

Guarded Transition Systems:

a new States/Events Formalism for Reliability Studies

Antoine Rauzy

IML/CNRS

169, Avenue de Luminy

13288 Marseille Cedex 9

FRANCE

arauzy@iml.univ-mrs.fr

Abstract: States/events formalisms, like Markov Graphs or Petri Nets, are widely used in the

reliability engineering framework. They have proved to be a very powerful tool both from a

conceptual and practical viewpoints. This article introduces a new states/events formalism, so

called Guarded Transition Systems. Guarded Transition Systems generalize both Block

Diagrams and Petri Nets. They also make it possible to handle looped systems that no existing

formalism is able to handle smoothly. We illustrate their use by means of examples and

discusses several important issues like composition and graphical representations.

1. Introduction

Description formalisms used for risk analyses can be roughly separated into two categories:

combinatorial models, like Fault Trees or Block Diagrams and states/events formalisms, like

Markov Graphs or Petri Nets (see e.g. [AM93] for a general presentation). Advantages and

drawbacks of each of them have been extensively discussed in the literature. The choice of a

formalism results always of a trade-off. On the one hand, a modelling formalism should be as

expressive as possible. On the other hand, the greater the expressive power, the lower the

efficiency of associated assessment methods. There is no “silver bullet”. However, a

formalism may offer or not some convenient modelling features and may exploit fully or not

assessment techniques. Hence, not all of the formalisms within a category are equally suitable.

This article introduces a new states/events formalism, so called Guarded Transition Systems.

Guarded Transition Systems can be seen as a generalization of both Block Diagrams, Petri Nets

and Arnold-Nivat model of parallelism [Arn94]. From Petri nets, they take the idea of having

states represented by means of variables (places) and changes of states represented by means of

events and transitions. From, Block Diagrams, they take the notion of flow circulating through

the a network, therefore allowing the descriptions of remote interactions between components

of the system under study. From Arnold-Nivat model of parallelism, they take the notions of

composition and explicit synchronization which are a very powerful means to create

hierarchical models. The important point is that these generalizations come with no cost.

Useful assessment algorithms for Petri Nets or Finite State Machines are easily lift up to

Guarded Transition Systems without a significant change of complexity.

None of the cited formalisms (Petri Nets, Block Diagrams, Finite State Machines), is suitable to

model looped systems. A system is said looped when it embeds two components A and B such

that the state of A depends on the state of B and vice-versa. Looped systems arise typically in

reliability analyses of electrical networks. Electrical networks can be abstracted as graphs with

distinguished source and target nodes and whose nodes are subject to failures. A target node T

is powered if there exists a least one working path from one of the source nodes to T.

Intuitively, the difficulty to describe this kind of systems comes from the fact that to know

whether a target node is powered or not, we cannot just look at its adjacent nodes and edges. In

fact, there is no other solution than to propagate the states of source nodes through the network.

This propagation has to be renewed each time a node changes of state (working or failed).

With Guarded Transitions Systems, we intoduce a fixpoint calculation after each transition

firing. This fixpoint mechanism makes it possible to handle looped systems is a simple and

elegant way.

One of the main reasons of the success of the Petri Nets and Block Diagrams stands in their

graphical representation: a drawing tells us often much more than a long text. However,

graphics have their own limits: the size of the paper sheet or the computer screen. As models

get bigger, it is not possible to represent them fully within a single graphic. Rather, we should

use graphics as incomplete views of the model. Software specification languages such as UML

[RJB99] advocate that it is often much more convenient to have several partial views of the

same object than to have a single overloaded view. We discuss here how to apply this idea to

Guarded Transition Systems.

The remainder of this article is organized as follows. Section 2 presents a motivating example.

Section 3 defines Guarded Transition Systems and shows some examples of their use. Section

5 discusses the mechanisms by which Guarded Transition Systems can be composed, i.e. how

to build hierarchical and modular descriptions and compile these descriptions into Guarded

Transition Systems. Section 5 generalizes the definition of Guarded Transition Systems to

Stochastic Guarded Transition Systems. Finally, Section 6 discusses graphical representations

for Guarded Transition Systems.

2. Motivating Example

Consider the network pictured Figure 1. This network has two source nodes S1 and S2 and

seven target nodes numbered from T1 to T7. We assume that nodes are subject to failures and

can be repaired (with known probability distributions) and that edges are perfectly reliable.

The problem is to determine the probability that a given target node is powered without

interruption during a given mission time.

A huge literature has been devoted to different variations of this problem, which is usually

called one-terminal reliability (see e.g. [Col87] and [Shi91] for two monographs on the

subject). This literature considers however only Boolean models. Nodes are assumed to be

either working or failed. Their failures are assumed to be statistically independent. The

information circulating through the network is assumed to be purely Boolean and so on…

Elegant solutions have been proposed to solve the corresponding problems (see e.g.

[MCFB94]), but their application is limited to very small networks due to the intrinsic

complexity of the latter’s (most of them are NP-hard [Bal86]).

In practice, reliability analyses of electric networks (or other kind of looped systems) are

realized by removing loops by hand, which is both tedious and error prone (see also references

[SBT96] and [SSBS96] for a discussion about loop analysis in the synchronous language

framework).

In many similar situations, the best solution at hand consists in using behavioral models, for

instance Generalized Stochastic Petri Nets (GSPN) [ABCDF94] or the AltaRica language

[BRDS04], coupled with Monte-Carlo simulation. Unfortunately, even these very powerful

formalisms are not really sufficient to solve the problem.

S1

S2

T1 T2

T3

T4

T6
T5

T7

Figure 1. A simple network with distinguished source and target nodes

T6-failure

T6-working

T6-failed

T6-poweredreset-phase

end-reset:3

Phase 1: firing of a stochastic transition

propagation-phase

end-propagation:1

Phase 2: Si/Ti-powered value are reset

reset-phase

T6-reset:4

priorities

T6-working

T4-powered

Phase 3: Si/Ti-powered values are propagated

propagation-phase

T6-isolated

T4-T6-propagation:2

T6-powered

end-propagation:1

Figure 2. Propagation mechanism for GSPN

Consider again the network pictured Figure 1. Ideally, we would like to model this network by

means of: first, a set of Boolean variables to represent the state of components (e.g. S1-working,

T1-working…); second, a set of transitions to model changes of states of components (e.g.

component S1 goes from state S1-working=true to state S1-working=false when the event S1-

failure occurs); third, a set of Boolean variables to represent whether components are powered

or not (e.g. S1-powered, T1-powered…); and finally fourth, a set of equations to define the

values of the latter variables. These equations could be as follows.

S1-powered = S-working

S2-powered = S2-working

T1-powered = T1-working and (S1-powered or T2-powered)

T2-powered = T2-working and (S2-powered or T3-powered)

…

T6-powered = T6-working and (T4-powered or T5-powered)

T7-powered = T7-working and (S2-powered or T5-powered)

Unfortunately, this modeling scheme cannot work. The problem stands in self powering loops.

Consider, for instance, the case where nodes S1, T3 and T7 are failed. In this case, the sub

network formed by working target nodes T4, T5 and T6 is isolated. After simplification, the

set of equations for this sub network is as follows.

T4-powered = T5-powered or T6-powered

T5-powered = T5-powered or T6-powered

T6-powered = T4-powered or T5-powered

It turns out that the above set of equations has two solutions: the assignments (true, true, true)

and (false, false, false) to variables T4-powered, T5-powered and T6-powered. Indeed, only

the later corresponds to the physical reality but the former cannot be eliminated by simple

logical means. As a consequence, there is no direct way to overcome this problem within the

framework of usual states/events formalism. There is a deep theoretical reason for this

difficulty: accessibility in graphs is not first order expressible (see e.g. [Pap94] for a detailed

explanation of this important result of descriptive complexity theory) and we face here to a

typical accessibility problem: is a given target node accessible from one of the source nodes

(through a working path)?

Indeed, accessibility can be modeled into states/events formalisms by writing specific gadgets

to describe value propagation. Such a propagation mechanism for GSPN is pictured Figure 2.

It consists in three phases (for the sake of the clarity, we give three separate view of the Petri,

one view per phase). First, when a stochastic transition (failure, repair) is fired, the controller is

armed. Second, all Si/Ti-powered values are reset with immediate transitions. These

transitions have the highest priority (namely 4). The phase ends with the firing of the transition

“end-reset” of the controller. Third, Si/Ti-powered values are actually propagated by means of

transitions of priority 2. This phase ends when the fixpoint is reached (no more value can be

propagated) with the firing of transition “end-propagation” of the controller.

Although feasible, it is clear that this kind of modeling is rather delicate to implement on a

large scale. Moreover, it would slow down dramatically Monte-Carlo simulation (or any other

kind of assessment method). The idea is therefore to embed the fixpoint mechanism as a

feature of the modeling formalism.

3. Guarded Transitions Systems

In this section, we introduce Guarded Transition Systems (GTS for short).

3.1. Preliminaries

In GTS, configurations of the system under study are represented by variables. These variables

may be of any type: Boolean, integer, floating point numbers, enumerated set…

A variable assignment, or shorter an assignment, is a mapping from the set of variables to the

set of values. We shall assume that assignments are compatible with types of variables (a

Boolean variable is assigned a Boolean value; an integer variable is assigned an integer…).

Expressions can be built over variables, e.g. arithmetic expressions (addition, subtraction…),

Boolean expressions (conjunction, disjunction…). Assignments can be naturally extended into

mapping of well typed expressions to values, assuming a natural semantics for expressions (e.g.

σ(A+B) = σ(A) + σ(B)).

Finally, instructions can be defined by means of variables, expressions and possibly some other

syntactical constructs. Instructions are used to change the values of variables. Typical

instructions are the assignment of a value (defined by an expression) to a variable, the if-then

and if-then-else constructs… Instructions are interpreted as mapping from assignments to

assignments. For instance, ‘x ← 3’(σ) is the assignment ρ such that ρ(x)=3 and ρ(y)=σ(y) for

all variables y≠x.

In the sequel, we shall use the following notations. Variables are denoted by lower cases letters

a, b, c, x, y… Expressions and instructions are denoted by capital letters E, I… Finally,

assignments are denoted by Greek letters σ, ρ…

Let I be an instruction and σ be an assignment. We denote by I2(σ) the assignment I(I(σ)). By

extension I
n
(σ) = I(In-1(σ)). An instruction I as a fixpoint for an initial assignment s if there is

an integer n such that I
n+1
(σ) = In(σ). The fixpoint, when it exists, is denoted Iω(σ).

3.2. Definition

A Guarded Transition System is a six-tuple <V,E,T,ι,H,B> where:

– V is a set of variables.

– E is a set of symbols called events.

– T is a set of transitions, i.e. of triple <G,e,P> where G is a Boolean expression built over

V, e is an event and P is an instruction built over V. G is called the guard (or the pre-

condition) of the transition. P is called the post-condition of the transition.

– ι is an assignment called the initial assignment.

– Finally, H and B are two instructions called respectively the head and the body parts of

the assertion. H and B can be reduced to the empty instruction ε, which is interpreted as

the identity.

For the sake of the clarity, we shall denote a transition <G,e,P> by
e

G P→ .

A transition
e

G P→ is fireable in a state (an assignment) σ, if σ(G) = true and if the fixpoint

B
ω
(H(P(σ))) exists. In this case, the state Bω

(H(P(σ))) is called the successor, by the transition,

of the state σ. Intuitively, the firing of a transition consists in three steps: first, the post-

condition of the transition is performed. Second, the head part of the assertion is performed.

Finally, the body part of the assertion is iterated until a fixpoint is reached (in practice, to avoid

infinite loops in case there is no fixpoint, the calculation can be stopped after a predefined

number of iterations).

The semantics of a GTS G = <V,E,T,ι,H,B> is a (possibility infinite) graph Γ = (Σ,Θ), where Σ

is a set of assignments (the nodes of the graph) and Θ is a set of triples <σ,e,τ> (the transitions

of the graph) where σ and τ are elements of Σ and e is an event of E. As previously, we denote

such a triple <σ,e,τ> by eσ τ→ . Γ is the smallest graph such that:

– ι ∈ Σ (the initial state belongs to the graph).

– If σ ∈ Σ and there is a transition e
G P→ of T which is fireable in the state σ, then

the state τ = Bω
(H(P(σ))) belongs to Σ and the transition eσ τ→ belongs to Θ.

Γ is called the reachability graph of G.

Note that the above definition let open the concrete syntax of expression, instructions… The

GTS formalism can be adjusted according to the specific needs of an application.

We shall see in the next section that the introduction of a fixpoint calculation makes it possible

to handle looped systems smoothly. From a descriptive complexity theory viewpoint, it is

worth to notice that fixpoints are the smallest construct it is necessary to add to first order logic

to make accessibility expressible [Pa94]. Fixpoints are widely used in program semantics and

formal methods (see e.g. [vLeu90]). In these frameworks however, they are involved mainly in

the definition of (temporal) properties to be checked against the models.

3.3. Examples

3.3.1. Petri Nets

Consider first the simple Petri net pictured Figure 3. This Petri net models a system made of

four processes sharing two resources of type A and one resource of type B. We can design an

equivalent GTS. This GTS contains five integral variables (one per place), four events and four

transitions. Both head and body of the assertion are reduced to the identity. Its initial state and

transitions are as follows.

Initial state: ι(busyA) = 0, ι(idleA) = 2, ι(busyB) = 0, ι(idleB) = 1, ι(idleProcesses) = 4.

Transitions:

 idleA>0 and idleProcesses>0
getA→

idleA ← idleA-1, idleProcesses ← idleProcesses-1, busyA ← busyA+1

 busyA>0
releaseA→

 idleA ← idleA+1, idleProcesses ← idleProcesses+1, busyA ← busyA-1

 idleA>0 and idleProcesses>0
getB→

 idleA ← idleA-1, idleProcesses ← idleProcesses-1, busyA ← busyA+1

 idleA>0 and idleProcesses>0
releaseB→

 idleA ← idleA-1, idleProcesses ← idleProcesses-1, busyA ←busyA+1

getA releaseA

getBreleaseB

idleProcesses

busyB idleB

busyAidleA

Figure 3. A Petri Net for four processes sharing 2 resources of type A and 1 resource of type B

HPS-A

HPS-A

55%

55%

HPS-B

55%

DEH-A

DEH-B

65%

65%
WELL

MUP

100%

CMP-A

CMP-B

52%

52%

Figure 4. An extended block diagram representing a oil product system

This example shows that any regular Petri net can be easily represented into a Guarded

Transition System. Many additional constructs of Petri nets, like inhibiting arcs, bounded

places…, can be easily represented as well.

3.3.2. Extended Block Diagrams

Consider now the extended block diagrams pictured Figure 4.

This example is taken from reference [KR02]. The system is a production facility consisting of

height units. Gas separated from the well fluid at upstream side is fed to the facility, treated

through separators (HPS-A,B,C) and dehydrators (DEH-A,B), and led to compressors (CMP-

A,B). The make-up compressor (MUP) is installed to enable the CMP-A and B to discharge

gas with full flow rate even if some of gas treatment units (HPS or DEH) are failed. It is

assumed that the MUP is equipped with gas treatment units, which are dedicated to the MUP.

The maximum throughput capacity for each unit is shown on Figure 4. The maximum

throughput capacity means that the unit as a potential to deal with the throughput volume, does

not mean that the unit is always operated at that condition.

The problem as expressed by Kauwachi and Rausand is to assess the average flow circulating

through the system (given the reliability parameters for processing units).

We shall not give the complete GTS that models this system but rather explain how this GTS is

built.

The state of each treatment unit is modelled by means a 0/1 variable. An event and a transition

are used to model the failure of the unit, e.g.

HPS-A-working=1
HPS-A-failure→ HPS-A-working ← 0

We can assume that the treatment load is equally shared by units performing a similar treatment.

The load (output) of a unit is thus the input production divided by the number of working units

of the same category. This load cannot exceed however the production capacity of the unit.

Consider for instance DEH units. Its output can be calculated as follows.

 DEH-input ← HPS-A-output + HPS-B-output + HPS-C-output

DEH-working ← DEH-A-working + DEH-B-working

DEH-load ← min(DEH-capacity, DEH-input/DEH-working)

DEH-A-output ← DEH-A-working × DEH-load

DEH-B-output ← DEH-B-working × DEH-load

These instructions are executed in order in the head part of the assertion. In this way, each time

the state of one the unit changes, loads of the treatment units are recalculated. The MUP unit

works only on demand as a bypass. The state of MUP can be described by a ternary variable

and three events and transitions as follows.

 MUP-state=idle and MUP-called
MUP-start-on-demand→ MUP-state ← working

 MUP-state=idle and MUP-called
MUP-fail-on-demand→ MUP-state ← failed

 MUP-state=working
MUP-failure→ MUP-state ← failed

The variable ‘MUP-called’ is updated by the following instruction of the assertion.

 MUP-called ← HPS-working=0 or DEH-working=0

We shall see Section 5 how to interpret events in order to perform timed and probabilistic

analyses. Note that in this example, the flow circulates from left to right (as in regular block

diagrams). As a consequence, the instructions to update values of flows can be sorted

according to the topological order of the network and put in the head part of the assertion. The

body part is reduced to the identity.

3.3.3. Reliability Networks

Consider again the reliability network pictured Figure 1. As in the previous example, the state

of node is modelled by means a Boolean variable. An event and a transition are used to model

the failure of the node, e.g.

T1-working
T1-failure→ T1-working ← false

The power is propagated through the network from the source nodes by the assertion, which is

as follows.

Head part:

S1-powered ← S-working

S2-powered ← S2-working

T1-powered ← false

…

T7-powered ← false

Body part:

T1-powered ← T1-working and (S1-powered or T2-powered)

T2-powered ← T2-working and (S2-powered or T3-powered)

…

T6-powered ← T6-working and (T4-powered or T5-powered)

T7-powered ← T7-working and (S2-powered or T5-powered)

Consider for instance, the case where S1 and T3 are failed and all other nodes are working

correctly. The fixpoint is reached in three iterations that are summarized Table 1.

Table 1. Calculation of the assertion for the reliability network pictured Figure 1.

Iteration T1 T2 T3 T4 T5 T6 T7

Head false false false false false false false

Body 1 false true false false false false true

Body 2 true true false false true true true

Body 3 true true false false true true true

3.4. Complexity of Assessment Algorithms

Reliability analyses aim at least to determine the probability of failure of a system (through the

time) and to extract the scenarios of failures that are the main contributors to this probability.

The underlying problems are already NP-hard in the simple case of block diagrams [Bal86].

In the case of Petri Nets, the central problem consists in determining whether a given marking

is accessible from the initial marking. This problem is already PSPACE-complete in the case

of regular Petri Nets. Small increases to expressive power like inhibitor arcs or priorities make

this problem non decidable (see e.g. [Esp98] for a thorough discussion on complexity issues

about Petri Nets). These negative results extend indeed to GTS.

The important point is that, from a practical viewpoint, the assessment of GTS is as complex as

the assessment of Petri Nets. The main assessment algorithms, including sequence generations,

compilation to multi-phase Markov processes or Monte-Carlo simulation can be used in both

cases without significant differences in terms of the complexity of involved operations. Note

however that compilation to fault trees [Rau02] may be a bit more difficult in the case of GTS.

4. Composition of Guarded Transition Systems

4.1. Free Product

A major prerequisite for a high level description language is to be compositional, i.e. to allow

the description of systems as hierarchies of (reusable) components. To build hierarchies, we

need an operation that groups together several guarded transition systems.

Let G1 = <V1,E1,T1,ι1,H1,B1> and G2 = <V2,E2,T2,ι2,H2,B2> be two guarded transition systems

such that V1 ∩ V2 = ∅ and E1 ∩ E2 = ∅. We define the product G = <V,E,T,ι,H,B> of G1 and

G2, denoted by G1 × G2, as follows. V = V1 ∪ V2, E = E1 ∪ E2, T = T1 ∪ T2, ι = ι1 o ι2, H = H1;

H2 and finally B = B1; B2, where ‘o’ denotes the composition of functions and ‘;’ is just the

sequence of instructions. Note that since the two GTS are assumed to be built over distinct sets

of variables and events, the product × is commutative and associative.

Once the product is built, it is possible to add new variables, events, transitions, instructions…

In order to get fresh names for variables and events, it is convenient to have an operation to

prefix names. For instance, in the above example, the GTS that describes individual nodes

could be instantiated by prefixing variable and event names by the name of the node, e.g.

‘working’ gives ‘T1.working’, ‘powered’ gives ‘T1.powered’, ‘failure’ gives ‘T1.failure’ and

so on.

4.2. Synchronization

As in other states/events formalisms such as Petri nets, transitions of guarded transition systems

are assumed to be asynchronous: unless stated otherwise, two transitions cannot be fired

simultaneously. The synchronization mechanism consists in compelling a set of events to

occur simultaneously. This mechanism is definitely useful to compose hierarchical

descriptions.

Let A = <V,E,T,ι,H,B> be a GTS. A synchronization constraint is an equation of the form ‘e =

F’, where e is an event of E and F is a Boolean formula built over some other events. F is

called the definition of e. The synchronization of the GTS A with ‘e = F’ creates a set of new

transitions. Let e1…, en be the events occurring in F. A new transition :
e

t G P→ is created

for each n-tuple 〈t1…, tn〉 of transitions : i
i i i

e
t G P→ as follows.

– Let G be the formula F[e1/G1…, en/Gn], i.e. the formula F in which the guard Gi have

been substituted for the event ei.

– P is defined as the instruction: if G1 then P1; …; if Gn then Pn

The post-condition of the transition ti is executed in the synchronized transition only if the

guard Gi was satisfied before the firing of the synchronized transition.

The above formulation is not completely correct because the instruction Pi may change the

value of the guard Gj, i<j. To avoid this problem, fake intermediate variables can be introduced

to memorize the values of the Gi’s as they were before the firing of the transition.

Together with synchronizations, it is useful a have masking mechanism. If an event is masked,

the transitions labeled with this event are not fireable anymore. In this way, a transition which

is local to a component can be synchronized at the system level and then disappears as an

individual independent transition.

The notion of explicit (and-)synchronization has been introduced by Arnold and Nivat in 1982

(see for a survey in english of their work [Arn94]). In formalims to model parallel

programming or communication protocols (e.g. CCS, Promela, Esterel…), the synchronization

of processus is often modeled in an implicit way, by means of rendez-vous or shared variables.

The notion of synchronization we use here is broader that Arnold and Nivat’s notion. We

sketched it in our article on Mode Automata [Rau02]. The novelty here consists in

decomposing this operation into synchronizations with one constraint at a time and an explicit

masking operation. This decomposition is much more versatile than the global operation

proposed in [Rau02].

4.3. Examples

Consider for instance a system made of two engines and one repair crew. The behavior of

engines is described by the following transitions.

state=working
failure→ state ← failed

state=failed
start-repair→ state ← maintenance

state=maintenance
end-repair→ state ← working

The behavior of the repair crew is described by the following transitions.

state=idle
start-job→ state ← busy

state=busy
end-job→ state ← idle

To describe the system as a whole, we need first to build the product of three GTS: one for each

of the two engines and one for the repair crew. As indicated Section 4.1, the first step consists

in prefixing names of variables and events by element names, e.g. ‘Engine1.state’,

‘Engine2.start-repair’… The second steps consists in actually building the product.

Now, at the system level, transitions ‘start-repair’ of engines and ‘start-job’ of repair crew must

be synchronized. Similarly, transitions ‘end-repair’ of engines and ‘end-job’ of repair crew

must be synchronized. To do so, new events are created and the product is successively

synchronized with the following synchronization equations.

 start-repair = Engine1.start-repair and RepairCrew.start-job

 end-repair = Engine1.end-repair and RepairCrew.end-job

 start-repair = Engine2.start-repair and RepairCrew.start-job

 end-repair = Engine2.end-repair and RepairCrew.end-job

For instance, the last synchronization creates the following transition.

 Engine2.state=maintenance and RepairCrew.state=busy

end-repair→

 if (Engine2.state=maintenance) then Engine2.state ← working;

if (RepairCrew.state=busy) then RepairCrew.state ← idle

Note that in this case, this transition can be simplified as follows.

 Engine2.state=maintenance and RepairCrew.state=busy

end-repair→

 Engine2.state ← working; RepairCrew.state ← idle

The last step of this construction consists in masking individual events ‘Engine1.start-repair’,

‘Engine1.end-repair’…

Consider now that a third engine is added to the system and that the three engines may have

Common Cause Failures (CCF). To model CCF, we can synchronize the GTS with the

following constraint.

 CCF = 2/3(Engine1.failure, Engine2.failure, Engine3.failure)

This synchronization constraint produces the following transition.

 2/3(Engine1.state=working, Engine2.state=working, Engine3.state=working)

CCF→

 if (Engine1.state=working) then Engine1.state ← failed;

 if (Engine2.state=working) then Engine2.state ← failed;

 if (Engine3.state=working) then Engine3.state ← failed;

In this model, when a CCF occurs, all engines that are not already failed fail. Note that no

masking is performed here, in such a way that individual failures of engines remains fireable.

More complex synchronization mechanisms, like broadcast (one emitter and several receivers)

can be implemented easily using synchronization constraints. Our experience is that

synchronizations are of a great help to design modular models. With free products, assertions

and synchronizations it is possible to assemble on-the-shelf (models of) components like a lego

construction.

4.4. Guarded Transition Systems as an Abstract Data Type

Guarded Transition Systems are syntactic objects. Any GTS can be actually constructed from

scratch, i.e. from the empty system, by means of basic operations like adding a variable, an

event, a transition, an instruction to the head or the body of assertion, synchronizing the GTS

with a constraint, masking an event and so on. In other words, Guarded Transition Systems can

be seen as an abstract data type. This has two important consequences: first, the semantics of

each operation can be described independently of any actual implementation. Second, GTS can

be used to build of higher level description languages (that include for instance object-oriented

features). This latter point is very important in relationship with the design of graphical user

interfaces: fault trees, block diagrams, Petri nets, finite state machines… all these graphical

formalism can be compiled into guarded transition systems using the operations of the abstract

data type, which means in turn that a tool, e.g. a stochastic simulator, designed for the latter can

be applied to any of the former.

5. Stochastic Guarded Transition Systems

Guarded Transition Systems can be extended into Stochastic Guarded Transition Systems

(SGTS for short) in a similar way Petri Nets are extended into Generalized Stochastic Petri

Nets [ABCDF94]. The principle consists in associating a random delay with each event.

Depending on the restrictions we put on probability distributions associated with the delays, we

obtain different families of SGTS (see the cited reference for a thorough discussion on this

topics). The question is how the introduction of delays affects the semantics of GTS, i.e. their

reachability graph. Note that delays can only shrink the reachability graph: some fireable

transitions may be never fired and transitions that were not fireable remain so.

The simplest family of SGTS is obtained by associating negative exponential distributions with

all events (each event having its own transition rate). For such an interpretation, the semantics

of GTS does not change: any state which is reachable from the initial state in the regular GTS is

also reachable in a stochastic variation of this GTS. This property results of two facts. First,

the probability that a given transition is fired between time t and t+dt is always positive.

Therefore, if two (or more) transitions are fireable in a given state, there is a positive

probability for each of them to fired first. Second, the probability that two transitions are fired

at exactly the same time is null (which is in accordance with the regular semantics of GTS).

In the cited reference [ABCDF94], the authors extend Stochastic Petri Nets by introducing

immediate transitions with possibly some priorities. Such an extension is also possible (and

necessary) in the case of GTS. However, it changes their semantics. A priority function π is

now associated with events. π is a mapping of events to non negative integers. Timed

transitions have the priority 0, while immediate transitions have a positive (>0) priority. A

Guarded Transition System with priorities is therefore a six-tuple <V,E,π,T,ι,H,B>.

The semantics of such a GTS A = <V,E, π,T,ι,H,B> is the reachability graph Γ = (Σ,Θ) defined

as follows. Γ is the smallest graph such that:

– ι ∈ Σ (the initial state belongs to the graph).

– If σ ∈ Σ and there is a transition e
G P→ of T which is fireable in the state σ and

such that there is no other fireable transition
'

' '
e

G P→ in σ with π(e)<π(e’), then the

state τ = Bω
(H(P(σ))) belongs to Σ and the transition eσ τ→ belongs to Θ.

Note that this semantics still assumes that transitions are never fired simultaneously, which is a

bit odd in the case of immediate transitions. A good modeling practice is to obey the diamond

property for transitions with a priority greater than zero: the model should be such that, in case

of conflict between two fireable immediate transitions t1 and t2, t2 remains fireable after the

firing of t1 and vice versa. Moreover, the state is reached after the firing t1 and t2 is the same

whether t1 has been fired before t2 or the converse.

The above remark applies to transitions that represent updates of the system under study. It

does not applies to on-demand events. The situation arises typically when a spare unit, e.g. a

diesel generator, is attempted to start after the failure of the main unit, e.g. the external source

of power. In such a situation, there is two conflicting immediate transitions (typically labeled

with events ‘start-on-demand’ and ‘fail-on-demand’). These two transitions are exclusive one

another. Moreover, a random choice has to be done among them. The existence of this kind of

immediate transitions does change the semantics in terms of reachability graph. However,

these transitions have clearly to be modeled in a separate way.

The following taxonomy can be established among transitions of SGTS.

– Immediate transitions can be split into two categories: plain immediate transitions,

which should obey the diamond property, and conditional (or on-demand) transitions.

Both of them can be given a priority. Conditional transitions come in groups. In a

group, all transitions should have the same guard and the same priority. When

performing a stochastic simulation, the probability to pick up a specific transition can be

defined by associating a weight to each transition of the group.

– Timed transitions can be split into two categories: Dirac transitions, which are fired

after a deterministic (positive) delay, and regular timed transitions whose probability

distribution is typically a negative exponential distribution or Weibull distribution.

Dirac transitions raise the same problem as immediate transitions: they can be fired at the same

instant, so a good modeling practice is that they should obey the diamond property. They raise

an additional problem: GTS with priorities are not sufficient to give their semantics, once

delays have been abstracted out. If two Dirac transitions with different delays are in conflict,

the one with the shortest delay will always be fired.

To finish, note that parameters of probability distributions may depend on the current state, i.e.

may be defined using variables.

6. Towards Semi-Formal Graphical Representations

As already said, graphics are very useful to present models. They are certainly a major reason

of the success of Fault Trees, Block Diagrams and Petri Nets. When modeling a complex

system however, we reach quickly the limits of drawings. First, the model does not fit on a

single sheet of paper or computer screen. To a large extent, this problem can be solved by

splitting the model into displayable parts and using references. Second and more important,

drawings cannot capture all aspects of the model. As an illustration, consider the small systems

we used so far. The Block Diagram pictured Figure 1 is very useful to understand the global

structure of the system, but it tells nothing about the behavior of nodes and edges. This

behavior could be described by a state graph or a Petri Net, but mixing the two kinds of

graphics would lead to an over-decorated and thus confusing representation. The same remark

applies to the production system pictured Figure 4. Consider now the Petri Net pictured Figure

2 that represents a propagation mechanism. For the sake of the clarity, not only we described

only the behavior of one node, but also we split the description into three parts. Here again,

putting all together into a single drawing would have lead to a very confusing description.

These examples show that graphics are very convenient to show partial views of the model, but

not to represent it as a whole. Software specification languages such as UML [RJB99] advocate

this approach. The question is therefore what kind of graphics do we need to represent

Guarded Transition Systems? The following taxonomy could be established.

– Local behaviors are conveniently represented by State Graphs or Petri Nets. State

Graphs are simpler and should be used when states of the component can be represented

explicitly. Petri Nets are very powerful and can be used in all other cases.

– System architectures are conveniently represented by Block Diagrams, i.e. with boxes

and wires. They stand at a much more abstract level than State Graphs or Petri Nets.

– Synchronizations, which cannot be represented with the previous kinds of diagrams, can

be represented conveniently by Process Diagrams like the one pictured Figure 5. This

diagram represents synchronizations of the example of section 4.3. Process diagrams

are widely used in tools to model of communication protocols (e.g. Spin [Hol91]).

The choice of a particular type of diagrams is, to some extent at least, a matter of taste.

Nevertheless, we are convinced that graphics should be normalized and their semantics clearly

defined.

7. Conclusion

In this article, we proposed Guarded Transition Systems (GTS for short), a new states/events

formalism for reliability studies. We showed that GTS generalize the most widely used

formalims, including Block Diagrams and Petri Nets. Moreover, GTS makes it possible to

handle looped systems in a smooth way, which represents a major progress compare to all

existing formalisms. We showed also that GTS can be seen as an abstract data type, with two

composition operations: the free product and the synchronization. These operations make it

possible build hierarchical and modular models. We discussed the extension of GTS into

Stochastic GTS. We discussed also what kind of graphics can be used to represent GTS, with

the aim of normalizing these graphics.

GTS are thus a powerful modeling formalism. For most of the assessment algorithms,

including sequence generations and Monte-Carlo simulation, there is no increase in complexity

of the treatments. Two problems remain open however. First, does the algorithm to compile

Mode Automata into Fault Tree (proposed by the author in reference [Rau02]) extends to GTS?

This is an important question with respect to the assessment of large industrial systems. The

second problem is raised by the introduction of Dirac transitions. Assume that transitions are

either immediate, or timed with a negative exponential distribution, or Dirac transitions. Under

which condition is it possible to interpret the GTS as a multiphase Markov process and what is

the compilation algorithm? This question is of primary importance for the modeling of systems

with periodically tested components. We shall discuss it in a forthcoming article.

Engine 1 Engine 2 RepairCrew

startRepair startJob

endRepair endJob

startRepair startJob

endRepair endJob

Figure 5. A Synchronization Diagram

8. References

[ABCDF94] M. AjmoneMarsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis.

Modelling with Generalized Stochastic Petri Nets. Wiley Series in Parallel Computing.

John Wiley and Sons, 1994.

[AM93] J.D. Andrews and T.R. Moss. Reliability and Risk Assessment. John Wiley & Sons,

1993. ISBN 0-582-09615-4.

[Arn94] A. Arnold. Finite Transition Systems. C.A.R Hoare. Prentice Hall, 1994. ISBN 0-13-

092990-5.

[Bal86] M.O. Ball. Computational complexity of network reliability analysis: an overview.

IEEE Transactions on Reliability, R-35:230–239, 1986.

[BRDS04] M. Boiteau, Y. Dutuit, A. Rauzy and J.-P. Signoret, The AltaRica Data-Flow

Language in Use: Assessment of Production Availability of a MultiStates System,

Reliability Engineering and System Safety, Vol. 91, pp 747-755, Elsevier.

[Col87] C.J. Colbourn. The combinatorics of network reliability. Oxford University Press, New

York, 1987.

[Esp98] J. Esperza, Decidability and Complexity of Petri Nets Problems – An introduction,
Lectures on Petri Nets I: Basic Models, in W. Reisig and G. Rozenberg, LNCS 1491, pp

374-428, Springer, ISBN 3-540-65306-6, 1998

[Hol91] G.J. Holzmann. Design and validation of computer protocols. software series. Prentice

hall, 1991. ISBN 0-13-539925-4.

[KR02] Y. Kawauchi and M. Rausand, A new approach to production regularity assessment in

the oil and chemical industries. Reliability Engineering and System Safety, n°75 pp 379–

388, 2002.

[vLeu90] J. Van Leuwen, editor, Handbook of Theoretical Computer Science, volume B,.

Elsevier, 1990.

[MCFB94] J.-C. Madre, O. Coudert, H. Fraïssé, and M. Bouissou. Application of a New

Logically Complete ATMS to Digraph and Network-Connectivity Analysis. In

Proceedings of the Annual Reliability and Maintainability Symposium, ARMS'94, pages

118–123, 1994. Annaheim, California.

[Pap94] C.H. Papadimitriou. Computational Complexity. Addison Wesley, 1994. ISBN 0-201-

53082-1.

[Rau02] A. Rauzy. Mode automata and their compilation into fault trees. Reliability

Engineering and System Safety, Elsevier, Volume 78, Issue 1, pp 1-12, 2002.

[RJB99] J. Rumbaugh and I. Jacobson and G. Booch, The Unified Modeling Language.

Reference Manual, Addison Wesley, ISBN 0-201-30998-X, 1999

[Shi91] D.R. Shier. Network Reliability and Algebraic Structures. Oxford Science Publications,

1991.

[SBT96] T.R. Shiple, G. Berry, and H. Touati. Constructive Analysis of Cyclic Circuits. In

Proc. International Design and Testing Conf (ITDC), Paris, March 1996.

[SSBS96] T. R. Shiple, V. Singhal, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Analysis

of Combinational Cycles in Sequential Circuits. In Proc. Intl. Symposium on Circuits and

Systems, Atlanta, GA, May 1996.

