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Abstract: Binary Decision Diagrams have proven to be a very efficient tool to assess Fault 

Trees.  However, the size of the Binary Decision Diagram, and therefore the efficiency of the 

whole methodology, depends dramatically on the choice of variable ordering.  The 

determination of the best variable ordering is intractable.  Therefore, heuristics have been 

designed to select reasonably good variable orderings.  The most popular of these heuristics 

consists in numbering variables by means of a depth first left most traversal of the formula, 

after possibly some rearrangements of inputs of gates.  In this article, this heuristic is studied in 

a systematic way.  It is shown to be very sensitive to the way the formula is written.  A series of 

experiments shows also that the notion of locality of variables, which was believed to be a key 

issue in the determination of good orderings, must be handled with care.  These facts are quite 

disturbing and raise questions about the design of good variable ordering heuristics. 
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1. Introduction 
Since their introduction in the Reliability Engineering field, Bryant’s Binary Decision 

Diagrams [1, 2] have proved to be a very efficient tool to assess Fault Trees [3, 4].  It is well 

known however that the size of the Binary Decision Diagram, and therefore the efficiency of 

the whole methodology, depends dramatically on the choice of variable ordering [1, 5].  The 

determination of the best variable ordering is intractable [6, 7]. Therefore, heuristics have been 

designed to select reasonably good ones.  There are two kinds of heuristics: static heuristics, 

that number the variables prior to the BDD computation (see e.g. [8, 9]), and dynamic 

heuristics that reorder the BDD during the computation (see e.g. [10, 11]).  Dynamic heuristics 

are very time consuming, especially when the number of variables is large, which is the case 

for real world Fault Tree/Event Tree models.  So, even if such a heuristic is used, it is best to 

start with an acceptable order given by some static heuristic.  Static heuristics are based on 

topological considerations (sizes of the sub-formulae, depths of the variables, weights…).  

They can be in turn separated into two categories [12, 13]: those that number variables 

according to a depth first left most (DFLM) traversal of the formula, after possibly some 

rearrangements of inputs of gates, and those that build interleaved orders.  In this article, we 

study in a systematic way heuristics of the first category, so-called DFLM heuristics in the 

sequel.  In practice, these heuristics give rather good results. They have never been 

outperformed by any other method proposed in the literature.  These good performances stand 

partly in the fact that they tend to preserve the locality of variables: variables that are close in 

the formula tend to be not too far apart in the ordering. However, this is not completely true and 

that the notion of locality itself is questionable. 

For the purpose of this study, a benchmark of twenty real life large fault trees has been selected.  

These fault trees come from different sources (nuclear industry, avionic systems…) and have 

different characteristics (number of variables, number of gates, shape of the formula…).  In 



order to make experiments both of interest and tractable, only trees for which the BDD, 

computed with a pure DFLM heuristic, is not too small and not too large (typically few 

hundred thousands nodes) have been included in the benchmark .  For each of these trees, one 

hundred different formulae by shuffling at random inputs of gates have been derived.  These 

formulae are thus strictly the equivalent to the original tree up to an isomorphism.  The idea is 

to evaluate the sensitivity of the different heuristics to the way the formula is (re)written.  It is 

worthwhile to notice that, due to the use of graphical user interfaces and/or automatic 

generation of formulae, the user of a fault tree assessment tool has in general no control on the 

order of inputs of a gate (and in any case, no idea of what a good order would be). 

The contribution of this article is the following: a first series of experiments shows that the pure 

DFLM ordering is subject to incredibly high variations of in terms of sizes of BDD and total 

numbers of BDD nodes involved during the computation.  This problem is almost completely 

ignored in the literature (except a previous article by the author [14]).  A second series of 

experiments is devoted to heuristics that sort inputs of gates according to some weighting 

algorithm (e.g. [9, 15]).  These experiments show that weighting heuristics may lead to far from 

optimal results, although they are able to reduce the instability. Finally, a third series of 

experiments shows the lack of correlation between the BDD sizes and the linear arrangement of 

gates and basic events.   The idea to optimize linear arrangement to improve variable ordering 

is rather natural (see e.g. [16, 8, 17]). Unfortunately, it is quite deceptive. 

The remainder of this article is organized as follows.  Section 2 recalls basics about assessment 

of fault trees by means of binary decision diagrams.  It presents also our benchmark. Section 3 

reports results of the pure DFLM heuristic.  Section 4 discusses weighting heuristics. Section 5 

studies the correlation between the size of the BDD and the linear arrangement of gates and 

basic events. 

2. Fault Trees Assessment by means of Binary Decision Diagrams 

1.1. Fault Trees and Depth First Left Most traversals 

In this article, (coherent) fault trees built over basic and intermediate events and ‘and’, ‘or’ and 

‘k-out-of-n’ gates are considered.  It is assumed as usual that the fault tree is rooted by a top 

event.  Moreover, it is assumed, without a loss of generality, that each gate is named with an 

intermediate event.  Therefore, the fault tree structure can be seen (disregarding the type of the 

gates) as a directed acyclic graph, as exemplified Figure 1. 

A depth first left most traversal of the fault tree (or equivalently of the underlying graph) 

produces an order on the basic events.  For instance, in the tree pictured Figure 1, basic events 

and gates are visited in the following order: top, g1, e1, g3, e2, e3, g2, g3 (bis), g4, e2 (again) 

and e4.  Therefore, the basic event ordering is e1<e2<e3<e4.  By rearranging inputs of gates, a 

different ordering can be produced. E.g. if e1 and g3 are switched under g1, the order is 

e2<e3<e1<e4.  Not all of the (n! for n basic events) orderings can be produced.  For instance, 

the ordering e1<e4<e2<e3 cannot, whichever rearrangement of inputs of gates is considered. 

Moreover, two different writings may produce the same ordering.  For instance, switching g3 

and g4 under g2 in the original formula has no effect on the ordering of basic events. 

1.2. The Benchmark 

For the purpose of this study, twenty real life large fault trees as a benchmark have been 

selected.  These fault trees come from different sources (nuclear industry, avionic systems…). 

Their number of variables and number of gates are given Table 1. 

To rearrange at random inputs of gates, the method is the following.  First, a unique index is 

associated at random with each gate and basic event.  Then, inputs of gates are sorted according 

to these indices.  This procedure ensures that if two variables (gates or basic events) appear 



under two different gates, then they appear in the same order.  This corresponds certainly to 

what would do a human or a program.  This procedure is also faster than to shuffle inputs of 

gates independently. 

1.3. Binary Decision Diagrams 

Binary Decision Diagrams are a compact encoding of the truth tables of Boolean formulae [1, 

2].  The BDD representation is based on the Shannon decomposition: Let F be a Boolean 

function that depends on the variable v, then the following equality holds. 

 ]v[F.v]v[F.vF 01 ←+←=  
By choosing a total order over the variables and applying recursively the Shannon 

decomposition, the truth table of any formula can be graphically represented as a binary tree. 

The nodes are labeled with variables and have two out edges (a then-out edge, pointing to the 

node that encodes F[v←1], and an else-out edge, pointing to the node that encodes F[v←0]). 

The leaves are labeled with either 0 or 1. The value of the formula for a given variable 

assignment is obtained by descending along the corresponding branch of the tree. The Shannon 

tree for the formula F ab ac= +  and the lexicographic order is pictured Figure 2 (dashed lines 

represent else-out edges). 

Indeed such a representation is very space consuming.  It is however possible to shrink it by 

means of the following two reduction rules. 

– Isomorphic sub-trees merging.  Since two isomorphic sub-trees encode the same formula, at 

least one is useless. 

– Useless nodes deletion.  A node with two equal sons is useless since it is equivalent to its 

son ( FvFvF .. += ). 

By applying these two rules as far as possible, one get the BDD associated with the formula. A 

BDD is therefore a directed acyclic graph.  It is unique, up to an isomorphism.  This process is 

illustrated Figure 2.  The reader is invited to refer to the wide literature of BDD for a more 

detailed presentation of this technique. 

1.4. Variable Ordering Heuristics and Pre-processing of the Formulae 

As said in the introduction, static heuristics rely in general on topological considerations and 

depend on the way formulae are written.  Rewriting procedures can thus be used both to 

simplify the trees and to get better variable orderings.  The two issues are strongly related.  Any 

complete fault tree analysis BDD strategy should involve such rewritings, as illustrated in 

references [18, 19].  Nevertheless, this article focuses on only one type of rewriting: the 

rearrangement of inputs of gates, which deserves itself a systematic study. 

As an illustration, consider again the fault tree pictured Figure 1.  Since there are 4 basic events, 

there are 4! = 24 possible variable orderings.  However, only 8 are reachable through DFLM 

heuristics.  Figure 3 shows the corresponding rewritings and gives the sizes to the BDD of the 

top event as well as the number of nodes involved during the computation.  This example 

illustrates these two quantities are not necessarily correlated.  Both are of interest: the smaller 

the BDD, the easier the subsequent computations (probabilities, importance factors, minimal 

cut sets…).  On the other hand, to be feasible, the computation of the BDD should not involve 

too many intermediate nodes.  The best order is obtained by putting the variable e2 in front.  

This variable is actually the one which most influences the formula.  Heuristics aim to put the 

most influential variables in front, while keeping related variables together (here e2 and e3). 

Another example, first proposed by Bryant himself [5], illustrates the importance of variable 

ordering.  It helps also to understand why the DFLM heuristics are not too bad in general.  Let 

Fn = x1.y1 + x2.y2 + … + xn.yn.  There are two natural orderings for this formula: the 

lexicographic order x1<x2<…<xn<y1<y2<…<yn and the ordering obtained by means of a 

DFLM traversal of the formula, i.e. x1<y1<x2<y2<…<xn<yn.  The BDD for these two orderings 



are pictured Figure 4 for the case n=3.  The DFLM ordering gives a linear size BDD, while the 

lexicographic ordering gives an exponential size BDD!  In the first case, the BDD is in O(n) 

because once the value of x1.y1 is determined, either Fn is satisfied or it is reduced to x2.y2 + … 

+ xn.yn, which is isomorphic to Fn-1.  The DFLM heuristic preserves the locality of variables. 

The lexicographic ordering gives an O(2
n
) BDD because before deciding the value of the 

formula, the value of all of the xi’s must be considered.  Therefore the top part of the BDD is a 

complete binary tree, as shown Figure 4.  It does not preserve locality. 

3. Sensitivity to Ordering of Inputs of Gates of the DFLM heuristic 
Reference [14] pointed out the sensibility of the pure DFLM heuristic to rearrangements of 

inputs of gates.  The models for this study were mostly coming from French nuclear PSA.  In 

order to confirm these preliminary results with our broader benchmark, the pure DFLM 

heuristic has been applied on each of the 100 formulae derived from each tree.  The minimum, 

maximum and mean BDD sizes and numbers of nodes involved during the computation are 

given Table 2.  For the sake of the clarity, maximum and mean values are written as a multiple 

of the minimum value (over the 100 random rewritings). 

This experiment shows that the pure DFLM heuristic is dramatically sensitive to the way the 

formula is written: the factor between the minimum and the maximum (respectively mean) 

BDD size goes up to 128 (respectively 17).  The factor between the minimum and maximum 

(respectively mean) numbers of nodes involved during the computation goes up to 81 

(respectively 10).  This makes the comparison of this heuristic (applied to the original formula) 

with any other heuristics very questionable: a simple switch of some inputs of some gates may 

change completely the conclusion of the comparison.  Many articles, however, (including, the 

author must admit, his own) take this heuristic as a comparison basis.  This experiment is a 

strong argument to definitively reject this approach.  

4. Weighting Heuristics 
Many heuristics proposed in the literature can be reinterpreted as three steps procedures: first, a 

weight is associated with each variable (gates and basic events); second, inputs of gates are 

sorted according to this weight (in increasing or decreasing order); third the pure DFLM 

heuristic is applied to the resulting formula.  For instance, the heuristic proposed in references 

[9, 20] consists in defining the weight of a variable as the number of occurrences of this 

variable and then in sorting inputs of gates in decreasing order of their weight.  The heuristic 

proposed in reference [15] consists in defining the weight of variables as follows. 

– The weight of a basic event is 1.0. 

– The weight of a gate equals the sum of the weights of its inputs. 

Then, inputs of gates are sorted in increasing order of their weights. 

For the purpose of this study, many different weighting heuristics have been tried.  Only two of 

them are discussed here, for they are representative.  

 The first one, so-called DDS (for Decreasing Downward Sums) consists in defining the weight 

of the top event as 1.0 and then the weight of any other variable as the sum of the weights of its 

outputs.  Inputs of gates are sorted in decreasing order of their weights.  The heuristic DDS 

generalizes the underlying idea of the heuristic proposed in reference [9]: it looks for most 

important variables. 

The second one, so-called DUS (for Decreasing Upward Sums) consists in defining the weights 

of variables in the same way the heuristic proposed in reference [15] does, but in sorting inputs 

of gates in decreasing order of their weights.  In our experience, the former gives much better 

results than the latter. 

Results for these two heuristics are given respectively Table 3 and Table 4.  The ratio between 

the observed value and the minimum value obtained with the pure DFLM heuristic are 



indicated (this makes comparisons easier than with raw numbers).  For instance, the value 3.1 

in “abs-001” row and mean |BDD| column of Table 3 means that the mean BDD size observed 

for the tree “abs-001” with heuristic DDS is 3.1 times bigger than the minimum BDD size 

observed with the pure DFLM heuristic. 

Compared to the pure DFLM heuristics, DDS reduces a bit the instability.  In some cases, it 

improves slightly minimum, maximum and mean values as well.  In some other cases, it 

degrades minimum and mean values.  It is worth to note that DDS does not reorder the top 

gates, for weights of these gates are all equal to 1.  Therefore it has only a relatively small 

influence on the variable ordering (which explains that it is very comparable to the pure 

DFLM). 

With DUS on the other hand, the instability almost vanish. But for most of the cases, results are 

rather far from the optimum. 

This experiment summarizes what can be expected from weighting heuristics: either they are 

loose, like DDS, and give results that very similar to those of the pure DFLM heuristic or they 

are strict and they give results that are not near the optimum.  This explains why, despite of the 

wide efforts that have been done to find the “good” weighting procedure, no article in the 

literature proposes a weighting heuristic that performs consistently better than the pure DFLM 

heuristic. 

5. Correlation with Linear Arrangement 
As pointed out by Bryant’s example (see section 1.4), variables that are close in the formula 

should better be close in the order.  This remark has been explored by Panda and Somenzi [11] 

and more recently by Aloul & al who proposed several heuristics [16, 8, 17].  Intuitively, their 

idea is to associate an index with each variable of the formula, i.e. with each vertex of the 

underlying graph, and then to use the network width as a measure of the quality of a rewriting.  

The graph width is defined as the sum over the edges of the distances between adjacent vertices.  

For instance, in the graph of Figure 1, the graph width W is as follows. W = d(top,g1) + 

d(top,g2) + d(g1,e1) + d(g1,g3) + d(g2,e3) + d(g2,g4) + d(g3,e2) + d(g3,e3) + d(g4,e2) + 

d(g4,e3) where d(a,b) = |index(a)-index(b)|.  This idea is seductive.  Unfortunately, it raises two 

main difficulties.  The first one stands in the numbering itself: if indices are constrained to be 

all different, finding the variable ordering that minimize the graph width is a well known NP-

complete problem, so called Optimal Linear Arrangement [21].  Optimal Linear Arrangement 

is even considered as a hard problem among the NP-complete problems [22].  So we may sail 

from Charybdis to Scylla. The second difficulty stands in the correlation between the graph 

widths and the sizes of BDD. 

In order to verify whether sizes of BDD and graph widths are actually correlated, graph widths 

for each of the 100 rewritings of the fault trees of the benchmark have been calculated and 

compared with the size of the BDD for the DFLM basic event ordering.  In some sense, this 

experiment is dual from the approach proposed by Aloul & al.: rather than to induce a good 

ordering from a good linear arrangement, it is tried to see whether good (respectively bad) 

variable orderings correspond to good (respectively bad) linear arrangements. 

Here is a technical problem:  BDD require ordering basic events while linear arrangement 

requires ordering basic events and gates.  The two following methods to get an ordering of 

gates from the (DFLM) ordering of basic events have been applied. 

– As Soon As Possible (ASAP) ordering: the formula is traversed in a depth-first left-

most way and basic events and gates are numbered as soon as possible, i.e. a gate is 

numbered as soon as all of its inputs are numbered.  For instance, for the formula 

pictured Figure 1, the ASAP ordering is as follows: e1, e2, e3, g3, g1, e4, g4, g2, top. 

– Mean of Inputs (MI) ordering: first basic events are ordered with the DFLM heuristic, 

and then each gate is weighted as the mean value of the weights of its inputs (weights 



are not indices, but this doesn’t change the definition of graph width).  For instance, for 

the formula pictured Figure 1, the first step gives the following weights to basic events. 

  w(e1) = 1, w(e2) = 2, w(e3) = 3, w(e4) = 4 

 The second step gives the following weights to gates: 

  w(g3) = 2.5, w(g4) = 3, w(g1) = 1.75, w(g2) = 2. 75 and w(top) = 2.25 

Figure 5 and Figure 6 plot, for each of the fault tree of the benchmark, the points formed by 

size of the BDD (x-axis) and the value of the graph width (y-axis).  Both quantities are plotted 

with a linear scale. 

No matter what are the absolute values of these quantities, these curves show clearly that no 

correlation can be expected between the size of the BDD for the DFLM ordering and the value 

of the graph width (measured with either ASAP or MI weighting methods).  In other words, the 

heuristics proposed by Aloul & al may be good, but not for the reason these authors give (by 

the way, their heuristics did not give especially good results on the formulae of the benchmark). 

6. Conclusion 
In this article, DFLM variable ordering heuristics have been studied in a systematic way.  An 

experimental study raised different disturbing issues: 

– The pure DFLM heuristic is so sensitive to the way the formula is written that it cannot 

be taken as a reference, at least if applied only on the original writing of the formula. 

– Weighting heuristics are either stable and mediocre, or fail into the same instability as 

the pure DFLM heuristic. 

– The notion of graph width does not seem to be correlated with the size of the BDD. 

In a word, this study raises more problems than it brings solutions.  However, it paves the way 

for future researches in the domain. 

First, this study changes the perspective on heuristics: rather than seeking for good heuristics 

by mixing different topological measures, it would be of interest to try to understand why an 

ordering is good or bad.  This raises the question of whether there exist measures (other than 

graph width) that show some correlations with the size of BDD. 

Second, it shows that heuristics should not be considered in isolation, but rather as elements of 

strategies.  A strategy consists in applying one or several heuristics on different rewritings of 

the formula under study, possibly with evolving time and space limitations (as already 

suggested in reference [14]). 
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Figure 1. A fault tree and its underlying acyclic graph. 



 

Table 1.  Number of basic events and gates of the fault trees of the benchmark 

Fault Tree #BE #gates 

abs-001 763 934 

abs-002 177 130 

abs-007 310 115 

cpf-001 127 81 

das-010 122 288 

edf-003 362 475 

edf-004 323 375 

edf-008 278 255 

edf-010 311 290 

edf-011 283 249 

elf-001 145 242 

jbd-001 533 315 

las-001 424 371 

las-003 461 387 

las-005 462 385 

mhi-301 505 285 

mhi-302 890  

mhi-303 614 363 

par-001 409 493 

par-006 345 475 

sof-001 186 1072 

 



 

 
Figure 2. From the Shannon Tree to the BDD 

 



 

 
Figure 3. Effects of different rewritings on variable ordering 

 



 

 
 

Figure 4. BDD for two different variable orderings 

 

 



Table 2. Heuristic DFLM: BDD sizes and total numbers of nodes involved in the computation 

 

  |BDD|   #nodes  

model min max mean min max mean 

abs-001 51198 11.0 3.5 156347  5.0 2.2 

abs-002 24060 42.0 11.0 47079 46.0 10.0 

abs-007 244765 28.0 4.2 1103267 38.0 4.9 

cpf-001 176174 9.7 4.4 272194 7.8 3.6 

das-010 20471 2.7 1.7 247519 1.7 1.3 

edf-003 188957 7.1 2.9 3039117 6.6 3.3 

edf-004 117423 9.6 4.3 1160885 7.9 4.1 

edf-008 23081 5.4 2.5 107578 5.8 2.8 

edf-010 158968 6.8 3.8 467496 4.6 2.9 

edf-011 51247 8.1 3.9 115342 8.6 4.4 

elf-001 4518 76.0 6.9 132526 81.0 6.4 

jbd-001 19887 59.0 12.0 78229 68.0 10.0 

las-001 27061 14.0 4.9 177843 13.0 4.1 

las-003 48993 15.0 4.9 298669 9.2 3.6 

las-005 51921 16.0 3.8 732352 6.5 2.9 

mhi-302 17361 28.2 5.5 146210 8.2 2.2 

mhi-303 23736 8.0 3.0 161767 5.67 2.2 

par-001 294944 67.0 12.0 1152663 29.0 5.9 

par-006 22735 128.0 17.0 736905 33.0 7.7 

sof-001 17018 7.8  3.0 248011 5.7 1.8 

 



Table 3. Heuristic DDS: BDD sizes and total numbers of nodes involved in the computation 

 

  |BDD|   #nodes  

model min max mean min max mean 

abs-001  1.2  8.1  3.1 1.0  3.4  1.9 

abs-002 0.8  4.5  2.3 0.8  5.2  2.4 

abs-007  0.9   22.0  3.2  1.2   18.0  3.4 

cpf-001 0.9  9.6  4.3 1.0  7.6  3.6 

das-010 1.0  2.6  1.8  1.1  1.8  1.5 

edf-003 0.7  5.5  2.2 0.7  2.7  1.7 

edf-004    1.0  7.2  3.8 0.9  5.7  2.9 

edf-008  1.3  5.2  2.6  1.4  5.4  2.6 

edf-010  1.3  7.7  4.2 1.0    5.0  2.8 

edf-011    2.0  7.9  4.7  2.1  8.6    5.0 

elf-001  2.4    5.0  3.8  1.7  2.9  2.4 

jbd-001 0.9   52   11.0 0.9   59.0  9.2 

las-001  1.3  8.8  3.8  1.2  8.1  3.3 

las-003 0.8   11.0  4.3 1.0  8.8  3.2 

las-005  0.8   12.0  2.5 0.8  5.6  2.3 

mhi-302  1.1  7.2  3.2 0.9  2.6  1.5 

mhi-303    1.0  5.1  2.6 0.9  3.2  1.8 

par-001  1.2   61.0   11.0 1.0   21.0  5.1 

par-006  1.4   77.0   15.0  1.8   18.0    6.0 

sof-001 1.0  7.7  2.9 1.0  5.6  1.7 

 



Table 4. Heuristic DUS: BDD sizes and total numbers of nodes involved in the computation 

 

  |BDD|   #nodes  

name min max mean min max mean 

abs-001  3.6  3.6  3.6  3.1  3.1  3.1 

abs-002 0.6    1.0 0.8    1.0  1.5  1.3 

abs-007  2.4  3.2  2.8  4.9  6.4  5.7 

cpf-001  1.4  2.8    2  1.3  2.7  1.8 

das-010  1.1  1.5  1.3 0.8 0.9 0.9 

edf-003  2.2  2.3  2.3  1.2  1.2  1.2 

edf-004  1.7  1.8  1.7  2.5  2.6  2.6 

edf-008  2.1  2.2  2.1  2.7  2.9  2.8 

edf-010  1.4  1.6  1.5  1.6  1.9  1.8 

edf-011  2.9  3.4  3.1    4.0  4.5  4.2 

elf-001 0.6 0.7 0.7 0.4 0.5 0.4 

jbd-001  2.1  2.2  2.1    1.0    1.0    1.0 

las-001  5.4  5.5  5.4  5.2  5.2  5.2 

las-003  2.8  2.9  2.8  3.5  3.5  3.5 

las-005    2.0  2.1  2.1  1.8  1.8  1.8 

mhi-302  4.8  5.2    5.0  1.9    2.0    2.0 

mhi-303  1.9  2.1    2.0  1.6  1.7  1.6 

par-001  1.8    2.0  1.9  1.6  1.7  1.6 

par-006  0.4 0.4  0.4 0.6 0.6 0.6 

sof-001  1.1  3.1  2.6 0.8  1.3  1.2  



   

   

   

   

   

   

  
Figure 5. |BDD| (x-axis) versus ASAP graph widths (y-axis) 



   

   

   

   

   

   

  
Figure 6. |BDD| (x-axis) versus MI graph widths (y-axis) 


