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a b s t r a c t

In this article, we study the semantics of dynamic fault trees and related formalisms. We suggest that
there are actually three mechanisms at work in dynamic fault trees: first, changes of states due to
occurrences of events, second bottom-up propagations of values as in static fault trees, and third top-
down propagations of demands of activations of components. We propose a direct translation of
dynamic fault trees into guarded transitions systems, the underlying mathematical model of the AltaRica
3.0 modeling language. This encoding provides a good basis for our study. We discuss also assessment
algorithms at hand in light of this translation.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In the recent past years, dynamic fault trees and related formalisms
have focused a large attention in the reliability engineering literature
(see e.g. [7,13,3,11,4,5,8,15,17]). By adding some extra-logical con-
structs to regular/static fault trees, one aims to describe dynamic
behaviors, i.e. to put constraints on order of occurrences of events,
while maintaining the conceptual (and graphical) simplicity of fault
trees. This increase in expressive power comes indeed with a price:
models cannot be interpreted anymore in the Boolean algebra
framework.

In this article, we claim that there are actually three mechanisms at
work in dynamic fault trees and Boolean Driven Markov Processes:
first, changes of states of due to occurrences of events, second bottom-
up propagations of values as in static fault trees, and third top-down
propagations of demands of activations of components. To define a
sound semantics of dynamic fault trees, we encode them into guarded
transitions systems. Guarded transitions systems have been introduced
in reference [19]. They are at the core of the new version of the high
level modeling language AltaRica 3.0 (see e.g. [20]). Guarded transitions
systems are (finite or infinite) state automata with input and outputs.
They generalize most of the formalisms used for probabilistic safety
analyses, including static fault trees, reliability block diagrams and
generalized stochastic Petri nets. The definition of a semantic for
dynamic fault trees involves actually multi-state components, immedi-
ate and timed (stochastic) transitions as in generalized stochastic Petri
nets [1] (these concepts are not available in block diagrams or static
fault trees), as well as block-wise construction and remote value
propagation as in reliability block diagrams (these concepts are not
available in generalized stochastic Petri nets).

The encoding we propose here is based on some preprocessing and
a one-to-one correspondence between dynamic fault tree constructs
and their counterparts in terms of guarded transitions systems. In other
words, we design a library of reusable modeling components, one per
dynamic fault tree construct. The design of a dynamic fault tree model
consists then simply in assembling these predefined components.
Proceeding this way presents at least three important advantages
compared to specific approaches. First, it clarifies the semantics of each
and every construct. Second, it makes it easy to extend the library with
new constructs. Third, all assessment tools designed for guarded
transition systems are instantly applicable to dynamic fault trees.
Regarding this last point, the key question is to determine whether
assessment algorithms can take advantage of the specificity of dynamic
fault tree constructs. We give arguments to show that this question
should be studied in light of the models chosen for basic components
and that the answer is probably negative.

The original contribution of this article is twofold. First, we show
that guarded transitions systems provide a suitable framework to
clarify the semantics of dynamic fault trees. Second, we relate this
semantic and assessment algorithms at hand with models chosen for
basic events.

The remainder of the article is organized as follows. Guarded
transitions systems are introduced Section 2. The translation of
dynamic fault tree constructs into guarded transition systems is
studied Section 3. Finally, algebraic interpretations and assess-
ments algorithms are discussed Section 4.

2. Guarded transitions systems

2.1. Definition

A Guarded Transitions System is a quadruple, 〈V¼S⊎F, E, T, A〉
where,
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– S and F are two disjoint (finite) sets of variables. S is the set of
state variables, F the set of flow variables. Variables have a type
(Boolean, Integer, an Enumeration of symbolic constants…) and
a default/initial value.

– E is a (finite) set of events. Events are either immediate or
stochastic.

– T is a set of transitions. Transitions are triple 〈G, e, P〉, where G is
Boolean condition built over state and flow variables, e is an
event, and P is an assignment of a state variables, i.e. a set of
individual assignments of the form s:¼K, where s is a state
variable and K is an expression built over variables. G and P are
called respectively the guard and the action of the transition.
For the sake of clarity, the transition 〈G, e, P〉 is denoted e: G-P.

– A is an assertion, i.e. a set of assignments in the form f:¼L,
where f is a flow variable and L is an expression built over
variables. A flow variable is assumed to appear only once as the
left member of an equation.

A transition is fireable when its guard is satisfied by the current
values of variables. The firing of a transition is a two steps process:
first, the action is performed, i.e. the values of (some) state
variables are changed; second, the values of flow variables are
updated by means of the assertion. Immediate transitions take no
time while timed (or stochastic) transitions are assumed to take
some (possibly infinitely small) amount of time. The underlying
model of time is similar to the one of generalized stochastic Petri
nets [1] if we assume that delay of stochastic transitions are
Markovian (i.e. obey negative exponential distributions).

The update of flow variables after each transition firing is
performed thanks to a fixpoint mechanism [19], i.e. values of left
members of equations are recalculated until the system stabilizes.
This stabilization is obtained in at most two passes, i.e. it is linear
in the size of the assertion in the worst case. It is atomic, i.e. it is
assumed to take no time (as immediate transitions). The important
point here is that this fixpoint mechanism makes it possible to
model remote interactions between components.

To illustrate the above definitions, let us consider first a simple
non-repairable component. The guarded transition system for this
component is pictured Fig. 1. It is made of the following elements:

– A state variable s, which takes its value into the enumeration
{working, failed}. The initial value of s (working) is indicated
with a small entering arrow.

– A Boolean flow variable: out.
– A stochastic event: failure.
– A transition transitions:
– failure: s¼working-s:¼failed
– An assertion made of an unique assignment:
– out:¼ (s¼failed)

Now consider a spare, non-repairable component in cold
redundancy. The guarded transition system for that component
is pictured Fig. 2. It is made of the following elements:

– Two state variables a and s, which take respectively their values
into enumerations {standby, active} and {working, failed}.

– Two Boolean flow variables: demand and out.
– Four events: start, failureOnDemand, failure and dormantFai-

lure. start and failureOnDemand are immediate (pictured as
dashed arrows). Failure and dormantFailure are stochastic
transitions (pictured as plain arrows).

– Four transitions:
– start: a¼standby and demand-a:¼ active
– failureOnDemand: a¼standby and s¼working and demand-

a:¼ active, s:¼ failed
– failure: a¼active and s¼working-s:¼ failed

– dormantFailure: a¼standby and s¼working-s:¼ failed
– An assertion made of a unique assignment (“demand” is an

input flow variable):
– out:¼(s¼ failed)

This example is helpful to introduce a point we did not
discussed so far. Three transitions leave the state “a¼standby
and s¼working”. Two of them are immediate (“start” and “fail-
ureOnDemand”) and one is stochastic (“dormantFailure”). When
the input flow “demand” gets true, these three transitions are in
conflict. However, in the Markovian framework adopted in this
article, the probability that the delay associated with the stochastic
transition is null is zero. Therefore, immediate transitions have the
priority. Still they are in conflict. The choice between “start” and
“failureOnDemand” is non-deterministic. It is possible however to
influence the probabilities with which transitions in conflict are
fired by associating a weight (called expectation in AltaRica
3.0 jargon) with each of them. The probability that a particular
transition is fired is then the weight of this transition divided by
the sum of the weights of the transitions in conflict. By default, the
weight of a transition is 1.

2.2. Composition

Guarded transition systems can be enclosed into blocks (as
illustrated Figs. 1 and 2). Then blocks can be composed to create
larger blocks, as illustrated Fig. 3 where the model for the simple
component described Fig. 1 and the model for the spare compo-
nent described Fig. 2 are composed with a block G representing an
AND gate. The idea behind the encoding of dynamic fault trees
into guarded transition systems is to design a library of generic
blocks representing each type of basic events and gates and then
to assemble instances of these blocks just as exemplified Fig. 3.
This encoding provides a sound semantics for dynamic fault trees
because the semantics of guarded transition systems is itself
completely and formally defined [19]. Guarded transitions systems
are actually richer than what we presented here. However, this
presentation suffices for the purpose of the present article.

Fig. 1. The guarded transition system for a non-repairable component.

Fig. 2. The guarded transitions system for a spare non-repairable component.
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Any hierarchy of blocks is equivalent to a flat guarded transitions
system. To obtain this guarded transitions system it suffices to prefix
names of variables and events of each internal block by the name of
the block, as illustrated on Fig. 3 in equations (assertion) linking flow
variables of the different components. This transformation of a
hierarchical model into a flat one is thus of linear complexity with
respect to the size of the model. It is performed automatically by
assessment tools prior to any calculation.

In our example, the flat guarded transition system is made of
the following elements:

– Three state variables A.s, B.a and B.s, which take respectively
their values into enumerations {working, failed}, {standby,
active} and {working, failed}. The initial value of A.s and B.s is
“working” while the initial value of B.a is “standby”. The
component G which represents a combinatorial gate has no
internal state.

– Six Boolean flow variables: A.out, B.demand, B.out, G.in1, G.in2
and G.out.

– Four events: A.failure, B.start, B.failure and B.failureOnDemand.
B.start and B.failureOnDemand are immediate. A.Failure and B.
failure are stochastic.

– Five transitions:
– A.failure: A.s¼working-A.s:¼ failed
– B.start: B.a¼standby and B.demand-B.a:¼ active
– B.failureOnDemand: B.a¼standby and B.s¼working and B.

demand-B.a:¼ active, B.s:¼ failed
– B.failure: B.a¼active and B.s¼working-B.s:¼ failed
– B.dormantFailure: B.a¼standby and B.s¼working-B.

s:¼ failed
– An assertion made of six assignments:
– A.out:¼ (A.s¼failed)
– B.out:¼ (B.s¼ failed)
– B.demand ¼A.out
– G.in1¼A.out
– G.in2¼B.out
– G.out¼G.in1 and G.in2

There is a one-to-one correspondence between the mathema-
tical formulation and the graphical representation of guarded
transition systems. For this reason, we shall base our presentation
on graphical representations, which are more intuitive. But it
should be clear that the mathematical formulation in implicitly
understood.

2.3. Reachability graph

A guarded transition system describes a reachability graph
(more formally a Kripke structure) in an implicit way. The states
of this graph are labeled with variable assignments and its
transitions with events.

For instance, the reachability graph described by the guarded
transition system pictured Fig. 3 is pictured Fig. 4. Flow variables

are not represented on this figure for they depend functionally on
state variables. Their value is calculated by means of the assertion.

The article [19] gives the precise structured operational seman-
tics of guarded transition systems and their composition opera-
tions. The full exposition of this semantics goes beyond the scope
of the present article. The interested reader can refer to the cited
article.

The reachability graph is usually exponentially larger than the
guarded transition system that describes it and gets very big even
for medium size models. Therefore, assessment algorithms never
built it in computer memory neither they explore it fully. This is
reason why defining the semantics of dynamic fault trees in terms
of guarded transition systems is the right way to proceed: it is both
sound from a mathematical view point and efficient from an
algorithmic viewpoint.

3. Encoding dynamic fault trees into guarded transition
systems

In this section, we shall present the translation of dynamic fault
tree constructs into guarded transition systems. We shall examine
first basic events and combinatorial gates. Then we shall discuss
the encoding of dynamic gates introduced by Dugan in her
seminal article [14], i.e. PAND gates, FDEP gates, SEQ gates and
Spare gates. Finally, we shall discuss the encoding of triggers of
Boolean Driven Markov Processes [7].

3.1. Mechanisms at work

To start with, assume we want to encode a static fault tree into a
guarded transition system. To do so, we need to design generic
blocks for basic events and combinatorial gates (AND, OR,K-out-of-
N…). Models for basic events will be typically as the one represented
Fig. 1, possibly with a repair transition. Models for combinatorial
gates will be typically similar to the AND gate implicitly described
Fig. 3. Two fundamental mechanisms are at work in these models:
first, changes of states (of basic components) under the occurrence of
stochastic events (failures and repairs), and second bottom-up
propagations of values starting from basic components and going
to the top event through the intermediate gates. These two mechan-
isms are indeed still present in dynamic fault trees as well, but they
are not sufficient to capture their semantics. As we shall see,
immediate transitions are necessary to describe reconfigurations.
Moreover, not only models for basic events have states, but also those
for some of the dynamic gates. Most importantly, a third funda-
mental mechanism is at work: components can be activated and
deactivated. Activation and deactivation demands are carried out
top-down in the tree. This mechanism is illustrated Fig. 5 where
activation flows are represented with dashed lines.

On this figure, the gate G has two parents gates P1 and P2 and
two children gates (or basic components) C1 and C2. Then G is
thus active when at least one of its parent gates is active. G

Fig. 3. Composition of three guarded transition systems.
Fig. 4. Reachability graph for the guarded transition system pictured Fig. 3.
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propagates activation demands to its children gates. The propaga-
tion of activation demands is similar to the propagation of values
excepted it is carried out top-down instead of bottom-up. A
Boolean flow variable “demandIn” is thus associated with each
block (encoding a basic component or a gate). Blocks encoding
gates define one or more Boolean flow variables “demandOut”.
The top blocks of a dynamic fault tree (there may have several) are
always active, i.e. the assertion sets their input demand to “true”.

Each block describes, together with its descendants in the tree,
a physical or a functional part of the system under study. The part
is active if the demand input flow is true. It is in standby
otherwise. The part is failed if the output value of the block is
true and working otherwise. The output value of a block depends
on the state of its descendants in the tree.

This additional mechanism presented, we can now consider
each and every construct of dynamic fault trees and give them a
sound semantics in terms of guarded transition systems.

3.2. Basic events

Several models can be associated with basic events. For
instance, the model pictured Fig. 1 is perfectly acceptable, assum-
ing that an input flow “demand” with no effect is be added for the
sake of completeness. A generic model for basic events is pictured
Fig. 6. This model is an extension of the one pictured Fig. 2. It
encompasses failures, dormant failures, failures on demand,
repairs, activations and deactivations of the component.

We shall discuss Section 4 the impacts of the choice of models
for basic events on assessment algorithms.

3.3. Combinatorial gates

Combinatorial gates (AND, OR, K-out-of-N…) encoded by
blocks with no internal state, event and transition, as illustrated
by the encoding of an OR gate pictured Fig. 7. They propagate
activation demands as explained in Section 3.1.

There is an interesting point here. Consider an OR gate G with
two child gates A and B. If, for some reasons, the output value of A
gets true, then the output value of the gate will be true, whatever
the output value of B. In other words, events occurring in B do not
influence the output value of G (except for repair events of
components that are shared with A). It may worth, for the sake
of the efficiency of assessment algorithms, to deactivate these
components, so not to pollute the calculations with the firing of
inconsequential events. This can be easily done by modifying the
assertion as follows.

demandOut : ¼ demandIn and not out:

Such a deactivation is possible because the output values of
basic components and gates depend only on the internal states.

3.4. Priority AND gates

The output value of a Priority AND Gate (PAND) over blocks A,
B, C… is true if and only if the output values of A, B, C… become
true in this order. The guarded transitions system associated with
this gate should thus memorize the order in which its fanins
become true. The guarded transitions system for a PAND gate with
three child blocks is pictured Fig. 8. All transitions are immediate.
They are guarded by the output values of its child blocks. They are
labeled with the same internal and silent event “ε”. This model can
be easily extended to any number of inputs.

The model pictured on Fig. 8 raise immediately at least two
issues that are not discussed in the literature (but partly in Merle's
work), because authors assume that PAND gates take only basic
events as inputs (there is however no significant reason to limit
ourselves this way):

– First, what does happen if both in1 and in2 (or in3) gets
simultaneously true in state s¼000? The model presented here
assumes that this situation does prevent the failure of the PAND
gate. But it is acceptable to make the opposite choice, and even
to let the case undetermined (as explained Section 2.1)

– Second, what does happen if in1 cease to be true in state
s¼100? Does the gate go back to state s¼000 or does it stay in
state s¼100 (as in our model)? Here again, there is a priori no

Fig. 5. Propagation of activation demands.

Fig. 6. Generic model for basic events.

Fig. 7. Guarded transition system encoding an OR gate.

Fig. 8. Guarded Transitions System for a PAND Gate.
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reason to make a choice rather than another. The same
question applies indeed to inputs in1 and in2 in state s¼110
and the three inputs together in state s¼111.

In both cases, it possible and very easy to modify the guarded
transition model so to obtain the chosen semantics. However, the
best is probably to introduce different PAND gates to the library so
to let the analyst choose by himself which gate is suitable for its
own purpose. This is one of the big advantages of encoding
dynamic fault trees as a library of guarded transition systems.

3.5. Functional dependencies

A Functional Dependency (FDEP) asserts a dependency
between a triggering event T and several triggered events E1,…,
Ek: the failure of T causes the immediate and simultaneous failure
of Ei’s. FDEP gates are special in the sense that they have no
output. It is assumed in the literature that the Ei's are basic events.
It is of course of interest to release this assumption. To do so, it
would be possible to encode the triggering process by introducing
new flows and events to our base model or to use synchronization,
another feature of guarded transition systems (not presented in
this article). However, this would make our semantics notably
more complex and difficult to master. As noted by Stamatelatos
and Vesely in [24], the Ei's can occur either by themselves or
because they have been triggered by T, no matter the order in
which these actions occur. Their idea, which we follow here, is
therefore to introduce a preprocessing phase, in which an OR gate
GEi is substituted for each Ei, i.e. all parent gates of Ei are made
pointing to GEi instead. Inputs of GEi are Ei on the one hand and T
on the other hand. This process is illustrated Fig. 9 for two child
gates A and B.

3.6. Sequence enforcer

A Sequence Enforcer (SEQ) asserts that events can occur only in
a given order. This gate is special in the sense that it has no output.
Moreover, it is assumed in the literature that it applies only to
basic events, a condition that we would like to release, as
previously. There are actually two ways to consider the problem.
Let a sequence enforcer with child gates A, B, and C as illustrated
Fig. 10. The first idea consists in considering only the effect of the
realization of A, B and C but to let output values of get true in any
possible order: the output value of B has an effect only if it gets
true after the output value of A, the output value of C has an effect
only if it gets true after the output value of B and so on if there are
more child gates. This idea can be implemented by means of a
preprocessing, as for FDEP gates. A PAND gate GEi is substituted for
each Ei. GEi takes GEi-1 and Ei as inputs, in this order. This process
is illustrated Fig. 10.

The second idea consists in using the activation mechanism:
the gate B is activated only if the gate A is activated and its output
value, the gate C is activated only if the gate B is activated and its
output value is true and so on if there are more child gates To
implement this idea, we need to proceed in two steps.

The first step consists in introducing a trigger block whose role
is to activate their child when a given condition is satisfied. The
semantics of triggers is given Fig. 11.

The second step consists in substituting a trigger for each child
gate and to plug, thanks to the assertion, this trigger onto the
previous child gate and the child gate, as illustrated (Fig. 12).

If the output values of child gates cannot get true while the
child gate is in standby, this encoding ensures that they always get
true in order.

3.7. Spare Gates

In reference [12] Cold, Warm, Hot and Spare Gates (CSP, WSP,
HSP) are defined as follows. “When the primary input fails,
available spare inputs are used in order until none is left, at which
time the gate fails. Spare inputs can be shared among spare gates,
in which case the first spare gate to utilize the spare input makes it
inaccessible to the other spare gates. The “temperature” of a spare
gate indicates whether unused spare components cannot fail
(cold), fail at a rate attenuated by the dormancy factor of the
spare (warm), or fail at their full rates (hot).”

Two mechanisms are therefore at work in spare gates: first, an
activation mechanism, which is the same as we saw previously.
The spare part is activated when the primary part fails. Second, a
resource sharing mechanism: when the spare part is activated to
replace the primary part, it is locked so to prevent any other part
to use it. This mechanism is to some extent independent from the
notion of spare gate and deserves an extra-logical construct on its
own. We call this extra-logical construct a switch for it is actually
its role. Its semantics for two parts sharing a spare part is pictured
Fig. 13. The extension to more sharing parts and more spare parts
is easy. The idea is then to apply a preprocessing dedicated to
spare gates. If a spare part is referenced by only one spare gate,
then a trigger can be substituted for the spare gate (as we did for
sequence enforcers). Otherwise, a switch is substituted the differ-
ent spare gate referencing the same spare part, as illustrated
(Fig. 14).

3.8. Boolean driven Markov processes

Boolean Driven Markov Processes have been introduced by Bon
and Bouissou in Reference [7]. They do not introduce dynamic
gates but a unique construct, called trigger as illustrated Fig. 15. A
trigger is an arrow (represented with a dashed line on the figure).
When the gate at its source (G) fails, then the gate at its end (H) is
awaken. Our notion of trigger is almost the same as the one of
Boolean Driven Markov Processes, except that we make it a
dynamic gate. To get a guarded transition system from the BooleanFig. 9. Preprocessing of FDEP gates.

Fig. 10. Preprocessing of a Sequence Enforcer using PAND gates.

Fig. 11. The guarded transition system for a trigger.
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Driven Markov Process pictured Fig. 15 it suffices to introduce a
trigger gate on top of the H gate and to plug the output value of
the gate G as the input condition of this trigger gate.

Note that the basic component D is active even if the gate H is
not, because it is activated through the gate K. Note also that if the
basic component A fails, then G and more importantly B remain
active. However, B cannot contribute anymore to the realization of
the top event because the output value of G is already true.
Therefore descendants of G can be deactivated as explained
Section 3.3.

3.9. Discussion

As pointed out by one of the referees, some combinations of
dynamic gates may lead to a non-deterministic behavior. Consider
for instance a functional dependency between the triggering event
T and two triggered events A and B. Assume moreover that A and B
are the two children of a PAND gates. In that case, depending on A
is triggered first or B is triggered first, the output value of the
PAND gate will be true or false. This problem exists independently
of any interpretation of dynamic fault trees. The above model
should probably be considered as incorrect. Guarded transition
systems (and AltaRica 3.0 assessment tools) can however handle
this problem in the same way the conflict “start” versus “fail-
ureOnDemand” is handled, as discussed Section 2.1, i.e. by accept-
ing both orders, possibly weighting them differently.

4. Algebraic interpretation and assessment Algorithms

4.1. Generic algorithms

Several algorithms have been proposed to assess Dynamic Event
Trees. Dugan et al., in their tool Galileo [15], isolate modules contain-
ing dynamic gates, compile these modules into Markov chains,
calculate probability distributions for these processes and finally re-
inject these distributions into the tree by substituting basic events for
the dynamic modules. This approach is very pragmatic. The compila-
tion of into a complete Markov chain is however possible only if
modules are small enough. The Markov chain is actually usually
exponentially larger than its implicit representation.

Bouissou et al. [7] developed an algorithm to generate (most
probable) failure sequences from a Boolean Driven Markov Process.
This algorithm can be applied to any implicit representation of
Markov chains, including of course guarded transitions systems. It
avoids, at least to some extent, the combinatorial explosion of the
state space for it explores only a (hopefully) limited portion of it.

The generation of partial Markov chain as proposed in [9,10] is
another approach to handle large Markov chains without generat-
ing them explicitly.

None of the above mentioned algorithms, neither of course
Monte-Carlo simulation, takes advantage of the fact that the model
is a dynamic fault tree rather than a general guarded transition
system. The author strongly believe that no such advantage can be
obtained unless the formalism is further constrained, typically by
considering specific models for basic components.

Two such restrictions seem worth to consider: first, the case
where basic components are always active and non-repairable.
Second, the case where basic components are non-repairable, but
may be initially in standby. In the next two sections we shall
discuss these two restrictions in turn.

4.2. Active, non-repairable basic components

Let is consider first the case where all components are active
and non-repairable, i.e. correspond to the model pictured Fig. 1. In
this framework, dynamic fault trees describe sequences of events
E1nE2n…nEk such that EiaEj for ia j (there is no repeated event).
Its algebraic foundations have been clarified by Lesage & al. [17,16].
The sequence operator n lies somehow between the AND of the
Boolean algebra (which is commutative, associative and idempo-
tent) and the concatenation operator of the free monoid (which is
just associative). This framework is indeed quite restrictive:
sequence enforcers, spare gates and triggers can only be translated
into PAND gate.

In reference [17], Lesage et al. introduced, aside logic operators,
a comparator of dates of occurrence of events 'AoB'. They propose

Fig. 12. Preprocessing of a Sequence Enforcer using triggers.

Fig. 13. Guarded transition system for a switch.

Fig. 14. Preprocessing of spare gates.

Fig. 15. A Boolean Driven Markov Process.
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an algorithm to rewrite dynamic fault trees into a normal form
which consists in minimal cutsets with an additional part (using
the comparator) to put constraints on order of events.

In reference [23], it is proposed to generate these sequences by
means of symbolic operations themselves implemented thanks to
Sequence Decision Diagrams, a data structure derived from Min-
ato's Zero-Suppressed Binary Decision Diagrams [18].

Both approaches remain to test on large real life models. The
interest of the framework we considered in this section is ques-
tionable: compare to static fault trees, it makes it possible to put
constraints on the order of events. However, this increment in the
expressive power seems to come with a very price in terms of cost
of calculations.

4.3. Non-repairable components

We shall now consider the case where some of the components
are in standby at time 0 and are awaken when some other part of
the system fails. This framework extends the one of the previous
section. Here events can be seen as tasks with a beginning (the
activation of the component) and an end (the failure of the
component). Sequences are made of beginning and end of tasks
with two constraints: first, the beginning of a task occurs before its
end; second a task begins at most once in a sequence. Allen's
algebra [2] provides such an algebraic framework, which has been
extensively studied in the Artificial Intelligence literature. In his
seminal article, Allen pointed out that two tasks can be positioned
relatively one another in thirteen different ways, therefore intro-
ducing as many constraints (or operators), as illustrated Fig. 16 (on
the figure, inverse relations such as “Y takes place before X” are
not mentioned).

In order to be used to interpret dynamic fault frees, operators of
the Allen algebra have to be lifted up to apply to sequences of
tasks, and not only to individual tasks. In our article [23], we
started this generalization for the case where all the tasks start at
time 0, i.e. for the algebraic framework we considered in the
previous section.

It is worth noticing that Allen algebra may also help us to
imagine new dynamic gates of interest for some practical pur-
poses. Also, Lesage et al. algorithm to rewrite dynamic fault trees
into a normal form can probably be extended to handle Allen's
relations. Similarly, Sequence decision diagrams can probably be
used to encode and to manipulate Allen algebra expressions. Such
developments go beyond the scope of the present article, but are
certainly worth to pursue.

4.4. Discussion

The introduction of repairable components requires only minor
changes to the models described in the previous section. However,
if we look at them from an algorithmic perspective, things change
dramatically. With repairable components, sequences may go
through behavioral loops. Such loops cannot be discarded by
minimality arguments, for probabilistic reasons. Consider for
instance a system made of unique component whose mean time
to failure is 1000 h, whose repair is (almost) instantaneous, for a
mission time of 10,000 h. Then, the sequence “failure, repair,
failure, repair, failure” has a much higher probability than the
sequence made of a single “failure”. Discarding the former because
it is not minimal would therefore be a big mistake. For this reason,
the reduction to a normal form, or the use of Binary Decision
Diagrams like data structure, is certainly not possible if repairable
components have to be considered.

5. Conclusion

In this article, we gave a sound semantics for Dynamic Fault
Trees and Boolean Driven Markov Processes. To do so, we translate
their logical and extra-logical constructs into Guarded Transitions
Systems. This translation is efficient: each construct is translated
into a small guarded transitions system and the resulting blocks
are then assembled at no cost.

This study shows that guarded transitions systems provide a
suitable framework to unify Dynamic Fault Trees and Boolean
Driven Markov Processes, to make their semantics precise and to
discuss assessment algorithms. One of the most remarkable points
is that we made no Markovian hypothesis and more generally no
assumption about probability distributions associated with events.
As a consequence, models for basic components can be changed
without changing the semantics of gates. The only constraint to
respect stands in the interface, i.e. to have the demand as input
and an indicator of failure as output. It could be possible for
instance to introduce dependencies amongst basic components (e.
g. to model common cause failures, limited number of repair
crews…), without perturbing the superstructure of the tree.

The translation of spare gates required introducing the notion
of switch. This notion seems to add a real expressive to the
formalism, namely the ability to model that a given part is the
exclusive user of a spare part. There is certainly more to discover
about this notion.

Another interesting perspective is the use of Allen's relation in
conjunction with Dynamic Fault Trees, both from modeling and
assessment algorithm viewpoints.
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