

New Challenges and Opportunities in Reliability
Engineering of Complex Technical Systems

 Antoine Rauzy

Norwegian University of Science and Technology, Department of Mechanical and Industrial

Engineering, S. P. Andersens veg 3, 7491 Trondheim, Norway, Antoine.Rauzy@ntnu.no

Abstract: In this article, we discuss the impacts of technological transformations

currently at work on reliability engineering of complex technical systems. We con-

sider transformations both in systems and in means to study them. We review chal-

lenges to meet in order to manage the current technological paradigm shift. We ad-

vocate the potential benefits of the so-called model-based approach in probabilistic

risk assessment. We exemplified this approach by presenting the S2ML+X model-

ing technology.

Introduction

This article aims at discussing new challenges and opportunities brought to reli-

ability engineering of complex technical systems by technological transformations

currently at work. It echoes some reflections initiated a few years ago by Aven and

Zio [1][2][3][4], and aims at contributing to the on-going debate about the future of

our discipline.

All complex technical systems (aircrafts, nuclear power plants, offshore plat-

forms, civil and military drones…) present risks to themselves, their operators and

the environment. Therefore, one must ensure that these risks are economically, eco-

logically, and socially acceptable. This is the role of reliability engineering. Relia-

bility engineering encompasses processes as diverse as safety analyses, optimiza-

tions of maintenance policies, assessments of the expected production level of a

plant over a given period, assessments of the resilience of a socio-technical infra-

structure and so on. In a word, reliability engineering aims at assessing the opera-

tional performance of systems subject to random events such as mechanical failures,

operator errors, sudden changes in environmental conditions… With that respect, it

relies on models and more specifically on stochastic models as its objective is to

2

deal with aleatory uncertainties. Probabilistic risk analysis or equivalently probabil-

istic risk assessment is the process by which these models are designed and used to

calculate performance indicators. The WASH1400 report [5], which followed the

Three Miles Island nuclear accident, is usually considered as the historical starting

point of the worldwide, cross industry adoption of probabilistic risk analyses. As of

today, they rely mostly on modeling technologies such as fault trees, reliability

block diagrams and event trees [6][7]. These technologies are well suited for me-

chanical systems and well mastered by practitioners.

In this article, we address two questions:

1. Are these modeling technologies still suitable to assess risks in new genera-

tions of systems, which are software intensive and rely on ubiquitous control

mechanisms?

2. Can the new capacities provided by artificial intelligence and information

technologies change the probabilistic risk analysis process?

The first question is indeed of importance because most of the systems currently

designed by industry fall into this category. Our answer to this question is essen-

tially negative. More powerful modeling frameworks are needed.

Our answer to the second question is positive, even though many challenges re-

main to meet. We advocate here that part of the answer relies on the so-called

model-based approach in probabilistic risk assessment and more generally in sys-

tems engineering. This approach relies itself on a new generation of modeling tech-

niques and tools that make possible to represent more accurately the behavior of

complex technical systems, to maintain more easily models through the life-cycle

of systems, to integrate seamlessly probabilistic risk analyses with other model-

based systems engineering processes, and last but not least, to take advantages of

the fantastic opportunities provided by artificial intelligence and information tech-

nologies.

We present here the main underlying ideas of this approach and exemplified

them with the description of the S2ML+X family of domain specific modeling lan-

guages [8][9].

Of course, if the model-based approach can contribute to solve problems at stake,

it does not solve all of them. As software engineers use to say, “there is no silver

bullet” [10]. In particular, risk analysts must face the combinatorial explosion of the

number of scenarios to analyze, with inherently limited calculation resources, what-

ever technology is used to support the analysis [11]. We shall discuss here this issue

and review some other of the challenges to meet.

The contribution of this article is thus threefold. First, it discusses the two above

questions, with the point of view of a computer scientist. Second, it provides a brief

introduction to the model-based approach in probabilistic risk assessment. Third, it

discusses challenges to meet to manage the current paradigm shift in technologies.

The remainder of this article is organized as follows.

In the next section, we shall recall the basic principles of probabilistic risk anal-

yses, explain why the current process will probably change dramatically soon, and

sketch the forthcoming process. In the third section, we shall present the model-

3

based approach in probabilistic risk assessment and exemplified it with the

S2ML+X modeling technology. In the fourth section, we shall discuss challenges

to meet. Finally, the fifth section concludes the article.

The probabilistic risk assessment process

Current process

The current probabilistic risk assessment process is described in Figure 1.

Figure 1. The (current) probabilistic risk assessment process

The risk analyst uses two kinds of prior knowledge to perform probabilistic risk

assessment: the specifications of the system under study, so to understand how the

system works and how it may fail, and reliability data for the components of the

system, typically those recorded in the OREDA book [11] for the oil and gas indus-

try. From this knowledge, the analyst designs a model, e.g. a fault tree. Then, he

calculates indicators of operational performance such as the availability of the sys-

tem, its reliability, its mean down time, its average production and so on.

These indicators are eventually used to make decisions about the design of the

system.

4

Game changers

The above process will necessarily change, probably sooner than most of us ex-

pect, for at least three reasons.

First, systems designed by industry are increasingly complex, due notably to the

massive introduction of software and ubiquitous control mechanisms. We are grad-

ually moving from mechanical systems to mechatronic systems, cyber-physical sys-

tems and even systems of systems. As we shall show in the fourth section, fault trees

and related modeling formalisms are not suitable to represent accurately the dy-

namic aspects of the behavior of these systems.

Second, we are quickly moving from a situation where reliability data are scarce

and difficult to access to a situation where data are over numerous and easy to ac-

cess. This will induce considerable changes in the probabilistic risk assessment pro-

cess, although it is admittedly still hard to see the premises of this (r)evolution.

We ask here the reader to consider again the current situation, as it is represented

Figure 1: reliability data are manually collected by operators, then aggregated by

experts (with high skills in statistics) who try to fit them into parametric distribu-

tions such as the negative exponential distribution or the Weibull distribution. The

parameters of these distributions are then recorded into books like the already men-

tioned OREDA [11]. Risk analysts pick up eventually data in these books to feed

their models.

This way of doing things was fine but looks now completely outdated.

First, manual processing of data will no longer be possible when these data will

come from sensors continuously monitoring systems.

Second, relying on books sounds weird at a time where billions and billions of

digital data circulate on internet every second. Therefore, modeling environments

should be soon directly connected to data bases.

Third, the main reason to use parametric distributions was they provide a com-

pact way to store the information. However, the smallest image posted on social

networks contains more information than required to describe any empirical proba-

bility distribution. Therefore, why going on using parametric distributions and not

directly source data? Using directly source data would produce more accurate re-

sults. It could also make it possible to update data if not in real time, at least much

more often than currently. Moreover, different treatments could be performed on

data depending on the needs of the analysis.

In a word, reliability data that are used in probabilistic risk assessment are cur-

rently obtained via intermediations that will probably disappear in a near future.

The third game changer is also linked to the digital transformation of industrial

processes: any complex system comes now with hundred, if not thousands, of mod-

els and data sets. These models and data sets constitute what is sometimes called

the “digital twin” of the system [13].

5

We entered definitely in the model-based systems engineering era. Models are

used not only to design systems, but also to operate and even to decommission them.

This has two consequences: first, one needs to update models much more frequently

than before. Second, one needs to ensure the coherence of the various models de-

signed by the different engineering disciplines. With both respect, modeling formal-

isms like fault trees, block diagrams or event trees are not well suited. Validating

and updating these models is an extremely hard task because of their cognitive dis-

tance to systems specifications. Concretely, it is nearly impossible to understand

how the system works from the fault tree describing how it may fail. This calls for

a new generation of modeling formalisms making it possible to reduce the gap be-

tween (model-based) systems specifications and risk assessment models.

Envisioned process

The emerging risk assessment process, as we envision it, is pictured in Figure 2. As

the reader can see, it presents significant difference with the process described in

Figure 1.

Figure 2. Envisioned probabilistic risk assessment process

Systems specifications from which the analyst derives the risk assessment model

will rely more and more on models, as opposed to documents. Means should thus

6

be put in place to synchronize system architecture models with risk assessment

models. We shall come back to that point in the fourth section.

Manual recording of failures will be progressively replaced by automated health

monitoring of systems, by means of sensors. Monitoring data will be stored in data

bases. Data analysts will use artificial intelligence and machine learning techniques

to extract from these data some learned degradation indicators and probability dis-

tributions of failure of components. These indicators will be integrated directly into

models via digital communications.

Risk assessment models will also evolve so to be able to represent faithfully the

behaviors of systems, which will much more dynamic that those of purely mechan-

ical systems.

Finally, models will be used on-line to make decision about systems operations

and not off-line in the design phase. In a word, models will be “in the loop”.

Bets on evolution of technologies are usually lost. The future probabilistic risk

assessment process will thus probably not look to what we described above. Never-

theless, we are convinced that there are there elements of the future process and in

any case issues that are worth to study.

Discussion

The process described in the previous section relies heavily on models designed

by the analyst. In an even more futuristic vision, one could imagine performing risk

analyses straight from systems specifications and health monitoring data, by means

of artificial intelligence techniques. The author believes that such a dream (for man-

agers at least) has little chance to become reality, if any.

There are at least two major reasons to support our disbelief. First, artificial in-

telligence techniques require large training sets. As Yann LeCun, chief scientist at

Facebook and one of the gurus of deep learning, keeps repeating the progresses

made in artificial intelligence in the recent past years come for a good part of the

availability of very large training sets [14]. But incidents and accidents are hope-

fully rare. Therefore, even though there are enough data to feed handmade models,

there are not enough to get rid of these models. Second, artificial intelligence tech-

niques, as any other computer tool, are efficient on well-defined problems. But pre-

cisely, the process of designing a model is the process by which the analyst makes

the problem well-defined.

We shall now clarify what we mean by model-based approach in probabilistic

risk assessment as it is an essential ingredient of the envisioned process.

7

Model-Based Safety Assessment

The promise of model-based risk assessment

In systems engineering, the model-based approach is defined as opposed to the

document-based approach [15]. The situation is indeed different for probabilistic

risk analysis that relies in essence on models. Rather, the model-based approach in

reliability engineering is characterized the type of models that are used.

The most widely used modeling formalisms for safety analyses lack either ex-

pressiveness, e.g., fault trees and event trees, or structure, e.g., Markov chains and

stochastic Petri nets. Consequently, they are far from systems specifications. These

deficiencies make the models hard to design, hard to share with stakeholders, and

even more importantly, hard to maintain through the entire lifecycle of systems.

As an illustration, consider for instance the small system pictured in Error! Ref-

erence source not found. that we shall use throughout this section.

Figure 3. A two-line separation system

This system is made of two lines (L1 and L2). Each line consists itself of a sep-

arator S and a compressor C. The system is working if at least one of the two lines

is working. A line is working if both its separator and its compressor are working.

Error! Reference source not found. shows a minimal fault tree describing the

possible failures of this system.

This model makes a number of implicit assumptions: the two lines are assumed to

be in hot redundancy, the capacities of unit are assumed to be either 100% or 0%

and so on. Perhaps more importantly, it is nearly impossible from such a fault tree

8

to retrieve the actual architecture of the system. If failures of separators and com-

pressors are further decomposed, the analyst must duplicate by hand the descrip-

tions of these failure conditions, which is both tedious and error prone, not to speak

about maintenance (of the mode) issues.

Figure 4. A minimal fault tree describing failures of the system pictured Error! Reference

source not found..

Modeling systems in a more structured way and with suitable mathematical

frameworks can reduce the distance between systems specifications and models,

without increasing the complexity of calculations. This is the promise of the so-

called model-based risk assessment. This approach affords the ability to ani-

mate/simulate models, to ease their validation, and to share them with stakeholders.

Moreover, it presents the following important benefits for risk analyses stricto

sensu:

− A single model can address several safety goals, which eases versioning, con-

figuration and change management;

− It can be assessed by several assessment tools, which increases versatility of

assessments and quality-assurance of results (even if at a certain cost);

− It allows fine grain analyses, which limits over-pessimism resulting from coarse

grain analyses as performed for instance with fault trees.

− Its maintenance is alleviated significantly, as it is closer to systems specifica-

tions.

− Similar formalisms can be used to design simple static models as well as dy-

namic models, hence facilitating the acquisition of competences and the indus-

trial deployment of tools.

− The graphical animation of models makes it possible to share them with non-

specialists.

− The same technology can be used not only for risk analyses but more generally

to assess the operational performance of systems (in terms of costs, delays, pro-

duction levels…).

Modeling formalisms that support this approach can be classified into three cat-

egories. The first category consists of specialized profiles of model-based systems

engineering formalisms such as SysML, see e.g. [16]. The objective here is however

more to introduce a safety facet into models of system architecture than to design

9

actual safety models. The second category consists of extensions of fault trees or

reliability block diagrams so to enrich their expressive power. This category in-

cludes dynamic fault trees [17][18], multistate systems [19][20][21], and some other

proposals [22]. The third category, which aims at taking full advantage of the

model-based approach, consists of modeling languages such as Figaro [23] or Al-

taRica [24].

We shall focus on the latter category, as we consider it as the most promising.

More exactly we shall now present the S2ML+X family of modeling languages.

The S2ML+X Paradigm

Modeling languages of the S2ML+X family consists of two parts: a specific part,

the X, which is a particular mathematical framework, e.g. guarded transition sys-

tems (GTS) [25][26] in the case of AltaRica 3.0, and a general part, S2ML. S2ML

stands for S2ML stands for “system structure modeling language” [9]. S2ML gath-

ers in a coherent way structuring constructs stemmed from object-oriented program-

ming [27], and prototype-oriented programming [28]. In other words, languages of

the S2ML+X family obeys the following equation, which echoes the title of the

famous book of Wirth on the Pascal programming language (“Algorithms + Data-

Structures = Programs”) [29].

Behaviors + Architectures = Models

Our thesis is that it is possible to obtain full-fledged object-oriented modeling

languages by putting S2ML on top of a core mathematical framework aiming at

describing behaviors in a certain way.

This applies not only to guarded transition systems (X=GTS), which gives to

AltaRica 3.0, but also for systems of stochastic Boolean equations (X=SBE), which

are the underlying mathematical framework of fault trees and reliability block dia-

grams. This is actually what we have implemented in the new version of our tool

XFTA, which probably the most powerful and efficient calculation engine in its

class [30]. Beyond, it would be possible to apply the same principle to finite degra-

dation structures [31] and even mathematical frameworks used outside of reliability

engineering such as ordinary differential equations, obtaining in this way modeling

languages similar to Matlab/Simulink [32] or Modelica [33].

10

S2ML in a Nutshell

At this point, it is probably time for us to provide the reader with more insights

about S2ML.

Surprisingly enough, S2ML relies on only ten concepts: those of ports, connec-

tions, prototypes, classes, composition, cloning, instantiation, inheritance, reference

and aggregation.

Ports are basic objects of a model. For instance, in S2ML+SBE, parameters of

probability distribution, basic, intermediate and, house events, as well as common

cause failure groups are ports.

Connections are relations, taken in a broad sense, that link ports. Connections

capture the behavior of the system. For instance, in S2ML+SBE, equations defining

parameters, basic, intermediate and house variables, as well as definitions of com-

mon cause group failures are connections.

Ports and connections suffice to create a model. For instance, the fault tree pic-

tured Figure 4 is just a graphical representation of the following system of Boolean

equations.

F-Loss = L1-Loss and L2-Loss

L1-Loss = L1-S-Failed or L1-C-Failed

L1-Loss = L1-S-Failed or L1-C-Failed

For the sake of simplicity, we let here aside the description of probability distri-

butions associated with the four basic events L1-S-Failed, L1-C-Failed,

L2-S-Failed and L2-C-Failed, but it can be encoded in a similar way. Writ-

ing such a set of equations, or equivalently drawing the fault tree, is easy when the

system under study is small. However, a model made only of ports and connections

reflect only very indirectly the architecture of the system under study, as discussed

above.

To structure models, one needs containers for declarations of ports and connec-

tions (and other elements). The fundamental container is the prototype, i.e. a con-

tainer with a unique occurrence in the model. In languages of the S2ML+X family,

prototypes are called blocks.

When a container, a block, or any other type of container, contains an element,

one says that the container composes this element. Composition is a fundamental

relation between model elements, sometimes referred to as the is-part-of relation.

With ports, connections, and prototypes, it is already possible to design hierar-

chical models, i.e. to decompose the system under study into functional or physical

subsystems, then these subsystems into sub-subsystems, and so one until the wanted

degree of granularity is reached.

Such models would lack however of two fundamental ingredients. First, a way

to represent that two elements of the model describe similar parts of the system.

This is especially of interest in reliability engineering where redundancy is a key

11

element to ensure the required level of performance (like in our example). Second,

a way to connect elements located in different places in the hierarchy.

When two parts of the system under study are alike, e.g. the system pictured in

Figure 3 is made of two identical lines, the description of the second line is the same

as the description of the first one, up to the naming of elements. Once the first line

described, the description of the second one can be obtained by a kind of copy-paste

operation. This is however error prone and hides a fundamental information: the

fact, precisely, that line 1 and line 2 are identical.

S2ML provides the concept of cloning to deal with such situations. Rather to

copy-paste the prototype describing the first line to get the prototype describing the

second one, one says that the second prototype is a clone of the first one. The as-

sessment tool, XFTA in our case, is then in charge of performing the duplication.

For instance, the description of the system pictured in Figure 3 could have the

following structure.

block System

 block Line1

 block Separator

 // description of the behavior of the separator

 end

 block Compressor

 // description of the behavior of the compressor

 end

 end

 clones Line1 as Line2;

end

Note that the above structure is independent of the mathematical framework cho-

sen to describe behaviors.

Cloning makes it possible to duplicate modeling elements within a model, but

not to reuse them from models to models. Moreover, considering the description of

basic components, e.g. pumps or valves, the choice of the initial model element

(from other similar model elements are obtained by cloning) is very arbitrary.

The idea is therefore to create libraries of on-the-shelf modeling elements, out-

side any particular model, and to clone these modeling elements into the model,

when needed. In S2ML (and more generally in object-oriented programming), this

is achieved by the concepts of classes and instances.

A class is just a prototype declared outside the model. Instantiation is the oper-

ation by which a class is cloned into a model. The resulting prototype is called an

instance of the class.

For instance, we could define classes to describe the behavior of separators and

compressors, then instantiate them into our model:

12

class Separator

 // description of the behavior of the separator

End

class Compressor

 // description of the behavior of the compressor

end

block System

 block Line1

 Separator S;

 Compressor C;

 end

 clones Line1 as Line2;

end

Note again that the above structure is independent of the mathematical frame-

work chosen to describe behaviors.

Now it is sometimes the case that a component is a particular type of a more

general category of components, e.g. a solenoid valve is a particular type of valve.

Most of the properties of the particular component are actually common to all com-

ponents of the category, while some are specific. To represent that, it would be in-

deed possible to create a class for generic components then to instantiate this class

into the class describing specific ones. This would lead however to awkward mod-

else: a solenoid valve is not part of a generic one. Rather, a solenoid valve is-a valve.

In S2ML (and more generally in object-oriented programming), capturing is-a

relations is achieved by means of inheritance. When a prototype or class inherits

from another prototype or a class, it means that all elements composed by the latter

are composed by the former. It is then possible to modify the definitions of these

elements or to add new ones to reflect the particular properties of the specific com-

ponent. E.g.

class Valve

 // description of the behavior of a generic valve

end

class SolenoidValve

 extends Valve;

 // description of the specific features of solenoid valves

end

The last ingredient we need to deploy fully object-oriented modeling is the pos-

sibility to refer to an element located somewhere in the hierarchy of prototypes from

13

anywhere else in this hierarchy. The notion of reference is thus key. In S2ML, re-

ferring to ports is achieved by means of paths. Within a block, each element is

uniquely identified with a name, called its identifier. Two elements cannot have the

same name, even though they are of different types. To refer to an element located

in other blocks, one uses paths built with the dot notation and the two primitives

main and owner:

− B.E refers to the element E composed by the block B itself composed by the

current block. Applying this principle recursively makes it possible to refer to

any element located in the hierarchy rooted by the current block.

− owner refers to the parent block of the current block. Therefore,

owner.owner.B.E refers to the element E composed by the block B itself

composed by the grand-parent block of the current block. The primitive owner

makes it possible to create relative paths referring to any element in the current

hierarchy.

− main refers to the outermost block of the current hierarchy, i.e. the model itself.

Therefore, main.B.E refers to the element E composed by the block B de-

clared at the top-level. The primitive main makes it possible to create absolute

paths referring to any element in the model.

For instance, assuming that the class Separator declares a variable out, that

is true if and only if the separator works properly and that the class Compressor

declares a variable in to reflect the flow upstream the compressor. Then, at line

level we have to connect these two variables by means of an equation. This can be

done as follows, using the dot notation.

block Line1

 Separator S;

 Compressor C;

 flow C.in = S.out;

end

There are cases where one needs to refer to not only an individual element, like

a parameter or a variable, but a whole container, possibly itself composing sub-

containers. In that case, using paths would be tedious, and error prone.

The solution consists in the last concepts provided by S2ML, namely the aggre-

gation of containers.

Let A and B be two containers located at different places in the same hierarchy.

Let .B the path (relative or absolute) to go from A to B in that hierarchy. To access

an element E composed by B from A, one must normally use the path .B.E. By

aggregating in A the container B (actually the container .B) under the name C, one

makes possible to E in A by means of the path C.E. In some sense, this creates the

alias C for the path .B in A.

14

Aggregation should not be seen however only as a technical solution to create

references. More fundamentally, it represents a uses relation. A uses B although B

is not declared in the vicinity of A.

Aggregation is a key tool to describe so-called functional chains [34] as well as

to glue together, within the same model, descriptions of functional and physical

architectures [35].

AltaRica 3.0

So far, we used on systems of stochastic Boolean equations, which have the ex-

pressive power of fault trees or reliability block diagrams. With AltaRica 3.0 [24],

we leave the category of combinatorial modeling formalisms, to enter the category

of state automata, see reference [11] for a discussion on these categories.

Due to space limitations, it is not possible to present here all the features of the

language. In the previous section, we gave a flavor of S2ML. We shall thus illustrate

here the expressive power of guarded transition systems [25][26] by means of an

example.

Assume that, in our case study, the second line is a backup for the first one, i.e.

that its separator and its compressor are put in operation on demand. Systems of

stochastic Boolean equations are not powerful enough to represent faithfully this

behavior (and more generally to take into account time dependencies).

Figure 5 shows the graphical representation of a guarded transition system rep-

resenting a standby unit.

Figure 5. The guarded transition system representing a standby unit

15

Figure 6 shows the AltaRica code for this guarded transition system.

domain StandbyUnitDomain {STANDBY, WORKING, FAILED}

block MotorPump

 StandbyUnitDomain state (init = STANDBY);

 Boolean demand, in, out (reset = false);

 event start (delay = Dirac(0), expectation=gamma);

 event failureOnDemand (delay=Dirac(0),expectation=1-gamma);

 event stop (delay = Dirac(0));

 event failure (delay = exponential(lambda));

 event repair (delay = exponential(1/tau));

 parameter Real lambda = 1.0e-4;

 parameter Real tau = 8;

 parameter Real gamma = 0.02;

 transition

 start: demand and state==STANDBY -> state := WORKING;

 failureOnDemand: demand and state==STANDBY

 -> state := FAILED;

 stop: not demand and state==WORKING -> state := STANDBY;

 failure: state==WORKING -> state := FAILED;

 repair: state==FAILED -> state := STANDBY;

 assertion

 out := in and state==WORKING;

end

Figure 6. AltaRica code for the guarded transition system pictured Figure 5

Just as in systems of stochastic Boolean equations, guarded transition systems

use two types of variables to represent the current state of the system under study:

state variables that represent actually the state of the system and flow variables that

represent flows of matters, energy of information circulating in the network of com-

ponents.

The guarded transition system pictured in Figure 5 used one state variable,

state, and three flow variables demand, in and out. In AltaRica 3.0, variables

take their values into sets of constants called domains. The domain of the variable

state is the set of three symbolic constants {STANDBY, WORKING,

FAILED}. The three flow variables are Boolean.

The value of flow variables is calculated from the value of state variables, which

means that the former is recomputed each time the former is modified.

The value of state variables changes under the occurrence of events. In AltaRica,

these changes are described by means of guarded transitions. A guarded transition

16

is a triple (event, guard, action). The guard of a transition is a Boolean condition

telling when the transition is enabled. The action of a transition is the way this tran-

sition modifies the value of state variables, when fired.

In our example, there are five transitions labeled respectively by the events

start, stop, failureOnDemand, failure and repair and represented by

arrows.

Events are associated with probability distributions.

In our example, transitions labeled with events start, stop, and failure-

OnDemand are deterministic and instantaneous (associated with Dirac distribu-

tions), while transitions labeled with events failure and repair are timed and

stochastic.

The combination of GTS and S2ML results in a powerful, versatile language

which exploits optimally assessment algorithms.

An integrated modeling environment for AltaRica 3.0 (AltaRica Wizard) has

been developed as join effort of the Open-AltaRica team at IRT-SystemX (Paris,

France) and the author at NTNU. Industrial partners (Airbus, Safran and Thalès)

support this project. A versatile set of assessment tools is under development, which

includes:

− A step by step simulator making possible to play “what-if” scenarios and to val-

idate models. This simulator implements abstract interpretation techniques so to

simulate faithfully stochastic and timed executions [36].

− A compiler of AltaRica models into fault trees. This compiler relies on advanced

algorithmic techniques [37]. Fault trees are then assessed with XFTA [30],

which is one of the most efficient available calculation engines.

− A compiler of AltaRica models into Markov chains. This compiler produces

Markov chains that approximate the original model while staying of reasonable

sizes [38]. Markov chains are then assessed with Mark-XPR, as very efficient

calculation engine [39].

− A generator of critical sequences.

− A stochastic simulator. Stochastic simulation is itself a versatile tool to assess

complex models [40].

These tools make the AltaRica 3.0 technology extremely efficient. They make it

possible cross-verification. They prefigure what will be the next generation of mod-

eling environments for the assessment of operational performance of complex tech-

nical systems.

Textual versus graphical representations

As all modeling languages of the S2ML+X family, S2ML+SPBE and AltaRica

3.0 are a primarily textual, just as computer programs. Graphical representations

can be used, but the ultimate reference is the text. Not only we do not consider that

as a drawback, but we claim it is a necessity. At first, this thesis may seem at best

17

extremely provocative, as most of the models designed for both system architecture

and risk analyses (as well as in other engineering disciplines) are authored via

graphical modeling environments and many practitioners just refuse to write a sin-

gle line of code. However, graphical modeling is mainly useful to describe structural

parts of models and systems, see e.g. reference [41] for an interesting discussion on

the pragmatics of graphical modeling. It is hard to conceive how to author a differ-

ential equation or the probability distribution of the basic event of a fault tree graph-

ically. Behavioral descriptions, such as Markov chains or Petri nets, can be repre-

sented graphically. However, as soon as models become large, which is the case for

nearly any industrial-scale system, their graphical representations become more

problematic than useful: as they cannot fit into any reasonable space (computer

screen or printed out paper), the analyst can only visualize them by parts. This

means that she or he must anyway develop a global cognitive model to understand

local graphical representations. Moreover, many subtle differences in behaviors are

just impossible to represent graphically. In a word, models exist independently of

their graphical representations. These graphical representations, even taken to-

gether, cannot fully describe the model, except in simple cases. It is often very con-

venient to have several partial graphical representations for the same information

and to extract dynamically graphical representations according to one’s needs.

The parallel with software engineering is here fruitful. It is useful to represent

the architecture of software by diagrams such those of UML [42]. However, the

software exists independently of these representations and the code is the ultimate

reference. Moreover, below a certain level of abstraction, the code gives a more

compact, more precise, in a word more useful, information than any drawing. At

the end of the day, the humanity invented writing to overcome the lack of precision

of drawing.

It remains that making textual models adopted is one of the challenges that we

must meet. We shall now discuss these challenges.

Challenges

Transforming big data into smart data

Sensors produce already lots of data (big data) and will produce even more in the

future. However, most of these data cannot be exploited for probabilistic risk as-

sessment. Therefore, a key question is how to collect data that can be translated into

(probabilistic) degradation models, in complement or not to physical models. If we

can do so, it will remain to introduce degradation models for components into risk

assessment models for systems, i.e. to accommodate them into stochastic discrete

18

events systems. This latter point does not seem a major technical or scientific issue.

We can be reasonably optimistic on this question.

Handling the increasing complexity of systems

The behavior of software intensive systems, often called mechatronic systems,

or cyber-physical systems if they are connected to the net, is highly dynamic. Con-

trol mechanisms change the configuration of these systems depending on the state

of their components, of the environment or on the needs in terms of production.

Condition-based maintenance policies, which are increasingly adopted for the sake

of reducing costs of maintenance interventions and reducing production down-times

due to these interventions, enter in this category. The introduction these control

mechanisms creates dependencies among components as well as dynamically

scheduled phases in the life cycle of systems. Maintenance interventions are not

scheduled once for all, on a calendar basis, but decided dynamically based on the

monitoring of the condition of the system, which in turn depends on maintenance

interventions.

Static models, such as fault trees, event trees or reliability block diagrams, cannot

represent faithfully these dependencies and dynamically scheduled phases of life

cycles. To be able to do so, one needs at least the expressive power of (stochastic)

discrete event systems, like AltaRica.

Moving from static models to discrete event systems has however a triple cost:

first, analysts should be trained to these new modeling technologies; second, the

computational cost of calculations of risk indicators increases significantly; third,

as modeling formalisms are more powerful and problems at stake are more complex,

models are more difficult to design and to validate. We shall discuss the two first

point latter in this section. The third one, model design and validation of complex

technical systems, is one of the major technical challenges we are facing. It is strik-

ing how, as of today, the reliability engineering literature is still silent of this issue.

It is like modeling was a subsidiary task, requiring no other competences and skills

than a good mathematical background and a solid practical knowledge of the sys-

tems under study. Nothing is more illusory. Models must be recognized as first-

class citizens of scientific research in our domain. We need to develop the science

and the engineering of models (of engineering). With that respect, much can be

learned from the historical development of computer science and software engineer-

ing.

As explained in the previous section, AltaRica 3.0 embeds already the most ad-

vanced concepts for structuring models. These concepts are stemmed from object-

oriented programming and prototype-oriented programming [27][28]. Relying on a

power mathematical framework and versatile structuring mechanisms is mandatory

to handle the problems at stake. It is however not sufficient. To make the modeling

process efficient both in terms of model design and model validation, it is of primary

19

importance to reuse as much as possible modeling components within models and

between models. In modeling languages such as Modelica [33], this goal is achieved

via the design of libraries of on-the-shelf ready-to-use modeling components. Re-

using components is also possible in probabilistic risk analyses, but to a much lesser

extent. The reason is that these analyses represent systems at a high level of abstrac-

tion. Modeling components, except for very basic ones, tend thus to be specific to

each system. Reuse is mostly achieved by the design of modeling patterns, i.e. ex-

amples of models representing remarkable features of the system under study. Once

identified, patterns can be duplicated and adjusted for specific needs [24]. The no-

tion of patterns is pervasive in systems engineering. For instance, it has been devel-

oped in the field of technical system architecture, see e.g. [43], as well as in software

engineering [44]. Patterns are also excellent communication mean: in order to doc-

ument models (or programs), it is often sufficient to refer to the patterns that have

been used to design them. The author strongly believes that one of the tasks of the

reliability engineering community should be to perform a systematic exploration of

the modeling patterns for probabilistic risk assessment of nowadays technical sys-

tems. It is probably the only way to tame the complexity of these systems.

Computational complexity of probabilistic risk assessment

The risk analyst must face the combinatorial explosion of the number of scenar-

ios to analyse. Whatever modeling technology is used, the calculation of probabil-

istic risk indicators is provably computationally hard, namely #P-hard, as demon-

strated by Valiant [45] and further completed by Toda [46]. This was already true

for mechanical systems; this is indeed even more sensitive for mechatronic systems.

During the last decades fantastic progresses have been made in the development

of efficient algorithms and heuristics for probabilistic risk assessment. The power

of computers has also dramatically increased. No doubt that more progresses will

be made in both directions in the future. Nevertheless, the above mathematical lim-

its will continue to apply. The risk analyst will always have limited calculation ca-

pacities at hand. In practice, this means that probabilistic risk assessment models

result necessarily of a trade-off between the accuracy of the description of the sys-

tem under study and the ability to perform calculations on this description. In other

words, the risk analyst faces the fundamental epistemic and aleatory uncertainties

of risk assessment with a bounded calculation capacity. This bounded capacity over-

determines both the design of models and the decisions that can be made from mod-

els, see reference [11] for an in-depth discussion on this topic. With that respect, he

or she is like Simon's economical agent who must make decisions with a bounded

rationality [47].

The scientific and technological question at stake here is therefore to work on

algorithms, heuristics and modeling methodologies that help to use as efficiently as

possible the calculation resources at hand.

20

At this point, we must say few words about probabilistic risk analyses of systems

of systems, which are increasingly present in industry and more generally in our

lives [48]. These systems are very different from mechanical, mechatronic and even

cyber-physical systems. We can characterize them as being:

− Opaque: their states can be observed only by indirect means;

− Reflective: they embody models of their own behavior and environment;

− Deformable: their architecture changes throughout their mission.

Clearly, even modeling technologies like AltaRica 3.0 are not suited to represent

systems having these properties as they assume a fixed architecture of the system

under study is fixed [48]. To represent the behaviors of these systems of systems,

another class of modeling frameworks is probably required that we can called sto-

chastic process algebras in reference [11]. This class includes formalisms as diverse

as (stochastic variants of) colored Petri nets (with an unbound number of colors)

[50], process algebras such as Milner's pi-calculus [51] and agent-oriented modeling

languages [52]. These formalisms are extremely powerful. They have however a

major drawback: most of the questions we may ask are undecidable [53]. Conse-

quently, we must forge new concepts to analyze these systems.

Integrating seamlessly models and data sets into the digital twin

To face the complexity of technical systems, the engineering disciplines contrib-

uting to the design and operations of these systems are designing models and col-

lecting engineering data: as already said, any technical system comes now with hun-

dred, if not thousands, of models and data sets. These models are designed by

different teams in different modeling formalisms, at different levels of abstraction,

for different purposes. Models mature also at different rates. The question is thus

how to ensure that they describe the same system, i.e. how to synchronize them.

There are at least four distinct aspects in this question: a first one concerns the

management of models and data sets in the context of the extended enterprise. This

is the realm of collaborative data bases, product life cycle and product data man-

agement environments [54]. The concept of “digital twin” is gaining popularity to

designate systems in charge of models (and engineering data) management [55]. It

impacts all engineering disciplines, including of course probabilistic risk assess-

ment, as collaborative data bases will provide the infrastructure for the system anal-

ysis and modeling processes.

A second aspect is related to the seamless cooperation of models of different

abstraction levels within a discipline. This is an important and difficult topic [56].

This aspect concerns also probabilistic risk analyses. The question here is how mod-

els designed by a client and its suppliers can cooperate. A mere integration cannot

be the answer for both intellectual property and computational complexity issues.

Mathematical concepts and algorithmic tools must be developed this purpose.

21

A third aspect regards the co-simulation of heterogeneous but compatible mod-

els, such as experiments performed in the framework of the Ptolemy project [57].

For probabilistic risk analyses, it would mean for instance to couple risk assessment

models with 3D physical simulation codes. This would be of interest, especially in

terms of communication with the stakeholders. Regarding calculation of risk indi-

cators, it is probably quickly limited by computational complexity issues.

The fourth aspect regards the alignment of heterogeneous models representing

the system at about the same level of abstraction. The alignment of system architec-

ture models and probabilistic risk assessment models is a paradigmatic example of

that. This alignment is an industrial necessity and is required by Safety Standard

such as IEC 61508 [58] and IEC 61511 [59]. The heterogeneity of these models

makes it impossible to compare them directly. To compare them, we first must ab-

stract them into a common language, and then perform a comparison of their ab-

stractions. Once the comparison has been made, it is possible to go back to original

models via a concretization mechanism. This principle is close to Cousot’s abstract

interpretation of programs [60]. Significant results have been obtained in this direc-

tion that show the interest of this approach [61][62][63].

Managing the change

The technological transformations we discussed in this article cannot be

achieved without a conscious, organized and systematic management of change.

To start with, it requires to solve numerous intellectual property issues: who is

the owner of the data, who can access to them, under which conditions and so on.

This problematic goes indeed well beyond probabilistic risk analyses. It concerns

actually the whole digital twin in the context of the extended enterprise.

Training risk analysts to new modeling technologies is also a major issue. In now

more than twenty years of experience in both academia and industry, the author

knows perfectly how hard it is to pull well trained, experienced experts out of their

comfort zone. Risk analysts are conservative so to say in essence: you must have

very good reasons to change a solution that worked so far. But reasons for a radical

change are here. Here again, we learn lessons from the historical development of

computer science and software engineering: new programming paradigms have

been progressively introduced in industry by new generations of engineers who

learned them at university. Nowadays students are not afraid to write computer

code. On the contrary: to attract the best students, we should propose them state-of-

the-art activities and competences. One of the author’s deepest convictions is that

much more discrete mathematics – see e.g. reference [64] for an introduction –

should be introduced in engineering curricula.

22

Conclusion

In this article, we discussed the impact of current technological transformations

on probabilistic risk analyses. We advocated that two major changes in the proba-

bilistic risk assessment process are foreseeable. First, in-book reliability data col-

lected and organized by statisticians will be replaced by databases of degradation

indicators obtained machine learning techniques ran by data scientists. Second, clas-

sical modeling formalisms such as fault trees, event trees or reliability blocks dia-

grams will be replaced by modeling formalisms supporting the model-based ap-

proach, as exemplified by XFTA (S2ML+SBE) or AltaRica 3.0.

The industrial deployment of such radical changes will take time and is by no

means certain. However, there are solid scientific and technological arguments to

support them. The author hopes that the present article will at least serve to open

the discussion on the future of probabilistic risk analyses and will contribute to cre-

ate fruitful exchanges between academia and industry.

References

[1] Zio E. (2009) Reliability engineering: Old problems and new challenges. Reliability En-

gineering and System Safety; 94: 125–141.

[2] Zio E and Aven T. (2013) Industrial disasters: Extreme events, extremely rare. some

reflections on the treatment of uncertainties in the assessment of the associated risks.

Process Safety and Environmental Protection; 91: 31–45. doi:10.1016/

j.psep.2012.01.004.

[3] Aven T, Baraldi P, Flage R et al. (2014) Uncertainty in Risk Assessment: The Repre-

sentation and Treatment of Uncertainties by Probabilistic and Non-Probabilistic Meth-

ods. Chichester, West Sussex, United Kingdom: Wiley-Blackwell. ISBN 978-

1118489581.

[4] Aven T. (2015) The concept of antifragility and its implications for the practice of risk

analysis. Risk Analysis; 35(3): 476–483. doi:10.1111/risa.12279

[5] Rasmussen N. C. (1975) Reactor Safety Study. An Assessment of Accident Risks in

U.S. Commercial Nuclear Power Plants. U.S. Nuclear Regulatory Commission. Rock-

ville, MD, USA. WASH 1400, NUREG-75/014. October.

[6] Andrews JD and Moss RT. (2002) Reliability and Risk Assessment (second edition).

Materials Park, Ohio 44073-0002, USA: ASM International. ISBN 978-0791801833.

[7] Kumamoto H and Henley EJ. (1996) Probabilistic Risk Assessment and Management

for Engineers and Scientists. Piscataway, N.J., USA: IEEE Press. ISBN 978-

0780360174.

[8] Rauzy A and Haskins C. (2018) Foundations for Model-Based Systems Engineering and

Model-Based Safety Assessment. Journal of Systems Engineering. Wiley Online Li-

brary. doi:10.1002/sys.21469.

[9] Batteux M, Prosvirnova T and Rauzy A. (2018) From Models of Structures to Structures

of Models. IEEE International Symposium on Systems Engineering (ISSE 2018). IEEE.

Roma, Italy. October. doi:10.1109/SysEng.2018.8544424. Best paper award.

23

[10] Brooks F. (1995 The Mythical Man-Month. New York, NY, USA: Addison-Wesley.

ISBN 0-201-83595-9.

[11] Rauzy A. (2018) Notes on Computational Uncertainties in Probabilistic Risk/Safety As-

sessment. Entropy. MDPI. 20:3. doi:10.3390/e20030162.

[12] Oreda handbook – offshore reliability data, (2015) volume 1 and 2, 6th edition.

[13] Datta S., Emergence of Digital Twins, DSpace@MIT, https://dspace.mit.edu/han-

dle/1721.1/104429, 015

[14] Lecun Y, L'apprentissage profond, Leçons inaugurales au Collège de France (2017)

Fayard, ISBN 978-2213701820 (in French)

[15] Holt J. and Perry S. (2013) SysML for Systems Engineering: A Model-Based Approach.

Institution of Engineering and Technology. Stevenage Herts, United Kingdom. ISBN

978-1849196512.

[16] Yakymets N., Munoz Julho Y. and Lanusse A. (2014) Sophia framework for model-

based safety analysis. Actes du congrès Lambda-Mu 19 (actes électroniques). Institut

pour la Maîtrise des Risques. ISBN 978-2-35147-037-4. Dijon, France.

[17] Dugan J.B, Bavuso S. J. and Boyd M. A. (1992) Dynamic fault-tree models for fault-

tolerant computer systems. IEEE Transactions on Reliability. IEEE. 41:3. pp. 363–377.

September. doi:10.1109/24.159800.

[18] Bouissou M. and Bon J.-L. (2003) A new formalism that combines advantages of Fault-

Trees and Markov models: Boolean logic-Driven Markov Processes. Reliability Engi-

neering and System Safety. Elsevier. 82:2. pp. 149–163. doi:10.1016/S0951-

8320(03)00143-1.

[19] Lisnianski A. and Levitin G. (2003). Multi-State System Reliability. World Scientific.

London, England. ISBN 981-238-306-9.

[20] Papadopoulos Y., Martin M., Parker D., Rüde E., Hamann R., Uhlig A., Grätz U. and

Liend R. (2011). An approach to optimization of fault tolerant architectures using HiP-

HOPS. Journal of Engineering Failure Analysis. Elsevier Science. 18:2. pp. 590–608.

March. doi:10.1016/j.engfailanal.2010.09.025.

[21] Zaitseva E and Levashenko V. (2017) Reliability analysis of multi-state system with

application of multiple-valued logic International Journal of Quality and reliability Man-

agement, Emerald Publishing 34:6, pp 862-878, doi 10.1108/IJQRM-06-2016-0081.

[22] Signoret J.-P., Dutuit Y., Cacheux J.-P., Folleau C., Collas S. and Thomas P. (2013)

Make your Petri nets understandable: Reliability block diagrams driven Petri nets. Re-

liability Engineering and System Safety. Elsevier. 113. pp. 61–75.

doi:10.1016/j.ress.2012.12.008

[23] Bouissou M., Bouhadana H., Bannelier M. and Villatte N. (1991) Knowledge modeling

and reliability processing: presentation of the FIGARO language and of associated tools.

Proceedings of SAFECOMP'91, IFAC International Conference on Safety of Computer

Control Systems. Johan F. Lindeberg Ed.. Pergamon Press. ISBN 0-08-041697-7. pp.

69–75. Trondheim, Norway

[24] Batteux M, Prosvirnova T and Rauzy A. (2019) AltaRica 3.0 in 10 Modeling Patterns.

International Journal of Critical Computer-Based Systems. Inderscience Publishers. 9:1-

2. pp. 133–165. doi:10.1504/IJCCBS.2019.098809.

[25] Rauzy A. (2008) Guarded Transition Systems: a new States/Events Formalism for Reli-

ability Studies. Journal of Risk and Reliability. Professional Engineering Publishing.

222:4. pp. 495–505. doi:10.1243/1748006XJRR177.

[26] Batteux M., Prosvirnova T. and Rauzy A. (2017) AltaRica 3.0 Assertions: the Why and

the Wherefore. Journal of Risk and Reliability. Professional Engineering Publishing.

September. doi:10.1177/1748006X17728209.

[27] Abadi M. and Cardelli L. (1998) A Theory of Objects. Springer-Verlag. New-York,

USA. ISBN 978-0387947754.

24

[28] Noble J., Taivalsaari A. and Moore I. (1999) Prototype-Based Programming: Concepts,

Languages and Applications. Springer-Verlag. Berlin and Heidelberg, Germany. ISBN

978-9814021258.

[29] Wirth N. (1976) Algorithms + Data Structures = Programs. Prentice-Hall. Upper Saddle

River, New Jersey 07458, USA. ISBN 978-0130224187.

[30] Rauzy A. (2020) Probabilistic Safety Analysis with XFTA. AltaRica Association. Les

Essarts le Roi, France. ISBN 978-82-692273-0-7.

[31] Rauzy A. and Yang L. (2019) Finite Degradation Structures. Journal of Applied Logics

-- IfCoLog Journal of Logics and their Applications. College Publications. 6:7. pp.

1471–1495.

[32] Klee H. and Allen R. (2011). Simulation of Dynamic Systems with MATLAB and Sim-

ulink. CRC Press. Boca Raton, FL 33431, USA. ISBN 978-1439836736.

[33] Fritzson P. (2015) Principles of Object-Oriented Modeling and Simulation with Model-

ica 3.3: A Cyber-Physical Approach. Wiley-IEEE Press. Hoboken, NJ 07030-5774,

USA. ISBN 978-1118859124.

[34] Voirin J.-L.. (2008) Method and Tools for Constrained System Architecting. Proceed-

ings 18th Annual International Symposium of the International Council on Systems En-

gineering (INCOSE 2008). Curran Associates, Inc.. ISBN 978-1605604473. pp. 775–

789. Utrecht, The Netherlands.

[35] Batteux M., Prosvirnova T., Rauzy A. and Yang L. (2018) Reliability Assessment of

Phased-Mission Systems with AltaRica 3.0. Proceedings of the 3rd International Con-

ference on System Reliability and Safety (ICSRS). IEEE. pp. 400–407. Barcelona,

Spain. November. doi:10.1109/ICSRS.2018.00072.

[36] Batteux M., Prosvirnova T., Rauzy A. (2020) Abstract Executions of Stochastic Discrete

Event Systems, submitted to SoSym.

[37] Prosvirnova T. and Rauzy A. (2015) Automated generation of Minimal Cutsets from

AltaRica 3.0 models. International Journal of Critical Computer-Based Systems. In-

derscience Publishers. 6:1. pp. 50–79. 2015 doi:10.1504/IJCCBS.2015.068852.

[38] Brameret P.-A., Rauzy A. and Roussel J.-M. (2015) Automated generation of partial

Markov chain from high level descriptions. Reliability Engineering and System Safety.

Elsevier. 139. pp. 179–187. doi:10.1016/j.ress.2015.02.009.

[39] Rauzy A. (2004) An Experimental Study on Six Algorithms to Compute Transient So-

lutions of Large Markov Systems. Reliability Engineering and System Safety. Elsevier.

86:1. pp. 105–115.

[40] Zio E. (2013) The Monte Carlo Simulation Method for System Reliability and Risk

Analysis. Springer London. London, England. ISBN 978-1-4471-4587-5.

[41] Fuhrmann H.A. L. (2011) On the Pragmatics of Graphical Modeling. Book on Demand.

Norderstedt, Germany. ISBN 978-384480084.

[42] Rumbaugh J., Jacobson I. and Booch G. (2005) The Unified Modeling Language Refer-

ence Manual. Addison Wesley. Boston, MA 02116, USA. ISBN 978-0321267979.

[43] Maier M. W. (2009) The Art of Systems Architecting. CRC Press. Boca Raton, FL

33431, USA.

[44] Gamma E., Helm R., Johnson R. and Vlissides J. (1994) Design Patterns -- Elements of

Reusable Object-Oriented Software. Addison-Wesley. Boston, MA 02116, USA. ISBN

978-0201633610.

[45] Valiant L. G. (1979) The Complexity of Enumeration and Reliability Problems. SIAM

Journal of Computing. SIAM. 8:3. pp. 410–421.

[46] Toda S. (1991) PP is as Hard as the Polynomial-Time Hierarchy. SIAM Journal on Com-

puting. SIAM. 20:5. pp. 865–877.

[47] Simon H. (1957) Models of Man: Social and Rational. Mathematical Essays on Rational

Behavior in a Social Setting. Wiley. New York, New Jersey, U.S.A.

25

[48] Maier M. W. (1998) Architecting principles for systems-of-systems. Systems Engineer-

ing. Wiley Periodicals, Inc. 1:4. pp. 267-284. doi:10.1002/j.2334-5837.1996.tb02054.x.

[49] Kloul L., Prosvirnova T. and Rauzy A. (2013) Modeling systems with mobile compo-

nents: a comparison between AltaRica and PEPA nets. Journal of Risk and Reliability.

Professional Engineering Publishing. 227:6. pp. 599–613.

doi:10.1177/1748006X13490497.

[50] Jensen K. (2014) Coloured Petri Nets. Springer-Verlag. Berlin and Heidelberg, Ger-

many. ISBN ISBN-10: 364242581X. ISBN-13: 978-3642425813.

[51] Milner R. (1999) Communicating and Mobile Systems: The pi-calculus. Cambridge

University Press. Cambridge, CB2 8BS, United Kingdom. ISBN 978-0521658690.

[52] Railsback S. and Grimm V. (2011) Agent-Based and Individual-Based Modeling - A

Practical Introduction. Princeton University Press. Princeton, New Jersey, USA. ISBN

978-0691136745.

[53] Esperza J. (1998) Decidability and Complexity of Petri Nets Problems - An introduction.

Lectures on Petri Nets I: Basic Models. W. Reisig and G. Rozenberg Ed.. Springer.

ISBN 3-540-65306-6. 1491. pp. 374–428.

[54] Stark J. (2011) Product Lifecycle Management: 21st Century Paradigm for Product Re-

alisation (2nd ed). Springer London Ltd. London, England. ISBN 978-0857295453.

[55] Datta S. (2015). Emergence of Digital Twins. https://dspace.mit.edu/handle/1721.1/

104429

[56] Mainini L. and Maggiore P. (2012) Multidisciplinary Integrated Framework for the Op-

timal Design of a Jet Aircraft Wing. International Journal of Aerospace Engineering.

Hindawi Publishing Corporation. doi:10.1155/2012/750642.

[57] Ptolemaeus C. (2014) System Design, Modeling, and Simulation using Ptolemy II. Ptol-

emy.org. ISBN 978-130442106. http://ptolemy.org/books/Systems.

[58] IEC (2010) International IEC Standard IEC61508 - Functional Safety of Electrical/Elec-

tronic/Programmable Safety-related Systems (E/E/PE, or E/E/PES). International Elec-

trotechnical Commission. Geneva, Switzerland. ISBN ISBN 978-2-88910-524-3.

[59] IEC (2016) International IEC Standard IEC61511 - Functional safety - Safety instru-

mented systems for the process industry sector. International Electrotechnical Commis-

sion. Geneva, Switzerland. ISBN 978-2-8322-4752-5.

[60] Cousot P. and Cousot R. (1977) Abstract interpretation: a unified lattice model for static

analysis of programs by construction or approximation of fixpoints. Conference Record

of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages. ACM Press. pp. 238–252. New York, NY, USA.

[61] Legendre A., Lanusse A. and Rauzy A. (2016) Directions towards supporting synergies

between design and probabilistic Safety assessment activities: illustration on a fire de-

tection system embedded in a helicopter. Proceedings PSAM'13. IPSAM. Seoul, South-

Korea.

[62] Batteux M., Prosvirnova T., Rauzy A. (2019) Model Synchronization: A Formal Frame-

work for the Management of Heterogeneous Models. Model-Based Safety and Assess-

ment. Yiannis Papadopoulos, Koorosh Aslansefat, Panagiotis Katsaros and Marco Boz-

zano Ed.. Springer. ISBN 978-3-030-32871-9. 11842. pp. 157–172. Thessaloniki,

Greece.

[63] Batteux M., Choley J.-Y., Mhenni F., Prosvirnova T. and Rauzy A. (2019). Synchroni-

zation of system architecture and safety models: a proof of concept. Proceedings of the

IEEE 2019 International Symposium on Systems Engineering (ISSE). IEEE. Edinburgh,

Scotland.

[64] O'Regan G. (2016) Guide to Discrete Mathematics: An Accessible Introduction to the

History, Theory, Logic and Applications. Springer International Publishing AG. Cham,

Switzerland. ISBN ISBN 978-3319445601.

