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Abstract: In this article, we report results of an experimental study on six iterative methods to 
compute the transient probabilities of large Markov models: full matrix exponentiation, 
forward Euler method, explicit Runge-Kutta methods of order 2 and 4 and Adams-Bashforth 
multi-steps methods of order 2 and 4. We suggest a simple but efficient implementation of 
these algorithms. We discuss how to tune their few parameters. We present experimental 
results that contradict the literature. 
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1. Introduction 
Large Markov models naturally arise from reliability and dependability studies. By large, we 
mean models with several tens thousands of states and several hundreds thousands of 
transitions. For such models, an encoding of matrices by n×n arrays would exceed memory 
capacities of computers at hand. Fortunately, matrices issued of reliability models are in 
general sparse (they contain a lot of null entries). Therefore, it is possible to use much more 
economical encodings than n×n arrays. 

Classical approaches to solve Markov models use operations on matrices, such as inversion or 
Gaussian elimination. These operations have in general non-sparse results, even when their 
arguments are sparse [Ste94]. Methods have been proposed in the literature that keep matrices 
sparse by performing only products of matrices by column vectors [Ste94,RT88]. These 
methods are called iterative for they compute the results by successive approximations. 

In this article, we present results of an experimental study on six iterative methods to compute 
transient probabilities of large Markov models: full matrix exponentiation, forward Euler 
method, explicit Runge-Kutta methods of order 2 and 4 and Adams-Bashforth multi-steps 
methods of order 2 and 4. 

Its contribution is as follows. First, we propose a very simple implementation for these 
methods. Second, we study how to tune their (few) parameters in order to achieve a good 
efficiency and a good accuracy.  Third, we show that, conversely to what is commonly 
claimed in most of the textbooks, the forward Euler method is probably the best candidate for 
the assessment of large Markov models coming from reliability and dependability studies. 

The remainder of this article is organized as follows. Section 2 introduces the problem. 
Section 3 describes algorithms under study and discusses their implementation. Section 4 
shows how to assess various quantities (beyond transient probabilities) with minor 
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modifications of these algorithms. Section 5 reports experimental results on artificial 
(however significant) examples. Finally, section 6 presents results on more realistic examples.  

2. Position of the Problem 
We assume that the reader is familiar with Markov terminology (for a good introduction, see 
for instance reference [Ste94]). 

Consider a homogeneous, continuous time Markov chain with n states. Let Q be the n×n 
matrix whose elements qi,j denote the rate of transition of the chain from state i to state j. Let 
π(t) be the vector of length n of probabilities to be in state i at time t. π(0) thus denotes the 
vector of initial probabilities. It can be shown [Ste94] that, 

)0(.)( . ππ Qtet =       (1) 

where et.Q is defined as follows. 
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In the case of Markov chains, this series converges, at least theoretically. The problem is 
twofold. First, in order to assess π(t) efficiently one should perform only products of matrices 
by vectors. Second, because of rounding errors, coefficients of matrices should be kept small 
(preferably between 0 and 1). To tackle this problem, two ideas can be applied [Ste94]. 

First, the following equality holds. 
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Therefore, the k-th term of the series (2) can be obtained from the (k-1)-th term. 

Second, the following equality holds. 

( )ππ ××=× − QdttQdtQt eee ).(..      (4) 

 Therefore, the computation of et.Q.π(0) can be replaced successive computations of 
π(ti)=edti.Q.π(ti-1) such that t0=0, ti=ti-1+dti, dt1+dt2+…=t and the dti’s are small. 

Combining these two ideas lead to several algorithms. These algorithms differ on the way 
they assess edt.Q.π. The choice of dt is also an important issue that we shall discuss in details 
in the next section. 

3. Six Algorithms 
3.1. The basic algorithmic scheme 

Equalities (1) to (4) can be used to define the following algorithmic scheme. 
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Where T denotes the mission time and Q stands for the infinitesimal general of the problem, 
i.e. the n×n matrix whose elements qi,j (i≠j) denote the rate of transition of the chain from state 
i to state j, and whose elements qi,i are defined as qi,i=1 -�j≠i qi,j. 

To make the scheme (5) a concrete algorithm, it remains to answer the following questions. 

• How to select π(0)? In general, π(0) is given with the matrix Q. So, we won’t discuss 
this point here. 

• How to select dt? We shall discuss this major issue in this section. 

• How to assess edt.Q.π? The different ways to assess this quantity define the different 
algorithms under study in this article. 

If T is large enough, the stationary probabilities may be reached before the loop is completed. 
It is therefore a good idea to introduce a convergence test. This test aims to exit the loop as 
soon as two consecutive values of π can be considered as sufficiently close one another. In 
our implementation, this is achieved as follows. We select a threshold ε. The loop is exited if 
the following inequality holds (assuming πi(t+dt)≠0). 
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where πi denotes the i-th value in the vector π. Other norms can be defined to test the 
convergence [QSS00]. This one works fine. However, one of the surprise of the present study 
was that ε has to be chosen quite low (say 10-9) in order not to stop too early. 
�

3.2. Six Algorithms 

Full matrix exponentiation: The first algorithm based on scheme (5) we can consider consists 
in computing successively the terms of the series (2) until the convergence criterion (6) is 
satisfied. This algorithm, so-called (full) matrix exponentiation, is denoted by EXP in sequel. 
It is often considered as too costly [Ste94]. This is the reason why approximations of edt.Q.π 
have been suggested. 

Forward Euler Method: The first approximation consists in remarking that, since dt has 
anyway to be small, the whole series can be approximated by its first two terms. 

πππ .... Qdte Qdt +≈      (7) 

This method, so called forward Euler method in the literature, has a bad reputation. Most of 
the many textbooks we consulted claim that it is dubious because dt must be chosen very 
small to achieve a good accuracy. None of the experiments we performed confirms this claim. 
We denote this method by FEM in the sequel. 

Explicit Runge-Kutta methods: Runge-Kutta methods are probably the most popular methods 
to solve ordinary differential equations [PTVF95,SAP97]. For the purpose of the present 
study, we consider the Runge-Kutta methods of order 2 and 4, denoted in the sequel by RK2 
and RK4. RK2 is as follows (the reader may refer to references [Ste94],  [PTVF95] and 
[SAP97] for a mathematical justification of RK2 and RK4). 
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RK4 is as follows. 
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Explicit Adams-Bashforth multi-steps methods: The underlying idea of multi-steps methods is 
orthogonal to the one of Runge-Kutta methods. The value of π(t+dt) is computed from the 
values of π(t), π(t-dt), π(t-2.dt) …π(t-k.dt). 

The Adams-Bashforth method of order 2 (AB2) is as follows. 
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where ρ(s) denotes dt.Q.π(s). 

The Adams-Bashforth method of order 4 (AB4) is as follows. 
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See references [Ste94],  [QSS00] and [SAP97] for mathematical justifications. 

3.3. Discussion 

The methods presented above are said explicit for the value of π(t+dt) is computed from the 
value of π(t). In implicit methods, the value of π(t+dt) is defined by a relation between 
edt.Q.π(t) and π(t). A system of equations has to be solved to get it. An iteration of an implicit 
method is therefore much more costly than one of an explicit method. Experiments we 
performed for this study showed that it is very dubious that, in practice, implicit methods can 
be more efficient than explicit ones. 

The order of an explicit method characterizes the error it makes. A method is of order k if the 
error is in Ο(dtk). It can be shown [Ste94,SAP97] that the forward Euler method is of order 1, 
while Runge-Kutta methods presented above are respectively of order 2 and 4 (hence their 
names). It is often claimed that the estimation of the error is a major issue of the computation 
of transient solutions. However, according to reference [Ste94], methods proposed in the 
literature can estimate only the local error, i.e. the error made by one step of the algorithm. 
Just summing up the local errors is certainly a very rough approximation of the global error. 
No satisfactory method has been proposed to estimate the global error. 

3.4. Implementation Issues 

In order to implement the algorithms presented above, we need basically one operation: the 
product Q.π of a sparse matrix Q by a column vector π. Therefore, the main issue is the 
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choice of data structures to encode matrices and vectors. We suggest to encode vectors as 
arrays and matrices as lists (or arrays) of cells. Each cell represents a non-zero entry of the 
matrix. It contains three data: the row and column indices of the cell and its value. The 
diagonal elements of the matrix are not explicitly represented. 

The following procedure computes Q.π and adds the result to the vector σ. 

rowcellcolumncellcolumncell

rowcellrowcellrowcell

valuecell

valuecell

Qcellforall

...

...
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πσσ
πσσ

×+←
×−←
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Note that we didn’t initialize the vector σ. The above procedure computes actually Q.π+σ, 
which can be useful in some cases. Note also that the same idea can be applied to compute 
QT.π, where QT denotes as usual the transpose of Q. 
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∈
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This kind of implementations has been already proposed, at least implicitly, in the literature 
(see e.g. [RT88]). It is worth noticing that the encoding we propose is compatible with other 
techniques that take advantage of the sparsity of the matrix (see e.g. [PG80b]). 

3.5. The choice of dt 

The algorithmic scheme (5) assumes that a new value is selected for dt at each iteration. This 
value depends indeed on Q and possibly on π. If dt depends only on Q, then it remains 
constant through the whole process. dt.Q can be computed once for all, which saves a lot of 
multiplications. If dt depends also on π, then its value must be actually computed at each 
iteration. To be interesting, such a computation must save more time than it costs. We didn’t 
see any heuristics that could justify this overhead. So all the experiments we present in this 
article were realized with constant dt's. 

The choice of an appropriate dt is a major issue of the implementation of iterative methods. 
On the one hand, if dt is chosen too large, either the approximation of edt.Q.π is too rough (for 
FEM, KR2, RK4, AB2 and AB4 methods), or the coefficient of the matrix are too large and 
rounding errors make the computation diverge. Other the other hand, if dt is chosen too small, 
the computation is very expensive. Moreover, as noticed in reference [SAP97], the impact of 
rounding errors may increase as the number of operations increases. 

If all the coefficients of the matrix dt.Q range between 0 and 1, the expectation that rounding 
errors cause problems is minored. Hence, the following rule of thumb can be applied: choose 
dt such the product ρ = dt.maxi(qi,i) is in the range [0,1]. The product ρ provides a mean to 
choose dt in a uniform way: 

iii q
dt

,max
ρ=      (14) 

In the remainder of this article, we keep the same meaning for ρ. Note that equality (14) 
depends only on the matrix Q (therefore dt can be kept constant through the computation). It 
is worth noticing that, strictly speaking, to make the system solvable, the matrix I+qt.Q must 
be stochastic, which in turn means that ρ must be smaller than 1. In practice however, values 
greater than 1 can sometimes be used, even with much care (see section 4). In Reference 
[PG80b], it is suggested to take ρ=1. 
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Once the value of dt (or equivalently of ρ) is selected, the value of π(t) can be assessed using 
any of the six algorithms presented above. However, it is not possible to estimate the error 
with a single run. References [Ste94] and [PTVF95] suggest to perform a second calculation 
with a smaller value for dt, say dt/2. If the two results are not close enough, the process is 
reiterated. It is worth noticing that one of the arguments in favour of the Runge-Kutta 
methods is that they can come with some means to estimate the error [Ste94,QSS00,SAP97]. 
We found this argument of a little help in practice for rounding errors make this estimation 
too rough to be actually useful. 

4. Assessment of Sojourn Times and other Quantities of Interest 
The mean sojourn time σi(T) in each state i during the mission time T is defined as follows. 

dttT
T
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This integral can be assessed numerically while computing the transient probabilities as 
follows (using a trapezoid rule for the numerical integration). 
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The additional cost of this integration is very low (for it requires only a traversal of the vector 
at each iteration of the loop (5)). 

Mean sojourn times can then used to compute many quantities of interest such as the mean 
production of an installation through a time period. These quantities are in general defined as 
the mathematical expectation of a given random variable X the value of which is defined in 
each state. To get the result, it suffices to sum over the states i the product σi(T).X(i). 

5. Experimental Results 
This section is devoted to experimental results. These results were obtained on a laptop 
computer with 1 gigabyte memory and running windows 2000. Test cases used in this section 
are artificial ones, although they are designed to be close to realistic models. They are 
scalable, which makes them suitable to test hypotheses. Markov graphs under study in this 
article have been obtained by compiling high level descriptions written in the AltaRica 
language [Rau02]. 

5.1. Convergence date 

A first problem is to determine the date of convergence, i.e. the date at which stationary 
probabilities are reached. This question is of importance in order to test the efficiency of 
algorithms (because of the convergence test). It is meaningful only if the availability of 
systems of repairable components is to be assessed. Otherwise, the graph shows sink states 
and the convergence date is virtually infinite. 

A priori, the convergence date doesn’t depend on the chosen method. In practice, this is only 
true if we consider its order and not its exact value. The convergence date depends on the 
tolerance criterion ε of equation (6). Experimentally, we found that 10-9 is a good trade-off for 
ε. A greater value leads to too early convergences and therefore to rough results. A lower 
value increases uselessly running times. 

Test case 1: In order to study this first problem, we considered the availability of systems 
made of n independent components C1… Cn, with failure rates λi and repair rates µi. Systems 
with dependent components don’t show different behaviors with that respect. 
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The interesting experimental result is that the convergence date depends mainly on the lowest 
µi, i.e. the greatest MTTR. The smallest the µi, the highest the convergence date. 

Consider a system made of n=10 identical components. Let µ be fixed and let λ/µ varies. 
Table 5.1.1 gives convergence dates (the graph has 2n=1024 states and n.2n=10240 
transitions). 

These results show that the value of λ doesn’t care (at least if we assume that λ has a realistic 
value w.r.t. µ) and that the convergence date is never greater than 20 times the greater MTTR. 

Table 5.1.2 gives convergence dates for four series of systems with n=l+h components. l-
components are those with the smallest µ. In the first column, systems are made of n identical 
components. In other columns, l=1 and h=n-1. In the second column, µh = 2.µl. In the third 
and fourth ones µh = 25.µl. 

These results illustrate our claim that only the smallest µ cares for the convergence date. The 
first three columns show very similar values while the number and the repair rates of their 
components (but the first one) differ dramatically. The fourth column shows values ten times 
greater than the others, because the smallest µ is ten times lower. 
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 λ/µ 

µ 10-1 10-2 10-3 10-4 

10-1 179 195 197 197 

10-2 1790 1950 1970 1970 

10-3 17900 19500 19700 19700 

Table  5.1.1. Test case 1: convergence dates for system made of n identical components. 

 

 

n 

l=n, h=0 

µl=2 10-2 λl=3 10-5 

l=1, h=n-l 

µl=2 10-2 λl=3 10-5 

µh=4 10-2 λh=6 10-5 

l=1, h=n-l 

µl=2 10-2 λl=3 10-5 

µh=5 10-1 λh=7.5 10-3 

l=1, h=n-l 

µl=3 10-2 λl=3 10-6 

µh=5 10-4 λh=7.5 10-6 

2 750 816.667 855.769 8557.69 

3 866.667 875 888.889 8888.89 

4 900 910 907.143 9071.43 

5 930 933.333 920.69 9206.9 

6 950 950 930 9300 

7 964.286 956.25 938.71 9387.1 

8 968.75 966.667 943.75 9437.5 

9 977.778 975 950 9500 

10 985 981.818 954.412 9544.12 

11 990.909 983.333 958.571 9585.71 

12 991.667 988.462 962.5 9625 

13 996.154 992.857 966.216 9662.16 

14 1000 993.333 968.421 9684.21 

15 1000 996.875 971.795 9717.95 

Table  5.1.2. Test case 1: convergence dates for system made of n=l+h components. 
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5.2. Which value for dt ? 

The choice of dt has been discussed section 3.5. Equation (14) provides a uniform way to 
select dt, through the ratio ρ. The “good” value for dt (or equivalently for ρ) depends on the 
method, the mission time and the structure of the problem. In practice, the choice of a value 
for dt must be made a priori. As suggested in reference [Ste94], the idea could be to start with 
a reasonable value ρ0 for ρ, to perform the computation, and then to perform it again for ρ0/2, 
ρ0/4, … until results stabilize. The problem is therefore to select a good starting value ρ0. 

As a first experiment, consider again a system made of 10 independent repairable 
components. Assume, as previously, we are interested in the availability of the system, i.e. in 
the probability of each of the 1024 states. The table 5.2.1 gives the probability that all 
components are failed at t=8760, with λi=10-4 and µi=10-2

 for i=1…10, for the six methods 
and different values of ρ (empty cells indicate values outside [0,1]). 

We obtained the same picture with different number of component, different values of t and 
different values of the λi’s and the µi’s, including mixing very different values (λi=10-8, 
µi=10-1, i=1…10) . 

This latter experiment is of great interest. A Markov model is stiff [RT88] if, in one or more 
states, out transitions rates are of widely varying magnitudes. This typically arises in 
reliability and dependability studies when repair rates are ≈106 times failure rates. It is 
commonly admitted that stiff models are those where accuracy and stability problems are the 
most important.�
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ρ FEM RK2 RK4 AB2 AB4 EXP 

1/8 9.05287 10-21 9.05287 10-21 9.05287 10-21 9.05287 10-21 9.05287 10-21 9.05287 10-21 

1/4 9.05287 10-21 9.05287 10-21 9.05287 10-21 9.05287 10-21 9.05287 10-21 9.05287 10-21 

1/2 9.05287 10-21 9.05287 10-21 9.05287 10-21 9.05287 10-21  9.05287 10-21 

1 9.05287 10-21 9.05287 10-21 9.05287 10-21 9.05287 10-21  9.05287 10-21 

2  5.29341 10-17 5.76799 10-17 9.05287 10-21   9.05287 10-21 

4      9.05287 10-21 

8      9.05287 10-21 

16      9.05287 10-21 

32      9.05287 10-21 

64       

Table 5.2.1. Test case 1 with n=10: probability that all components are failed at t=8760. 
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The following observations can be made from the above experiment. 

• Multi-step methods AB2 and AB4 perform rather weak. They more costly and more 
instable than FEM. They must be avoided. 

• FEM is as stable as RK2 and RK4, even on stiff models. 

• ρ=1 is “the” good value to start with for FEM, RK2 and RK4 (i.e. that largest value of 
dt that ensures that no element in the probability matrix is outside [0,1]). Larger values 
lead to instability and we didn’t observed realistic problems form which ρ=1 leads to 
instability. 

• EXP has a great auto-corrective capacity, thanks to its inner loop. 

• All methods show a very sharp phenomenon: up to a certain value of ρ, results are 
precise. Then, for a value only a bit larger, the instability takes place and results go 
outside of [0,1]. For stiff problems, the phenomenon is even sharper. 

Test case 2: In order to confirm the above observations, we considered the family of the 
networks pictured figure 5.2.2. The source I and the target O are assumed to be perfectly 
reliable. I supplies an output flow. Components Ui’s are repairable units with a failure rate λUi 
and a repair rate µUi. They supply an output flow if they are working and they are supplied 
with an input flow. Components Si’s are spare units. They are started when the corresponding 
Di is unable to supply an output flow. They are stopped as soon as Di is able again to supply 
it. Components Si’s are characterized by their probability γSi to fail on demand, their failure 
rate λSi and their repair rate µSi. Therefore, the state of Si depends on the states of U1, S1, …, 
Ui-1, Si-1. Finally, at most r components can be repaired simultaneously, which makes all 
components pairwisely dependent. The structure of this test case is thus very different from 
the structure of the previous one. 
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Figure 5.2.2. A network of regular and spare units. 

 

ρ FEM RK2 RK4 AB2 AB4 EXP 

1/8 1.02948 10-7 1.02948 10-7 1.02948 10-7 1.02948 10-7 1.02948 10-7 1.02948 10-7 

1/4 1.02948 10-7 1.02948 10-7 1.02948 10-7 1.02948 10-7 1.02948 10-7 1.02948 10-7 

1/2 1.02948 10-7 1.02948 10-7 1.02948 10-7 1.02948 10-7  1.02948 10-7 

1 1.02948 10-7 1.02948 10-7 1.02948 10-7 1.02948 10-7  1.02948 10-7 

2 1.02948 10-7 1.02948 10-7 1.02948 10-7   1.02948 10-7 

4      1.02948 10-7 

8      1.02948 10-7 

16      1.02948 10-7 

32      1.02948 10-7 

64       

Table 5.2.3. Test case 2 with n=5: probability that all components are failed at t=8760. 

 

ρ FEM RK2 RK4 AB2 AB4 EXP 

1/16 9.82868 10-5 9.82868 10-5 9.82868 10-5 9.83113 10-5 9.83113 10-5 9.82865 10-5 

1/8 9.82903 10-5 9.82903 10-5 9.82903 10-5 9.83393 10-5 9.83393 10-5 9.829 10-5 

1/4 9.82973 10-5 9.82973 10-5 9.82973 10-5 9.83952 10-5 9.83952 10-5 9.8297 10-5 

1/2 9.83113 10-5 9.83113 10-5 9.83113 10-5 9.85072 10-5   9.8311 10-5 

1 9.83393 10-5 9.83393 10-5 9.83393 10-5 9.87311 10-5   9.8311 10-5 

2 9.83952 10-5 9.83952 10-5 9.83952 10-5    9.8311 10-5 

4       9.8311 10-5 

8      9.8535 10-5 

16      9.8535 10-5 

32      9.8535 10-5 

64       

Table 5.2.4. Test case 2 with n=5: reliability of the system at t=8760. 
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Table 5.2.3 gives the probability that all components are failed, computed with the different 
methods, different values of ρ and for n=5, r=2, t=8760,  λUi = 10-7, µUi = 10-1, γSi = 0.1, λSi 
= 10-4 and µsi = 10-2, for all i=1…5. The corresponding graph has 1507 states and 8992 
transitions. Table 5.2.4 gives the reliability of the system. 

Tables 5.2.3 and 5.2.4 show the same picture as table 5.2.1, although the problems and the 
numerical values are very different! We observed the same phenomenon for different values 
of the transition rates, different values of the mission time… 

These results show that, at least on examples close to those one encounters in reliability and 
dependability studies, all of the methods are accurate if dt is selected correctly. This 
observation contradicts many textbooks that consider FEM as too unstable to be used. The 
ratio r gives a convenient mean to select dt. 

5.3. Which method to choose? 

How do methods compare in term of efficiency? A first answer to this question is provided by 
tables 5.3.1, 5.3.2 and 5.3.3 that give the running times in seconds of the different methods for 
different values of ρ. Two observations can be made about these running times. 

• FEM performs always better than the other methods. For the same dt, it is twice as fast 
as RK2 and four times faster than RK4. This fact means that a fair comparison of 
accuracies of FEM and RK2 (resp. RK4) should be made with a dt two times larger 
(resp. four times larger). Anyway, we observed a better accuracy of Runge-Kutta 
methods than in FEM in none of the test cases with dealt with. 

• Running times for EXP decrease as dt increases up to a point were they start to 
increase again. In other words, the inner loop of EXP is able to correct a too large 
value of dt, but this is costly. Moreover, FEM with ρ=1 is always faster than EXP 
with any ρ. For the same accuracy, FEM is always faster than EXP (and more 
generally than any other method). 

5.4. Where are the limits? 

The previous experiments show that FEM, RK2, RK4 and EXP methods are efficient and 
accurate. An important question is how far we can go with these methods on nowadays 
computers. This question is twofold: we have to consider both space and time consumption. 
In our implementation, that uses double precision arithmetic, each non-zero entry of the 
matrix requires 28 bytes (the same structure is used to encode both the infinitesimal generator 
and the probability matrix) and each entry of a vector requires 8 bytes. The numbers of 
vectors required to run the different methods are as follows. 

FEM EXP RK2 RK4 AB2 AB4 

2 5 4 4 4 6 

 

Let N be the number of states and M = r.N be the number of non-zero entries of the matrix. 
The number of bytes required is thus (28r+16).N for FEM, (28r + 40).N for EXP, ... To make 
things concrete, assume that N = 105. If r = 5, i.e. M = 5.105, the execution of EXP requires 
about 16 megabytes. If r=10, it requires 32 megabytes, and so on. On a computer with 1 
gigabyte memory, it should be theoretically possible to deal with Markov graphs with up to 
106 states and 107 transitions. In practice, actual limits are slightly below these values.  

As an illustration, consider again the test case 1. The largest number of components we were 
able to handle is 18. The corresponding graph has 262,144 states and 4,718,592 transitions. 
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The table 5.4.1 gives the probability that all components are failed computed at t=8760 with 
the different methods for different values of ρ. Running times in seconds are given as well. 

The largest number of blocs we were able to deal with for test case 2 is 7 for both assessment 
of the availability and the assessment of the reliability. The corresponding graphs have 
respectively 264,711 states and 2,525,164 transitions and 203,997 states and 1,187,857 
transitions. Tables 5.4.2 and 5.4.3 give the results for this test case. 

These results show that very large graphs can be handled within few minutes on a nowadays 
laptop computer.  

As a concluding remark, we observe that the generation of Markov graphs from high level 
description is often more space consuming than their assessment. The limits we gave above 
are actually those of our compiler (from AltaRica descriptions to Markov graphs), not those of 
our assessment tool. 

6. More realistic examples 
6.1. A Power Supply Unit 

Test case 3: this test case comes from reference [PG80a] and a personal communication by M. 
Bouissou [Bou03]. Fig. 6.1.1 pictures an electric power supply. The regular power supply of 
boards LHA and LHB comes the transformer TS. TS itself is supplied by the plant PLT. PLT 
works in two modes, either the regular mode when the net NET is available or a standalone 
mode, rather unstable, when the net is lost. When PLT is failed or when the transformer TP is 
down, TS is supplied by the net (through the line GEV). When TS cannot be alimented and 
the net is available, boards are alimented by the transformer TA, through the line LGR. 
Finally, diesel engines DA and DB are used as cold spare units when neither TS nor TA is 
able to supply boards. Boards LGD and LGF may fail.  
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ρ FEM RK2 RK4 AB2 AB4 EXP 

1/16 0.42 0.861 1.702 0.46 0.51 1.692 

1/8 0.22 0.44 0.881 0.23 0.25 0.951 

1/4 0.12 0.23 0.44 0.12 0.13 0.52 

1/2 0.06 0.12 0.24 0.06  0.3 

1 0.03 0.06 0.13 0.03  0.19 

2   0.06   0.11 

4      0.09 

8      0.1 

16      0.11 

32      0.13 

Table 5.3.1. Test case 1 with n=10 (availability): running times in seconds. 

 

 

 

ρ FEM RK2 RK4 AB2 AB4 EXP 

1/16 0.781 1.572 3.004 0.841 0.941 3.094 

1/8 0.37 0.781 1.562 0.43 0.49 1.732 

1/4 0.19 0.41 0.791 0.21 0.25 0.971 

1/2 0.1 0.21 0.42 0.12  0.54 

1 0.05 0.11 0.21 0.25  0.31 

2   0.12   0.19 

4      0.16 

8      0.18 

16      0.2 

32      0.23 

Table 5.3.2. Test case 2 with n=5 (availability): running times in seconds. 
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ρ FEM RK2 RK4 AB2 AB4 EXP 

1/16 1.722 3.495 6.589 1.932 2.313 6.168 

1/8 0.841 1.702 3.304 0.971 1.151 3.164 

1/4 0.43 0.851 1.642 0.48 0.58 1.672 

1/2 0.21 0.42 0.811 0.25  0.841 

1 0.11 0.21 0.41 0.12  0.44 

2 0.06 0.11 0.21   0.24 

4      0.3 

8      0.34 

16      0.36 

32      0.39 

Table 5.3.3. Test case 2 with n=5 (reliability): running times in seconds. 

 

 

 

 FEM EXP 

ρ probability running time probability Running time 

1/2 8.36017 10-37 165 8.36017 10-37 752 

1 8.36017 10-37 84 8.36017 10-37 442 

2   8.36017 10-37 267 

4   8.36017 10-37 217 

8   8.36017 10-37 258 

16   8.36017 10-37 297 

Table 5.4.1. Results for test case 1 (availability) with n=18. 
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 FEM EXP 

ρ probability running time probability running time 

1/2 1.02959 10-7 135 1.02959 10-7 655 

1 1.02959 10-7 68 1.02959 10-7 380 

2   1.02959 10-7 227 

4   1.02959 10-7 211 

8   1.02959 10-7 249 

16   1.02959 10-7 275 

Table 5.4.2. Results for test case 2 (availability) with n=7. 

 

 

 FEM EXP 

ρ probability running time probability running time 

1/8 9.83004 10-5 1037 9.83 10-5 3138 

1/4 9.83074 10-5 510 9.83 10-5 1652 

1/2 9.83214 10-5 257 9.8314 10-5 852 

1 9.83493 10-5 132 9.83419 10-5 461 

2   9.83979 10-5 275 

4   9.83979 10-5 363 

8   9.83979 10-5 411 

16   9.83979 10-5 443 

Table 5.4.3. Results for test case 2 (reliability) with n=7. 
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All components are repairable with a failure rate λ and a repair rate µ. Plant PLT has a 
probability γ to fail on demand to switch in standalone mode. Finally, Diesel DA and DB are 
spare units with a probability γ to fail on demand and a repair rate µd that corresponds to this 
failure. Moreover, DA and DB have a common cause failure with a rate λcc and a repair rate 
µcc. These rates and probabilities are given Table 6.1.2. 

The problem is to assess the availability and the reliability of the system for a given mission 
time. 

The Markov graphs for the availability has 30,720 states and 459,560 transitions. The graph 
for reliability has 25,337 states and 152,679 transitions.  

Table 6.1.3 gives results obtained on test case 3 with the different methods and different 
values of the ratio ρ. 

We can make the following remarks from these experiments. 

• This rather large realistic test case is solved within few minutes with a good accuracy 
by the methods under study in this article. 

• We can observe the same behaviour of the methods for this realistic test case than for 
artificial examples of the previous section. 
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Figure 6.1.1. Test case 3. An electric power supply. 

 

 

 λ µ γ µd λcc µcc 

NET 1.0 10-6 8.0 10-3     

GEV, LGR 5.0 10-6 1.0 10-2     

TP, TS, TA 2.0 10-6 1.0 10-3     

LGD, LGF, LHA, LHB 2.0 10-7 1.0 10-1     

PLT (regular mode) 1.0 10-4 1.0 10-1     

PLT (standalone) 1.0 10-1 1.0 10-3 0.5    

DA, DB 1.0 10-4 2.0 10-2 0.001 1.0 10-1 1.0 10-4 1.0 10-2 

Table 6.1.2. Test case 3: reliability parameters. 
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  (un)availability (un)reliabilility 

method ρ value running time value running time 

FEM 1/8 3.25201 10-7 849 5.1138 10-5 231 

FEM 1/4 3.25201 10-7 428 5.11394 10-5 116 

FEM 1/2 3.25201 10-7 215 5.11422 10-5 58.044 

FEM 1 3.25201 10-7 107 5.11478 10-5 29.362 

FEM 2 3.25201 10-7 53.467 5.1159 10-5 14.371 

RK2 1/8 3.25201 10-7 1800 5.1138 10-5 530 

RK2 1/4 3.25201 10-7 897 5.11394 10-5 266 

RK2 1/2 3.25201 10-7 451 5.11422 10-5 134 

RK2 1 3.25201 10-7 228 5.11478 10-5 68 

RK2 2 3.25201 10-7 117 5.1159 10-5 34.77 

RK4 1/8 3.25201 10-7 3642 5.1138 10-5 1053 

RK4 1/4 3.25201 10-7 1809 5.11394 10-5 522 

RK4 1/2 3.25201 10-7 897 5.11422 10-5 257 

RK4 1 3.25201 10-7 443 5.11478 10-5 128 

RK4 2 3.25201 10-7 222 5.1159 10-5 65 

EXP 1/8 3.25201 10-7 2534 5.11369 10-5 857 

EXP 1/4 3.25201 10-7 1383 5.11383 10-5 468 

EXP 1/2 3.25201 10-7 750 5.11383 10-5 252 

EXP 1 3.25201 10-7 395 5.11439 10-5 129 

EXP 2 3.25201 10-7 205 5.11551 10-5 68 

EXP 4 3.25201 10-7 213 5.11775 10-5 68 

EXP 8 3.25201 10-7 261 5.11775 10-5 81 

EXP 16 3.25201 10-7 286 5.11775 10-5 89 

EXP 32 3.25201 10-7 300 5.13567 10-5 93 

Table 6.1.3. Test case 3: results and running times in seconds. 
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6.2. A Part of an Oil Production System 

Test case 4: The system pictured Fig. 6.2.1 represents a part of an oil extraction installation. 
This test case has been designed to concentrate most of the modelling difficulties of the 
assessment of production availability (see reference [KR02] for a presentation of these 
topics).  

• W1 and W2 are wells. Their production capacities are respectively 160 and 70 (10k 
barrels/day). When they are failed, the production is stopped. 

• T1 and T2 are tanks. They are assumed to be perfectly reliable. Their storage 
capacities are respectively 110 and 100 (barrels/day). 

• A, B are two treatment units. They have two failure modes: a failure that decreases 
their capacities from 170 to 100 (resp. 120 to 70), and a severe failure that stops the 
treatment. A severe failure may occur either when the unit is working correctly or 
when it is in a degraded mode. 

• Components Ci's, Di's and Ei's are treatment units. Their capacities are respectively 
120, 80 and 50.  For all of these units, a failure stops the treatment. Components of 
bloc E are in hot redundancy. 

• The line D is in cold redundancy with the line C. As soon as the line C is repaired, the 
line D is stopped. If C1 fails, then C2 is stopped and vice-versa. 

• R is a pool of two repairers (i.e. that at most two components can be repaired 
simultaneously). A component is not able to treat the production during a repair. 

• The production entering in component A must be split into two: a fraction goes to the 
tank T1 through the top line, the remainder goes to the tank T2 through the bottom 
line. This requires defining a splitting policy. We adopt the following one. The 
production of W1 goes preferably to the top line. The production of W2 goes 
preferably to the bottom line. If needed, what remains available from W1 goes to the 
bottom line. 

The table 6.2.1. gives failure rates λ (λs for severe failures of components A and B), repair 
rates µ (µs for repairs of severe failures), and probability to fail on demand γ for components 
D1 and D2. 

The problem is to assess the average production of the two wells and the average storage in 
the two tanks, i.e. the mathematical expectation of these quantities through the mission time. 
These quantities can be assessed by means of sojourn times, as explained section 4. 

The Markov graph that encodes this test case has 110,768 states and 861,232 transitions. The 
table 6.2.3 gives results obtained with the different methods for different values of ρ. 

We can make the same remarks for this test case as for the previous one: first, it is handled 
within few minutes although very large. Second, methods show once again the same 
behaviour as on artificial examples of the previous section. 

7. Conclusion 
In this article, we reported results of an experimental study on six iterative methods to 
compute transient probabilities of large Markov models. We suggest a very simple, however 
very efficient, implementation of these methods (that take less than 100 lines of C code). We 
discussed how to tune their parameters. We show, by means of several test cases, that 
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methods under study give consistently accurate results. Markov graphs with up to hundreds of 
thousands states and millions of transitions can be handled within few minutes on a nowadays 
laptop computer. 
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Figure 6.2.1. An Oil Production System. 

 

 

 

 λ µ λs µs γ 

W1, W2 2 10-5 5 10-3    

A, B 9 10-3 2 10-2 3 10-5 4 10-3  

C1, C2 3 10-3 4 10-2    

D1, D2 8 10-3 4 10-2   2 10-2 

E1, E2, E3 4 10-3 5 10-2    

Table 6.2.2. Transition rates for the system depicted Fig. 6.2.1. 
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method ρ 
production of 

well W1 

production of 

well W2 

storage of 

tank T1 

storage of 

tank T2 

Running 

time 

FEM 1/8 83.5621 47.6059 70.0157 61.1523 264 

FEM 1/4 83.5677 47.6095 70.0207 61.1565 139 

FEM 1/2 83.5788 47.6168 70.0308 61.1648 69 

FEM 1 83.601 47.6315 70.0509 61.1816 34.58 

RK2 1/8 83.565 47.607 70.0177 61.1543 568 

RK2 1/4 83.5736 47.6119 70.0249 61.1605 294 

RK2 1/2 83.5909 47.6216 70.0393 61.1732 151 

RK2 1 83.6266 47.6416 70.0689 61.1992 77 

RK4 1/8 83.565 47.607 70.0177 61.1542 1112 

RK4 1/4 83.5734 47.6118 70.0248 61.1604 568 

RK4 1/4 83.5734 47.6118 70.0248 61.1604 574 

RK4 1/2 83.5904 47.6215 70.039 61.1729 297 

RK4 1 83.6248 47.6409 70.0677 61.198 154 

RK4 2 80.6009 46.239 67.7647 59.0752 132 

EXP 1/8 83.565 47.607 70.0177 61.1542 966 

EXP 1/4 83.5734 47.6118 70.0248 61.1604 547 

EXP 1/2 83.5904 47.6215 70.039 61.1729 308 

EXP 1 83.6248 47.6409 70.0677 61.198 175 

EXP 2 83.6946 47.6803 71/89 61.249 115 

EXP 4 83.8392 47.7607 70.2456 61.3543 133 

EXP 8 84.1458 47.9283 70.497 61.577 159 

EXP 16 84.8085 48.2828 71.035 62.0564 174 

Table 6.2.3. Test case 4: results and running times in seconds. 
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The most surprising result of our study is certainly that the very simple Forward Euler 
Method, which is considered as too rough in the literature, gives accurate results and over 
performed the other algorithms (including Runge-Kutta methods). 

The limits in the size of models we are able to deal with stand in their generation, not their 
assessment. Efficient generation of Markov graphs from high level descriptions (including 
truncation, state merging and symmetry breaking techniques) is certainly the focus point for 
future improvements of the Markov technology. 
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