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Abstract: In this article, we study computational uncertainties in probabilistic risk/safety assessment1

resulting from the computational complexity of calculations of risk indicators. We argue that the2

risk analyst faces the fundamental epistemic and aleatory uncertainties of risk assessment with a3

bounded calculation capacity, and that this bounded capacity over-determines both the design of4

models and the decisions that can be made from models.5

We sketch a taxonomy of modelling technologies and recall the main computational complexity results.6

Then, based on a review of state of the art assessment algorithms for fault trees and event trees, we7

make some methodological proposals aiming at drawing conceptual and practical consequences of8

bounded calculability.9

Keywords: Probabilistic risk/safety asssessment, uncertainties, assessment algorithms, modeling10

methodologies11

1. Introduction12

A long journey has been made since the WASH 1400 report [1]. Probabilistic risk assessment13

(PRA) and probabilistic safety assessment (PSA) are nowadays widely accepted and deployed methods14

to assess risk of industrial systems such as nuclear power plants, offshore platform or aircrafts. Very15

large models combining fault trees and event trees are routinely used to make decisions about plant16

design and operations. Powerful tools are available to author and to assess these models.17

This does not mean however that the PRA/PSA technology is eventually mature and fully18

satisfying. The famous quote by the statistician George Pellam Box “all models are false, some are19

useful” [2] applies indeed to PRA/PSA models. This statement should be constantly borne in mind20

when discussing the treatment of uncertainties in these models, which is the topics of the present article.21

More exactly, the different sources of “falsity” of models should be clearly understood and thoroughly22

weighted. It is actually questionable to perform long and complex mathematical developments to deal23

with uncertainties on some particular aspect of the modeling methodology if this aspect is at the end24

of the day like a drop in the bucket.25

In this article, we explain why uncertainties coming from modeling formalisms and assessment26

algorithms take a very important place in the whole model uncertainty picture. Our experience is27

that this issue is often underestimated by both scientists and practitioners. This article aims thus at28

discussing the whys and wherefores of the current situation.29

The key point here is that the calculation of probabilistic risk indicators is provably computational30

hard, namely ]P hard, as demonstrated by Valiant [3] and further completed by Toda [4]. In practice,31

this means that PRA/PSA models result necessarily of a trade-off between the accuracy of the32

description of the system under study and the ability to perform calculations on this description.33

In other words, the risk analyst faces the fundamental epistemic and aleatory uncertainties of risk34
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assessment with a bounded calculation capacity, and this bounded capacity over-determines both the35

design of models and the decisions that can be made from models. With that respect, he or she is like36

Simon’s economical agent who must make decisions with a bounded rationality [5].37

The problem at stake can be thus formulated as follows: given my limited modeling and38

calculation capacities, given all the uncertainties of the modeling process, where should I concentrate39

my efforts so to ensure a reasonably correct and reasonably robust decision process?40

This article is a contribution to answer this vast question. It gives the point of view of a41

computer scientist. It aims at drawing, from an engineering viewpoint, some consequences of bounded42

calculability43

The remainder of this article is organized as follows. Section 2 presents a high level view on44

the PRA/PSA modeling process and tries to locate the different sources of uncertainties. Section 345

establishes a taxonomy of PRA/PSA modeling formalisms and reviews fundamental computational46

complexity results regarding the calculation of risk indicators for the three categories of models defined47

by the taxonomy. Section 4 reviews state of the art algorithms for PRA/PSA Boolean model assessment48

and explains what makes them efficient in practice. Section 5 reports and discusses experimental49

results on large nuclear PSA models. Finally, Section 6 concludes the article.50

2. The PRA/PSA Modeling Process51

Figure 1 shows an idealized view of the PRA/PSA process. It is worth following it step by step to52

discuss sources of uncertainties in models.53

Figure 1. Idealized view of the PRA/PSA process

The first step of this process consists for the risk analyst in trying to understand how the system54

works and how it may fail. Functional analysis, as defined in reference textbooks [6,7], is typically part55

of this step although it does not cover it fully. The risk analyst works usually from system specifications56

and not from the system itself as the latter (or the configuation under study of the latter) may not exist57

yet.58

One of the fundamental characteristics of risk/safety assessment is that it is usually not possible to59

adjust models by means of experiments on the system. Not only the latter may not exist at the moment60

of the analysis, but also the result of the analysis – roughly speaking the likelihood that something bad61

happens – is not directly measurable.62

The first step is a large source of modeling uncertainties for several reasons including:63

– The physical phenomena at stake may be only partially known and understood.64



Version February 9, 2018 submitted to Entropy 3 of 26

– The analyst may not master the mathematics (the physics, the chemistry. . . ) of these phenomena.65

– System specifications may be incorrect or incomplete.66

– The analyst may misunderstand these specifications for they are ambiguous.67

– Some initiating events and their consequences within the system may escape the analyst’s68

attention.69

– Interrelations between different system components and qualitative predictions of the time70

behavior in case of the occurrence of initiating events may be mistaken.71

– . . .72

These uncertainties are usually called epistemic. This categorization is fine, but one should not73

forget that risk analyses are performed by individuals with their own knowledge and skills in an74

industrial process with its own technological and economical constraints. In other words, there may75

be a significant difference between the body of knowledge that could be relevant for the modeling76

process and the knowledge the analyst has and is able to use in practice.77

The second step of the process consists in design the actual PRA/PSA model. It reifies1 the78

cognitive model into a computerized one. This step takes also reliability data for basic components as79

input. These reliability data are stored into data bases such as OREDA [8].80

The design of the PRA/PSA model is also a large source of uncertainties that must be examined81

thouroughly.82

To design a computerized model, one needs a modeling language, just as to design a computer83

program one needs a programming language. As of today, most of the PRA/PSA models are84

designed using combinatorial modeling formalisms: fault trees, event trees, block diagrams or a85

combination of those. These formalisms make a strong assumption – the statistical independence86

of basic events – and for this reason have strong limitations: impossibility to represent faithfully87

cold redundancies, time dependencies, resource sharing, reconfigurations. . . Combinatorial models88

are thus coarse approximations of behaviors of systems under study. Nevertheless, the use of these89

formalisms is decided a priori in most of PRA/PSA. Safety standards recommend them. To convince90

regulation bodies that alternative formalims could be used is at best a long, a very long process.91

Consequently, risk analysts tend to reason in terms of combinatorial formalisms, even during the92

first step of the PRA/PSA process. This is fully understandable, for practical efficiency reasons, but93

this is also problematic in the sense that this keeps implicit and sometimes even undocumented the94

knowledge about approximations.95

The fault tree/event tree/reliability block diagram methodology requires associating a probability96

distribution UBE(t) with each basic event BE of the model. Basic events represent failure modes of97

components of the system. UBE(t) characterizes thus the probability that the component is unavailable98

at time t in reason of the failure mode described by the basic event BE. In industrial practice, most99

of these probability distributions are either point estimates or parametric distributions – mainly100

exponential distributions and from time to time Weibull distributions. The parameters of these101

distributions are obtained from experience feedback on fleets of similar components used in similar102

conditions. Several important remarks can be made at this point:103

– Probability distributions associated with basic events concentrate the aleatory uncertainty about104

behaviors of systems under study.105

– Even if a large experience feedback has been accumulated over the years, the scarcity of reliable106

reliability data is still an issue. The choice of parametric distributions such as the exponential107

distribution – which assumes a constant failure rate of the component over its mission time –108

is often made by default and for the sake of the conveniency rather than supported by strong109

empirical evidences, see e.g. the introduction of the already cited OREDA handbook [8] for a110

discussion.111

1 From the Latin: to make thing
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– Some margins can be taken to deal with the epistemic uncertainty about the aleatory112

uncertainty by considering probability distributions on parameters of probability distributions113

associated with basic events. The so-called sensitivity analyses – implemented in tools such as114

RiskSpectrum [9] and XFTA [10] – deal with these second order distributions.115

We shall come back to these questions in details in the forthcoming sections.116

The third step of the PRA/PSA process consists in calculating risk indicators from the model. Risk117

indicators include top event probability, importance factors, safety integrity levels and the like (see118

again reference textbooks [6,7] for a presentation). In most of the commercially available tools, these119

indicators are calculated from the minimal cutsets. More exactly, approximations of these indicators120

are calculated from the minimal cutsets. When probabilities of basic events are low and the model121

is not too large, these approximations are usually very good. When either of these two conditions is122

missing, results should be handled with care as we shall see in Section 4.123

In any case, calculations of risk indicators are computationally expensive. Moreover, the richer124

the modeling formalism, the more expensive the calculations. This explains why formalisms more125

expressive than combinatorial formalisms are still seldom used in industrial practice.126

In fact, the computational cost of risk indicators has a strong influence back on the whole127

PRA/PSA process: it determines the choice of modeling formalisms and through this choice the128

way analysts reason about the system.129

The last step of the PRA/PSA process consists in making decisions about the system. These130

decisions are eventually quite simple: either the risk indicators show that the system is safe and reliable131

enough to be operated, or some changes have to be made (and the whole PRA/PSA cycle performed132

again).133

In summary, PRA/PSA models have two main roles: first, their design helps risk analysts to134

review systems, and second, they are means to calculate risk indicators from which decisions can be135

made. They have several characteristics that make them quite different from models designed in other136

engineering disciplines:137

– They are coarse approximations of the behavior of the system under study.138

– It is nearly impossible to adjust them by means of experiments on the real system.139

– Their assessment is computationally hard (in a sense we shall make precise in the next section),140

which over-determines their design and beyond their design, the way analysts reason about the141

system under study.142

Nevertheless, they are the main, if not the only, tool at hand to assess the risk in complex technical143

systems. In other words, we have to live with epistemic, aleatory and computational uncertainties of144

risk assessment.145

The scientific and technological challenge regarding PRA/PSA is thus to reduce these uncertainties146

as much as possible, given that modeling and calculation means are necessarily limited. With that147

respect, a key issue is to ensure that the decision process is reasonably robust, i.e. that small variations148

in models do not impact these decisions significantly. We shall study how to achieve this objective as149

efficiently as possible in the forthcoming sections.150

3. The Computational Complexity Barrier151

In this section, we review some important results about the computational complexity of152

assessment of PRA/PSA models.153

3.1. Taxonomy of Modeling Formalisms154

PRA/PSA models are made of two parts:155

– A structural part that describes how the system under study may fail under the occurrence of156

events such as failures, human errors, repairs, reconfigurations. . .157
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– A probabilistic part that associates probability distributions to the above mentioned events.158

The structural part is independent of the probabilistic part.159

PRA/PSA modeling formalisms can be divided roughly into three classes according to the160

expressive power of their structural part: (probabilized) Boolean formulas, (stochastic) finite state161

automata and (stochastic) process algebras. We shall consider them in turn.162

3.1.1. Probabilized Boolean Formulas163

Probabilized Boolean formulas include fault trees, event trees, reliability block diagrams (see e.g.164

[6,7] for reference textbooks) and related formalisms such as Go-Flows [11], Dynamic Flow Graphs165

[12], multistate systems [13,14], and HiP-HOPS [15].166

In these formalisms, the system under study is assumed to consist of a finite number n of167

components. Each component can be in a finite number of states, usually two (a component is either168

working or failed). The state the ith component, 1 ≤ i ≤ n, is described by means of a variable vi that169

takes its value into a finite set of constants, like {0, 1} where 0 stands for working and 1 stands for170

failed, called the domain of vi and denoted by dom(vi). The state of the system is thus described by a171

vector v̄ = 〈v1, . . . , vn〉 of variables that takes its value into the cartesian product ∏n
i=1 dom(vi) of the172

domains of the variables (which is indeed finite).173

The set of states in which the system is failed is described by means of a Boolean formula f (v̄)174

that is interpreted as a subset of ∏n
i=1 dom(vi).175

Each variable vi, 1 ≤ i ≤ n, is equipped with a probability distribution, i.e. a function that176

associates with each value c ∈ dom(vi) and each time t a certain probability pvi=c(t).177

It is assumed that components are statistically independent. Therefore, the probability that the178

system is in state s̄ = 〈s1, . . . , sn〉 at time t is simply as follows.179

pv̄=s̄(t) =
n

∏
i=1

pvi=si (t) (1)

From the above definitions, the following equality holds.180

p f (s̄)(t) = ∑
s̄∈ f (v̄)

pv̄=s̄(t) (2)

In theory, p f (v̄)(t) is thus easy to assess. In practice, it is impossible to enumerate one by one all181

of the (failed) states of the system because of the exponential blow-up of their number (more on that182

point in the next section).183

As already pointed out, probabilized Boolean formulas, because they assume components184

are statistically independent, have strong limitations: impossibility to represent faithfully cold185

redundancies, time dependencies, repairs, resource sharing, reconfigurations. . .186

3.1.2. Stochastic Finite State Automata187

Stochastic finite state automata include a large class of modeling formalisms such as Markov188

chains, (finite) stochastic Petri nets [16], (finite) guarded transition systems [17], dynamic fault trees189

[18], Boolean driven Markov processes [19], stochastic automata networks [20], stochastic extensions190

of Harel’s StateCharts (see e.g. [21]) SAML [22], process algebras like PEPA [23] and PEPA-nets191

[24]. . . High level modeling languages such as Figaro [25] and AltaRica (in its successive versions:192

AltaRica LaBRI [26,27], AltaRica Data-Flow [28,29] and AltaRica 3.0 [30,31]) are other and more193

structured ways to describe finite state automata.194

In these formalisms, the state of the system is still described by a vector v̄ = 〈v1, . . . , vn〉 of195

variables that take their values into finite domains dom(vi), 1 ≤ i ≤ n. The set of states in which the196

system is failed is also still described by means of a Boolean formula f (v̄) that is interpreted as a subset197

of ∏n
i=1 dom(vi).198
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The difference with probabilized Boolean formulas stands in the addition of:199

– An initial state ῑ.200

– A finite set of transitions that describe how the system changes of state under the occurrence of201

events.202

Transitions are triples 〈E, g, a〉, denoted g E−→ a, where:203

– E is the event labeling the transition.204

– g is a Boolean formula on the variables of v̄. g is called the guard of the transition.205

– a is an instruction that calculates the next values of the variables. a is called the action of the206

transition.207

A transition g E−→ a is fireable in a global state s̄ if g(s̄) = true. Its firing transforms the state s̄ into208

the state a(s̄).209

Except for Markov chains, the state space of the system is thus described implicitly: a given state210

t̄ is reachable from the initial state ῑ if:211

– Either t̄ = ῑ;212

– Or there is another state s̄ and a transition T : g E−→ a, such that s̄ is reachable from ῑ, T is fireable213

in s̄ and a(s̄) = t̄.214

Each event E is equipped with a deterministic or probabilistic delay. The probability to be in the215

state s̄ at time t is thus the sum of the probabilities of all possible sequences of transition firings that216

lead from state ῑ at time 0 to state s̄ at time t.217

Stochastic finite state automata have indeed a much higher expressive power than probabilized218

Boolean formulas. They make it possible to represent faithfully cold redundancies, time dependencies,219

repairs, resource sharing, reconfigurations. . . Still, they describe finite state spaces and assume that its220

architecture does not change throughout its mission.221

Note that several above mentioned formalisms entering into the class of stochastic finite state222

automata make it possible to describe infinite state spaces (e.g. Petri nets). Models are however223

designed in such way that the state space they describe stays finite.224

3.1.3. Stochastic Process Algebras225

The last class of formalisms, stochastic process algebras, includes formalisms as diverse as226

(stochastic variants of) colored Petri nets (with an unbound number of colors) [32], process algebras227

such as Milner’s π-calculus [33], and agent-oriented modeling languages (see e.g. [34] for an228

introduction). So-called “Systems of Systems” (see e.g. [35] for a seminal article) can often be described229

in this way. Many calculation/simulation models or programming languages have been proposed230

in the literature that work more or less in this way (Simula has been historically the first one, see e.g.231

[36]).232

In these formalisms, the state of the system is also described as a vector v̄ of variables encoding233

the individual states of its components and by transitions describing change of states, but:234

– Some of the components may be in infinite number of different states (the domains of the235

corresponding variables are infinite);236

– The size of the vector v̄ may vary, as new components may be created and some existing237

components may be destroyed as the result of actions of transitions. The number of transitions238

may vary as well.239

We gave here a presentation of models in terms of automata for the sake of uniformity. It is sometimes240

easier to see models of this class as descriptions of hierarchical processes running in parallel. Each241

component of the system is then seen as a process or an agent. During its execution, which may242

end before the end of the execution of the system as a whole, a process may “fork” i.e. create some243

sub-processes or clone processes.244
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Formalisms belonging to this class have the full power of programming languages.245

The three classes we mentioned in this section are ordered by increasing computational complexity246

of assessment algorithms, as we shall see now.247

3.2. Computational Complexity248

Computational complexity theory is a branch of theoretical computer science that aims at249

classifying problems according to the cost, in terms of computational resources, of solving them.250

We shall recall here only fundamental results related to PRA/PSA. The reader interested in a broader251

perspective should look at reference textbooks [37,38].252

Computational complexity theory considers families of problems stated in mathematical terms.253

Of course, the cost of solving a problem must be related to the size of this problem. This size of problem254

can be measured for instance as the number of symbols required to encode this problem. It can be255

shown that, under reasonable assumptions, this is a suitable measure. The size of an instance P of a256

problem is denoted |P|.257

The complexity of a problem is by definition the complexity of the best algorithm to solve that258

problem. The algorithm should indeed be able to solve any instance of the problem. The complexity of259

an algorithm is measured in terms of the number of steps this algorithm takes to solve the considered260

instance of the problem. As this number of steps may vary from one instance to the other, even if we261

consider instances of the same size, the complexity is characterized by means of a function f (n) such262

that for any instance of size n of the problem, the number of steps of the algorithm is at most c. f (n), for263

some predefined constant c. It is then said that this algorithm is in O( f (n)) (the big-O notation). For264

instance, sorting the element of a list using the quick-sort algorithm is in O(n. log n), where n denotes265

the number of elements of that list.266

At this point, three important remarks can be made.267

First, one can consider, aside this complexity in terms of the number of steps – called complexity268

in time – the complexity in terms of number of memory cells required by the algorithm – called269

complexity in space. Complexity in time provides in general a better understanding of the actual cost270

of calculations, but we shall see that the complexity in space is usefull as well.271

Second, we are speaking here of worst-case complexity. It is also possible to consider average272

complexity, but results are then much more difficult to establish.273

Third, we assumed in the above discussion that the problems at stake are decidable, i.e. that274

there exist at least one algorithm to solve them. Some important practical problems (for instance the275

equivalence of two computer programs) are however indecidable, i.e. it can be proved that no general276

algorithm exists to solve them.277

Decidable problems fall in one of the three following categories, with respect to their complexity.278

– Provably easy problems, i.e. those for which algorithms with polynomial complexity are known.279

These problems are said P-easy. Some of them are also P-hard, meaning that no algorithm with a280

lower complexity than polynomial can be designed to solved them.281

– Provably hard problems, i.e. those for which it can be proved that any algorithm has at least an282

exponential complexity. These problems are said EXP-hard.283

– Problems that are neither provably easy nor provably hard. There is a wide variety of very284

practical such problems.285

The above classification is rather rough as a problem in O(n100) can hardly be considered as easy in286

any practical sense. But very few such problems have been exhibited so far, so the classification is287

widely accepted.288

Till now, we spoke about problems in general. We need now to be more specific and to distinguish289

decision problems and enumeration problems. A decision problem is a problem with an answer that is290

either yes or no. An enumeration problem is a problem that consists in counting the number of yes291

answers of a decision problem or, if a probability structure is defined over the possible answers, in292

assessing the sum of the probabilities of the yes answers.293
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Here another two important remarks can be made.294

First, a common point to decision and enumeration problems is that their answer can be encoded295

in a small space compared to the size of the problem. This is not the case for all of the problems. For296

instance, the encoding of the set of reachable states of a finite state automaton may be exponentially297

larger than the encoding of the automaton itself (not to speak about the set of reachable states of a298

process algebra model that can be infinite while the description of the automaton itself is finite).299

Second, enumeration problems are indeed at least as hard, and in general much harder, than their300

decision counterpart. If we know how to count the number of solutions to a problem, we know a301

fortiori if there is a solution to this problem.302

3.3. Complexity of PRA/PSA Assessment303

3.3.1. The Six Central Problems of PRA/PSA Assessment304

We can now come to the complexity of PRA/PSA assessment. The key risk/safety indicator is305

indeed the probability that the system is in a failed state at time t. The complexity of calculating this306

probability depends obviously of the class of the model at stake. To characterize this complexity, it is307

necessary to study also the complexity of the corresponding decision problem. We can thus formulate308

the following six central problems of PRA/PSA assessment.309

SAT: Let f (v̄) be a Boolean formula built over a set of variables v̄. Is there a valuation s̄ of v̄ such that310

f (s̄) = true?311

RELIABILITY: Let f (v̄) be a Boolean formula built over a set of variables v̄. Assume moreover that v̄ is312

equipped with a probability structure (as defined above). What is the probability of f (i.e. the sum of313

probabilities of variable valuations s̄ such that f (s̄) = true)?314

REACHABILITY: Let M be a finite state automaton. Is there a reachable failed state, i.e. is there a315

sequence of transitions starting from the initial state of M and leading to a failed state?316

FSA-RELIABILITY: Let M be a finite state automaton equipped with a probability structure (as defined317

above). What is the probability to reach a failed state at time t?318

PA-REACHABILITY: Let M be a process algebra model. Is there a reachable failed state, i.e. is there a319

sequence of transitions starting from the initial state of M and leading to a failed state?320

PA-RELIABILITY: Let M be a process algebra model equipped with a probability structure (as defined321

above). What is the probability to reach a failed state at time t?322

SAT, RELIABILITY and REACHABILITY are “official” names [37,38]. We defined the others for the323

purpose of the present article.324

We shall now review known computational complexity results about the above problems.325

3.3.2. Complexity PRA/PSA Assessment based on Probabilized Boolean Formulas326

SAT plays a central role in computational complexity theory.327

A first remark is that it is easy to check whether a candidate variable valuation s̄ satisfies f by328

propagating bottom-up values of variables in the formula. The algorithm to do so is of linear worst329

case complexity with respect to the size of the formula. The problem is indeed that there are potentially330

2n valuations to check if f involves n variables (and each variable can take two values).331

The class NP is the class of decision problems having the same characteristic as SAT, i.e. such332

that given a candidate solution, it is easy to check whether it is actually a solution but there are333

exponentially many candidate solutions. NP stands for non-deterministic polynomial. Obviously,334

P ⊆ NP ⊂ EXP.335

In 1971, Cook demonstrated the following theorem.336
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Theorem 1 (Complexity of SAT [39]). SAT is NP-complete, i.e. any problem of the class NP is reducible to337

SAT, i.e. can be transformed in polynomial time into a SAT instance that has a solution if and only if the problem338

has one.339

The following question is one of the most intriguing of computer science.340

P ?
= NP

As of today, it is still open.341

Note that MONOTONE-SAT, i.e. the variant of SAT in which the formula f is coherent (monotone),342

is trivially an easy problem (according to the our classification): it suffices to check whether the343

valuation that assigns the value true to all variables satisfies f because if f is satisfied by a valuation it344

must be satisfied by that one as well. We shall give in the next section a formal definition of coherence.345

The class #P (read “sharp P”, or “number P”) gathers counting and reliability problems associated346

with NP-hard problem (i.e. problems that are at least as hard as problems in the class NP). For instance,347

#SAT is defined as follows.348

#SAT: Let f be a Boolean formula. How many variable valuations satisfy f ?349

This class has been introduced by Valiant [3] who showed the following theorem.350

Theorem 2 (Complexity of #SAT [3]). #SAT is #P-complete.351

The two following additional properties are easy to show (see [38]).352

Property 1 (RELIABILITY versus #SAT). RELIABILITY is at least as hard as #SAT.353

Property 2 (#MONOTONE-SAT versus #SAT). #MONOTONE-SAT, i.e. the problem of counting the354

number of solutions of a coherent formula, is as hard as #SAT.355

Valiant’s theorem has been later completed by Toda.356

Theorem 3 (Toda [4]). PP is as Hard as the Polynomial-Time Hierarchy357

It would go far beyond the scope of this paper to explain Toda’s theorem. Intuitively, it says that if358

one can count “for free” the number of solutions of a problem, then one is able to solve in polynomial359

time all of the problems of the polynomial hierarchy, i.e. is very close to be able to solve in polynomial360

time problems of exponential worst case complexity.361

In a word, RELIABILITY is strongly believed to be a hard problem. We shall elaborate further on362

this topics Section 4 and explain why, despite of these negative results, very large fault trees and related363

models can be efficiently assessed, thanks to the coherence of models and to suitable approximations.364

3.3.3. Complexity PRA/PSA Assessment based on Stochastic Finite State Automata365

The following theorem establishes the complexity of REACHABILITY.366

Theorem 4 (Complexity of REACHABILITY [38]). REACHABILITY is PSPACE-complete.367

The above theorem asserts that REACHABILITY can be solved in polynomial space and that any368

problem in this class can be reduced to REACHABILITY.369

The good news is that, despite the fact that there may be a exponential number of reachable states,370

one can decide in polynomial space whether a failed state is reachable. This result is obtained by371

accepting to redo some calculations, i.e. pass several times by the same state. The bad news is that the372
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above result is not very useful in practice and that it cannot anyway be applied to the calculation of the373

probability of being in a failed state at time t. The following theorem formalizes this negative result.374

Theorem 5 (Complexity of FSA-RELIABILITY). FSA-RELIABILITY is EXP-hard.375

The key remark here is that the number of states on sequences leading to failed states may be376

exponentially large with respect to the size of the problem. FSA-RELIABILITY is thus a hard problem,377

with all respects.378

As of today, two approaches have been proposed to solve FSA-reliability in practice: the379

compilation of the model into a Markov chain and stochastic simulation.380

A first approach consists thus in compiling, when possible, the model into a Markov chain, and381

then to apply numerical algorithms to solve Markov chains, see e.g. [40] for a reference book on382

these numerical methods and [41] for a study dedicated to reliability models. This approach suffers383

indeed from the exponential blow-up of the number of states and transitions of the Markov chain. It is384

however possible to compute approximated Markov chains, with good practical results, see e.g. [42].385

The second approach consists performing Monte-Carlo simulations. Monte-Carlo simulation is386

the Swiss knife of models engineering in general and reliability engineering in particular, see e.g. [43]387

for a recent monograph. It is feasible if the probability to be calculated is not too low (the number of388

runs required to get reasonably accurate results increases with the inverse of this probability).389

In summary, stochastic finite state automata are a reasonable alternative to probabilized Boolean390

formulas when the system at stake presents characteristics that cannot be faithfully captured by a391

pure combinatorial model. Assessing stochastic finite state automata is however extremely intensive392

in terms of calculation resources even if only reasonably good approximations of the values of risk393

indicators are required. As of today, the use of stochastic finite state automata is thus limited to394

relatively small models with relatively high values of risk indicators.395

3.3.4. Complexity PRA/PSA Assessment based on Stochastic Process Algebras396

As the reader may expect, the situation gets even worse for process algebra models. Namely,397

almost any relevant question on these models is undecidable.398

Theorem 6 (Complexity of PA-REACHABILITY). PA-REACHABILITY is undecidable.399

The above result follows directly from results on severe restrictions of this general problem. For400

instance, the reachability problem applied to Petri nets with inhibitor arcs is already indecidable [44].401

An immediate consequence of the above theorem is that PA-RELIABILITY is also indecidable.402

These undecidability results explain probably why process algebras are seldom used for practical403

reliability studies. The gain in terms of expressive power over stochastic finite state automata is404

obtained at a too high price.405

Note that it is nevertheless still possible to apply to this class of models the approaches developed406

for stochastic finite state automata, namely the compilation into approximated Markov chains (when407

possible) and more importantly, stochastic simulation. The author is convinced that this class of models408

will play an increasingly important role in the future. The key issue however stands in the validation409

of such models.410

3.4. Wrap-Up411

In this section, we proposed a taxonomy of modeling formalisms that can be used to support412

PRA/PSA analyses. We review known computational complexity results. They are essentially bad413

news: assessing risk indicators is an intractable problem, except for the very specific case where the414

model is coherent fault tree (or an equivalent representation).415
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This explains why, despite of the strong limitations of this class of models, they are almost416

exclusively used in PRA/PSA practical applications.417

We shall study them in further details in the next section.418

Before proceeding, we would like to emphasize here that the computational complexity of419

PRA/PSA assessment is one of the contributors to epistemic uncertainty. It comes in addition to other420

contributors such as those mentioned in Section 2. The problems raised by computational complexity421

stand in the impossibility to model the system faithfully because of the complexity of assessments.422

4. Assessment Algorithms for Probabilized Boolean Formulas423

In this section, we review state of the art assessment algorithms for probabilized Boolean formulas.424

Understanding how these algorithms work is actually mandatory to handle uncertainties in a proper425

way. Nevertheless, we shall not enter into technical details, but rather present the principles. In depth426

presentations can be found in author’s articles [45,46].427

4.1. Taxonomy of Assessment Algorithms428

PRA/PSA models like fault trees, event trees, reliability block diagrams and the like are eventually429

interpreted as Boolean formulas built over the two constants 0 (false) and 1 (true), a finite set of430

variables, so-called basic events, and logical connectives “+” (or), “·” (and) and “ ” (not). Other431

connectives such as k-out-of-n can be easily derived from those.432

The calculation of all risk indicators is based on a basic step consisting in calculating the433

probability of a Boolean formula f , given the probabilities of basic events of f , which is nothing434

but the RELIABILITY problem stated in the previous section.435

As f may contain repeated events, it is not possible in general to calculate p( f ) directly from f . f436

must transformed into an equivalent normalized formula from which the calculation is possible. Two437

normal forms have been proposed so far: sums-of-minimal-cutsets and binary decision diagrams.438

Figure 2 summarizes the calculation flow.439

Figure 2. The PRA/PSA calculation flow

Starting from the initial fault tree (or from the master fault tree generated from a fault tree/event440

tree model), one pre-processes the model to make it easier to assess. This first step involves notably the441

detection of modules, i.e. of sub-formulas that are independent from the rest of the model and can thus442

be assessed separately. The importance of module detection has been pointed out since the very first443

work on fault tree assessment [47] and is still an essential ingredient of it. Efficient algorithms have444

been proposed detect modules, see e.g. reference [48], so the preprocessing phase, although extremely445

important regarding the overall assessment efficiency, is not itself very resource consuming.446

Once the model preprocessed, the hard things start. There is here an alternative with the two447

above mentioned branches: either a sum-of-minimal-cutsets, or a binary decision diagram is calculated.448

Minimal cutsets represent failure scenarios. They are of interest on their own, even if no quantification449

takes place. That is the reason why algorithms have been designed to calculate minimal cutsets from450

binary decision diagrams [45].451
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The last step of the assessment consists in calculating risk indicators, either from the452

sum-of-minimal-cutsets or from the binary decision diagram, depending on which normal form453

has been chosen. Risk indicators include the top event probability, possibly for different mission times,454

importance factors, safety integrity levels and some others. Efficient algorithms exist to calculate these455

indicators, see e.g. reference [49] for importance factors and reference [50] for safety integrity levels.456

As sum-of-minimal-cutsets and binary decision diagrams play a central role in the whole457

assessment process, we shall now give more insights about what they are and how they are calculated.458

4.2. Minimal Cutsets459

A literal is either a basic event or its negation. A product is a conjunction of literals that does not460

contain both a basic event and its negation. A product is positive if it contains no negated basic event.461

A sum of products is a set of products interpreted as their disjunction. Two products are disjoint if there is462

at least one basic event occurring positively in one of them and negatively in the other. A sum of disjoint463

products (SDP) is a sum of products whose products are pair wisely disjoint. A minterm relatively to a464

set of basic events is a product that contains a literal for each basic event in the set. By construction,465

two different minterms are disjoint. Minterms one-to-one correspond with truth assignments of basic466

events (we called them system states in the previous section). For that reason, the following property467

holds.468

Property 3 (Sum-of-Minterms). Any Boolean formula is equivalent to a unique sum of minterms.469

Let f and g be two formulas built over the same set of basic events. We denote by Minterms ( f )470

the sum of minterms equivalent to the formula f . We say that the minterm π satisfies the formula f , and471

denote π ∈ f , if π belongs to Minterms( f ) and that it falsifies f otherwise. Similarly, we write f ⊆ g, if472

Minterms ( f ) ⊆ Minterms (g), i.e. if f entails g, and f ≡ g if Minterms( f ) = Minterms(g), i.e. if f and473

g are logically equivalent. Note that logical equivalence is the strongest possible equivalence relation474

over models. Two logically equivalent models are indistinguishable by any correct quantification475

algorithm.476

Let π and ρ be two minterms. We say that π is smaller than ρ, which we denote as π ≤ ρ, if any477

basic event that occurs positively in π occurs positively in ρ.478

A Boolean formula f is coherent if for any two minterms π and ρ such that π ≤ ρ, π ∈ f implies479

ρ ∈ f . It is easy to verify that any formula built only over basic events and connectives “+” and “.” is480

coherent.481

Let π be a positive product. We denote by bπc the minterm built by completing π with the482

negative literals built over basic events that do not show up in π. In other words, bπc is the smallest483

minterm ρ such that ρ ∈ π.484

A cutset of a Boolean formula f is defined as a positive product π, such that bπc ∈ f . A cutset485

π is minimal if no sub-product of π is a cutset of f . We shall denote by MCS ( f ) the set (the sum) of486

minimal cutsets of the formula f . The following property holds [45].487

Property 4 (Minimal Cutsets). Let f be a Boolean formula. Then f ⊆ MCS ( f ). Moreover:488

– f ≡ MCS ( f ) if and only if f is coherent.489

– MCS ( f ) is the smallest coherent formula containing f , i.e. MCS ( f ) ⊆ g for any coherent formula g490

such that f ⊆ g.491

One way of understanding property 4 is to say that coherent systems are perfectly represented492

by their minimal cutsets but that for non-coherent systems minimal cutsets are a (sometimes very)493

conservative approximation of the original model.494

Two categories of algorithms have been proposed to calculate minimal cutsets directly from a495

(pre-processed) fault tree:496
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– Top-down algorithms, which are derived from MOCUS [51]. Such algorithms are implemented497

in Risk Spectrum [9] and XFTA [10,52].498

– Bottom-up algorithms, which use Minato’s zero-suppressed binary decision diagrams [53] to499

encode minimal cutsets. Such an algorithm is implemented in FTREX [54], one of the calculation500

engines of CAFTA.501

In theory, the calculation of the probability of a sum-of-minimal-cutsets can be performed thanks502

to the Sylvester-Poincaré development.503

Property 5 (Sylvester-Poincaré development). Let f = ∑n
i=1 πi be a sum-of-products. Then, the following504

equality holds.505

p( f ) = ∑
1≤i≤n

p(πi)− ∑
1≤i1<i2≤n

p(πi1 · πi2)

+ . . . +−1k−1 ∑
1≤i1<...<ik≤n

p(πi1 · . . . · πik ) + . . . +−1n−1 p(π1 · . . . · πn)

where the probability of a product is the product of the probabilities of its literals.506

In practice however, the computational cost of this calculation method is prohibitive as it involves507

the calculation of 2n terms, where n is the number of minimal cutsets. Approximations are thus508

performed:509

– The so-called rare-event approximation that consists in considering only the first term of the510

development.511

pREA( f )
de f
= ∑

π∈MCS( f )
p(π)

– The so-called mincut upper bound approximation, which warranties, conversely to the rare-event512

approximation, to get a result between 0 and 1.513

pMCUB( f )
de f
= 1− ∏

π∈MCS( f )
(1− p(π))

Both approximations are accurate when the probabilities of basic events are small (say less than514

10−2).515

4.3. Binary Decision Diagrams516

Binary decision diagrams are a data structure making it possible to encode in a very compact517

way the truth table of (many) Boolean functions and to perform operations (conjunction, disjunction,518

negation. . . ) on these functions. They have been introduced in their modern form by R. Bryant and his519

colleagues [55,56].520

Binary decision diagrams rely on the pivotal or Shannon decomposition.521

Property 6 (Pivotal decomposition). Let f be a Boolean formula and E be a basic event (occurring in f ).522

Then the following equivalence holds.523

f ≡ E · fE=1 + E · fE=0

where fE=v denotes the formula f in which the constant v has been substituted for the basic event E.524

Technically, binary decision diagrams are directed acyclic graphs with two types of nodes:525
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– Leaves 〈c〉 that are labeled with a Boolean constant c ∈ {0, 1}. Leaves are interpreted as the526

constant they are labeled with:527

J〈c〉K de f
= c

– Internal nodes 〈E, v, w〉 that are labeled with a basic event E and have two out-edges: a then528

out-edge pointing to the node v, and an else out-edge pointing to the node w. Binary decision529

diagrams are constructed in such a way that the basic event E never shows up in the sub-trees530

rooted by nodes v and w. Internal nodes are interpreted as pivotal decompositions:531

J〈E, v, w〉K de f
= E · JvK+ E · JwK

Binary decision diagrams encode thus formulas fully decomposed according to property 6. They532

are built bottom-up: the binary decision diagram encoding a formula is obtained by applying Boolean533

operations on binary decision diagrams encoding its sub-formulas.534

Binary decision diagrams have been introduced in the reliability field at the beginning of the535

nineties [57]. They have proved since then to outperform all other assessment methods. . . when it is536

possible to build the binary decision diagram encoding the top event of the fault tree under study. It is537

not always the case when dealing with large models (with several hundred basic events and more) as538

the binary decision diagram may be too large to fit into the computer memory (and even on external539

hard disks).540

One of the key features of binary decision diagrams is that they make the calculation of the top541

event probability both exact (no approximation is required) and of linear complexity, thanks to the542

following property (that results from property 6).543

Property 7 (Pivotal decomposition applied to probabilities). Let f be a Boolean formula and E be a basic544

event (occurring in f ). Then the following equivalence holds.545

p( f ) = p(E)× p( fE=1) + (1− p(E))× p( fE=0)

To compute the exact probability of the function represented by means of a binary decision546

diagram it suffices thus to calculate recursively the probability of each node of the diagram. This547

principle applies also for the calculation of conditional probabilities and Birnbaum importance548

factor [49].549

4.4. Consequences of Computational Complexity Results550

Let us summarize the situation by putting together computational complexity results reviewed in551

the previous section and the algorithms presented above:552

1. Fault trees can be assessed in two ways:553

– Either by preprocessing the tree, extracting its minimal cutsets and then approximating the554

top event probability from the minimal cutsets;555

– Or by preprocessing the tree, building its binary decision diagram and then calculating the556

exact top-event probability.557

2. RELIABILITY is (strongly believed to be) a hard problem.558

3. Preprocessing the tree, approximating the top event probability from the minimal cutsets, and559

calculating the exact top event probability from the binary decision diagram are easy operations.560

This implies that:561

– Either extracting minimal cutsets is a hard problem, or obtaining a good approximation of the562

top event probability from minimal cutsets is a hard problem, or both.563
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– Building the binary decision diagram is a hard problem.564

These theoretical results are confirmed in practice: the three above operations are actually565

intractable, at least if we take them in their whole generality.566

4.5. Approximations567

At this point, the reader may think: “All right, this is for the problem in general, but in practice,568

given the epistemic uncertainties on the system behavior, on its modeling and on reliability data, I’m just fine569

with reasonable approximations.” and she or he is right to think so. The question is: what does mean570

“reasonable” here?571

If no constraint is put on the model, finding accurate approximations seems in fact almost as572

hard as finding the exact value as demonstrated by several partial results by Ball and Provan, see573

e.g. [58–60].574

However, Boolean PRA/PSA models have two essential characteristics.575

First, they are coherent. Even when formulas embeds some negations, these negations are used as576

a shortcut to represent exclusive configurations and not to reflect a “real” non coherence, see [46] for a577

discussion. This the reason why they can be assessed by means of minimal cutsets algorithms (which578

are always coherent). This is not surprising as one can expect that the more components are failed in a579

mechanical system, the more likely this system is failed. We shall come back on this issue in the next580

section.581

Second, they represent highly reliable systems made of highly reliable components. This translates582

into the following inequality for most, if not all, of the basic events of the model.583

pE(t) � pE(t) (3)

It follows that large minimal cutsets and minterms with a high number of positive literals have a very584

low probability and can be safely ignored. In other words, one can focus on failure scenarios involving585

few faulty components because scenarios involving large number of faulty components are highly586

improbable.587

These two characteristics are combined into state of the art algorithms to calculate accurate588

approximations of risk indicators. It works as follows.589

First, a probabilistic weight is defined on products as follows. Let π be a product.590

w(π)
de f
= ∏

E∈π

p(E)

That is w(π) is the product of the probabilities of positive literals of π.591

Now, given a formula f a probability threshold τ, we can define the following restrictions of f592

and MCS ( f ) with τ as follows.593

f≥τ
de f
= ∑

π∈Minterms( f ); w(π)≥τ

π

MCS≥τ ( f )
de f
= {π ∈ MCS ( f ) ; w(π) ≥ τ}

The following property holds.594

Property 8 (Minimal Cutsets of Restrictions [45]). Let f be a Boolean formula and τ be a probability595

threshold, then:596

MCS ( f≥τ) = MCS≥τ ( f )
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Moreover, under the condition that most of the basic events verify the inequality 3, the probability597

of f at time t can be accurately approximated as follows (via the calculation of MCS≥τ ( f )).598

p( f ) ≈ pREA( f≥τ) (4)

p( f ) ≈ pMCUB( f≥τ) (5)

Let plb be the probability of the basic event with lowest probability. Clearly, any product π with k599

positive literals verifies w(π) ≥ pk
lb. Therefore, if the cutoff τ is chosen such that τ ≤ pk

lb, only minimal600

cutsets (and minterms) with most k positive literals need to be considered when calculating pREA( f≥τ)601

(or pMCUB( f≥τ)). But there is only a polynomial number of such products, since there is a polynomial602

number to select at most k items in a set of n items.603

It follows that pREA( f≥τ) (and pMCUB( f≥τ)) are polynomial approximations of p( f ). They can be604

calculated via the two alternative algorithmic approaches described above: either by extracting only605

the minimal cutsets whose probability is higher than τ or by calculating an approximated binary606

decision diagram, cutting branches encoding a product π such that w(π) < τ, see [45] for more details.607

In both cases, it is possible to track what has been discarded so to get an upper bound of the actual608

probability.609

This very positive result, which makes PRA/PSA of practical interest, should not hide the610

epistemic problems it raises, due to the following paradox.611

Assume we designed a model M at a given level of details. We calculated from M minimal cutsets612

and relevant risk indicators with a probability threshold τ. As we did our job as correctly as possible,613

we set up τ as low as possible for the available calculation power.614

Now, assume that for some reason, we decide to refine the model M into a model M′. M′615

decomposes certain basic events into gates so to analyze with a finer grain the failure modes of some616

components. A priori, results obtained from M and M′ should be equivalent. The difference stands in617

the fact that a minimal cutset of M can be refined into a group of minimal cutsets of M′.618

But here come two problems. First, as M′ is larger than M and generates thus possibly many619

more minimal cutsets than M, the probability threshold τ may be too small for M′ and the available620

calculation power. We are thus forced to make the calculations with a coarser probability threshold τ′621

(τ′ > τ). Second, a minimal cutset π of M whose probability was above to the threshold τ, may be622

decomposed into several minimal cutsets whose probabilities are below τ and therefore below τ′. It623

follows that these minimal cutsets will be discarded while assessing M′.624

We are thus in the following paradoxical situation.625

Paradox 1 (Model refinement). The more refined the model, the lower the risk estimation.626

By refining sufficiently the model, we could even make the (evaluated) risk vanish completely!627

4.6. Handling Uncertainties on Reliability Data628

Probability distributions of basic events of PRA/PSA models are known only up to an uncertainty.629

This problem has many causes, including the scarcity of data, that have been discussed at length in the630

abundant literature on this topics. We shall not attempt to review these contributions here, as they are631

not at the core of our subject, but just have a look at how uncertainties are handled in practice when632

calculating risk indicators.633

To simplify the discussion, we shall assume that the mission time of the system is fixed and that634

probabilities of basic events are calculated at this mission time. Saying that the probability p(E) of635

the basic event E is known only up to an uncertainty, is saying that it belongs to a certain interval636

[pmin(E), pmax(E)]. The density of probability in this interval has no reason to be uniformly distributed.637

It can be for instance normally distributed (taking into account truncations due to bounds) arround a638

certain value.639
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Assuming given such interval (and density probability within the interval) for each basic event of640

the model/formula f , we can attempt to characterize the uncertainty in the calculation of p( f ).641

The range of variation of the probability of the formula can be significantly larger than642

the individual range of variations of the probabilities of the basic events. To understand this643

phenomena, consider a minimal cutset π = E1 · . . . · Ek. Then, pmin(π) = ∏k
i=1 pmin(Ei) and644

pmax(π) = ∏k
i=1 pmax(Ei). Consequently, if pmin(Ei) = ρi × pmax(Ei) for i = 1, . . . , k, then645

pmin(π) = ∏k
i=1 ρi × pmax(π). The same reasoning applies to each minimal cutset and therefore646

for pmin( f ) and pmax( f ). In other words, individual uncertainties multiply.647

For this reason, just performing interval calculation gives in general much too coarse results on648

industrial size models. Two main alternative methods have been proposed: first, to use extended649

probability theories, such as the Dempster–Shafer theory [61]. Second, perform Monte-Carlo650

simulations on probabilities of basic events. Both methods have their own advantages and drawbacks.651

Extended probability theories make it possible to perform calculations efficiently. However, they652

do not really solve the above problem. Moreover, determining the degree of belief or plausibility of the653

failure of a component from field data is a quite difficult task.654

With that respect, the Monte-Carlo simulation approach seems more practical. However, it is655

extremely consuming in terms calculation resources. This is the reason why, simulations are usually656

performed on the same set of minimal cutsets (or the same binary decision diagram), obtained for657

a probability threshold τ and the mean values of basic event probabilities. It would be actually too658

costly to recompute the minimal cutsets (or the binary decision diagram) for each set of probabilities659

of basic events.660

The next section presents experimental results on industrial use cases that illustrate the different661

points discussed above.662

5. Experimental Results663

In order to illustrate the different points discussed in the previous section, we selected three large664

models out of our benchmarks. These three models comes from the nuclear industry. These models665

are extracted from PSA studies of an american and two european nuclear power plants (from two666

different european countries).667

The numbers of basic events and gates of these models are as follows.668

PSA Model #Basic Events #Gates
1 1733 1304
2 2312 5346
3 2816 5583

669

Each of these models represents a group of sequences of an event tree model leading to a nuclear670

accident (e.g. core melt). Models 1 and 2 are non coherent in the sense that they embed negated gates671

and basic events to represent exclusive or impossible configurations, see e.g. [46] for a discussion on672

this issue.673

We assessed these models with XFTA [10,52], the fault tree calculation engine the author develops674

in the framework of the Open-PSA initiative [62,63]. XFTA is a very efficient fault tree calculation675

engine. It is free of use under unrestrictive conditions.676

Experiments reported here have been performed on a PC under Windows 10, with a Intel(R)677

Core(TM) 64 bits processor cadenced at 2.40 GHz with 8 GB memory. This PC has been bought at the678

local supermarket.679

5.1. Calculation of Minimal Cutsets and the Top-Event Probability680

Tables 1, 2 and 3 reports the results obtained on respectively model 1, 2 and 3. They are organized681

as follows.682
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Each row of the table corresponds to a different cutoff value. We took as cutoffs the negative683

powers of 10, ranging from the first value for which at least one minimal cutset is produced to a value684

where the top event probability is stabilized.685

Note that the critical resource here is the memory rather than the computation time. Thanks to686

XFTA data structures, it is possible to store about 60 millions minimal cutsets within our computer687

memory. Beyond, the tool has to be configured specifically, which we did not want to do (we wanted688

results to be reproducible with the distributed version of XFTA).689

The columns of the tables report the following information.690

– The first column gives the value of the cutoff.691

– The second and third columns give the top event probability computed from the minimal cutsets692

with respectively the rare event approximation and the mincut upper bound.693

– The fourth column gives the number of minimal cutsets.694

– The fifth column gives the number of different basic events showing up in the minimal cutsets.695

– The sixth column gives, in percentage, the ratio of the value of the rare event approximation696

obtained for the given threshold and the value of the rare event approximation obtained with697

the lower cutoff we could calculate with (i.e. the value indicated in the second cell of the last row698

of the table).699

– The seventh column gives, in percentage, the ratio of the number of basic events showing up in700

the minimal cutsets over the total number of basic events of the model.701

– Finally, the eighth column gives the running time in seconds for the whole calculation.702

Table 1. Results obtained on model 1 (1733 basic events, 1304 gates)

Cutoff REA MCUB #MCS #BE REA% BE% Time (s)
1.00e-05 3.55000e-04 3.54966e-04 3 4 74.50% 0.2% 0.07
1.00e-06 4.03857e-04 4.03805e-04 20 26 84.75% 1.5% 0.16
1.00e-07 4.28640e-04 4.28578e-04 122 108 89.95% 6.2% 0.42
1.00e-08 4.50211e-04 4.50139e-04 924 237 94.48% 13.7% 1.01
1.00e-09 4.65220e-04 4.65141e-04 6 120 429 97.63% 24.8% 2.34
1.00e-10 4.71964e-04 4.71882e-04 29 098 755 99.04% 43.6% 5.39
1.00e-11 4.74889e-04 4.74805e-04 124 582 1 055 99.66% 60.9% 12.62
1.00e-12 4.75985e-04 4.75901e-04 480 930 1 166 99.89% 67.3% 27.59
1.00e-13 4.76365e-04 4.76281e-04 1 693 755 1 323 99.97% 76.3% 61.00
1.00e-14 4.76491e-04 4.76407e-04 5 658 636 1 464 99.99% 84.5% 137.00
1.00e-15 4.76529e-04 4.76445e-04 17 579 596 1 515 100.00% 87.4% 288.00

Table 2. Results obtained on model 2 (2312 basic events, 5346 gates)

Cutoff REA MCUB #MCS #BE REA% BE% Time (s)
1.00e-07 6.48254e-07 6.48254e-07 4 11 11.41% 0.5% 0.18
1.00e-08 2.11285e-06 2.11284e-06 57 41 37.20% 1.8% 0.39
1.00e-09 3.40600e-06 3.40599e-06 590 149 59.96% 6.4% 0.89
1.00e-10 4.40506e-06 4.40505e-06 4 222 348 77.55% 15.1% 2.20
1.00e-11 5.07637e-06 5.07636e-06 27 543 687 89.37% 29.7% 6.03
1.00e-12 5.42694e-06 5.42693e-06 146 831 1 095 95.54% 47.4% 15.77
1.00e-13 5.58671e-06 5.58670e-06 682 050 1 464 98.35% 63.3% 39.99
1.00e-14 5.65404e-06 5.65403e-06 2 908 473 1 711 99.54% 74.0% 104.00
1.00e-15 5.68026e-06 5.68024e-06 11 459 524 1 919 100.00% 83.0% 280.00

We can already draw several important conclusions from this first series of experiments.703

First, XFTA is very efficient. It makes it possible to assess very large models, with millions of704

minimal cutsets, within seconds where other tools take minutes, if not hours, and are not able to705

compute with cutoffs as low as reported here. At a first glance, this may seem in contradiction with the706
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Table 3. Results obtained on model 3 (2816 basic events, 5583 gates)

Cutoff REA MCUB #MCS #BE REA% BE% Time (s)
1.00e-07 7.31207e-07 7.31207e-07 3 6 18.51% 0.2% 0.40
1.00e-08 2.00813e-06 2.00812e-06 55 76 50.84% 2.7% 0.76
1.00e-09 3.08379e-06 3.08379e-06 457 243 78.07% 8.6% 1.14
1.00e-10 3.62022e-06 3.62022e-06 2 421 495 91.65% 17.6% 2.60
1.00e-11 3.83641e-06 3.83640e-06 10 005 912 97.13% 32.4% 4.11
1.00e-12 3.91496e-06 3.91495e-06 36 717 1 301 99.12% 46.2% 7.56
1.00e-13 3.94020e-06 3.94019e-06 119 767 1 577 99.75% 56.0% 14.29
1.00e-14 3.94738e-06 3.94737e-06 350 488 1 797 99.94% 63.8% 27.97
1.00e-15 3.94930e-06 3.94929e-06 958 104 1 955 99.98% 69.4% 52.00
1.00e-16 3.94979e-06 3.94977e-06 2 473 798 2 084 100.00% 74.0% 98.00
1.00e-17 3.94990e-06 3.94984e-06 6 074 179 2 179 100.00% 77.4% 182.00

development we made throughout this article. But it is not, or not fully. On the one hand, XFTA results707

of decades of intensive research on algorithm and heuristics. On the other hand, models under study708

are nearly coherent Boolean formulas for which polynomial time approximations exist, as explained in709

the previous section. We shall discuss this issue in more details later in the section.710

Second, there is not much difference between the results provided by rare event approximation711

and those obtained with the mincut upper bound. This is due to the fact that minimal cutsets have low712

probabilities. The benefit of using the latter approximation is thus limited (especially if we balance it713

with its algorithmic cost).714

Third, in the three models, very few minimal cutsets and thus very few basic events, concentrate715

the most part of the accident probability. Moreover, even when calculating with a very low cutoff716

value, a significant part of the basic events does not show up in the minimal cutsets. In other words,717

there is a significant difference between the model as designed and the model as calculated. This calls718

for the development of tools that would synthesize the calculated model from the designed model719

and the list of basic events showing up in the minimal cutsets. This means also that the efforts to720

reduce uncertainties should probably be focused on these few important minimal cutsets and their721

basic events.722

Fourth, the number of minimal cutsets grows steadily as the cutoff decreases. The minimal cutsets723

with a low probability do not contribute much to the top event probability. However, they have a724

strong impact on other risk measures like importance measures. Importance measures such as the725

Birnbaum importance factor, the Risk Achievement Worth and the Risk Reduction Worth, which are726

extensively used in nuclear PSA studies, discard the probability of the basic event they are measuring,727

see [49] for a detailed discussion about this topics. Some authors criticized them for this very reason,728

see e.g. [64]. But they key point here is that the ranking of basic events may show a chaotic behavior729

with respect to the selected cutoff value. This phenomenon has been first pointed out in reference [65]730

and confirmed on a larger extent by Duflot & al. [66,67].731

5.2. Testing the Robustness of the Results732

Testing the robustness of the results is indeed of primary importance when assessing the safety of733

a critical system. This applies especially to the robustness of the assessment of the top event probability,734

given the existing uncertainties on reliability data, i.e. on probabilities of basic events (or parameters735

of probability distributions from which these probabilities are obtained).736

As pointed out in the previous section, there are several methods to do so, including interval737

calculations, interpretation of probabilities into an extended logic (such as the Dempster–Shafer theory),738

and Monte-Carlo simulation.739

As we are seeking here for general results, we shall adopt a slighty different approach. The idea740

is to study the impact of a variation in the same direction of the probability of all basic events. This741
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method is probably a good way to test the robustness of the results obtained with nominal probabilities742

of basic events.743

A first test consists in making probabilities of basic events vary slightly. Tables 4, 5 and 6 report744

results obtained by increasing by 10% the probabilities of basic events of the three models.745

These tables are organized as previously. The only difference stands in the sixth column: the746

reference probability, i.e. the denominator of the ratio, is the one of the previous table so to make clear747

the difference on the top event probability induced by the slight increase of basic event probabilities.748

Table 4. Results obtained by increasing by 10% the probabilities of basic events of model 1

Cutoff REA MCUB #MCS #BE REA% BE% Time (s)
1.00E-05 4.41529E-04 4.41474E-04 4 6 92.66% 0.3% 0.08
1.00E-06 5.00144E-04 5.00062E-04 24 31 104.96% 1.8% 0.19
1.00E-07 5.39665E-04 5.39563E-04 170 118 113.25% 6.8% 0.48
1.00E-08 5.72057E-04 5.71937E-04 1,339 265 120.05% 15.3% 1.15
1.00E-09 5.93737E-04 5.93604E-04 8,579 473 124.60% 27.3% 2.73
1.00E-10 6.03324E-04 6.03185E-04 41,377 827 126.61% 47.7% 6.41
1.00E-11 6.07380E-04 6.07239E-04 173,891 1,082 127.46% 62.4% 14.95
1.00E-12 6.08905E-04 6.08763E-04 667,433 1,190 127.78% 68.7% 33.69
1.00E-13 6.09427E-04 6.09285E-04 2,345,094 1,351 127.89% 78.0% 75.00
1.00E-14 6.09599E-04 6.09456E-04 7,707,230 1,489 127.92% 85.9% 166.00
1.00E-15 6.09650E-04 6.09508E-04 23,883,995 1,523 127.94% 87.9% 352.00

Table 5. Results obtained by increasing by 10% the probabilities of basic events of model 2

Cutoff REA MCUB #MCS #BE REA% BE% Time (s)
1.00E-07 1.20217E-06 1.20217E-06 6 12 21.16% 0.5% 0.20
1.00E-08 3.45096E-06 3.45095E-06 80 48 60.75% 2.1% 0.45
1.00E-09 5.73216E-06 5.73214E-06 954 193 100.91% 8.3% 1.08
1.00E-10 7.32196E-06 7.32193E-06 7,002 428 128.90% 18.5% 2.86
1.00E-11 8.33469E-06 8.33465E-06 42,736 766 146.73% 33.1% 7.94
1.00E-12 8.86488E-06 8.86484E-06 222,655 1,172 156.06% 50.7% 20.51
1.00E-13 9.10702E-06 9.10699E-06 1,030,887 1,529 160.33% 66.1% 52.81
1.00E-14 9.20761E-06 9.20757E-06 4,358,927 1,775 162.10% 76.8% 140.00
1.00E-15 9.24656E-06 9.24652E-06 17,060,713 1,946 162.78% 84.2% 390.00

Table 6. Results obtained by increasing by 10% the probabilities of basic events of model 3

Cutoff REA MCUB #MCS #BE REA% BE% Time (s)
1.00E-07 1.10523E-06 1.10523E-06 4 11 27.98% 0.4% 0.44
1.00E-08 2.87116E-06 2.87115E-06 71 97 72.69% 3.4% 0.69
1.00E-09 4.26522E-06 4.26521E-06 560 269 107.98% 9.6% 1.28
1.00E-10 4.99193E-06 4.99191E-06 2,982 522 126.38% 18.5% 2.39
1.00E-11 5.28019E-06 5.28017E-06 12,362 962 133.68% 34.2% 4.48
1.00E-12 5.38284E-06 5.38283E-06 45,166 1,336 136.28% 47.4% 8.38
1.00E-13 5.41505E-06 5.41504E-06 145,340 1,612 137.09% 57.2% 16.07
1.00E-14 5.42414E-06 5.42414E-06 423,962 1,816 137.32% 64.5% 30.79
1.00E-15 5.42654E-06 5.42653E-06 1,156,010 1,974 137.38% 70.1% 57.47
1.00E-16 5.42715E-06 5.42713E-06 2,987,579 2,098 137.40% 74.5% 110.00
1.00E-17 5.42730E-06 5.42722E-06 7,320,431 2,192 137.40% 77.8% 205.00

The probability of the top event is not very impacted by this slight change in basic event749

probabilities. The increases are respectively of 30%, 60% and 40%.750

The numbers of minimal cutsets for each value of the cutoff vary in a similar way. There is an751

increase, but this increase is not too drastic.752
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Note that the increase in the top event probability is mostly due to the increase in basic event753

probabilities and not to the increase in the number of minimal cutsets, at least for the smallest values754

of the threshold.755

The picture changes radically when we consider a more significant change of basic events756

probabilities. Tables 7, 8 and 9 report results obtained by multiplying by 2 the probabilities of757

basic events of the three models. Note that such a variation, altought very significant, is not irrealistic758

given the epistemic uncertainties on these probabilities.759

Table 7. Results obtained by multiplying by 2 the probabilities of basic events of model 1

Cutoff REA MCUB #MCS #BE REA% BE% Time (s)
1.00E-05 2.56231E-03 2.55952E-03 49 43 537.70% 2.5% 0.18
1.00E-06 3.44500E-03 3.43956E-03 400 145 722.94% 8.4% 0.48
1.00E-07 4.20053E-03 4.19221E-03 3,210 301 881.48% 17.4% 1.39
1.00E-08 4.66314E-03 4.65277E-03 19,527 586 978.56% 33.8% 3.41
1.00E-09 4.89122E-03 4.87977E-03 96,421 888 1026.43% 51.2% 8.51
1.00E-10 4.98920E-03 4.97727E-03 419,437 1,138 1046.99% 65.7% 22.03
1.00E-11 5.02556E-03 5.01344E-03 1,603,024 1,285 1054.62% 74.1% 52.51
1.00E-12 5.03848E-03 5.02629E-03 5,706,077 1,438 1057.33% 83.0% 128.00
1.00E-13 5.04259E-03 5.03038E-03 18,723,478 1,516 1058.19% 87.5% 291.00
1.00E-14 5.04383E-03 5.03162E-03 57,063,870 1,553 1058.45% 89.6% 677.00

Table 8. Results obtained by multiplying by 2 the probabilities of basic events of model 2

Cutoff REA MCUB #MCS #BE REA% BE% Time (s)
1.00E-07 4.09621E-05 4.09613E-05 113 46 721.13% 2.0% 0.47
1.00E-08 7.85630E-05 7.85599E-05 1,529 187 1383.09% 8.1% 1.33
1.00E-09 1.07583E-04 1.07577E-04 12,561 485 1893.98% 21.0% 3.79
1.00E-10 1.27490E-04 1.27482E-04 84,354 931 2244.44% 40.3% 11.57
1.00E-11 1.38664E-04 1.38655E-04 471,371 1,364 2441.16% 59.0% 33.16
1.00E-12 1.44230E-04 1.44220E-04 2,357,504 1,674 2539.14% 72.4% 97.00
1.00E-13 1.46712E-04 1.46701E-04 10,620,675 1,882 2582.84% 81.4% 296.00

Table 9. Results obtained by multiplying by 2 the probabilities of basic events of model 3

Cutoff REA MCUB #MCS #BE REA% BE% Time (s)
1.00E-07 2.81395E-05 2.81391E-05 84 84 712.41% 3.0% 0.59
1.00E-08 4.90584E-05 4.90572E-05 840 232 1242.02% 8.2% 1.06
1.00E-09 5.96707E-05 5.96690E-05 4,355 498 1510.69% 17.7% 2.13
1.00E-10 6.38861E-05 6.38841E-05 18,007 869 1617.41% 30.9% 4.18
1.00E-11 6.53132E-05 6.53111E-05 63,358 1,295 1653.54% 46.0% 8.30
1.00E-12 6.57587E-05 6.57565E-05 202,389 1,608 1664.82% 57.1% 16.96
1.00E-13 6.58864E-05 6.58842E-05 594,713 1,818 1668.05% 64.6% 33.93
1.00E-14 6.59207E-05 6.59186E-05 1,644,065 1,977 1668.92% 70.2% 67.00
1.00E-15 6.59296E-05 6.59274E-05 4,307,856 2,108 1669.15% 74.9% 132.00
1.00E-16 6.59317E-05 6.59296E-05 10,727,093 2,207 1669.20% 78.4% 256.00
1.00E-17 6.59322E-05 6.59299E-05 25,482,478 2,271 1669.21% 80.6% 500.00

Now top event probabilities are respectively multiplied by 10, 26 and 17! The number of minimal760

cutsets is also very significantly bigger for each value of the cutoff. However, as previously, the increase761

in the top event probability is mostly due to the increase in basic event probabilities and not to the762

increase in the number of minimal cutsets.763

Some calculations that were possible become intractable. In any case, running times are764

significantly increased.765
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Note that the same observation applies the other way round as well: if we divide by a factor 2 the766

probabilities of the basic events, we divide by a factor much greater than 2 the probability of the top767

event.768

Roughly speaking, if we consider, for each basic event E of “mean” probability pE the range769

[pE/ρ, pE × ρ], for a certain factor ρ ≥ 1, then the top event probability will vary in the interval770

[ptop/ρk, ptop × ρk], where ptop is the probability calculated for the mean values of basic event771

probabilities and k is the “mean” length of minimal cutsets.772

This second series of experiments bring a good news and a bad news. The good news is that773

is may not be necessary to recompute the minimal cutsets in each run of a Monte-Carlo simulation774

(on basic event probabilities). Just recomputing the top event probability from the minimal cutsets775

calculated with the mean values of basic event probabilities is probably sufficient. The bad news is776

that if the uncertainties on basic event probabilities are not small, the uncertainty in the top event777

probability may be so large that this central indicator looses it significance. In this case, other methods778

(than Monte-Carlo simulation or interval calculation) have to be put in place. A good idea is probably779

to perform a case study on the probability of the most important basic events. This is fairly possible780

because, as we have shown, there are not so many such basic events.781

5.3. Discussion782

The results given in this section are puzzling and lead to the following paradox.783

Paradox 2 (Feasibility of calculations). Although involving the resolution of theoretically intractable problems,784

state of the art cutoff based algorithms make it possible to assess very large PRA/PSA models.785

We could take this paradox just as another illustration of the famous quote: “In theory there is no786

difference between theory and practice. In practice there is”. But this is indeed rather unsatisfying, especially787

because it is easy to exhibit trivial formulas for which the algorithms do not give any good results: For788

any value of the cutoff τ, consider the disjunction of n similar basic events whose probability p is lower789

than τ. Clearly, a cutoff based algorithm detects none of the singleton cutsets and therefore estimates790

the probability of the formula to 0. However, by letting n growing, we can make the probability of the791

formula arbitrarily close to 1, i.e. the error of the algorithm as big as we want.792

This calls for a characterization of the formulas for which cutoff based algorithms work. This793

could work as follows.794

Let f be a formula built over a set of variables V and let τ be a cutoff value. We can split795

Minterms ( f ) into two subsets:796

– The set Minterms≥τ ( f ) of minterms whose probabilistic weight is greater or equal to τ.797

– The set Minterms<τ ( f ) of minterms whose probabilistic weight is less than τ.798

The absolute error στ( f ) and the relative error ρτ( f ) on the estimation of the probability of f made by a799

cutoff based algorithm for a given value of τ can be characterized as follows.800

στ( f )
de f
= p (Minterms<τ ( f ))

ρτ( f )
de f
=

p (Minterms<τ ( f ))
p (Minterms ( f ))

These measures can be used in two ways: for a given value of the cutoff τ, they characterize the801

relative and absolute errors made by a cutoff based algorithm, and for a given value ε of the relative or802

absolute error we are ready to accept, they characterize the value of the cutoff to be used.803

This characterization of probabilized Boolean formulas is quite different from other complexity804

measures proposed in the literature. The Shannon’s entropy, as introduced by Shannon in [68], can be805

used to characterize the amount of information in minterms and therefore in formulas. Intuitively, the806

elements of Minterms≥τ ( f ) tend to have a low Shannon’s entropy while those of Minterms<τ ( f ) tend807
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to have a high Shannon’s entropy. The problem is indeed that the Shannon’s entropy of f considers808

both Minterms≥τ ( f ) and Minterms<τ ( f ), i.e. does not make approximations. For the same reason,809

trying to characterize approximable formulas by the size of their normal form (which can be seen as810

a kind of Kolmogorov complexity) or the computational cost of obtaining it (which can be seen as811

a kind of Benett’s logical depth) is not satisfying, see e.g. [69] for a reference book on these notions.812

Eventually, the closest notion one can find is probably the probably approximately correct learning813

(PAC learning) introduced by Valiant in [70] to ground the computational learning theory, see also [71].814

Here the set of hypotheses would be the set of all possible normal forms for formulas whose minterms815

have probabilistic weight lower than the cutoff τ and the concept to be learned would be the normal816

form for Minterms≥τ ( f ).817

6. Conclusion818

In this article, we studied the uncertainties in probabilistic risk/safety assessment (PRA/PSA)819

due to the computational complexity of assessment of risk indicators.820

First, we proposed a taxonomy of modeling formalisms used in the PRA/PSA context. We821

reviewed known complexity results for these formalisms and showed that, except for the very822

particular case where the support model is a nearly coherent probabilized Boolean formula (i.e.823

can be translated into a nearly coherent fault trees), calculations at stake are intractable. This comes in824

some sense as an a posterio theoretical justification of a well established practice. We argued that this is825

also contributing to a large extent to the epistemic uncertainty on systems under study because this826

latter class of models does not allow to represent faithfully however important features of systems827

involving dependencies amongst events.828

In a second step, we reviewed state of the art assessment algorithms for the assessment of nearly829

coherent fault trees and related models. We showed that these algorithms calculate actually polynomial830

approximations of risk indicators and that, provided the probabilities of basic events are low enough,831

these approximations are accurate. This good news comes however with an epistemic price that we832

called the model refinement paradox: the more detailed the model, the lower the risk estimation.833

Last, we reported the results of an experimental study on three large PSA models coming from834

the nuclear industry. This study showed that in these models at least i) a few minimal cutsets (and835

thus basic events) concentrate the probability of the top event, ii) the number of extracted minimal836

cutsets grows steadily with the decrease of the cutoff, iii) even for low values of the cutoff a large837

proportion of basic events do not show up in the extracted minimal cutsets. This has at least two838

important consequences in terms of epistemic uncertainty: first, there is a real discrepancy between the839

model as designed and the model as assessed. Second, risk indicators such as importance measures840

may show a chaotic behavior with respect to the selected cutoff. We illustrated finally that, although841

results are quite robust to small variations of basic event probabilities, the uncertainties on the latter’s842

accumulate. Consequently, even not too large uncertainties on basic event probabilities may produce a843

large uncertainty on risk indicators.844

The above theoretical and experimental results should not be taken as a criticism of the845

probabilistic approach in reliability engineering. Just the contrary: by better understanding its846

advantages and possible drawbacks, we delimit better its scope and make it a powerful and trustable847

tool. With that respect, much remains to do in terms of mathematical, algorithmic and experimental848

developments, to take a better benefit of this approach.849

Assessing the risk in critical systems is and will remain a complex task. The analyst has definitely850

to face aleatory and epistemic uncertainties and to face it with a limited computation power. This851

echoes in the engineering domain Simon’s bounded rationality of economic agents. The question852

at stake is eventually how to be efficient in the modeling process given our bounded computation853

resources.854
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