree assessment algorithms has been deeply
impacted by the introduction of Binary Decision Diagrams (BDDs) based methods (see
for instance [4, 5] for the very first contributions). BDDs [6, 7] are the state-of-the-art
data structure to encode and to manipulate Boolean functions. In most of the cases,
they outperform the other methods. However, BDDs also are subject to combinatorial
explosion. For large models, such as the largest sequences of our benchmark, the BDD
that encodes the model may be not computable within reasonable amounts of time and
computer memory. The problem comes that, conversely to MOCUS-like algorithms, the
BDD technology does not support easily approximations (although some progresses have
been done recently in this direction [8]). Therefore, BDDs may be unable to provide
any result, which is indeed unacceptable. This is a strong motivation to develop efficient
alternative algorithms. The experimental results we obtained on our benchmark show that
MOCUS is a good candidate to be such an alternative method.

The remainder of this article is organized as follows. Some preliminary definitions are
given section 3. The section 4 describes an efficient implementation of MOCUS. The sec-
tion 5 discusses several improvements. Finally, experimental results are reported section 6.

2 Notations

Throughout this article, we shall use the following notations.

— & ={ey,...,en} denotes the set of basic events.

G ={9g1,...,9u} denotes the set of gate variables.
— I, F5, ... denote Boolean formulae.

— wvar(F') denotes the set of variables occurring in F'.
— MCS[F] denotes the set of minimal cutsets of F.

— p(F) denotes the probability of a F.



3 Preliminaries

3.1 Sets of Equations

In what follows, we consider Boolean models that are given as sets of (Boolean) equations.
Structure functions of fault trees, event trees, block diagrams can be viewed as such sets
of equations.

Let & = {e1,...,en} and G = {g1,... ,gm} be two distinct sets of Boolean variables.
£ is the set of basic events. G is the set of gates. An equation over £ UG is an equality of
the following form.

g = F

where g € G, and F' is a boolean formula built over £ UG and the usual logical connectives
“” (and), “4” (or), “7” (not), k/n (k-out-of-n).

A set of equations is assimilated with the conjunct of its elements. A set E of equations
is said hierarchical if it fulfils the following requirements.

e For each g in G, E contains exactly one equation of the form g = F'. For the sake of
simplicity, we denote F; (i = 1,..., M) the unique formula such that the equation
gi = F;isin E.

e There exists a one-to-one function ¢ from G to [1, M] (i.e. a total order over G) such
that for any two gates ¢g; and g; the following holds.

W(gi) < ulg;) = gi & var(F})
e [/ is uniquely rooted, i.e. there is a unique gate g,, that occurs in no Fj.

In what follows, we shall consider only hierarchical sets of equations.

Any (hierarchical) set of equation E can be rewritten into an equivalent singleton
{Gtop = F{Op}. To obtain F{op, it suffices to substitute the F;’s for the g;’s according to
the order +. For this reason, E' can be assimilated with the formula F},,. For the sake of
simplicity, we shall do systematically this assimilation. For instance, we shall write “the
minimal cutsets of E” instead of “the minimal cutsets of F},, where Fj, is the formula
such that ... ”.

3.2 Minimal Cutsets

A literal is either a variable v or its negation ¥. A product is a conjunct of literals that
does not contain both a literal and its negation (v and 7). A minterm is a product that
contains a literal for each variable of £. Products and minterms are assimilated with sets
of literals.

A minterm 7 can be seen also as an assignment, i.e. a function A, from & to {0, 1}.

1 ifeen
Aale) = {0 ifeenr

3



For the sake of simplicity, we shall just write m(e) instead of A\,(e). Assignments can be
lifted up to formulae by structural induction and according to the usual laws.

™(F)=1-n(F) #(F.G)=min(zx(F),n(G)) 7(F+G)=maz(r(F),7(Q))

Let m be a product, we denote by 7¢ the minterm obtained by complementing m with
negative literals built over the events that do not occur in 7.

A positive product 7 is a minimal cutset of a set of equations E' if the following condi-
tions hold.

e 7 is a cutset of E, i.e. 7°(FE) = 1.
e 7 is minimal, i.e. for any product p C 7, p°(E) = 0.

The reference [8] gives an algebraic framework for the notion of minimal cutsets.
The set of minimal cutsets of E in denoted by MCS[E].

3.3 And-Or-Trees

MOCUS takes And-Or-Trees as input formulae. An And-Or-Tree is a set of equations such
that each F; is made with a single connective and only events can be negated. Any set of
equations can be efficiently rewritten as an And-Or-Tree. The algorithm is as follows.

1. Flatten equations, i.e. a new equation is created for each nested connective. E.g.

g:a+gnew+d

g=a+bc+d — {gnew:b-c

2. Expand k-out-of-n gates. This can be done in O(k.n) by applying the following
decomposition.

g = Gnewl + Gnew?2

Gnewl = T1-Gnew3

Gnew2 = k/n — 1(va, ... ,vy,)
Gnews = k — 1/n— 1(vg, ..., vp)

g=k/n(vy,...,v,) —

Note that most of the authors (e.g. [3, 2]) suggest to expand k-out-of-n gates as a
sum of products. When k = n/2 and n is not too small, this may be costly. The
process we propose works even for large values of n.

3. Push down negations. A new gate variable g, is created (when needed) for the gate
variable ¢g. g, encodes the negation of g. The equation of g, is obtained by means
of de Morgan’s laws, e.g.

h=G+d ) . [ h=gutd
g= a.b.c Gnot = Qnot 1 bnot + Cnot

This process is achieved in one top-down pass over the set of equations.



P+ wa R« {gtop}
while R # () do
select a product 7 in R, R+ R\ {r}
if 7 is terminal
then P < P U ExtractMcs(p)

else
select a gate g in m: m = g.p
if g =TI l;
then insert p.I1% ,l; in R
if g=Y0r 1,

then if 4/, € p
else insert p in R
else insert p.ly, ..., plp in R

Figure 1: The pseudo-code for the MOCUS algorithm

4 MOCUS

4.1 Principle of the Algorithm

MOCUS works with two sets of products. The set R of products it remains to process
and the set P of already found minimal cutsets. R is initialized with {g,}, where g, is
the root of the And-Or-Tree under study. P is initialized with the empty set. Then, each
product 7 of R is considered in turn.

e If 7 is terminal, i.e. if it contains only basic events, minimal cutsets of 7 are extracted
and inserted in P. This process is discussed in section 4.2.

e Otherwise, a gate variable is selected in 7 and replaced by its definition, possibly
giving several new products. The obtained products are reinserted in R.

The pseudo-code for the algorithm is given Fig. 1.

Let m be a non-terminal product considered at a given step of the algoritm. Let g be
the gate variable selected in 7 (m = g.p). Finally, let g = F' be the equation that defines ¢
in E. There are two cases.

o If F =T1I¥ ,I;, then 7 is rewritten in p.F. p.F is reinserted in R if it contains no pair
of opposite literals.

o If F = Zle [;, then 7 is rewritten in Zle p.l;. If p contains one of the [;, this sum is
equivalent to p, which is reinserted in R. If p contains the opposite of [;, the product
p.l; is discarded. The remaining products p.l; are reinserted in R.

Such simplifications have been described already by several authors (see for instance [3]).

5



4.2 Extraction of Minimal Cutsets

Let m be a terminal product considered at a given step of the algoritm. Let p = IT%_ ¢,
be the positive part of 7. By construction, p¢ is a cutset of E. However, it may be non
minimal. Minimal cutsets of p are extracted as follows.

The products p; = p\ {e;} are considered in turn. If all of these products are such that
pS(E) = 0, p is minimal. Otherwise, p is not minimal and minimal cutsets are extracted
from the p;’s such that pf(E) = 1. In order to avoid to do the same job twice, a cache can
be used to store already considered products (the same goal can be achieved by considering
the e;’s always in the same order). Note also that to change p; into p;4; it suffices to flip
the values of e; and e;;.

At the end of this process, a number of minimal cutsets are obtained. It remains to
discard those that are already in P. The section 4.4 proposes a data structure to do this
efficiently.

4.3 Truncations on the Probabilities

It is often the case, when dealing with real-life models, that the set E of equations under
study admits a huge number of minimal cutsets. Fortunately, it is in general an accurate
approximation to consider only the most important ones, i.e. those that have the highest
contribution to the system unreliability.

The contribution of a minimal cutset p is defined as follows.

p(p)
ZwGMC’S[E] p()

The contribution is sometimes called the Fussel-Vesely importance factor of p for it has

been proposed by these authors in [9] as a risk ranking measure. Note that for any subset
P of MCS[E] the following inequality holds.

plp) o p(p)
dorepP(m) T 27reMCS[E} p()

Therefore, if the contribution of a product estimated only from the already found
minimal cutsets is below a given threshold T, its actual contribution is below the threshold
as well (and the product can be immediately discarded). The threshold T is often called
the relative cutoff.

Now, consider the sequence 7, 7y, ... of terminal products produced by the algorithm
(before the extraction of minimal cutsets). It is easy to verify ad absurdo that if p is a
minimal cutset, then there is a ¢ such that p is the positive part of m;. This strong property
is used to discard under process products as soon as their contribution goes below the
threshold T. The property ensures that no minimal cutset (of contribution greater than
T) is discarded.



This is the reason why it is interesting to produce minimal custets (with the process
presented in the previous section) as soon as possible. The earlier minimal cutsets are
produced, the more effective the truncation on the probability is.

It is worth noticing that, in case of hard computations, the relative cutoff 7" can be
dynamically adjusted.

4.4 Data structures
Several points remain to discuss in the algorithm described so far.

e One needs two heuristics. The first one to select the next product to process in R.
The second one to select the gate variable to expand in the product under process.
This question will be discussed section 5.2.

e One needs a data structure to encode the set of equations. This structure has mainly
to make efficient the extraction of minimal cutsets.

e Finally, one needs a data structure to encode the sets of products R and P.

The minimal cutsets extraction is based on the bottom-up propagation of the assign-
ment of values to basic events. To make this operation efficient, one creates once for all,
for each variable v, the list of equations g = F' such that v € var(F’). Moreover, one main-
tains dynamically, for each equation g = F', three counters of the numbers of variables of
var(F) that have respectively the value 1, the value 0 and no value. In this way, values
are propagated bottom-up only when needed.

It is actually interesting to maintain the current value of variables (gates and events)
during the whole algorithm. Let 7 be the product under process. It can be the case that
the value of a gate variable g of 7 is determined just by propagating the values of basic
events of w. If m(g) = 1, then g can be removed from the product. If 7(g) = 0, then
the product contains a contradiction and can be discarded. Another even more important
reason to maintain the current assignment will be given in section 5.3 with the notion of
shadow variables.

The data structure that encodes the sets of products R and P should be as compact as
possible (for huge numbers of products have to be manipulated). Moreover, insertion,
selection and removal of a product should be as efficient as possible. Minato’s Zero-
Suppressed Binary Decision Diagrams [10] are a potential candidate to do the job. We
found that Binary Decision Trees are a better tradeoff. Let ¢ be a total order over £ U G.
A Binary Decision Tree is a binary tree such that:

e The leaves of the tree encode either the empty product or the empty set of products.

e Each internal node is labelled with a variable v and has two outedges (low and high).
If the nodes pointed by low and high encode respectively the sets of products Sy and
S, then the node encodes the following set.

SoU{{v}umme S}



e [f a node is labelled with a variable v, then either the node pointed by its low outedge
(resp. high outedge) is a leaf or it is labelled with a variable w such that ¢(v) < ¢(w).

By sharing the prefixes of products, this data structure saves a lot of memory. It is to
see that insertion, removal and selection of a product are linear, in the worst case, in the
number of variables. It is worth noticing that it is not necessary to test whether a minimal
cutset belongs to the set before inserting it. Both operations are performed at once.

5 Further Improvements

5.1 Preprocessing

As pointed out by many authors, some preprocessing of the set of equations may increase by
orders of magnitude the efficiency of algorithms. The book by Kovalenko, Kuznetsov and
Pegg [11] proposes twelve transformations to simplify the formulae. These transformations
are used by the FAMOCUTN algorithm [12]. They are representative of what is suggested
in the literature. They can be grouped in three categories.

e Module detection. A module is a subformula that acts as a super-component, i.e. that
is independant from the rest of the formula. The notion of module was introduced
by Birnbaum and Esary in [13]. Modules already present in the formula can be
detected in linear time [14]. However, modules are often hidden and some rewritings
are necessary to extract them.

e Coalescing of gates of the same type, e.g. Fy+(Fy+ F3) — Fy+ Fy+ F3. Tt is clearly
interesting to perform coalescing as much as possible because this transformation does
once for all operations that MOCUS will do anyway, possibly several times.

e Other transformations based on Boolean algebra laws. For instance, the following
transformations may be applied.

(F.G1) + (F.G3) — F.(G1+ G;) factoring
Fu — F1/v]w constant propagation

These transformations aim to simplify the formula, for instance by detecting hidden
modules. In [15], Niemeld has suggested also a promising rewriting technique based
on propagation of variable values.

The danger with the latter category of preprocessings is that they may be costly. Their
application should therefore result of a tradeoff between what they consume and what they
save. In our implementation, we limit preprocessing to coalescing and module detection.



5.2 Heuristics

As already said, MOCUS requires two heuristics. The first one to select the next product
to process. The second one to select the gate to expand in the product under process.

Both heuristics have the same goal: make terminal products (and therefore minimal
cutsets) appear as soon as possible in order to increase the influence of the probabilistic
cutoff.

For the second heuristic, Camarinopoulos and Yllera suggest in [16] to develop first the
gate with the greatest number of basic events as arguments. This idea is uneasy to justify
with respect to the above rule. We rather suggest to select the first and-gate, if any. The
idea is that by developing and-gates first, we increase the expectation of a probabilistic
cutoff. The order in which and-gates are expanded does not really matter, since all of
them have to be expanded before an or-gate is developped. If the product contains only
or-gates, the first one is developped.

For the first heuristic, we select the first product in the binary decision tree order.

Both heuristics depend strongly on the order defined among variables. It is clear for
the first one, since this order determines the structure of the binary decision tree. It is
true also for the second one, because under process products are encoded as sorted vectors
of literals, according to the chosen order (sorted products make easier operations such
inclusion testing, element searching, merging, ... ).

The order among variables is determined by means of a depth-first left-most traversal
of the set of equations. Before applying this procedure, gate arguments are sorted in
increasing order of their weights. The weight w(v) of a variable v is as follows.

1 if v is an input variable
B w(w) ifv=mw
ST S ) e =3
5 w(w;) if v =TI w

As we shall see section 6.4, this heuristics is important for the robustness of the whole
process.

We found experimentally that this static way of selecting products to process and
variables to develop is a better tradeoff than the various dynamic heuristics we tried.
However, there is certainly still room for improvements in this part of our implementation.

5.3 Shadow Variables

MOCUS-like algorithms have been designed to assess both fault trees and event trees. An
event tree sequence is assimilated with the conjunct of success and failure branches that
appear along the sequence [17]. Consider for instance the small event tree pictured Fig. 2.
This event tree is made of an initiating event I, two fault trees F)y and Fp that describe
respectively the failures of safety systems A and B, and three consequences C4, Cy and Cj.
The sequence I — C'y corresponds to the scenario where A fails and B achieves its mission.
It is therefore assimilated with the formula I.F4.Fg.



initiating event | misson A | missonB | consequences

C1

C3

Fa s

Figure 2: An event tree

It is in general the case that Fjp is a coherent fault tree (i.e. Fp contains no negation).
Therefore, the only role of Fjz in the conjunct is to discard some of the minimal cutsets of
I.F,. This has been already noticed by several authors (e.g. [3]).

Let gnotp be the gate variable that encodes Fj in the model. We call variables such
as gnotp “‘shadow variables”. Shadow variables are never expanded. They are however
involved in value propagations. If, at a given step of the algorithm, the product under
process falsifies one of its shadow variables then this product contains a contradiction (as
if it was containing both a literal and its opposite). It is therefore discarded. A product
is now considered as terminal if it contains only basic events and shadow variables. The
latters are just ignored by the minimal cutsets extraction.

This way of dealing with success branches is much more efficient than those proposed
already that consists in computing minimal cutsets of failure and success branches sepa-
rately and then to compare them. For two reasons. First, shadow variables introduce a
new cutoff. Second, there is no more need to post-process the cutsets.

Some of the fault trees of our benchmark are only almost coherent, i.e. that they
contain few negated variables. We observed that, even in this case, it is always an accurate
approximation to shadow success branches.

It is worth noticing that a significant proportion of the sequences that will be studied
in section 6 cannot be handled without this notion of shadow variables, because of the
combinatorial explosion of the number of products to process.

6 Experimental Results

6.1 1819 Event Tree Sequences as a Benchmark

As a benchmark, we considered the 1819 event tree sequences generated for a PSA study.

The table 1 gives some statistics about these sequences. I denotes the number of basic
events. G denotes the number of gate variables. R denotes the number of replicated
variables. A variable is replicated if it occurs more than once in the set of equations.
Finally, S denotes the number of singular input variables. A variable is singular if there
is only one path to goes from the variable to the top event. We grouped the sequences
according to their number of basic events: less than 100, between 100 and 200, between

10



Table 1: Statistics about the 1819 sequences

I <100 <200 <300 <400 <500 <600 <700

#sequences 408 42 274 100 42 344 92

mean G/I 1.45 1.59 1.70 1.33 1.30 1.34 1.38

mean R/(I +G) | 0.01 0.01 0.14 0.14 0.14 0.15 0.18

mean S/1 0.65 0.51 0.42 0.57 0.61 0.58 0.40

I <800 <900 <1000 <1100 <1200 < 1300

#sequences 113 236 12 116 32 8

mean G/I 1.54 1.64 1.69 1.85 1.80 1.91

mean R/(I +G) | 0.17 0.17 0.22 0.20 0.20 0.22

mean S/1 0.35 0.38 0.26 0.27 0.28 0.18

Table 2: Running Times
threshold for #sequences assessed among the 1819 highest
the contribution | <1s <bs <10s <30s <1lm <10m > 10m | running time

101 1772 38 8 1 0 0 0 10.24
1072 1743 60 8 8 0 0 0 16.77
1073 1688 88 20 21 2 0 0 31.28
1074 1634 101 40 26 11 7 0 89.89
1075 1576 111 40 56 12 24 0 248.77
10°6 1486 163 40 68 19 39 4 623.33
BDD 1705 60 18 13 11 12 0 304.22

200 and 300 and so on.

The table 1 shows that the sequences of the benchmark contain a significant proportion
of replicated variables. Moreover, the more sequences contain basic events, the less the
proportion of singular variables is.

6.2 Running Times

The table 2 gives the number of sequences assessed whithin less than 1s, within more than
1s and less 5s, and so on for different values of the threshold on the contribution. The
contribution is (over-)estimated as described section 4.3. The running times were measured
on a Pentium III cadenced at 733Mgz and running linux.

The table 2 shows that most of the sequences are assessed whithin less than 30s, even for
very low values of the threshold. For comparison purposes, the running times to compute
BDDs are given. The advantage seems to go to BDDs. However, it should be said that a
highly sophisticated preprocessing and many ad-hoc tricks were used to be able to compute

11



Table 3: MOCUS errors.

MOCUS optimistic MOCUS pessimistic
error : mean maximum error : mean maximum
contribution | #seq. relative absolute relative | #seq. relative absolute relative
1071 115 0.64 1.29 1077 1 13 21.5 221107° 242
1072 73 032  2.791071 0.61 55 11.5  7.32107° 539
1073 29 0.16 2.44 107"  0.30 99 840 9.051077 664
104 22 0.07 6.541072  0.12 106 898 1.1910°% 741
107° 15 0.02 9.24107"%  0.08 113 8.77 1.28107% 762
106 4 0.02 6.89 107  0.06 124 8.12 1.31107% 769

these BDDs (these techniques will be presented in a forthcoming article). Moreover, the
given running times for BDD do not include the computation of minimal cutsets. For the
largest sequences, we are unable at the moment to compute these minimal cutsets. In a
word, our implementation of MOCUS is a bit less efficient than our BDD implementation,
but it is more robust.

6.3 Accurracy of the Results

It is of interest to compare the unreliabilities estimated by MOCUS with the exact results
provided by BDDs. The table 3 gives the mean relative error as well as the maximum
absolute and relative errors done by MOCUS for the 128 hardest sequences (i.e. the
sequences for which MOCUS with the contribution threshold set at 10~% takes more than
10s). The following conclusions can be drawn from these results.

e MOCUS is rarely optimistic. The smaller the threshold on contribution is, the less
optimistic is MOCUS. Moreover MOCUS, is only slightly optimistic.

e MOCUS is often pessimistic, and sometimes very pessimistic (up to a factor 1000).
However, this can be corrected by considering more terms in the Sylvester-Poincaré
development.

6.4 Influence of Fanin Ordering

Except in [16], the order in which top-down algorithms consider the products and the
variables inside the products is not discussed in literature. It has however a great influence.
To show this influence, we consider 30 rewritings of the hardest sequence of our benchmark.
Each rewriting consists in permuting at random the arguments of gates. For each rewriting,
we call MOCUS with the with and without the preprocessing discussed section 5.2. The
contribution threshold is fixed at 1074,

12



10000 T T T T T
"with"
"without" -------

i P | i i JE 7
' \ | \ i | \ Pt
\ \ ! \ /
! [ [ i \ i i ! \ S
1000 i [ : \ i ! AR
i i [ / \ R foon
P h \ [ h P i / Vo

100 |/

10

Figure 3: Running times with and without rearrangement of gate arguments.

The figure 3 shows the running times (to make the figure illustrative we joined the

points with lines and we draw running times on a logarithmic scale). These two curves
illustrate the interest of the heuristic we propose and show that it is robust and efficient.

References

1]

2]
3]

J. Fussel and W. Vesely, “A New Methodology for Obtaining Cut Sets for Fault
Trees,” Trans. Am. Nucl. Soc., vol. 15, pp. 262-263, June 1972.

U. Berg, RISK SPECTRUM, Theory Manual. RELCON Teknik AB, April 1994.

K. Russel and D. Rasmuson, “Fault tree reduction and quantification — and overview of
IRRAS algorithms,” Reliability Engineering and System Safety, vol. 40, pp. 149-164,
1993.

O. Coudert and J.-C. Madre, “Fault Tree Analysis: 10%° Prime Implicants and
Beyond,” in Proceedings of the Annual Reliability and Maintainability Symposium,
ARMS’93, January 1993. Atlanta NC, USA.

A. Rauzy, “New Algorithms for Fault Trees Analysis,” Reliability Engineering € Sys-
tem Safety, vol. 05, no. 59, pp. 203-211, 1993.

R. Bryant, “Graph Based Algorithms for Boolean Fonction Manipulation,” IFEFE
Transactions on Computers, vol. 35, pp. 677—691, August 1986.

13



7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

K. Brace, R. Rudell, and R. Bryant, “Efficient Implementation of a BDD Package,” in
Proceedings of the 27th ACM/IEEE Design Automation Conference, pp. 40-45, IEEE
0738, 1990.

A. Rauzy, “Mathematical Foundation of Minimal Cutsets,” IEEE Transactions on
Reliability, 2000. to appear.

J. Fussel, “How to hand-calculate system reliability characteristics,” IEEE Transac-
tions on Reliability, vol. R-24, no. 3, 1975.

S. Minato, “Zero-Suppressed BDDs for Set Manipulation in Combinatorial Problems,”
in Proceedings of the 30th ACM/IEEE Design Automation Conference, DAC’93,
pp. 272-277, 1993.

I. Kovalenko, N. Kuznetsov, and P. Pegg, Mathematical Theory of Reliability of Time
Dependent Systems with Practical Applications. Wiley Series in Probability and Statis-
tics, John Wiley & Sons, 1997. ISBN 0-471-95060-2.

W. Hennings and N. Kuznetsov, “FAMOCUTN and CUTQ — Computer codes for
fast analytical evaluation of large fault trees with replicated and negated gates,” IEEE
Transaction on Reliability, vol. 44, pp. 368-376, 1995.

Z. Birnbaum and J. Esary, “Modules of coherent binary systems,” SIAM J. of Applied
Mathematics, vol. 13, pp. 442—-462, 1965.

Y. Dutuit and A. Rauzy, “A Linear Time Algorithm to Find Modules of Fault Trees,”
IEEFE Transactions on Reliability, vol. 45, no. 3, pp. 422-425, 1996.

I. Niemela, “On simplification of large fault trees,” Reliability Engineering and System
Safety, vol. 44, pp. 135-138, 1994.

L. Camarinopoulos and J. Yllera, “An Improved Top-down Algorithm Combined with
Modularization as Highly Efficient Method for Fault Tree Analysis,” Reliability En-
gineering and System Safety, vol. 11, pp. 93-108, 1985.

I. Papazoglou, “Mathematical foundations of event trees,” Reliability Engineering and
System Safety, vol. 61, pp. 169-183, 1998.

Antoine Rauzy is with the French National Center for Scientific Research (CNRS)

and the “Institut de Mathématique de Luminy”. His topics of interest are formal methods
and reliability engineering. His background is in computer science (PhD, Habilitation a
Diriger des Recherches).

14



