
Towards an EÆ
ient Implementation of MOCUSA. RauzyIML, UPR CNRS 9016163, avenue de Luminy { Case 907F-13288 Marseille
edex 9 { FRANCEarauzy�iml.univ-mrs.frSummary &
on
lusionsMOCUS is probably the most famous algorithm to
ompute minimal
utsets of fault trees.It has been proposed by Fussel and Vesely in 1972. It is at the present the
ore methodof many fault tree assessment tools. Despite its wide use, textbooks and arti
les give onlyfew details about how to implement it.In this arti
le, we des
ribe data stru
tures as well as several improvements and heuristi
sthat make MOCUS robust and eÆ
ient. We introdu
e the notion of shadow variables inorder to deal with su

ess bran
hes of event trees.We report experiments on a ben
hmark of the 1819 event tree sequen
es that weregenerated during a PSA study. These results show that MOCUS is a good alternative toBinary De
ision Diagrams.Keywords: Fault Trees, Event Trees, MOCUS1 Introdu
tionMOCUS is probably the most well known algorithm to
ompute minimal
utsets of faulttrees, event trees, blo
k diagrams, : : : . It has been proposed by Fussel and Vesely in1972 [1℄. It is representative of the
lass of top-down algorithms. It is at the present the
ore method of many fault tree assessment tools, in
luding Risk Spe
trum [2℄ and IRRAS(SAPHIRE) [3℄ that are both widely used by in nu
lear enginering. Ea
h of these toolsintrodu
es its own re�nements on the original method, but the basis remains the same.Despite the wide use of top-down algorithms, textbooks and arti
les devoted to thistopi
 give only few details about how to implement them. For instan
e, the question ofdata stru
tures is almost never dis
ussed although it plays a
entral rôle in the eÆ
ien
yof the methods. In this arti
le, we des
ribe a full implementation of MOCUS, in
luding1

data stru
tures that make it robust and eÆ
ient. We try to point out all the pla
es wheredesign de
isions must be taken and we dis
uss our
hoi
es.As a ben
hmark, we used the 1819 event tree sequen
es that were generated duringa PSA study. Some of these sequen
es
ontain more than one thousand input variables,twi
e more gates, among whi
h a signi�
ant proportion are repli
ated. To
ope with su
hlarge models, we introdu
ed new ideas, su
h as the notion of shadow variables. This arti
lepresents these improvements. We show also that MOCUS is sensitive to the way formulaeare written and we propose a rewriting heuristi
 that over
omes this problem.During last de
ade, the framework of fault tree assessment algorithms has been deeplyimpa
ted by the introdu
tion of Binary De
ision Diagrams (BDDs) based methods (seefor instan
e [4, 5℄ for the very �rst
ontributions). BDDs [6, 7℄ are the state-of-the-artdata stru
ture to en
ode and to manipulate Boolean fun
tions. In most of the
ases,they outperform the other methods. However, BDDs also are subje
t to
ombinatorialexplosion. For large models, su
h as the largest sequen
es of our ben
hmark, the BDDthat en
odes the model may be not
omputable within reasonable amounts of time and
omputer memory. The problem
omes that,
onversely to MOCUS-like algorithms, theBDD te
hnology does not support easily approximations (although some progresses havebeen done re
ently in this dire
tion [8℄). Therefore, BDDs may be unable to provideany result, whi
h is indeed una

eptable. This is a strong motivation to develop eÆ
ientalternative algorithms. The experimental results we obtained on our ben
hmark show thatMOCUS is a good
andidate to be su
h an alternative method.The remainder of this arti
le is organized as follows. Some preliminary de�nitions aregiven se
tion 3. The se
tion 4 des
ribes an eÆ
ient implementation of MOCUS. The se
-tion 5 dis
usses several improvements. Finally, experimental results are reported se
tion 6.2 NotationsThroughout this arti
le, we shall use the following notations.{ E = fe1; : : : ; eNg denotes the set of basi
 events.{ G = fg1; : : : ; gMg denotes the set of gate variables.{ F1, F2, ... denote Boolean formulae.{ var(F) denotes the set of variables o

urring in F .{ MCS[F ℄ denotes the set of minimal
utsets of F .{ p(F) denotes the probability of a F .
2

3 Preliminaries3.1 Sets of EquationsIn what follows, we
onsider Boolean models that are given as sets of (Boolean) equations.Stru
ture fun
tions of fault trees, event trees, blo
k diagrams
an be viewed as su
h setsof equations.Let E = fe1; : : : ; eNg and G = fg1; : : : ; gMg be two distin
t sets of Boolean variables.E is the set of basi
 events. G is the set of gates. An equation over E [G is an equality ofthe following form. g = Fwhere g 2 G, and F is a boolean formula built over E [G and the usual logi
al
onne
tives\:" (and), \+" (or), \ " (not), k=n (k-out-of-n).A set of equations is assimilated with the
onjun
t of its elements. A set E of equationsis said hierar
hi
al if it ful�ls the following requirements.� For ea
h g in G, E
ontains exa
tly one equation of the form g = F . For the sake ofsimpli
ity, we denote Fi (i = 1; : : : ;M) the unique formula su
h that the equationgi = Fi is in E.� There exists a one-to-one fun
tion � from G to [1;M ℄ (i.e. a total order over G) su
hthat for any two gates gi and gj the following holds.�(gi) � �(gj)) gi 62 var(Fj)� E is uniquely rooted, i.e. there is a unique gate gtop that o

urs in no Fi.In what follows, we shall
onsider only hierar
hi
al sets of equations.Any (hierar
hi
al) set of equation E
an be rewritten into an equivalent singletonfgtop = F 0topg. To obtain F 0top, it suÆ
es to substitute the Fi's for the gi's a

ording tothe order �. For this reason, E
an be assimilated with the formula F 0top. For the sake ofsimpli
ity, we shall do systemati
ally this assimilation. For instan
e, we shall write \theminimal
utsets of E" instead of \the minimal
utsets of F 0top where F 0top is the formulasu
h that : : : ".3.2 Minimal CutsetsA literal is either a variable v or its negation v . A produ
t is a
onjun
t of literals thatdoes not
ontain both a literal and its negation (v and v). A minterm is a produ
t that
ontains a literal for ea
h variable of E . Produ
ts and minterms are assimilated with setsof literals.A minterm �
an be seen also as an assignment, i.e. a fun
tion �� from E to f0; 1g.��(e) = � 1 if e 2 �0 if e 2 �3

For the sake of simpli
ity, we shall just write �(e) instead of ��(e). Assignments
an belifted up to formulae by stru
tural indu
tion and a

ording to the usual laws.�(F) = 1� �(F) �(F:G) = min(�(F); �(G)) �(F +G) = max(�(F); �(G))Let � be a produ
t, we denote by �
 the minterm obtained by
omplementing � withnegative literals built over the events that do not o

ur in �.A positive produ
t � is a minimal
utset of a set of equations E if the following
ondi-tions hold.� � is a
utset of E, i.e. �
(E) = 1.� � is minimal, i.e. for any produ
t � � �, �
(E) = 0.The referen
e [8℄ gives an algebrai
 framework for the notion of minimal
utsets.The set of minimal
utsets of E in denoted by MCS[E℄.3.3 And-Or-TreesMOCUS takes And-Or-Trees as input formulae. An And-Or-Tree is a set of equations su
hthat ea
h Fi is made with a single
onne
tive and only events
an be negated. Any set ofequations
an be eÆ
iently rewritten as an And-Or-Tree. The algorithm is as follows.1. Flatten equations, i.e. a new equation is
reated for ea
h nested
onne
tive. E.g.g = a + b:
+ d �! � g = a + gnew + dgnew = b:
2. Expand k-out-of-n gates. This
an be done in O(k:n) by applying the followingde
omposition.g = k=n(v1; : : : ; vn) �! 8>><>>: g = gnew1 + gnew2gnew1 = x1:gnew3gnew2 = k=n� 1(v2; : : : ; vn)gnew3 = k � 1=n� 1(v2; : : : ; vn)Note that most of the authors (e.g. [3, 2℄) suggest to expand k-out-of-n gates as asum of produ
ts. When k � n=2 and n is not too small, this may be
ostly. Thepro
ess we propose works even for large values of n.3. Push down negations. A new gate variable gnot is
reated (when needed) for the gatevariable g. gnot en
odes the negation of g. The equation of gnot is obtained by meansof de Morgan's laws, e.g.h = g + dg = a:b:
 � �! � h = gnot + dgnot = anot + bnot +
notThis pro
ess is a
hieved in one top-down pass over the set of equations.4

P ;, R fgtopgwhile R 6= ; dosele
t a produ
t � in R, R R n f�gif � is terminalthen P P [Extra
tM
s(�)elsesele
t a gate g in �: � = g:�if g = �ki=1lithen insert �:�ki=1li in Rif g =Pki=1 lithen if 9 li 2 �else insert � in Relse insert �:l1, : : : , �:lk in RFigure 1: The pseudo-
ode for the MOCUS algorithm4 MOCUS4.1 Prin
iple of the AlgorithmMOCUS works with two sets of produ
ts. The set R of produ
ts it remains to pro
essand the set P of already found minimal
utsets. R is initialized with fgtopg, where gtop isthe root of the And-Or-Tree under study. P is initialized with the empty set. Then, ea
hprodu
t � of R is
onsidered in turn.� If � is terminal, i.e. if it
ontains only basi
 events, minimal
utsets of � are extra
tedand inserted in P . This pro
ess is dis
ussed in se
tion 4.2.� Otherwise, a gate variable is sele
ted in � and repla
ed by its de�nition, possiblygiving several new produ
ts. The obtained produ
ts are reinserted in R.The pseudo-
ode for the algorithm is given Fig. 1.Let � be a non-terminal produ
t
onsidered at a given step of the algoritm. Let g bethe gate variable sele
ted in � (� = g:�). Finally, let g = F be the equation that de�nes gin E. There are two
ases.� If F = �ki=1li, then � is rewritten in �:F . �:F is reinserted in R if it
ontains no pairof opposite literals.� If F =Pki=1 li, then � is rewritten inPki=1 �:li. If �
ontains one of the li, this sum isequivalent to �, whi
h is reinserted in R. If �
ontains the opposite of li, the produ
t�:li is dis
arded. The remaining produ
ts �:li are reinserted in R.Su
h simpli�
ations have been des
ribed already by several authors (see for instan
e [3℄).5

4.2 Extra
tion of Minimal CutsetsLet � be a terminal produ
t
onsidered at a given step of the algoritm. Let � = �ki=1eibe the positive part of �. By
onstru
tion, �
 is a
utset of E. However, it may be nonminimal. Minimal
utsets of � are extra
ted as follows.The produ
ts �i = � n feig are
onsidered in turn. If all of these produ
ts are su
h that�
i(E) = 0, � is minimal. Otherwise, � is not minimal and minimal
utsets are extra
tedfrom the �i's su
h that �
i(E) = 1. In order to avoid to do the same job twi
e, a
a
he
anbe used to store already
onsidered produ
ts (the same goal
an be a
hieved by
onsideringthe ei's always in the same order). Note also that to
hange �i into �i+1 it suÆ
es to
ipthe values of ei and ei+1.At the end of this pro
ess, a number of minimal
utsets are obtained. It remains todis
ard those that are already in P . The se
tion 4.4 proposes a data stru
ture to do thiseÆ
iently.4.3 Trun
ations on the ProbabilitiesIt is often the
ase, when dealing with real-life models, that the set E of equations understudy admits a huge number of minimal
utsets. Fortunately, it is in general an a

urateapproximation to
onsider only the most important ones, i.e. those that have the highest
ontribution to the system unreliability.The
ontribution of a minimal
utset � is de�ned as follows.p(�)P�2MCS[E℄ p(�)The
ontribution is sometimes
alled the Fussel-Vesely importan
e fa
tor of � for it hasbeen proposed by these authors in [9℄ as a risk ranking measure. Note that for any subsetP of MCS[E℄ the following inequality holds.p(�)P�2P p(�) � p(�)P�2MCS[E℄ p(�)Therefore, if the
ontribution of a produ
t estimated only from the already foundminimal
utsets is below a given threshold T , its a
tual
ontribution is below the thresholdas well (and the produ
t
an be immediately dis
arded). The threshold T is often
alledthe relative
uto�.Now,
onsider the sequen
e �1, �2, : : : of terminal produ
ts produ
ed by the algorithm(before the extra
tion of minimal
utsets). It is easy to verify ad absurdo that if � is aminimal
utset, then there is a i su
h that � is the positive part of �i. This strong propertyis used to dis
ard under pro
ess produ
ts as soon as their
ontribution goes below thethreshold T . The property ensures that no minimal
utset (of
ontribution greater thanT) is dis
arded. 6

This is the reason why it is interesting to produ
e minimal
ustets (with the pro
esspresented in the previous se
tion) as soon as possible. The earlier minimal
utsets areprodu
ed, the more e�e
tive the trun
ation on the probability is.It is worth noti
ing that, in
ase of hard
omputations, the relative
uto� T
an bedynami
ally adjusted.4.4 Data stru
turesSeveral points remain to dis
uss in the algorithm des
ribed so far.� One needs two heuristi
s. The �rst one to sele
t the next produ
t to pro
ess in R.The se
ond one to sele
t the gate variable to expand in the produ
t under pro
ess.This question will be dis
ussed se
tion 5.2.� One needs a data stru
ture to en
ode the set of equations. This stru
ture has mainlyto make eÆ
ient the extra
tion of minimal
utsets.� Finally, one needs a data stru
ture to en
ode the sets of produ
ts R and P .The minimal
utsets extra
tion is based on the bottom-up propagation of the assign-ment of values to basi
 events. To make this operation eÆ
ient, one
reates on
e for all,for ea
h variable v, the list of equations g = F su
h that v 2 var(F). Moreover, one main-tains dynami
ally, for ea
h equation g = F , three
ounters of the numbers of variables ofvar(F) that have respe
tively the value 1, the value 0 and no value. In this way, valuesare propagated bottom-up only when needed.It is a
tually interesting to maintain the
urrent value of variables (gates and events)during the whole algorithm. Let � be the produ
t under pro
ess. It
an be the
ase thatthe value of a gate variable g of � is determined just by propagating the values of basi
events of �. If �(g) = 1, then g
an be removed from the produ
t. If �(g) = 0, thenthe produ
t
ontains a
ontradi
tion and
an be dis
arded. Another even more importantreason to maintain the
urrent assignment will be given in se
tion 5.3 with the notion ofshadow variables.The data stru
ture that en
odes the sets of produ
ts R and P should be as
ompa
t aspossible (for huge numbers of produ
ts have to be manipulated). Moreover, insertion,sele
tion and removal of a produ
t should be as eÆ
ient as possible. Minato's Zero-Suppressed Binary De
ision Diagrams [10℄ are a potential
andidate to do the job. Wefound that Binary De
ision Trees are a better tradeo�. Let � be a total order over E [G.A Binary De
ision Tree is a binary tree su
h that:� The leaves of the tree en
ode either the empty produ
t or the empty set of produ
ts.� Ea
h internal node is labelled with a variable v and has two outedges (low and high).If the nodes pointed by low and high en
ode respe
tively the sets of produ
ts S0 andS1, then the node en
odes the following set.S0 [ffvg [�; � 2 S1g7

� If a node is labelled with a variable v, then either the node pointed by its low outedge(resp. high outedge) is a leaf or it is labelled with a variable w su
h that �(v) < �(w).By sharing the pre�xes of produ
ts, this data stru
ture saves a lot of memory. It is tosee that insertion, removal and sele
tion of a produ
t are linear, in the worst
ase, in thenumber of variables. It is worth noti
ing that it is not ne
essary to test whether a minimal
utset belongs to the set before inserting it. Both operations are performed at on
e.5 Further Improvements5.1 Prepro
essingAs pointed out by many authors, some prepro
essing of the set of equations may in
rease byorders of magnitude the eÆ
ien
y of algorithms. The book by Kovalenko, Kuznetsov andPegg [11℄ proposes twelve transformations to simplify the formulae. These transformationsare used by the FAMOCUTN algorithm [12℄. They are representative of what is suggestedin the literature. They
an be grouped in three
ategories.� Module dete
tion. A module is a subformula that a
ts as a super-
omponent, i.e. thatis independant from the rest of the formula. The notion of module was introdu
edby Birnbaum and Esary in [13℄. Modules already present in the formula
an bedete
ted in linear time [14℄. However, modules are often hidden and some rewritingsare ne
essary to extra
t them.� Coales
ing of gates of the same type, e.g. F1+(F2+F3) �! F1+F2+F3. It is
learlyinteresting to perform
oales
ing as mu
h as possible be
ause this transformation doeson
e for all operations that MOCUS will do anyway, possibly several times.� Other transformations based on Boolean algebra laws. For instan
e, the followingtransformations may be applied.(F:G1) + (F:G2) �! F:(G1 +G2) fa
toringF:v �! F [1=v℄:v
onstant propagationThese transformations aim to simplify the formula, for instan
e by dete
ting hiddenmodules. In [15℄, Niemel�a has suggested also a promising rewriting te
hnique basedon propagation of variable values.The danger with the latter
ategory of prepro
essings is that they may be
ostly. Theirappli
ation should therefore result of a tradeo� between what they
onsume and what theysave. In our implementation, we limit prepro
essing to
oales
ing and module dete
tion.
8

5.2 Heuristi
sAs already said, MOCUS requires two heuristi
s. The �rst one to sele
t the next produ
tto pro
ess. The se
ond one to sele
t the gate to expand in the produ
t under pro
ess.Both heuristi
s have the same goal: make terminal produ
ts (and therefore minimal
utsets) appear as soon as possible in order to in
rease the in
uen
e of the probabilisti

uto�.For the se
ond heuristi
, Camarinopoulos and Yllera suggest in [16℄ to develop �rst thegate with the greatest number of basi
 events as arguments. This idea is uneasy to justifywith respe
t to the above rule. We rather suggest to sele
t the �rst and-gate, if any. Theidea is that by developing and-gates �rst, we in
rease the expe
tation of a probabilisti

uto�. The order in whi
h and-gates are expanded does not really matter, sin
e all ofthem have to be expanded before an or-gate is developped. If the produ
t
ontains onlyor-gates, the �rst one is developped.For the �rst heuristi
, we sele
t the �rst produ
t in the binary de
ision tree order.Both heuristi
s depend strongly on the order de�ned among variables. It is
lear forthe �rst one, sin
e this order determines the stru
ture of the binary de
ision tree. It istrue also for the se
ond one, be
ause under pro
ess produ
ts are en
oded as sorted ve
torsof literals, a

ording to the
hosen order (sorted produ
ts make easier operations su
hin
lusion testing, element sear
hing, merging, : : :).The order among variables is determined by means of a depth-�rst left-most traversalof the set of equations. Before applying this pro
edure, gate arguments are sorted inin
reasing order of their weights. The weight !(v) of a variable v is as follows.!(v) = 8>><>>: 1 if v is an input variable!(w) if v = wPki=1 !(wi) if v =Pki=1wi�ki=1!(wi) if v = �ki=1wiAs we shall see se
tion 6.4, this heuristi
s is important for the robustness of the wholepro
ess.We found experimentally that this stati
 way of sele
ting produ
ts to pro
ess andvariables to develop is a better tradeo� than the various dynami
 heuristi
s we tried.However, there is
ertainly still room for improvements in this part of our implementation.5.3 Shadow VariablesMOCUS-like algorithms have been designed to assess both fault trees and event trees. Anevent tree sequen
e is assimilated with the
onjun
t of su

ess and failure bran
hes thatappear along the sequen
e [17℄. Consider for instan
e the small event tree pi
tured Fig. 2.This event tree is made of an initiating event I, two fault trees FA and FB that des
riberespe
tively the failures of safety systems A and B, and three
onsequen
es C1, C2 and C3.The sequen
e I �C2
orresponds to the s
enario where A fails and B a
hieves its mission.It is therefore assimilated with the formula I:FA:FB .9

initiating event mission A mission B consequences

I

C1

C2

C3
FA FBFigure 2: An event treeIt is in general the
ase that FB is a
oherent fault tree (i.e. FB
ontains no negation).Therefore, the only rôle of FB in the
onjun
t is to dis
ard some of the minimal
utsets ofI:FA. This has been already noti
ed by several authors (e.g. [3℄).Let gnotB be the gate variable that en
odes FB in the model. We
all variables su
has gnotB \shadow variables". Shadow variables are never expanded. They are howeverinvolved in value propagations. If, at a given step of the algorithm, the produ
t underpro
ess falsi�es one of its shadow variables then this produ
t
ontains a
ontradi
tion (asif it was
ontaining both a literal and its opposite). It is therefore dis
arded. A produ
tis now
onsidered as terminal if it
ontains only basi
 events and shadow variables. Thelatters are just ignored by the minimal
utsets extra
tion.This way of dealing with su

ess bran
hes is mu
h more eÆ
ient than those proposedalready that
onsists in
omputing minimal
utsets of failure and su

ess bran
hes sepa-rately and then to
ompare them. For two reasons. First, shadow variables introdu
e anew
uto�. Se
ond, there is no more need to post-pro
ess the
utsets.Some of the fault trees of our ben
hmark are only almost
oherent, i.e. that they
ontain few negated variables. We observed that, even in this
ase, it is always an a

urateapproximation to shadow su

ess bran
hes.It is worth noti
ing that a signi�
ant proportion of the sequen
es that will be studiedin se
tion 6
annot be handled without this notion of shadow variables, be
ause of the
ombinatorial explosion of the number of produ
ts to pro
ess.6 Experimental Results6.1 1819 Event Tree Sequen
es as a Ben
hmarkAs a ben
hmark, we
onsidered the 1819 event tree sequen
es generated for a PSA study.The table 1 gives some statisti
s about these sequen
es. I denotes the number of basi
events. G denotes the number of gate variables. R denotes the number of repli
atedvariables. A variable is repli
ated if it o

urs more than on
e in the set of equations.Finally, S denotes the number of singular input variables. A variable is singular if thereis only one path to goes from the variable to the top event. We grouped the sequen
esa

ording to their number of basi
 events: less than 100, between 100 and 200, between10

Table 1: Statisti
s about the 1819 sequen
esI < 100 < 200 < 300 < 400 < 500 < 600 < 700#sequen
es 408 42 274 100 42 344 92mean G=I 1.45 1.59 1.70 1.33 1.30 1.34 1.38mean R=(I +G) 0.01 0.01 0.14 0.14 0.14 0.15 0.18mean S=I 0.65 0.51 0.42 0.57 0.61 0.58 0.40I < 800 < 900 < 1000 < 1100 < 1200 < 1300#sequen
es 113 236 12 116 32 8mean G=I 1.54 1.64 1.69 1.85 1.80 1.91mean R=(I +G) 0.17 0.17 0.22 0.20 0.20 0.22mean S=I 0.35 0.38 0.26 0.27 0.28 0.18Table 2: Running Timesthreshold for #sequen
es assessed among the 1819 highestthe
ontribution < 1s < 5s < 10s < 30s < 1m < 10m � 10m running time10�1 1772 38 8 1 0 0 0 10.2410�2 1743 60 8 8 0 0 0 16.7710�3 1688 88 20 21 2 0 0 31.2810�4 1634 101 40 26 11 7 0 89.8910�5 1576 111 40 56 12 24 0 248.7710�6 1486 163 40 68 19 39 4 623.33BDD 1705 60 18 13 11 12 0 304.22200 and 300 and so on.The table 1 shows that the sequen
es of the ben
hmark
ontain a signi�
ant proportionof repli
ated variables. Moreover, the more sequen
es
ontain basi
 events, the less theproportion of singular variables is.6.2 Running TimesThe table 2 gives the number of sequen
es assessed whithin less than 1s, within more than1s and less 5s, and so on for di�erent values of the threshold on the
ontribution. The
ontribution is (over-)estimated as des
ribed se
tion 4.3. The running times were measuredon a Pentium III
aden
ed at 733Mgz and running linux.The table 2 shows that most of the sequen
es are assessed whithin less than 30s, even forvery low values of the threshold. For
omparison purposes, the running times to
omputeBDDs are given. The advantage seems to go to BDDs. However, it should be said that ahighly sophisti
ated prepro
essing and many ad-ho
 tri
ks were used to be able to
ompute11

Table 3: MOCUS errors.MOCUS optimisti
 MOCUS pessimisti
error : mean maximum error : mean maximum
ontribution #seq: relative absolute relative #seq: relative absolute relative10�1 115 0:64 1:29 10�9 1 13 21:5 2:21 10�9 24210�2 73 0:32 2:79 10�10 0:61 55 11:5 7:32 10�9 53910�3 29 0:16 2:44 10�11 0:30 99 8:40 9:05 10�9 66410�4 22 0:07 6:54 10�12 0:12 106 8:98 1:19 10�8 74110�5 15 0:02 9:24 10�13 0:08 113 8:77 1:28 10�8 76210�6 4 0:02 6:89 10�16 0:06 124 8:12 1:31 10�8 769these BDDs (these te
hniques will be presented in a forth
oming arti
le). Moreover, thegiven running times for BDD do not in
lude the
omputation of minimal
utsets. For thelargest sequen
es, we are unable at the moment to
ompute these minimal
utsets. In aword, our implementation of MOCUS is a bit less eÆ
ient than our BDD implementation,but it is more robust.6.3 A

urra
y of the ResultsIt is of interest to
ompare the unreliabilities estimated by MOCUS with the exa
t resultsprovided by BDDs. The table 3 gives the mean relative error as well as the maximumabsolute and relative errors done by MOCUS for the 128 hardest sequen
es (i.e. thesequen
es for whi
h MOCUS with the
ontribution threshold set at 10�6 takes more than10s). The following
on
lusions
an be drawn from these results.� MOCUS is rarely optimisti
. The smaller the threshold on
ontribution is, the lessoptimisti
 is MOCUS. Moreover MOCUS, is only slightly optimisti
.� MOCUS is often pessimisti
, and sometimes very pessimisti
 (up to a fa
tor 1000).However, this
an be
orre
ted by
onsidering more terms in the Sylvester-Poin
ar�edevelopment.6.4 In
uen
e of Fanin OrderingEx
ept in [16℄, the order in whi
h top-down algorithms
onsider the produ
ts and thevariables inside the produ
ts is not dis
ussed in literature. It has however a great in
uen
e.To show this in
uen
e, we
onsider 30 rewritings of the hardest sequen
e of our ben
hmark.Ea
h rewriting
onsists in permuting at random the arguments of gates. For ea
h rewriting,we
all MOCUS with the with and without the prepro
essing dis
ussed se
tion 5.2. The
ontribution threshold is �xed at 10�4. 12

10

100

1000

10000

0 5 10 15 20 25 30

"with"
"without"

Figure 3: Running times with and without rearrangement of gate arguments.The �gure 3 shows the running times (to make the �gure illustrative we joined thepoints with lines and we draw running times on a logarithmi
 s
ale). These two
urvesillustrate the interest of the heuristi
 we propose and show that it is robust and eÆ
ient.Referen
es[1℄ J. Fussel and W. Vesely, \A New Methodology for Obtaining Cut Sets for FaultTrees," Trans. Am. Nu
l. So
., vol. 15, pp. 262{263, June 1972.[2℄ U. Berg, RISK SPECTRUM, Theory Manual. RELCON Teknik AB, April 1994.[3℄ K. Russel and D. Rasmuson, \Fault tree redu
tion and quanti�
ation { and overview ofIRRAS algorithms," Reliability Engineering and System Safety, vol. 40, pp. 149{164,1993.[4℄ O. Coudert and J.-C. Madre, \Fault Tree Analysis: 1020 Prime Impli
ants andBeyond," in Pro
eedings of the Annual Reliability and Maintainability Symposium,ARMS'93, January 1993. Atlanta NC, USA.[5℄ A. Rauzy, \New Algorithms for Fault Trees Analysis," Reliability Engineering & Sys-tem Safety, vol. 05, no. 59, pp. 203{211, 1993.[6℄ R. Bryant, \Graph Based Algorithms for Boolean Fon
tion Manipulation," IEEETransa
tions on Computers, vol. 35, pp. 677{691, August 1986.
13

[7℄ K. Bra
e, R. Rudell, and R. Bryant, \EÆ
ient Implementation of a BDD Pa
kage," inPro
eedings of the 27th ACM/IEEE Design Automation Conferen
e, pp. 40{45, IEEE0738, 1990.[8℄ A. Rauzy, \Mathemati
al Foundation of Minimal Cutsets," IEEE Transa
tions onReliability, 2000. to appear.[9℄ J. Fussel, \How to hand-
al
ulate system reliability
hara
teristi
s," IEEE Transa
-tions on Reliability, vol. R-24, no. 3, 1975.[10℄ S. Minato, \Zero-Suppressed BDDs for Set Manipulation in Combinatorial Problems,"in Pro
eedings of the 30th ACM/IEEE Design Automation Conferen
e, DAC'93,pp. 272{277, 1993.[11℄ I. Kovalenko, N. Kuznetsov, and P. Pegg, Mathemati
al Theory of Reliability of TimeDependent Systems with Pra
ti
al Appli
ations. Wiley Series in Probability and Statis-ti
s, John Wiley & Sons, 1997. ISBN 0-471-95060-2.[12℄ W. Hennings and N. Kuznetsov, \FAMOCUTN and CUTQ | Computer
odes forfast analyti
al evaluation of large fault trees with repli
ated and negated gates," IEEETransa
tion on Reliability, vol. 44, pp. 368{376, 1995.[13℄ Z. Birnbaum and J. Esary, \Modules of
oherent binary systems," SIAM J. of AppliedMathemati
s, vol. 13, pp. 442{462, 1965.[14℄ Y. Dutuit and A. Rauzy, \A Linear Time Algorithm to Find Modules of Fault Trees,"IEEE Transa
tions on Reliability, vol. 45, no. 3, pp. 422{425, 1996.[15℄ I. Niemel�a, \On simpli�
ation of large fault trees," Reliability Engineering and SystemSafety, vol. 44, pp. 135{138, 1994.[16℄ L. Camarinopoulos and J. Yllera, \An Improved Top-down Algorithm Combined withModularization as Highly EÆ
ient Method for Fault Tree Analysis," Reliability En-gineering and System Safety, vol. 11, pp. 93{108, 1985.[17℄ I. Papazoglou, \Mathemati
al foundations of event trees," Reliability Engineering andSystem Safety, vol. 61, pp. 169{183, 1998.Antoine Rauzy is with the Fren
h National Center for S
ienti�
 Resear
h (CNRS)and the \Institut de Math�ematique de Luminy". His topi
s of interest are formal methodsand reliability engineering. His ba
kground is in
omputer s
ien
e (PhD, Habilitation �aDiriger des Re
her
hes).
14

