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Abstract: Dynamic Fault Trees have focused a large attention in the past few years. By 

adding new gates to static (regular) Fault Trees, Dynamic Fault Trees aim to take into 

account the order in which events occur. Lesage & al. proposed recently an algebraic 

framework to give a formal interpretation to these gates.  

In this article, we extend Lesage’s work by adopting a slightly different perspective. We 

introduce Sequence Algebras, which can be seen as Algebras of Basic Events 

representing failures of non-repairable components. We show how to interpret Dynamic 

Fault Trees within this framework. Finally, we propose a new data structure to encode 

sets of sequences of Basic Events: Sequence Decision Diagrams. Sequence Decision 

Diagrams are very much inspired from Minato’s Zero-Suppressed Binary Decision 

Diagrams. We show that all operations of Sequence Algebras can be performed 

efficiently on this data structure. 

 

1. Introduction 

Dynamic Fault Trees have focused a large attention in the past few years (see e.g. 

[BB03, BC04, Cod05, BCS07a, BCS07b, DD08, MRLB10]). By adding new gates to 

static (regular) Fault Trees, Dynamic Fault Trees aim to take into account the order in 

which events occur. Lesage & al. proposed recently an algebraic framework to give a 

formal interpretation to these gates [MRLB10]. The underlying idea is twofold. First, one 
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considers basic events that represent failures of non-repairable components; Second, 

one introduces a new operator ‘A<B’ to represent the event ‘the event A occurs before 

the event B’. Priority And gates, Functional Dependency Gates and Spares gates can 

be interpreted by means of classical combinatorial operators (and, or) and ‘< ’. 

In this article, we adopt a slightly different point of view. Rather than introducing 

constraints on order of events in the Boolean Algebra, we work directly with sequences. 

This small perspective shift makes it possible too extend Lesage & al ideas into two 

directions. 

First, we introduce the so-called Sequence Algebra, which can be seen as the algebra 

of Basic Events that represent failures of non repairable components. This algebra lies 

between the pure syntactic monoid and the Boolean algebra: in a sequence, Basic 

Events are ordered (like in the monoid) but can occur at most once (like in Boolean 

algebra). Operators of this algebra are concatenation, hook, symmetric and asymmetric 

shuffles, and disjunction. We show how to interpret Dynamic Fault Trees within this 

framework. Although this interpretation relies on the same principles as those proposed 

by Lesage & al, it gives a new light on Dynamic Fault Trees semantics.  

Second, we propose a new data structure, so-called Sequence Decision Diagrams 

(SDD), to handle set of sequences. SDD are very much inspired from Minato’s Zero-

Suppressed Binary Decision Diagrams [Min93]. We show that all operations of 

Sequence Algebras can be performed efficiently on SDD. SDD are a good candidate for 

Dynamic Fault Trees assessment at industrial scale. 

The remainder of this article is organized as follows. Section 2 presents sequence 

algebras. Section 3 shows how to encode Dynamic Fault Trees into this framework. 

Section 4 describes Sequence Decision Diagrams. Finally, Section 5 discusses related 

works. 

2. Sequence Algebras 

In the sequel, we assume the reader familiar with Fault Trees. 
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2.1. Sequences of basic events 

As proposed by Lesage & al in [MRLB10], we consider here non-repairable 

components, i.e. Basic Events that occur at a given date (taken from 0 to +∞). We 

denote basic events by capital letters possibly with subscript, e.g. A, B1… The date of 

occurrence of a basic event A is simply denoted by date(A). 

If we observe a system which involves basic events A1, A2…An throughout a given 

period of time t, some of the Ai’s occur once, some other do not occur. That is, we 

observe a sequence of basic events Ai1 Ai2… Aik such that 0 ≤ date(Ai1) ≤ date(Ai2) ≤ … 

< date(Aik) ≤ t. In general, these inequalities are strict for probability distributions 

associated with basic events are continuous functions with infinite supports. 

Formalisms such as Dynamic Fault Trees aim to represent in a convenient way sets of 

such sequences, namely sets of sequences that produce a failure of the system under 

study. 

We denote sequences by lower case letters, taken from the end of the alphabet, e.g. s, 

t, u.... We denote sets of sequences also by lower case letters, but taken from the 

beginning of the alphabet, e.g. f, g, h… Moreover, we denote them as sums (or 

disjunctions), e.g. ABC+DE+AD. We denote the empty sequence by ε and the empty 

set of sequences by 0. 

By abuse, we say that a basic event E belongs to a sequence s, which we denote E ∈ 

s, if E occurs in s. Similarly, we use set usual set operations ∪ (union), ∩ 

(intersection), ⊆ (inclusion) to manipulate sets of events occurring in sequences (but not 

the sequences themselves), e.g. ABC ∩ DE = ∅ and DB ⊆ ABCD. 

Let s = A1…Am and t = B1…Bn be two sequences of basic events. 

The sequences s and t are said compatible if there is no two events that do not occur in 

the same order in s and t, i.e. four indices 1 ≤ i1 < i2 ≤ m and 1 ≤ j1 < j2 ≤ n, such that Ai1 

= Bj2 and Ai2 = Bj1. The sequences s and t are said incompatible otherwise. For 

instance, ABCD and EBFGDH are compatible (the events they share, namely B and D, 
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occur in the same order in the two sequences), while ABCDE and FEGDH are not (B 

and D occur in a different order in the two sequences). 

The sequence s is a subsequence of the sequence t, which we denote by s ≤ t, if s ⊆ t 

and s and t are compatible. For instance, BD ≤ ABCDE (in this case, the inequality is 

strict so we could write BD < ABCDE). 

Two sequences s and t can be combined in four different “natural” ways (concatenation, 

hook, symmetric shuffle and asymmetric shuffle), plus two derived ones (left hook and 

left asymmetric shuffle). Each of these combinations is realized by means of an 

operator that takes two sequences as input returns a possibly empty set of sequences. 

The most restrictive combination is the concatenation. The less restrictive is the 

symmetric shuffle. 

The concatenation of s = A1…Am and t = B1…Bn, denoted by s.t, returns the singleton 

A1…AmB1…Bn if s ∩ t = ∅ and 0 otherwise. 

The symmetric shuffle of sequences s and t, denoted by s*t, is the set of sequences 

obtained by interleaving s and t in all possible ways, i.e. the sequences u such that: 

• s ∪ t = u. 

• s and t are compatible with u. 

Here follows examples of symmetric shuffles. 

• ABC * DE = ABCDE + ABDCE + ABDEC + ADBCE + ADBEC + ADEBC + 

DABCE + DABEC + DAEBC + DEABC. 

• ABCD * BEFD = ABCEFD + ABECFD + ABEFCD 

• ABCDE * DFB = 0 

Note that the shuffle of two sequences is empty if (and only if) these sequences are 

incompatible. 

The hook, denoted by s,t, is similar to the concatenation but a bit less restrictive. It is 

defined as follows: s,t = sv if there exists two sequences u and v such t = uv, u ≤ s, and 

v ∩ s = ∅. For instance, ABCD , BDE = ABCDE. We shall see section 3 that the hook 

may be used to approximate the semantics of spare gates. 
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The asymmetric shuffle, denoted by s;t, is defined as the symmetric shuffle, with the 

additional condition that the last event comes from t. For instance, ABC ; DE = ABCDE 

+ ABDCE + ADBCE + DABCE. We shall see section 3 that the asymmetric shuffle can 

be used to model priority and gates. 

Aside the hook and the asymmetric shuffle there are their left counterparts. We mention 

them here for the sake of the completeness, but we won’t use them. The left hook, 

denoted by s<,t, is defined as s <, t = ut, if there exists two sequences u and v such that 

s = uv, u ∩ t = ∅ and v ≤ t.  The left asymmetric shuffle, denoted by s <; t, is defined as 

the symmetric shuffle, with the additional condition that the first event comes from A. 

2.2. Operators 

So far, we introduced five operators: 

• The concatenation operator ‘.’, which we kept implicit most of the time (ABC 

stands for A.B.C). 

• The symmetric shuffle ‘*’. 

• The hook ‘,’. 

• The asymmetric shuffle ‘;’. 

• The disjunction ‘+’. 

The Sequence Algebra is obtained by lifting up the definitions of these operators to sets 

of sequences. Given an alphabet Σ, i.e. a set of basic events, we define (well formed) 

formulas over Σ as the smallest set such that: 

• The constant 0 (empty set of sequences) and ε (empty sequence) are formulas. 

• Basic events of Σ are formulas. 

• If f and g are formulas, then so are f.g, f+g, f*g, f,g and f;g. 

Formulas are interpreted as disjunctions of sequences of basic events. The 

interpretation of a formula f is denoted [f]. The interpretation rules are defined 

recursively as follows. 
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• Constants are interpreted by themselves:  [0] = 0, [ε] = ε. 

• A basic event A is interpreted as the set containing only one sequence containing 

only A. The set and the sequence are both denoted by A: [A] = A. 

• [f.g] = { w ∈ u.v | u ∈ [f], v ∈ [g] } 

• [f,g] = { w ∈ f,g | u ∈ [f], v ∈ [g] } 

• [f*g] = { w ∈ u*v | u ∈ [f], v ∈ [g]} 

• [f;g] = { w ∈ u;v | u ∈ [f], v ∈ [g]} 

• [f+g] = [f] + [g] (assuming that only one copy of each sequence is kept). 

We shall use parentheses to make clear the structure of the formulas. 

Examples: 

• (A.B + C.D) . (A.E + F.D) = A.B.F.D + C.D.A.E (terms A.B.A.E and C.D.F.D are 

not sequences for they contain repeated events). 

• (A.B.C + D.E) * C.E.B = D.E * C.E.B = D.C.E.B + C.D.E.B (terms A.B.C and 

C.E.B are incompatible). 

• A.B.C ; (D.C + E) = A.B.D.C + A.D.B.C + D.A.B.C + A.B.C.E 

It is worth noticing that the above interpretation rules are actually an algorithm to reduce 

a formula into a canonical form, in which hooks and shuffles have been resolved and 

formulas are written as sums of sequences. 

2.3. Static Fault Trees 

Static Fault Trees can be seen as encoding sets of sequences, but with the additional 

assumption that if a given sequence leads to the failure of the system under study, then 

any permutation of this sequence leads also to the same failure. Under this 

interpretation, the sequence operators * and + correspond respectively to the Boolean 

operators ∧ and ∨. 

Consider for instance a Fault Tree with structure function (A ∨ B∧C) ∧ D. This fault tree 

has two minimal cutsets AD and BCD and three non minimal cutsets ABD, ACD and 

ABCD. Its development in the Boolean algebra is as follows. 
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(A ∨ (B ∧ C)) ∧ D 

 = (A ∧ D) ∨ (B ∧ C ∧ D) 

Its interpretation in the sequence algebra is as follows. 

(A + B*C) * D 

 = (A + B.C + C.B) * D 

 = A*D + (B.C)*D + (C.B)*D 

 = A.D + D.A + B.C.D + B.D.C + D.B.C + C.B.D + C.D.B + D.C.B 

For each cutset of the Boolean interpretation, we retrieve, in the sequence 

interpretation, all of the sequences that correspond to permutations of that cutset. In 

that case, all cutsets (and therefore sequences) are minimal. 

The above remark can be formalized establishing an isomorphism between the lattice 

generated by Ε, ∨ and ∧ and a quotient of sub-algebra obtained from E, + and * by a 

natural equivalence relation (based on minimal sequences and permutations). These 

developments would bring us too far in the framework of this article. 

2.4. Additional Properties 

In order to provide the reader with a better intuition we give hereafter a number of 

properties of operators of the sequence algebra (we give them without proof here but 

they are easy to check). 

Concatenation:  

• f.0 = 0.f = 0  f.ε = ε.f = f 

• f.(g.h) = (f.g).h 

Disjunction: 

• f + 0 = 0 + f = f 

• f + g = g + f  f + (g + h) = (f + g) + h f + f = f 

Shuffle: 
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• f * 0 = 0 * f = 0 f * ε = ε * f = f 

• f * g = g * f  f * (g * h) = (f * g) * h (f + g) * h = (f * h) + (g * h) 

• (A + B) * (A + B) ≠ A + B 

• (A * B) + C ≠ (A + C) * (B + C) 

The two above equality are true if we keep only minimal sequences. 

Hook: 

• f , 0 = 0 , f = 0 f , ε =  ε, f = f 

• (AB , BC) , ACD ≠ AB , (BC , ACD) 

Asymmetric shuffle: 

• f ; 0 = 0 ; f = 0 f ; ε = ε ; f = f 

• (A ; B) ; C ≠ A ; (B ; C) 

 

3. Dynamic Fault Trees 

Several types of dynamic gates have been proposed. We shall consider here Priority 

And Gates, Functional Dependencies, Sequence Enforcers and different Spare Gates, 

according to the presentation by Dugan & al. in Ref. [CSD00]. The analysis of the 

semantics of the different gates is borrowed to Lesage & al. work (especially to G. Merle 

PhD Thesis [Mer10]). 

3.1. Priority And Gates 

A Priority And Gate (PAND) over events E1…Ek is realized if E1…Ek occur in this order. 

Priority And Gates are interpreted as asymmetric shuffles: 

• PAND(E1,…,Ek) = (…(E1;E2);E3)…;Ek) 

Note that this interpretation works even if the Ei’s share some (basic) events.  



9 

3.2. Functional Dependencies 

A Functional Dependency (FDEP) asserts a functional dependency. The failure of the 

trigger event causes the immediate and simultaneous failure of the dependent (basic) 

events. This is not a gate in the sense that it has no output event. Consider the 

Functional Dependency Gate FDEP(T; E1…,Ek), where T is the trigger event and E1…Ek 

are the dependent events. As noted by Stamatelatos and Vesely in [SV02], the Ei’s can 

occur either by themselves or because they have been triggered by T (no matter the 

order in which these actions occur). Each Ei can therefore be seen as an OR gate 

between T and the event Ei-fails-by-itself. 

3.3. Sequence Enforcer 

A Sequence Enforcer (SEQ) asserts that events can occur only in a given order. This is 

not a gate in the sense that it has no output event. Consider the Sequence Enforcer 

SEQ(E1…Ek). It means that E2 must occur after E1, E3 after E2 … Ek after Ek-1. So, we 

can see each Ei (1< i ≤ k) as a PAND gate (itself interpreted as an asymmetric shuffle), 

between Ei-1 and the actual event Ei (Ei-fail-by-itself if one will). 

3.4. Spare Gates 

Cold, Warm, Hot Spare Gates (CSP, WSP, HSP): When the primary input fails, 

available spare inputs are used in order until none is left, at which time the gate fails. 

Spares can be shared among spare gates, in which case the first spare gate to utilize 

the spare makes the spare inaccessible to the other spare gates. The “temperature” of a 

spare gate indicates whether unused spares cannot fail (cold), fail at a rate attenuated 

by the dormancy factor of the spare (warm), or fail at their full rates (hot). 

Consider first the simplest case, i.e. a hot spare Gate HSP(P,S) where P is the primary 

input event and S represents the failure of the spare component. Clearly HSP(P,S) is 

realized if both P and S are realized. The order does not matter because S is supposed 

to have the same behavior whether it is active or not. So, a priori, HSP(P,S) could be 

interpreted as an AND gate. 
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However, this interpretation does not work if the spare component is shared. Assume 

now that we have two spare gates H1 = HSP(P,S) and H2 = HSP(Q,S) and a gate H = 

H1 or H2. If P occurs first, then the spare component is activated. Now if Q occurs, then 

H2 will occur simultaneously, i.e. without waiting the occurrence of S, because the spare 

component is already in use. Therefore H will occur. As a consequence, H = H1 or H2 ≠ 

(P and S) or (Q and S). This is a very tricky situation because H2 depends actually on P. 

A solution consists in defining H1 as (P and (S or Q)) and H2 as (Q and (S or P)). 

However, the generalization of this idea is tedious. 

The above example shows that even in the simplest case, i.e. hot redundancy, the 

semantics of a spare gate does not depend only of the inputs of the gate. The 

interpretation algorithm has to browse the Fault Tree, at least if spare components can 

be used in several places (but in only one place at once). 

Warm spare gates are the most general case: a hot spare gate is just a warm spare 

gate with the same probability distribution of failure for the spare component whether it 

is active or dormant; a cold spare gate is just a warm spare gate in which the spare 

component cannot fail when it is dormant. So, let us consider a warm spare gate W = 

WSP(P,S). Let us denote by Sd and Sa the two events representing the failure of the 

spare component when it is respectively dormant and active.  The event W occurs if P 

occurs, then Sa occurs or if Sd occurs then P occurs. A candidate interpretation for W is 

therefore W = (P;Sa) + (Sd;P). Consider however the case where Sa = Ua.Va (the other 

events being basic ones). The development of W would be as follows. 

• W = (P;Sa) + (Sd;P) = (P; Ua.Va) + (Sd;P) = P.Ua.Va + Ua.P.Va + Sd.P 

The sequence Ua.P.Va should not belong to the solution because it would mean that a 

part of the spare component fails in an active more before the failure of the main 

component, i.e. before the spare component is activated. 

The correct interpretation for W is therefore W = (P,Sa) + (Sd;P). By using a hook rather 

than an asymmetric shuffle, we warranty that no part of the spare component fails 

before the failure of the primary component. Strictly speaking, this interpretation is still 

an approximation because it assumes that Sa “starts” at 0. 
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Note that if the spare component is used somewhere else, we can use the same 

method as explained above, i.e. replace the case where the spare component fails in a 

dormant mode by a disjunction of this failure and the failure of the primary input 

component(s) of the other spare gate(s). For instance, if W1 = WSP(P,S) and W2 = 

WSP(Q,S), then we can interpret W1 as follows. W1 = (P,Sa) + ((Q+Sd);P).  

4. Sequence Decision Diagrams 

4.1. Data Structure 

Sets of sequences over a set of basic events Σ can be seen finite languages, finite sets 

of words, over the alphabet Σ. They can therefore be represented by finite state 

automata. For instance, the set of sequences {ABC, ACD, ADC, BD} can be 

represented by the minimal automaton pictured Figure 1.  

Sequence Decision Diagrams (SDD) are a variation on Minato’s Zero-Suppressed 

Binary Decision Diagrams (ZBDD) [Min93] that makes it possible both to encode 

automata and to perform Sequence Algebra operations in an efficient way. ZBDD are 

derived from Bryant’s Binary Decision Diagrams (BDD) [Bry86, BRB90]. 

In a Finite State Automaton, there are two kinds of objects: nodes and edges. Edges 

are labelled with events. Each node has typically a list of out-edges. The idea of ZBDD 

(and therefore of SDD) is to use nodes both to represent nodes, i.e. lists of out-edges, 

and edges. The SDD encoding the set of sequences {ABC, ACD, ADC, BD} is pictured 

Figure 2. 

A SDD is a directed acyclic graph with two distinguished nodes: one to represent the 

empty set ∅ and one to represent the singleton {∅}. The other nodes are labeled with 

elements of the alphabet Σ and have two out-edges (left and right). Each internal node 

can therefore be denoted as a triple 〈A,l,r〉 where A ∈ Σ, and l and r are the nodes 

pointed by respectively the left and right out-edges. On Figure 2, left out-edges are 

represented by plain lines, while right out-edges are represented by dashed lines. Each 

node n is associated with a set [n] of sequences by means of the following rules. 

• [∅] = 0 
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• [{∅}] = ε 

• [〈A,l,r〉] = A.[l] + [r] 

Some of SDD nodes correspond to state of the automaton. On Figure 2, we labelled 

these nodes with the corresponding numbers of the state of the automaton pictured 

Figure 1. 

SDD nodes are right-ordered, i.e. that a total order over Ε is defined (typically by means 

of heuristics) and by construction if the right out-edge of a node labelled with A ∈ Σ 

points to a node labelled with B ∈ Σ, then A < B. Here stands the main difference with 

ZBDD which are both left and right ordered. 

Nodes are maintained into a table (as suggested first in [BRB90]) so that for each triple 

〈A,l,r〉 there is (at most) an unique node in the table encoding the triple. This technique 

ensures that diagrams are minimal and makes it possible to check equality of two sets 

in constant time. 

4.2. Operations 

Most of operations on BDD (and ZBDD) are described by means of recursive equations. 

The same principle applies to SDD. 

Disjunction: The simplest operation is the disjunction of two sets of equations encoded 

by two SDD nodes. 

• n + 0 = n + 0 = n 

• n + ε = ε + n ≡ ε 

• (A.l1 + r1) + (A.l2 + r2) = A.(l1 + l2) + (r1 + r2) 

• (A.l1 + r1) + (B.l2 + r2) = A.l1 + (r1 + (B.l2 + r2)) assuming A < B 

Several remarks can be made about the above equations. 

First, strictly speaking ‘A + ε’ is different from ε. However, we are interested in coherent 

(monotone) systems only. If a given sequence leads to the failure of the system, then 
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any longer sequence maintains the system in a failure mode. So it is safe to consider ‘A 

+ ε’ as ε. 

Second, it is easy to turn these equations into an actual algorithm. However, experience 

shows that to be efficient such an algorithm should better use a caching mechanism. In 

our case, a hashcache contains quadruple (+,n,m,r) where n and m are the SDD nodes 

given as arguments and r is the result SDD node. Before actually performing the 

operation n+m, the hashcache is looked-up. If it contains an entry for this operation then 

the result is returned, otherwise the operation is actually performed and its result is 

stored into the hashcache. 

Concatenation: Equations that define concatenation are straightforward: it suffices to 

traverse the left argument and to replace ε leaves by the right argument. However, 

doing so may produce sequences with repeated events. Therefore, the algorithm has to 

maintain a third argument, which is the list of events already visited. This list can be 

encoded by means of a SDD (so that the caching mechanism works in a uniform way).  

• m . n = m . n | 0 0 encodes here the empty set of events 

• 0 . n | x = 0 

• ε . 0 | x = 0 

• ε . ε | x = ε 

• ε . (A.l + r) | x = 0      if A ∈ x 

= A.( ε.l | x ) + (ε.r | x) otherwise 

• (A.l + r) . n | x = A.(l.n | x + A) + (r . n | x + A) 

Equations for the shuffle, asymmetric shuffle and hook work in a similar way. 

4.3. Minimal Sequences 

A sequence is a minimal failure sequence for a given system if it leads to the failure of 

the system and no smaller sequence does. The SDD encoding with a given set of 

sequences may contain non minimal sequences. The algorithm to extract minimal 

sequences is almost the same as the one proposed by the author in [Rau93] to extract 
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minimal cutsets from a BDD (except that both left and right branches have to be 

pruned). It is based on the following recursive equations. 

• minseq(0) = 0 

• minseq(ε) = ε 

• minseq(A.l + r) = A.(minseq(l) ÷ minseq(r)) + (minseq(r) ÷ minseq (l)) 

where ‘÷’ is the "without" operator defined by the following recursive equations. 

• 0 ÷ n = 0 

• m ÷ ε = 0 

• ε ÷ n = ε 

• (A.l1 + r1) ÷ (A.l2 + r2) = A.((l1 ÷ l2) ÷ r2) + (r1 ÷ (A.l2 + r2)) 

• (A.l1 + r1) ÷ (B.l2 + r2) = A.(l1 ÷ (B.l2 + r2)) + (r1 ÷ (B.l2 + r2)) if A ≠ B 

The justification of the above algorithm is essentially the same as in [Rau93]. 

It is worth noticing that the construction of the SDD using the algorithms given in the 

previous section can be interleaved with the minimization process proposed in this 

section. In the same vein, it is possible to define cutoffs (on the length or the probability 

of sequences) and to use them to keep SDD of reasonable size. These approximations 

rely on the same principles as those defined by the author in [Rau01]. 

5. Related Works 

In the past few years, several authors proposed to translate Dynamic Fault Trees to 

Markov chains (e.g. [BCS07a, BCS07b]), Stochastic Petri Nets [BC04, Cod05] and 

Bayesian Networks [BD05]. Once again, our work is mainly inspired by Lesage & al 

algebraic framework [MRLB10, Mer10]. 

In sequence algebras, all basic events are assumed to be associated with probability 

distributions that are continuous functions with supports in [0,+∞). This algebraic 

framework has many good properties. It would be interesting however to extend it by 

considering supports not starting a 0, but at dynamically determined dates. In other 
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words events would have a start date and an end date. Such an extension would lead 

us very close to Allen Algebras [All83]. The comparison of sequence and Allen algebras 

is certainly worth to do both in terms of expressive power and algorithms. In particular, it 

would be interesting to investigate the relationships of Allen Algebras with Bon and 

Bouissou’s BDMP [BB03]. 

SDD can be seen an efficient algorithmic framework to translate Dynamic Fault Trees 

into Markov chains, although this translation works even if Markovian hypotheses are 

not verified. Moreover, SDD make it possible to work on minimal sequences only (as 

shown in the previous section). SDD are very close to Minato’s ZBDD. The idea of using 

BDD like data structures to encode finite state automata appeared in many places in the 

literature. Zampunieris and Le Charlier Shared Trees [ZlC95] are certainly worth to 

mention here. 

6. Conclusion 

In this article, we introduced sequence algebras. We discussed how to use this 

framework to deal with Dynamic Fault Trees. Finally, we introduced Sequence Decision 

Diagrams, a ZBDD like data structure to handle set of sequences of basic events. 

The translation of Dynamic Fault Trees into sequence formulas is certainly useful to get 

a better understanding of their semantics. In the reverse way, it may be the case that 

sequence algebra operators will suggest new types of gates for Dynamic Fault Trees. 

Sequence Decision Diagrams provide an efficient algorithmic framework to deal with set 

of sequences. In this article, we didn’t consider quantitative assessments, i.e. 

determination of top event probability, importance factors… Probabilistic computations 

can be performed on SDD by considering the latter’s as Markov chains or using 

stochastic simulation. We believe however that specific, therefore more efficient, 

algorithms can be designed. 

Another interesting perspective is to use sequence algebras as the target of the 

compilation of high level formal modeling languages such as AltaRica [Rau02]. 
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Figure 1. The (minimal) automaton encoding ABC + ADC + ACD + BD. 
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Figure 2. The Sequence Decision Diagram encoding ABC + ADC + ACD + BD 

 

 

 

 


