A mlogm algorithm to compute
the most probable configurations of a system

with multi-mode independent components

A. Rauzy*

1 Summary & Conclusions

In this note, we propose a mlogm algorithm to find the £ most probable configurations
of a system of n multi-mode independent components, with at most d modes each. m
denotes the size of the problem, i.e. maz(nd, k). This problem originates in network
performance analyses, in which focusing on the most probable configurations is a mean to
reduce computational costs. Up to this note, the best known algorithm to extract the most
probable configurations was in O(n?d?+klog k). Our algorithm achieves thus a substantial

improvement.

*IML, CNRS, 163, avenue de Luminy 13288 Marseille cedex 9, France, arauzy@iml.univ-mrs.fr

2 Introduction

The problem we study in this note can be stated as follows.

Let ¢y, ..., ¢, be n components. Each component ¢; can be in state s;;, j = 1,...,d;
with a probability p; ; (2?1:1 pi,j = 1). Components are assumed to be mutually indepen-
dent. Given an integer k, find the £ most probable configurations of the system formed by
these n components. Throughout the article, we keep the same meaning for n, ¢;, d;, s;;,
pi; and k. Moreover, we denote by d the maximum over n of the d;’s.

The above problem originates in network performance analyses, in which focusing on
the most probable configurations is a mean to reduce computational costs [Mey92, L.S84].
Several authors proposed various algorithms to select those configurations (e.g. [LL86,
CL86, YK90]). Recently, T. Gomes, J. Craveirinha and L. Martins reduced the problem to
a shortest paths problem [GCMO01]. Applying an algorithm proposed in reference [MPS99],
they achieved a complexity in O(n?d?+ klogk). The factor n?d? comes from the reduction
(the graph construction), while the factor k£ logk comes from the path enumeration.

Our algorithm works also in two steps with a preprocessing phase followed with the
enumeration of the most probable configurations. The latter is similar to the one proposed
by T. Gomes & al (and has the same complexity, namely klogk). The former exploits
better the structure of the problem than their reduction does. It just consists in sorting
components and states inside components. It works in O(ndlogd + nlogn).

The remainder of this note is organized as follows. Data structures to encode config-

urations and the preprocessing phase are described section 3. The enumeration phase is

presented section 4. An illustrative example as well as some experimental results are given

section 5.

3 Preprocessing

We can assume without a loss of generality that, for each 7, p;1 > ... > p;q4,. The most
probable configuration is therefore S; = (s11,...,S,,1). Its probability is P, = I ;p; ;.

Let ¢;; (1 <i<mn,2<j<d;) be defined as follows.

Di,j
Gy = 1
W= (1)

By definition, we have p;; = p;1 x HLQ gix- Moreover, the probability P of any
configuration S = (s1p,,. .., Snh,) can be written in terms of the ¢, ;’s and P; as follows.

P=1", pip, = P xTP 1%, g (2)

Equation 2 gives a mean to represent configurations by successive differences with the
root configuration Si. Let S = (S1py,-.;Sih,---;sSnh,) b€ a configuration of probability
P. The probability of the configuration S" = (S1n,,. .-, Sihit1,-- -5 Snh,), if any, is Q =
P x g p,4+1. By definition, ¢ < P. The idea is therefore to encode the K most probable
configurations as a tree, the root of which is the configuration S;. In other words, each
configuration S’ (but Sy) is encoded by a pair the pair S’ = (S, s;p,+1). This idea was

proposed first in reference [GCMO1].

In what follows, we will denote by S.s; ;41 the configuration S in which the state s; ;11
has been substituted for the state s; ;.

The first phase of the algorithm consists in three steps: first, states of each component
are sorted by decreasing order of their probabilities. Second, the g; ;’s are computed. Third,
components are sorted in decreasing order of the g;o’s.

In what follows, we denote by R[] the ith component in the above order and by R|[i, j]
the (j + 1)th state of the ith component.

Sorting the states of a component in decreasing order of their probabilities is done in
O(dlogd) (using, for instance, the quicksort algorithm [CLR90]). Computing the g¢; ;’s of
a component is done in O(d). Sorting the components is done in O(nlogn). The first step

is thus in O(ndlogd + nlogn).

4 Enumeration of the most probable configurations

The second phase of the algorithm consists of a loop iterating from 1 to £ and producing the
most probable configurations in order. In addition to the tree encoding of the configurations
and their probabilities, and the row R, it uses a list M of the most probable configurations
already computed and a set C' of candidate configurations. C' is sorted in decreasing order
of the probabilities of its members. Each configuration S.s;; stored in C is encoded by
means of a triple (S, r,[), where (r,1) is the unique pair of indices such that R[r,[] = s, ;.

The pseudo-code for the second step is given Fig. 1.

The basic idea of the algorithm is the following. Let S = (s14,,...,5n,n,) be a con-
figuration, let ¢ be the index with the greatest ¢; 5,11, finally let S” = S.g; p,+1. There are
basically two ways to degrade S beyond S’. Either one degrades c; again or one degrades
another component. Let c¢; be the component with the second greatest g;p,+1. The config-
uration that degrades the less S (after S') is necessarily either S.s;s, 41 or S'.s;p,12. For
the same reason, the configuration that degrades the less S’ is necessarily either S’.s;; 41
or S'.s; p,4+2. Therefore, the order computed during the preprocessing ensures that, at any
step of the algorithm, the set C contains the most probable candidate configuration.

The second step of the algorithm consists of k£ — 1 iterations of the loop. Each iteration
consists of one insertion in M, at most 3 insertions in C (lines 6, 7 and 8) and at most 4
removings from C (lines 5 and 9-10). Thanks to the representation of configurations by
difference, building the new configurations is done in constant time. C contains at most
k — 1+ 1 configurations at the sth iteration. Insertions and removings in a sorted set with
m elements can be done in logm, using a binary heap or an AVL-Tree to encode the set
[CLR90]. Therefore, the second step is in O(k.logk).

The complexity of the whole algorithm is thus in O(ndlogd + nlogn + k.logk). It
is reasonnable to assume that in practice d < n — components of real networks have in
general only very few observable modes. The size m of the problem can be defined as nd
(the total number of states). However, this definition has the drawback not to take into
account the size of the result. This is the reason why it seems more suitable to define m
as max(nd, k). With this latter definition, our algorithm is in O(mlogm), hence the title
of our note. There are good reasons to think that this complexity is near optimal, at least

5

if reasonable assumptions are made on d, n and k (i.e. d < n and k < II% ,d;). To store
the problem, one needs at least to store the nd p; ;’s. Therefore the improvement, if any,
should be on the factor logd + logn/d, which for practical applications is always very low.
Similarly, constructing & configurations is at least in O(k). Therefore, the improvement, if
any, should be on the factor log k£, which again should be low as well.

Finally, it is worth noticing that it could be interesting to let k change dynamically
in order to produce sufficiently many configurations to cover the whole state space with a

reasonnably high probability. It is easy to modify our algorithm to achieve this goal.

5 Experimental results

An illustrative example: As an illustration, we consider the example proposed in
reference [GCMO1]. The system is made of 3 components whose parameters are described
in table 1.
S1 = (s1,1,52,1,531) and P, = 0.7 x 0.5 x 0.8 = 0.28. Moreover, ¢23 > ¢2,2, and
Q22 > G12 > Q3. Therefore, R[1,1] = so9, R[1,2] = so3, R[2,1] = 512 and R[3,1] = s39.
The table 2 gives the contents of M and C' at the different steps of the algorithm. The

algorithm is applied with no limit on k.

Experiment results: In order to verify our algorithm, we applied it on several instances
generated as follows. All the components have the same number of states d. The probability

is each state (but the last one) is drawn at random according to a normal law with a

mean 1/d and a standard deviation 1/5d. Experiments were performed on a pentium III,
cadenced at 733MHz and running Linux.

First, we applied the algorithm on instances with n = 1000, k¥ = 10° and d = 3,4, ..., 10.
Running times to parse instances range from 10ms (for d = 1) to 40ms (for d > 7). Running
times for the preprocessing never exceeds 10ms. Running times for the loop are the same
for all values of d, namely arround 350ms. As a comparison, the running times reported in
reference [GCMO01] — that were obtained on a similar machine and system — for d = 3,4
and 5, were respectively of 200ms, 350ms and 500ms for the graph construction and 550ms
for the loop.

Then, we applied the algorithm on instances with d = 10, ¥ = 10 and n = 1000,
2000,..., 10000. Running times are given table 3. These results show that running
times of the loop increase slighly as n increases. This is due to the increasing number of
candidate configurations. Our generation model has been designed to make this number
increase with n.

Finally, we applied the algorithm on instances with d = 5, n = 1000 and k = 0.5 10°,
1.0 10°, ..., 5 10°. Running times are given table 4.

These results show that running times grow almost linearly with £.

All these latter experiments show that our algorithm is very efficient, even on very large
instances. The problem of finding the most probable configurations of a system of n multi-
mode independent components can be considered as solved, at least for what concerns

practical instances.

References

[CLS6]

[CLRY0]

[GCMOL]

[L.186]

[LS84]

[Mey92]

[MPS99]

S.N. Chiou and V.O.K. Li. Reliability analysis of a communication network with
multimode components. TEEE Journal on Selected Areas in Communications,

4(7):1156-1161, 1986.

T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. The

MIT Press, 1990. ISBN 0-262-03141-8.

T. Gomes, J. Craveirinha, and L. Martins. An efficient algorithm for sequential
generation of failure states in a network with multi-mode components. Reliability

Engineering and System Safety, 2001. submitted.

Y.F. Lam and V.O.K Li. An improved algorithm for performance analysis of
networks with unreliable components. IEEE Transactions of Communications,

34(5):496-497, 1986.

V.O.K. Li and J.A. Silvester. Performance analysis of networks with unreliable

components. IEEE Transactions On Communications, 32(10):1105-1110, 1984.

J.F. Meyer. Performability: a retrospective and some pointers to the future.

Peformance Evaluation, 14((3,4)):139-156, 1992.

E. Martins, M. Pascoal, and J. Santos. Deviation algorithms for ranking shortest
paths. International Journal of Foundations of Computer Science, 10(3):247—

263, 1999.

[YK90] C.-L. Yang and P. Kubat. An algorithm for network reliability bounds. ORSA

Journal on Computing, 2(2):336-345, 1990.

Figures

C+{(S,1,1)}, M+ {51}, 1+ 2

while i < k do
Let T'= (S, r,1) be the first configuration of C, i.e. the one such that
S.R]r,[] has the highest probability.
i+ i4+1,C« C\{T}, M «— MU{S.R[r,1]}
ifl=1andr <n thenC «+ CU(S,r+1,1)
if [< length(R[r]) then C « C U (S.R[r,l],r, 1 + 1)
ifr<n then C < C U (S.R[r, (], +1,1)
if C contains more than k£ — ¢ + 1 configurations, then remove the last,
i.e. the less probable, one until C' contains exactly & — ¢ + 1 configurations.
done

i R Rl o

e

Figure 1: The pseudo-code for the second step of the algorithm

10

Tables

i | pig | iz [pis | G2 | 43 |
1]0.7]023 0.3/0.7 ~ 0.49
2105{03|0.2] 0.3/0.5=0.6 [0.2/0.3 ~ 0.667
3108]0.2 0.2/0.8 =0.25

Table 1: A small system and its parameters.

11

k ‘ configurations added to M ‘

configurations added to C'

1 51 = <S1,1, 52,1, 83,1> line 1 SQ = <Sl, 1, 1) P2 = 0.168
line 6 53 = <Sl,2, 1) P3 =0.120
2 SQ = 51.82,2 = <81,1, 82,2, 8371> line 7 S4 = <SQ,]., 3) P4 =0.112
line 8 Ss=(S3,2,1) P5=10.072
line 6 Sﬁ = 51,3, 1 Pﬁ = 0.070
3| Ss=Sts2= (s 02081) | g g - 253, 3, 1§ P; = 0.030
4 S4 = 52.82,3 = <81,1, 52,3, 8371> line 8 Sg = <S4, 2,].) Pg =0.048
line 6 Sg = SQ, 3, 1 Pg = 0.042
5| S =5an= o020 | s g, =<(S5,3, 1>) Py, = 0.018
6 | S = 51-83,2 = <81,1, 521, 83,2>
line 6 Sy = (S4,3,1) Pi; = 0.028
7| S8 =Sus2= (51298 881) | pneg g = ESS, 3, 1§ Py = 0.012
8 | Sg = 52-53,2 = <51,1, 52,2, 83,2)
9| S = 53-83,2 = <81,2, 52,1, 33,2>
10 | Si = 54-83,2 = <51,1, 52,3, 83,2>
11| Si = 55-83,2 = <81,2, 52,2, 83,2>
12| 519 = 58-83,2 = <81,2, 52,3, 83,2>

Table 2: Trace of the second step of the algorithm.

12

d‘ 1 2 3 4 5 6 7 8 9 10

parsing | 30 40 60 80 100 110 130 150 170 180
preprocessing | 10 10 20 20 30 40 50 50 60 60
loop | 340 370 410 410 450 450 460 470 500 510

Table 3: Running times in milliseconds for with d = 10 and k = 10°

13

k1076105 1.0 1.5 20 25 30 35 40 45 5.0
loop | 180 350 520 690 860 1040 1210 1390 1550 1730

Table 4: Running times in milliseconds for with d =5 and n = 1000

14

