
Towards an EÆient Implementation of MOCUSA. RauzyIML, UPR CNRS 9016163, avenue de Luminy { Case 907F-13288 Marseille edex 9 { FRANCEarauzy�iml.univ-mrs.frSummary & onlusionsMOCUS is probably the most famous algorithm to ompute minimal utsets of fault trees.It has been proposed by Fussel and Vesely in 1972. It is at the present the ore methodof many fault tree assessment tools. Despite its wide use, textbooks and artiles give onlyfew details about how to implement it.In this artile, we desribe data strutures as well as several improvements and heurististhat make MOCUS robust and eÆient. We introdue the notion of shadow variables inorder to deal with suess branhes of event trees.We report experiments on a benhmark of the 1819 event tree sequenes that weregenerated during a PSA study. These results show that MOCUS is a good alternative toBinary Deision Diagrams.Keywords: Fault Trees, Event Trees, MOCUS1 IntrodutionMOCUS is probably the most well known algorithm to ompute minimal utsets of faulttrees, event trees, blok diagrams, : : : . It has been proposed by Fussel and Vesely in1972 [1℄. It is representative of the lass of top-down algorithms. It is at the present theore method of many fault tree assessment tools, inluding Risk Spetrum [2℄ and IRRAS(SAPHIRE) [3℄ that are both widely used by in nulear enginering. Eah of these toolsintrodues its own re�nements on the original method, but the basis remains the same.Despite the wide use of top-down algorithms, textbooks and artiles devoted to thistopi give only few details about how to implement them. For instane, the question ofdata strutures is almost never disussed although it plays a entral rôle in the eÆienyof the methods. In this artile, we desribe a full implementation of MOCUS, inluding1

data strutures that make it robust and eÆient. We try to point out all the plaes wheredesign deisions must be taken and we disuss our hoies.As a benhmark, we used the 1819 event tree sequenes that were generated duringa PSA study. Some of these sequenes ontain more than one thousand input variables,twie more gates, among whih a signi�ant proportion are repliated. To ope with suhlarge models, we introdued new ideas, suh as the notion of shadow variables. This artilepresents these improvements. We show also that MOCUS is sensitive to the way formulaeare written and we propose a rewriting heuristi that overomes this problem.During last deade, the framework of fault tree assessment algorithms has been deeplyimpated by the introdution of Binary Deision Diagrams (BDDs) based methods (seefor instane [4, 5℄ for the very �rst ontributions). BDDs [6, 7℄ are the state-of-the-artdata struture to enode and to manipulate Boolean funtions. In most of the ases,they outperform the other methods. However, BDDs also are subjet to ombinatorialexplosion. For large models, suh as the largest sequenes of our benhmark, the BDDthat enodes the model may be not omputable within reasonable amounts of time andomputer memory. The problem omes that, onversely to MOCUS-like algorithms, theBDD tehnology does not support easily approximations (although some progresses havebeen done reently in this diretion [8℄). Therefore, BDDs may be unable to provideany result, whih is indeed unaeptable. This is a strong motivation to develop eÆientalternative algorithms. The experimental results we obtained on our benhmark show thatMOCUS is a good andidate to be suh an alternative method.The remainder of this artile is organized as follows. Some preliminary de�nitions aregiven setion 3. The setion 4 desribes an eÆient implementation of MOCUS. The se-tion 5 disusses several improvements. Finally, experimental results are reported setion 6.2 NotationsThroughout this artile, we shall use the following notations.{ E = fe1; : : : ; eNg denotes the set of basi events.{ G = fg1; : : : ; gMg denotes the set of gate variables.{ F1, F2, ... denote Boolean formulae.{ var(F) denotes the set of variables ourring in F .{ MCS[F ℄ denotes the set of minimal utsets of F .{ p(F) denotes the probability of a F .
2

3 Preliminaries3.1 Sets of EquationsIn what follows, we onsider Boolean models that are given as sets of (Boolean) equations.Struture funtions of fault trees, event trees, blok diagrams an be viewed as suh setsof equations.Let E = fe1; : : : ; eNg and G = fg1; : : : ; gMg be two distint sets of Boolean variables.E is the set of basi events. G is the set of gates. An equation over E [G is an equality ofthe following form. g = Fwhere g 2 G, and F is a boolean formula built over E [G and the usual logial onnetives\:" (and), \+" (or), \ " (not), k=n (k-out-of-n).A set of equations is assimilated with the onjunt of its elements. A set E of equationsis said hierarhial if it ful�ls the following requirements.� For eah g in G, E ontains exatly one equation of the form g = F . For the sake ofsimpliity, we denote Fi (i = 1; : : : ;M) the unique formula suh that the equationgi = Fi is in E.� There exists a one-to-one funtion � from G to [1;M ℄ (i.e. a total order over G) suhthat for any two gates gi and gj the following holds.�(gi) � �(gj)) gi 62 var(Fj)� E is uniquely rooted, i.e. there is a unique gate gtop that ours in no Fi.In what follows, we shall onsider only hierarhial sets of equations.Any (hierarhial) set of equation E an be rewritten into an equivalent singletonfgtop = F 0topg. To obtain F 0top, it suÆes to substitute the Fi's for the gi's aording tothe order �. For this reason, E an be assimilated with the formula F 0top. For the sake ofsimpliity, we shall do systematially this assimilation. For instane, we shall write \theminimal utsets of E" instead of \the minimal utsets of F 0top where F 0top is the formulasuh that : : : ".3.2 Minimal CutsetsA literal is either a variable v or its negation v . A produt is a onjunt of literals thatdoes not ontain both a literal and its negation (v and v). A minterm is a produt thatontains a literal for eah variable of E . Produts and minterms are assimilated with setsof literals.A minterm � an be seen also as an assignment, i.e. a funtion �� from E to f0; 1g.��(e) = � 1 if e 2 �0 if e 2 �3

For the sake of simpliity, we shall just write �(e) instead of ��(e). Assignments an belifted up to formulae by strutural indution and aording to the usual laws.�(F) = 1� �(F) �(F:G) = min(�(F); �(G)) �(F +G) = max(�(F); �(G))Let � be a produt, we denote by � the minterm obtained by omplementing � withnegative literals built over the events that do not our in �.A positive produt � is a minimal utset of a set of equations E if the following ondi-tions hold.� � is a utset of E, i.e. �(E) = 1.� � is minimal, i.e. for any produt � � �, �(E) = 0.The referene [8℄ gives an algebrai framework for the notion of minimal utsets.The set of minimal utsets of E in denoted by MCS[E℄.3.3 And-Or-TreesMOCUS takes And-Or-Trees as input formulae. An And-Or-Tree is a set of equations suhthat eah Fi is made with a single onnetive and only events an be negated. Any set ofequations an be eÆiently rewritten as an And-Or-Tree. The algorithm is as follows.1. Flatten equations, i.e. a new equation is reated for eah nested onnetive. E.g.g = a + b:+ d �! � g = a + gnew + dgnew = b:2. Expand k-out-of-n gates. This an be done in O(k:n) by applying the followingdeomposition.g = k=n(v1; : : : ; vn) �! 8>><>>: g = gnew1 + gnew2gnew1 = x1:gnew3gnew2 = k=n� 1(v2; : : : ; vn)gnew3 = k � 1=n� 1(v2; : : : ; vn)Note that most of the authors (e.g. [3, 2℄) suggest to expand k-out-of-n gates as asum of produts. When k � n=2 and n is not too small, this may be ostly. Theproess we propose works even for large values of n.3. Push down negations. A new gate variable gnot is reated (when needed) for the gatevariable g. gnot enodes the negation of g. The equation of gnot is obtained by meansof de Morgan's laws, e.g.h = g + dg = a:b: � �! � h = gnot + dgnot = anot + bnot + notThis proess is ahieved in one top-down pass over the set of equations.4

P ;, R fgtopgwhile R 6= ; doselet a produt � in R, R R n f�gif � is terminalthen P P [ExtratMs(�)elseselet a gate g in �: � = g:�if g = �ki=1lithen insert �:�ki=1li in Rif g =Pki=1 lithen if 9 li 2 �else insert � in Relse insert �:l1, : : : , �:lk in RFigure 1: The pseudo-ode for the MOCUS algorithm4 MOCUS4.1 Priniple of the AlgorithmMOCUS works with two sets of produts. The set R of produts it remains to proessand the set P of already found minimal utsets. R is initialized with fgtopg, where gtop isthe root of the And-Or-Tree under study. P is initialized with the empty set. Then, eahprodut � of R is onsidered in turn.� If � is terminal, i.e. if it ontains only basi events, minimal utsets of � are extratedand inserted in P . This proess is disussed in setion 4.2.� Otherwise, a gate variable is seleted in � and replaed by its de�nition, possiblygiving several new produts. The obtained produts are reinserted in R.The pseudo-ode for the algorithm is given Fig. 1.Let � be a non-terminal produt onsidered at a given step of the algoritm. Let g bethe gate variable seleted in � (� = g:�). Finally, let g = F be the equation that de�nes gin E. There are two ases.� If F = �ki=1li, then � is rewritten in �:F . �:F is reinserted in R if it ontains no pairof opposite literals.� If F =Pki=1 li, then � is rewritten inPki=1 �:li. If � ontains one of the li, this sum isequivalent to �, whih is reinserted in R. If � ontains the opposite of li, the produt�:li is disarded. The remaining produts �:li are reinserted in R.Suh simpli�ations have been desribed already by several authors (see for instane [3℄).5

4.2 Extration of Minimal CutsetsLet � be a terminal produt onsidered at a given step of the algoritm. Let � = �ki=1eibe the positive part of �. By onstrution, � is a utset of E. However, it may be nonminimal. Minimal utsets of � are extrated as follows.The produts �i = � n feig are onsidered in turn. If all of these produts are suh that�i(E) = 0, � is minimal. Otherwise, � is not minimal and minimal utsets are extratedfrom the �i's suh that �i(E) = 1. In order to avoid to do the same job twie, a ahe anbe used to store already onsidered produts (the same goal an be ahieved by onsideringthe ei's always in the same order). Note also that to hange �i into �i+1 it suÆes to ipthe values of ei and ei+1.At the end of this proess, a number of minimal utsets are obtained. It remains todisard those that are already in P . The setion 4.4 proposes a data struture to do thiseÆiently.4.3 Trunations on the ProbabilitiesIt is often the ase, when dealing with real-life models, that the set E of equations understudy admits a huge number of minimal utsets. Fortunately, it is in general an aurateapproximation to onsider only the most important ones, i.e. those that have the highestontribution to the system unreliability.The ontribution of a minimal utset � is de�ned as follows.p(�)P�2MCS[E℄ p(�)The ontribution is sometimes alled the Fussel-Vesely importane fator of � for it hasbeen proposed by these authors in [9℄ as a risk ranking measure. Note that for any subsetP of MCS[E℄ the following inequality holds.p(�)P�2P p(�) � p(�)P�2MCS[E℄ p(�)Therefore, if the ontribution of a produt estimated only from the already foundminimal utsets is below a given threshold T , its atual ontribution is below the thresholdas well (and the produt an be immediately disarded). The threshold T is often alledthe relative uto�.Now, onsider the sequene �1, �2, : : : of terminal produts produed by the algorithm(before the extration of minimal utsets). It is easy to verify ad absurdo that if � is aminimal utset, then there is a i suh that � is the positive part of �i. This strong propertyis used to disard under proess produts as soon as their ontribution goes below thethreshold T . The property ensures that no minimal utset (of ontribution greater thanT) is disarded. 6

This is the reason why it is interesting to produe minimal ustets (with the proesspresented in the previous setion) as soon as possible. The earlier minimal utsets areprodued, the more e�etive the trunation on the probability is.It is worth notiing that, in ase of hard omputations, the relative uto� T an bedynamially adjusted.4.4 Data struturesSeveral points remain to disuss in the algorithm desribed so far.� One needs two heuristis. The �rst one to selet the next produt to proess in R.The seond one to selet the gate variable to expand in the produt under proess.This question will be disussed setion 5.2.� One needs a data struture to enode the set of equations. This struture has mainlyto make eÆient the extration of minimal utsets.� Finally, one needs a data struture to enode the sets of produts R and P .The minimal utsets extration is based on the bottom-up propagation of the assign-ment of values to basi events. To make this operation eÆient, one reates one for all,for eah variable v, the list of equations g = F suh that v 2 var(F). Moreover, one main-tains dynamially, for eah equation g = F , three ounters of the numbers of variables ofvar(F) that have respetively the value 1, the value 0 and no value. In this way, valuesare propagated bottom-up only when needed.It is atually interesting to maintain the urrent value of variables (gates and events)during the whole algorithm. Let � be the produt under proess. It an be the ase thatthe value of a gate variable g of � is determined just by propagating the values of basievents of �. If �(g) = 1, then g an be removed from the produt. If �(g) = 0, thenthe produt ontains a ontradition and an be disarded. Another even more importantreason to maintain the urrent assignment will be given in setion 5.3 with the notion ofshadow variables.The data struture that enodes the sets of produts R and P should be as ompat aspossible (for huge numbers of produts have to be manipulated). Moreover, insertion,seletion and removal of a produt should be as eÆient as possible. Minato's Zero-Suppressed Binary Deision Diagrams [10℄ are a potential andidate to do the job. Wefound that Binary Deision Trees are a better tradeo�. Let � be a total order over E [G.A Binary Deision Tree is a binary tree suh that:� The leaves of the tree enode either the empty produt or the empty set of produts.� Eah internal node is labelled with a variable v and has two outedges (low and high).If the nodes pointed by low and high enode respetively the sets of produts S0 andS1, then the node enodes the following set.S0 [ffvg [�; � 2 S1g7

� If a node is labelled with a variable v, then either the node pointed by its low outedge(resp. high outedge) is a leaf or it is labelled with a variable w suh that �(v) < �(w).By sharing the pre�xes of produts, this data struture saves a lot of memory. It is tosee that insertion, removal and seletion of a produt are linear, in the worst ase, in thenumber of variables. It is worth notiing that it is not neessary to test whether a minimalutset belongs to the set before inserting it. Both operations are performed at one.5 Further Improvements5.1 PreproessingAs pointed out by many authors, some preproessing of the set of equations may inrease byorders of magnitude the eÆieny of algorithms. The book by Kovalenko, Kuznetsov andPegg [11℄ proposes twelve transformations to simplify the formulae. These transformationsare used by the FAMOCUTN algorithm [12℄. They are representative of what is suggestedin the literature. They an be grouped in three ategories.� Module detetion. A module is a subformula that ats as a super-omponent, i.e. thatis independant from the rest of the formula. The notion of module was introduedby Birnbaum and Esary in [13℄. Modules already present in the formula an bedeteted in linear time [14℄. However, modules are often hidden and some rewritingsare neessary to extrat them.� Coalesing of gates of the same type, e.g. F1+(F2+F3) �! F1+F2+F3. It is learlyinteresting to perform oalesing as muh as possible beause this transformation doesone for all operations that MOCUS will do anyway, possibly several times.� Other transformations based on Boolean algebra laws. For instane, the followingtransformations may be applied.(F:G1) + (F:G2) �! F:(G1 +G2) fatoringF:v �! F [1=v℄:v onstant propagationThese transformations aim to simplify the formula, for instane by deteting hiddenmodules. In [15℄, Niemel�a has suggested also a promising rewriting tehnique basedon propagation of variable values.The danger with the latter ategory of preproessings is that they may be ostly. Theirappliation should therefore result of a tradeo� between what they onsume and what theysave. In our implementation, we limit preproessing to oalesing and module detetion.
8

5.2 HeuristisAs already said, MOCUS requires two heuristis. The �rst one to selet the next produtto proess. The seond one to selet the gate to expand in the produt under proess.Both heuristis have the same goal: make terminal produts (and therefore minimalutsets) appear as soon as possible in order to inrease the inuene of the probabilistiuto�.For the seond heuristi, Camarinopoulos and Yllera suggest in [16℄ to develop �rst thegate with the greatest number of basi events as arguments. This idea is uneasy to justifywith respet to the above rule. We rather suggest to selet the �rst and-gate, if any. Theidea is that by developing and-gates �rst, we inrease the expetation of a probabilistiuto�. The order in whih and-gates are expanded does not really matter, sine all ofthem have to be expanded before an or-gate is developped. If the produt ontains onlyor-gates, the �rst one is developped.For the �rst heuristi, we selet the �rst produt in the binary deision tree order.Both heuristis depend strongly on the order de�ned among variables. It is lear forthe �rst one, sine this order determines the struture of the binary deision tree. It istrue also for the seond one, beause under proess produts are enoded as sorted vetorsof literals, aording to the hosen order (sorted produts make easier operations suhinlusion testing, element searhing, merging, : : :).The order among variables is determined by means of a depth-�rst left-most traversalof the set of equations. Before applying this proedure, gate arguments are sorted ininreasing order of their weights. The weight !(v) of a variable v is as follows.!(v) = 8>><>>: 1 if v is an input variable!(w) if v = wPki=1 !(wi) if v =Pki=1wi�ki=1!(wi) if v = �ki=1wiAs we shall see setion 6.4, this heuristis is important for the robustness of the wholeproess.We found experimentally that this stati way of seleting produts to proess andvariables to develop is a better tradeo� than the various dynami heuristis we tried.However, there is ertainly still room for improvements in this part of our implementation.5.3 Shadow VariablesMOCUS-like algorithms have been designed to assess both fault trees and event trees. Anevent tree sequene is assimilated with the onjunt of suess and failure branhes thatappear along the sequene [17℄. Consider for instane the small event tree pitured Fig. 2.This event tree is made of an initiating event I, two fault trees FA and FB that desriberespetively the failures of safety systems A and B, and three onsequenes C1, C2 and C3.The sequene I �C2 orresponds to the senario where A fails and B ahieves its mission.It is therefore assimilated with the formula I:FA:FB .9

initiating event mission A mission B consequences

I

C1

C2

C3
FA FBFigure 2: An event treeIt is in general the ase that FB is a oherent fault tree (i.e. FB ontains no negation).Therefore, the only rôle of FB in the onjunt is to disard some of the minimal utsets ofI:FA. This has been already notied by several authors (e.g. [3℄).Let gnotB be the gate variable that enodes FB in the model. We all variables suhas gnotB \shadow variables". Shadow variables are never expanded. They are howeverinvolved in value propagations. If, at a given step of the algorithm, the produt underproess falsi�es one of its shadow variables then this produt ontains a ontradition (asif it was ontaining both a literal and its opposite). It is therefore disarded. A produtis now onsidered as terminal if it ontains only basi events and shadow variables. Thelatters are just ignored by the minimal utsets extration.This way of dealing with suess branhes is muh more eÆient than those proposedalready that onsists in omputing minimal utsets of failure and suess branhes sepa-rately and then to ompare them. For two reasons. First, shadow variables introdue anew uto�. Seond, there is no more need to post-proess the utsets.Some of the fault trees of our benhmark are only almost oherent, i.e. that theyontain few negated variables. We observed that, even in this ase, it is always an aurateapproximation to shadow suess branhes.It is worth notiing that a signi�ant proportion of the sequenes that will be studiedin setion 6 annot be handled without this notion of shadow variables, beause of theombinatorial explosion of the number of produts to proess.6 Experimental Results6.1 1819 Event Tree Sequenes as a BenhmarkAs a benhmark, we onsidered the 1819 event tree sequenes generated for a PSA study.The table 1 gives some statistis about these sequenes. I denotes the number of basievents. G denotes the number of gate variables. R denotes the number of repliatedvariables. A variable is repliated if it ours more than one in the set of equations.Finally, S denotes the number of singular input variables. A variable is singular if thereis only one path to goes from the variable to the top event. We grouped the sequenesaording to their number of basi events: less than 100, between 100 and 200, between10

Table 1: Statistis about the 1819 sequenesI < 100 < 200 < 300 < 400 < 500 < 600 < 700#sequenes 408 42 274 100 42 344 92mean G=I 1.45 1.59 1.70 1.33 1.30 1.34 1.38mean R=(I +G) 0.01 0.01 0.14 0.14 0.14 0.15 0.18mean S=I 0.65 0.51 0.42 0.57 0.61 0.58 0.40I < 800 < 900 < 1000 < 1100 < 1200 < 1300#sequenes 113 236 12 116 32 8mean G=I 1.54 1.64 1.69 1.85 1.80 1.91mean R=(I +G) 0.17 0.17 0.22 0.20 0.20 0.22mean S=I 0.35 0.38 0.26 0.27 0.28 0.18Table 2: Running Timesthreshold for #sequenes assessed among the 1819 highestthe ontribution < 1s < 5s < 10s < 30s < 1m < 10m � 10m running time10�1 1772 38 8 1 0 0 0 10.2410�2 1743 60 8 8 0 0 0 16.7710�3 1688 88 20 21 2 0 0 31.2810�4 1634 101 40 26 11 7 0 89.8910�5 1576 111 40 56 12 24 0 248.7710�6 1486 163 40 68 19 39 4 623.33BDD 1705 60 18 13 11 12 0 304.22200 and 300 and so on.The table 1 shows that the sequenes of the benhmark ontain a signi�ant proportionof repliated variables. Moreover, the more sequenes ontain basi events, the less theproportion of singular variables is.6.2 Running TimesThe table 2 gives the number of sequenes assessed whithin less than 1s, within more than1s and less 5s, and so on for di�erent values of the threshold on the ontribution. Theontribution is (over-)estimated as desribed setion 4.3. The running times were measuredon a Pentium III adened at 733Mgz and running linux.The table 2 shows that most of the sequenes are assessed whithin less than 30s, even forvery low values of the threshold. For omparison purposes, the running times to omputeBDDs are given. The advantage seems to go to BDDs. However, it should be said that ahighly sophistiated preproessing and many ad-ho triks were used to be able to ompute11

Table 3: MOCUS errors.MOCUS optimisti MOCUS pessimistierror : mean maximum error : mean maximumontribution #seq: relative absolute relative #seq: relative absolute relative10�1 115 0:64 1:29 10�9 1 13 21:5 2:21 10�9 24210�2 73 0:32 2:79 10�10 0:61 55 11:5 7:32 10�9 53910�3 29 0:16 2:44 10�11 0:30 99 8:40 9:05 10�9 66410�4 22 0:07 6:54 10�12 0:12 106 8:98 1:19 10�8 74110�5 15 0:02 9:24 10�13 0:08 113 8:77 1:28 10�8 76210�6 4 0:02 6:89 10�16 0:06 124 8:12 1:31 10�8 769these BDDs (these tehniques will be presented in a forthoming artile). Moreover, thegiven running times for BDD do not inlude the omputation of minimal utsets. For thelargest sequenes, we are unable at the moment to ompute these minimal utsets. In aword, our implementation of MOCUS is a bit less eÆient than our BDD implementation,but it is more robust.6.3 Aurray of the ResultsIt is of interest to ompare the unreliabilities estimated by MOCUS with the exat resultsprovided by BDDs. The table 3 gives the mean relative error as well as the maximumabsolute and relative errors done by MOCUS for the 128 hardest sequenes (i.e. thesequenes for whih MOCUS with the ontribution threshold set at 10�6 takes more than10s). The following onlusions an be drawn from these results.� MOCUS is rarely optimisti. The smaller the threshold on ontribution is, the lessoptimisti is MOCUS. Moreover MOCUS, is only slightly optimisti.� MOCUS is often pessimisti, and sometimes very pessimisti (up to a fator 1000).However, this an be orreted by onsidering more terms in the Sylvester-Poinar�edevelopment.6.4 Inuene of Fanin OrderingExept in [16℄, the order in whih top-down algorithms onsider the produts and thevariables inside the produts is not disussed in literature. It has however a great inuene.To show this inuene, we onsider 30 rewritings of the hardest sequene of our benhmark.Eah rewriting onsists in permuting at random the arguments of gates. For eah rewriting,we all MOCUS with the with and without the preproessing disussed setion 5.2. Theontribution threshold is �xed at 10�4. 12

10

100

1000

10000

0 5 10 15 20 25 30

"with"
"without"

Figure 3: Running times with and without rearrangement of gate arguments.The �gure 3 shows the running times (to make the �gure illustrative we joined thepoints with lines and we draw running times on a logarithmi sale). These two urvesillustrate the interest of the heuristi we propose and show that it is robust and eÆient.Referenes[1℄ J. Fussel and W. Vesely, \A New Methodology for Obtaining Cut Sets for FaultTrees," Trans. Am. Nul. So., vol. 15, pp. 262{263, June 1972.[2℄ U. Berg, RISK SPECTRUM, Theory Manual. RELCON Teknik AB, April 1994.[3℄ K. Russel and D. Rasmuson, \Fault tree redution and quanti�ation { and overview ofIRRAS algorithms," Reliability Engineering and System Safety, vol. 40, pp. 149{164,1993.[4℄ O. Coudert and J.-C. Madre, \Fault Tree Analysis: 1020 Prime Impliants andBeyond," in Proeedings of the Annual Reliability and Maintainability Symposium,ARMS'93, January 1993. Atlanta NC, USA.[5℄ A. Rauzy, \New Algorithms for Fault Trees Analysis," Reliability Engineering & Sys-tem Safety, vol. 05, no. 59, pp. 203{211, 1993.[6℄ R. Bryant, \Graph Based Algorithms for Boolean Fontion Manipulation," IEEETransations on Computers, vol. 35, pp. 677{691, August 1986.
13

[7℄ K. Brae, R. Rudell, and R. Bryant, \EÆient Implementation of a BDD Pakage," inProeedings of the 27th ACM/IEEE Design Automation Conferene, pp. 40{45, IEEE0738, 1990.[8℄ A. Rauzy, \Mathematial Foundation of Minimal Cutsets," IEEE Transations onReliability, 2000. to appear.[9℄ J. Fussel, \How to hand-alulate system reliability harateristis," IEEE Transa-tions on Reliability, vol. R-24, no. 3, 1975.[10℄ S. Minato, \Zero-Suppressed BDDs for Set Manipulation in Combinatorial Problems,"in Proeedings of the 30th ACM/IEEE Design Automation Conferene, DAC'93,pp. 272{277, 1993.[11℄ I. Kovalenko, N. Kuznetsov, and P. Pegg, Mathematial Theory of Reliability of TimeDependent Systems with Pratial Appliations. Wiley Series in Probability and Statis-tis, John Wiley & Sons, 1997. ISBN 0-471-95060-2.[12℄ W. Hennings and N. Kuznetsov, \FAMOCUTN and CUTQ | Computer odes forfast analytial evaluation of large fault trees with repliated and negated gates," IEEETransation on Reliability, vol. 44, pp. 368{376, 1995.[13℄ Z. Birnbaum and J. Esary, \Modules of oherent binary systems," SIAM J. of AppliedMathematis, vol. 13, pp. 442{462, 1965.[14℄ Y. Dutuit and A. Rauzy, \A Linear Time Algorithm to Find Modules of Fault Trees,"IEEE Transations on Reliability, vol. 45, no. 3, pp. 422{425, 1996.[15℄ I. Niemel�a, \On simpli�ation of large fault trees," Reliability Engineering and SystemSafety, vol. 44, pp. 135{138, 1994.[16℄ L. Camarinopoulos and J. Yllera, \An Improved Top-down Algorithm Combined withModularization as Highly EÆient Method for Fault Tree Analysis," Reliability En-gineering and System Safety, vol. 11, pp. 93{108, 1985.[17℄ I. Papazoglou, \Mathematial foundations of event trees," Reliability Engineering andSystem Safety, vol. 61, pp. 169{183, 1998.Antoine Rauzy is with the Frenh National Center for Sienti� Researh (CNRS)and the \Institut de Math�ematique de Luminy". His topis of interest are formal methodsand reliability engineering. His bakground is in omputer siene (PhD, Habilitation �aDiriger des Reherhes).
14

