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Abstract: In this article, we discuss the impacts of technological transformations 

currently at work on reliability engineering of complex technical systems. We con-

sider transformations both in systems and in means to study them. We review chal-

lenges to meet in order to manage the current technological paradigm shift. We ad-

vocate the potential benefits of the so-called model-based approach in probabilistic 

risk assessment. We exemplified this approach by presenting the S2ML+X model-

ing technology. 

Introduction 

This article aims at discussing new challenges and opportunities brought to reli-

ability engineering of complex technical systems by technological transformations 

currently at work. It echoes some reflections initiated a few years ago by Aven and 

Zio [1][2][3][4], and aims at contributing to the on-going debate about the future of 

our discipline. 

All complex technical systems (aircrafts, nuclear power plants, offshore plat-

forms, civil and military drones…) present risks to themselves, their operators and 

the environment. Therefore, one must ensure that these risks are economically, eco-

logically, and socially acceptable. This is the role of reliability engineering. Relia-

bility engineering encompasses processes as diverse as safety analyses, optimiza-

tions of maintenance policies, assessments of the expected production level of a 

plant over a given period, assessments of the resilience of a socio-technical infra-

structure and so on. In a word, reliability engineering aims at assessing the opera-

tional performance of systems subject to random events such as mechanical failures, 

operator errors, sudden changes in environmental conditions… With that respect, it 

relies on models and more specifically on stochastic models as its objective is to 
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deal with aleatory uncertainties. Probabilistic risk analysis or equivalently probabil-

istic risk assessment is the process by which these models are designed and used to 

calculate performance indicators. The WASH1400 report [5], which followed the 

Three Miles Island nuclear accident, is usually considered as the historical starting 

point of the worldwide, cross industry adoption of probabilistic risk analyses. As of 

today, they rely mostly on modeling technologies such as fault trees, reliability 

block diagrams and event trees [6][7]. These technologies are well suited for me-

chanical systems and well mastered by practitioners. 

In this article, we address two questions: 

1. Are these modeling technologies still suitable to assess risks in new genera-

tions of systems, which are software intensive and rely on ubiquitous control 

mechanisms? 

2. Can the new capacities provided by artificial intelligence and information 

technologies change the probabilistic risk analysis process? 

The first question is indeed of importance because most of the systems currently 

designed by industry fall into this category. Our answer to this question is essen-

tially negative. More powerful modeling frameworks are needed. 

Our answer to the second question is positive, even though many challenges re-

main to meet. We advocate here that part of the answer relies on the so-called 

model-based approach in probabilistic risk assessment and more generally in sys-

tems engineering. This approach relies itself on a new generation of modeling tech-

niques and tools that make possible to represent more accurately the behavior of 

complex technical systems, to maintain more easily models through the life-cycle 

of systems, to integrate seamlessly probabilistic risk analyses with other model-

based systems engineering processes, and last but not least, to take advantages of 

the fantastic opportunities provided by artificial intelligence and information tech-

nologies. 

We present here the main underlying ideas of this approach and exemplified 

them with the description of the S2ML+X family of domain specific modeling lan-

guages [8][9]. 

Of course, if the model-based approach can contribute to solve problems at stake, 

it does not solve all of them. As software engineers use to say, “there is no silver 

bullet” [10]. In particular, risk analysts must face the combinatorial explosion of the 

number of scenarios to analyze, with inherently limited calculation resources, what-

ever technology is used to support the analysis [11]. We shall discuss here this issue 

and review some other of the challenges to meet. 

The contribution of this article is thus threefold. First, it discusses the two above 

questions, with the point of view of a computer scientist. Second, it provides a brief 

introduction to the model-based approach in probabilistic risk assessment. Third, it 

discusses challenges to meet to manage the current paradigm shift in technologies. 

The remainder of this article is organized as follows. 

In the next section, we shall recall the basic principles of probabilistic risk anal-

yses, explain why the current process will probably change dramatically soon, and 

sketch the forthcoming process. In the third section, we shall present the model-
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based approach in probabilistic risk assessment and exemplified it with the 

S2ML+X modeling technology. In the fourth section, we shall discuss challenges 

to meet. Finally, the fifth section concludes the article. 

The probabilistic risk assessment process 

Current process 

The current probabilistic risk assessment process is described in Figure 1. 

 

 

 
Figure 1. The (current) probabilistic risk assessment process 

 

The risk analyst uses two kinds of prior knowledge to perform probabilistic risk 

assessment: the specifications of the system under study, so to understand how the 

system works and how it may fail, and reliability data for the components of the 

system, typically those recorded in the OREDA book [11] for the oil and gas indus-

try. From this knowledge, the analyst designs a model, e.g. a fault tree. Then, he 

calculates indicators of operational performance such as the availability of the sys-

tem, its reliability, its mean down time, its average production and so on. 

These indicators are eventually used to make decisions about the design of the 

system. 
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Game changers 

 

The above process will necessarily change, probably sooner than most of us ex-

pect, for at least three reasons. 

First, systems designed by industry are increasingly complex, due notably to the 

massive introduction of software and ubiquitous control mechanisms. We are grad-

ually moving from mechanical systems to mechatronic systems, cyber-physical sys-

tems and even systems of systems. As we shall show in the fourth section, fault trees 

and related modeling formalisms are not suitable to represent accurately the dy-

namic aspects of the behavior of these systems. 

Second, we are quickly moving from a situation where reliability data are scarce 

and difficult to access to a situation where data are over numerous and easy to ac-

cess. This will induce considerable changes in the probabilistic risk assessment pro-

cess, although it is admittedly still hard to see the premises of this (r)evolution. 

We ask here the reader to consider again the current situation, as it is represented 

Figure 1: reliability data are manually collected by operators, then aggregated by 

experts (with high skills in statistics) who try to fit them into parametric distribu-

tions such as the negative exponential distribution or the Weibull distribution. The 

parameters of these distributions are then recorded into books like the already men-

tioned OREDA [11]. Risk analysts pick up eventually data in these books to feed 

their models. 

This way of doing things was fine but looks now completely outdated. 

First, manual processing of data will no longer be possible when these data will 

come from sensors continuously monitoring systems. 

Second, relying on books sounds weird at a time where billions and billions of 

digital data circulate on internet every second. Therefore, modeling environments 

should be soon directly connected to data bases. 

Third, the main reason to use parametric distributions was they provide a com-

pact way to store the information. However, the smallest image posted on social 

networks contains more information than required to describe any empirical proba-

bility distribution. Therefore, why going on using parametric distributions and not 

directly source data? Using directly source data would produce more accurate re-

sults. It could also make it possible to update data if not in real time, at least much 

more often than currently. Moreover, different treatments could be performed on 

data depending on the needs of the analysis. 

In a word, reliability data that are used in probabilistic risk assessment are cur-

rently obtained via intermediations that will probably disappear in a near future. 

The third game changer is also linked to the digital transformation of industrial 

processes: any complex system comes now with hundred, if not thousands, of mod-

els and data sets. These models and data sets constitute what is sometimes called 

the “digital twin” of the system [13]. 
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We entered definitely in the model-based systems engineering era. Models are 

used not only to design systems, but also to operate and even to decommission them. 

This has two consequences: first, one needs to update models much more frequently 

than before. Second, one needs to ensure the coherence of the various models de-

signed by the different engineering disciplines. With both respect, modeling formal-

isms like fault trees, block diagrams or event trees are not well suited. Validating 

and updating these models is an extremely hard task because of their cognitive dis-

tance to systems specifications. Concretely, it is nearly impossible to understand 

how the system works from the fault tree describing how it may fail. This calls for 

a new generation of modeling formalisms making it possible to reduce the gap be-

tween (model-based) systems specifications and risk assessment models. 

Envisioned process 

The emerging risk assessment process, as we envision it, is pictured in Figure 2. As 

the reader can see, it presents significant difference with the process described in 

Figure 1. 

 

 
Figure 2. Envisioned probabilistic risk assessment process 

 

Systems specifications from which the analyst derives the risk assessment model 

will rely more and more on models, as opposed to documents. Means should thus 
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be put in place to synchronize system architecture models with risk assessment 

models. We shall come back to that point in the fourth section. 

Manual recording of failures will be progressively replaced by automated health 

monitoring of systems, by means of sensors. Monitoring data will be stored in data 

bases. Data analysts will use artificial intelligence and machine learning techniques 

to extract from these data some learned degradation indicators and probability dis-

tributions of failure of components. These indicators will be integrated directly into 

models via digital communications. 

Risk assessment models will also evolve so to be able to represent faithfully the 

behaviors of systems, which will much more dynamic that those of purely mechan-

ical systems. 

Finally, models will be used on-line to make decision about systems operations 

and not off-line in the design phase. In a word, models will be “in the loop”. 

Bets on evolution of technologies are usually lost. The future probabilistic risk 

assessment process will thus probably not look to what we described above. Never-

theless, we are convinced that there are there elements of the future process and in 

any case issues that are worth to study. 

Discussion 

The process described in the previous section relies heavily on models designed 

by the analyst. In an even more futuristic vision, one could imagine performing risk 

analyses straight from systems specifications and health monitoring data, by means 

of artificial intelligence techniques. The author believes that such a dream (for man-

agers at least) has little chance to become reality, if any. 

There are at least two major reasons to support our disbelief. First, artificial in-

telligence techniques require large training sets. As Yann LeCun, chief scientist at 

Facebook and one of the gurus of deep learning, keeps repeating the progresses 

made in artificial intelligence in the recent past years come for a good part of the 

availability of very large training sets [14]. But incidents and accidents are hope-

fully rare. Therefore, even though there are enough data to feed handmade models, 

there are not enough to get rid of these models. Second, artificial intelligence tech-

niques, as any other computer tool, are efficient on well-defined problems. But pre-

cisely, the process of designing a model is the process by which the analyst makes 

the problem well-defined. 

We shall now clarify what we mean by model-based approach in probabilistic 

risk assessment as it is an essential ingredient of the envisioned process. 



7 

 

Model-Based Safety Assessment 

The promise of model-based risk assessment 

In systems engineering, the model-based approach is defined as opposed to the 

document-based approach [15]. The situation is indeed different for probabilistic 

risk analysis that relies in essence on models. Rather, the model-based approach in 

reliability engineering is characterized the type of models that are used. 

The most widely used modeling formalisms for safety analyses lack either ex-

pressiveness, e.g., fault trees and event trees, or structure, e.g., Markov chains and 

stochastic Petri nets. Consequently, they are far from systems specifications. These 

deficiencies make the models hard to design, hard to share with stakeholders, and 

even more importantly, hard to maintain through the entire lifecycle of systems. 

As an illustration, consider for instance the small system pictured in Error! Ref-

erence source not found. that we shall use throughout this section. 

 

 
Figure 3. A two-line separation system 

This system is made of two lines (L1 and L2). Each line consists itself of a sep-

arator S and a compressor C. The system is working if at least one of the two lines 

is working. A line is working if both its separator and its compressor are working. 

Error! Reference source not found. shows a minimal fault tree describing the 

possible failures of this system. 

 

This model makes a number of implicit assumptions: the two lines are assumed to 

be in hot redundancy, the capacities of unit are assumed to be either 100% or 0% 

and so on. Perhaps more importantly, it is nearly impossible from such a fault tree 
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to retrieve the actual architecture of the system. If failures of separators and com-

pressors are further decomposed, the analyst must duplicate by hand the descrip-

tions of these failure conditions, which is both tedious and error prone, not to speak 

about maintenance (of the mode) issues. 

 

 

 
 

Figure 4. A minimal fault tree describing failures of the system pictured Error! Reference 

source not found.. 

Modeling systems in a more structured way and with suitable mathematical 

frameworks can reduce the distance between systems specifications and models, 

without increasing the complexity of calculations. This is the promise of the so-

called model-based risk assessment. This approach affords the ability to ani-

mate/simulate models, to ease their validation, and to share them with stakeholders. 

Moreover, it presents the following important benefits for risk analyses stricto 

sensu: 

− A single model can address several safety goals, which eases versioning, con-

figuration and change management; 

− It can be assessed by several assessment tools, which increases versatility of 

assessments and quality-assurance of results (even if at a certain cost); 

− It allows fine grain analyses, which limits over-pessimism resulting from coarse 

grain analyses as performed for instance with fault trees. 

− Its maintenance is alleviated significantly, as it is closer to systems specifica-

tions. 

− Similar formalisms can be used to design simple static models as well as dy-

namic models, hence facilitating the acquisition of competences and the indus-

trial deployment of tools. 

− The graphical animation of models makes it possible to share them with non-

specialists. 

− The same technology can be used not only for risk analyses but more generally 

to assess the operational performance of systems (in terms of costs, delays, pro-

duction levels…). 

Modeling formalisms that support this approach can be classified into three cat-

egories. The first category consists of specialized profiles of model-based systems 

engineering formalisms such as SysML, see e.g. [16]. The objective here is however 

more to introduce a safety facet into models of system architecture than to design 
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actual safety models. The second category consists of extensions of fault trees or 

reliability block diagrams so to enrich their expressive power. This category in-

cludes dynamic fault trees [17][18], multistate systems [19][20][21], and some other 

proposals [22]. The third category, which aims at taking full advantage of the 

model-based approach, consists of modeling languages such as Figaro [23] or Al-

taRica [24]. 

We shall focus on the latter category, as we consider it as the most promising. 

More exactly we shall now present the S2ML+X family of modeling languages. 

The S2ML+X Paradigm 

Modeling languages of the S2ML+X family consists of two parts: a specific part, 

the X, which is a particular mathematical framework, e.g. guarded transition sys-

tems (GTS) [25][26] in the case of AltaRica 3.0, and a general part, S2ML. S2ML 

stands for S2ML stands for “system structure modeling language” [9]. S2ML gath-

ers in a coherent way structuring constructs stemmed from object-oriented program-

ming [27], and prototype-oriented programming [28]. In other words, languages of 

the S2ML+X family obeys the following equation, which echoes the title of the 

famous book of Wirth on the Pascal programming language (“Algorithms + Data-

Structures = Programs”) [29]. 

 

Behaviors + Architectures = Models 

 

Our thesis is that it is possible to obtain full-fledged object-oriented modeling 

languages by putting S2ML on top of a core mathematical framework aiming at 

describing behaviors in a certain way. 

 

This applies not only to guarded transition systems (X=GTS), which gives to 

AltaRica 3.0, but also for systems of stochastic Boolean equations (X=SBE), which 

are the underlying mathematical framework of fault trees and reliability block dia-

grams. This is actually what we have implemented in the new version of our tool 

XFTA, which probably the most powerful and efficient calculation engine in its 

class [30]. Beyond, it would be possible to apply the same principle to finite degra-

dation structures [31] and even mathematical frameworks used outside of reliability 

engineering such as ordinary differential equations, obtaining in this way modeling 

languages similar to Matlab/Simulink [32] or Modelica [33]. 
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S2ML in a Nutshell 

At this point, it is probably time for us to provide the reader with more insights 

about S2ML. 

Surprisingly enough, S2ML relies on only ten concepts: those of ports, connec-

tions, prototypes, classes, composition, cloning, instantiation, inheritance, reference 

and aggregation. 

Ports are basic objects of a model. For instance, in S2ML+SBE, parameters of 

probability distribution, basic, intermediate and, house events, as well as common 

cause failure groups are ports. 

Connections are relations, taken in a broad sense, that link ports. Connections 

capture the behavior of the system. For instance, in S2ML+SBE, equations defining 

parameters, basic, intermediate and house variables, as well as definitions of com-

mon cause group failures are connections. 

Ports and connections suffice to create a model. For instance, the fault tree pic-

tured Figure 4 is just a graphical representation of the following system of Boolean 

equations. 

 

F-Loss = L1-Loss and L2-Loss 

L1-Loss = L1-S-Failed or L1-C-Failed 

L1-Loss = L1-S-Failed or L1-C-Failed  

 

For the sake of simplicity, we let here aside the description of probability distri-

butions associated with the four basic events L1-S-Failed, L1-C-Failed, 

L2-S-Failed and L2-C-Failed, but it can be encoded in a similar way. Writ-

ing such a set of equations, or equivalently drawing the fault tree, is easy when the 

system under study is small. However, a model made only of ports and connections 

reflect only very indirectly the architecture of the system under study, as discussed 

above. 

To structure models, one needs containers for declarations of ports and connec-

tions (and other elements). The fundamental container is the prototype, i.e. a con-

tainer with a unique occurrence in the model. In languages of the S2ML+X family, 

prototypes are called blocks. 

When a container, a block, or any other type of container, contains an element, 

one says that the container composes this element. Composition is a fundamental 

relation between model elements, sometimes referred to as the is-part-of relation. 

With ports, connections, and prototypes, it is already possible to design hierar-

chical models, i.e. to decompose the system under study into functional or physical 

subsystems, then these subsystems into sub-subsystems, and so one until the wanted 

degree of granularity is reached. 

Such models would lack however of two fundamental ingredients. First, a way 

to represent that two elements of the model describe similar parts of the system. 

This is especially of interest in reliability engineering where redundancy is a key 
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element to ensure the required level of performance (like in our example). Second, 

a way to connect elements located in different places in the hierarchy. 

When two parts of the system under study are alike, e.g. the system pictured in 

Figure 3 is made of two identical lines, the description of the second line is the same 

as the description of the first one, up to the naming of elements. Once the first line 

described, the description of the second one can be obtained by a kind of copy-paste 

operation. This is however error prone and hides a fundamental information: the 

fact, precisely, that line 1 and line 2 are identical. 

S2ML provides the concept of cloning to deal with such situations. Rather to 

copy-paste the prototype describing the first line to get the prototype describing the 

second one, one says that the second prototype is a clone of the first one. The as-

sessment tool, XFTA in our case, is then in charge of performing the duplication. 

For instance, the description of the system pictured in Figure 3 could have the 

following structure. 

 

block System 

 block Line1 

  block Separator 

   // description of the behavior of the separator 

  end 

  block Compressor 

   // description of the behavior of the compressor 

  end 

 end 

 clones Line1 as Line2; 

end 

 

Note that the above structure is independent of the mathematical framework cho-

sen to describe behaviors. 

Cloning makes it possible to duplicate modeling elements within a model, but 

not to reuse them from models to models. Moreover, considering the description of 

basic components, e.g. pumps or valves, the choice of the initial model element 

(from other similar model elements are obtained by cloning) is very arbitrary. 

The idea is therefore to create libraries of on-the-shelf modeling elements, out-

side any particular model, and to clone these modeling elements into the model, 

when needed. In S2ML (and more generally in object-oriented programming), this 

is achieved by the concepts of classes and instances. 

A class is just a prototype declared outside the model. Instantiation is the oper-

ation by which a class is cloned into a model. The resulting prototype is called an 

instance of the class. 

For instance, we could define classes to describe the behavior of separators and 

compressors, then instantiate them into our model: 
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class Separator 

  // description of the behavior of the separator 

End 

 

class Compressor 

 // description of the behavior of the compressor 

end 

 

block System 

 block Line1 

  Separator S; 

  Compressor C; 

 end 

 clones Line1 as Line2; 

end 

 

Note again that the above structure is independent of the mathematical frame-

work chosen to describe behaviors. 

Now it is sometimes the case that a component is a particular type of a more 

general category of components, e.g. a solenoid valve is a particular type of valve. 

Most of the properties of the particular component are actually common to all com-

ponents of the category, while some are specific. To represent that, it would be in-

deed possible to create a class for generic components then to instantiate this class 

into the class describing specific ones. This would lead however to awkward mod-

else: a solenoid valve is not part of a generic one. Rather, a solenoid valve is-a valve. 

In S2ML (and more generally in object-oriented programming), capturing is-a 

relations is achieved by means of inheritance. When a prototype or class inherits 

from another prototype or a class, it means that all elements composed by the latter 

are composed by the former. It is then possible to modify the definitions of these 

elements or to add new ones to reflect the particular properties of the specific com-

ponent. E.g. 

 

class Valve 

  // description of the behavior of a generic valve 

end 

 

class SolenoidValve 

 extends Valve; 

 // description of the specific features of solenoid valves 

end 

 

The last ingredient we need to deploy fully object-oriented modeling is the pos-

sibility to refer to an element located somewhere in the hierarchy of prototypes from 
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anywhere else in this hierarchy. The notion of reference is thus key. In S2ML, re-

ferring to ports is achieved by means of paths. Within a block, each element is 

uniquely identified with a name, called its identifier. Two elements cannot have the 

same name, even though they are of different types. To refer to an element located 

in other blocks, one uses paths built with the dot notation and the two primitives 

main and owner: 

− B.E refers to the element E composed by the block B itself composed by the 

current block. Applying this principle recursively makes it possible to refer to 

any element located in the hierarchy rooted by the current block. 

− owner refers to the parent block of the current block. Therefore, 

owner.owner.B.E refers to the element E composed by the block B itself 

composed by the grand-parent block of the current block. The primitive owner 

makes it possible to create relative paths referring to any element in the current 

hierarchy. 

− main refers to the outermost block of the current hierarchy, i.e. the model itself. 

Therefore, main.B.E refers to the element E composed by the block B de-

clared at the top-level. The primitive main makes it possible to create absolute 

paths referring to any element in the model. 

 

For instance, assuming that the class Separator declares a variable out, that 

is true if and only if the separator works properly and that the class Compressor 

declares a variable in to reflect the flow upstream the compressor. Then, at line 

level we have to connect these two variables by means of an equation. This can be 

done as follows, using the dot notation. 

 

block Line1 

 Separator S; 

 Compressor C; 

 flow C.in = S.out; 

end 

 

There are cases where one needs to refer to not only an individual element, like 

a parameter or a variable, but a whole container, possibly itself composing sub-

containers. In that case, using paths would be tedious, and error prone. 

The solution consists in the last concepts provided by S2ML, namely the aggre-

gation of containers. 

Let A and B be two containers located at different places in the same hierarchy. 

Let .B the path (relative or absolute) to go from A to B in that hierarchy. To access 

an element E composed by B from A, one must normally use the path .B.E. By 

aggregating in A the container B (actually the container .B) under the name C, one 

makes possible to E in A by means of the path C.E. In some sense, this creates the 

alias C for the path .B in A.  
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Aggregation should not be seen however only as a technical solution to create 

references. More fundamentally, it represents a uses relation. A uses B although B 

is not declared in the vicinity of A. 

Aggregation is a key tool to describe so-called functional chains [34] as well as 

to glue together, within the same model, descriptions of functional and physical 

architectures [35]. 

AltaRica 3.0 

So far, we used on systems of stochastic Boolean equations, which have the ex-

pressive power of fault trees or reliability block diagrams. With AltaRica 3.0 [24], 

we leave the category of combinatorial modeling formalisms, to enter the category 

of state automata, see reference [11] for a discussion on these categories. 

Due to space limitations, it is not possible to present here all the features of the 

language. In the previous section, we gave a flavor of S2ML. We shall thus illustrate 

here the expressive power of guarded transition systems [25][26] by means of an 

example. 

Assume that, in our case study, the second line is a backup for the first one, i.e. 

that its separator and its compressor are put in operation on demand. Systems of 

stochastic Boolean equations are not powerful enough to represent faithfully this 

behavior (and more generally to take into account time dependencies). 

 

Figure 5 shows the graphical representation of a guarded transition system rep-

resenting a standby unit. 

 

Figure 5. The guarded transition system representing a standby unit 
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Figure 6 shows the AltaRica code for this guarded transition system. 

 

 

domain StandbyUnitDomain {STANDBY, WORKING, FAILED} 

 

block MotorPump 

 StandbyUnitDomain state (init = STANDBY); 

 Boolean demand, in, out (reset = false); 

 event start (delay = Dirac(0), expectation=gamma); 

 event failureOnDemand (delay=Dirac(0),expectation=1-gamma); 

 event stop (delay = Dirac(0)); 

 event failure (delay = exponential(lambda)); 

 event repair (delay = exponential(1/tau)); 

 parameter Real lambda = 1.0e-4; 

 parameter Real tau = 8; 

 parameter Real gamma = 0.02; 

 transition 

  start: demand and state==STANDBY -> state := WORKING; 

  failureOnDemand: demand and state==STANDBY 

   -> state := FAILED; 

  stop: not demand and state==WORKING -> state := STANDBY; 

  failure: state==WORKING -> state := FAILED; 

  repair: state==FAILED -> state := STANDBY; 

 assertion 

  out := in and state==WORKING; 

end 

Figure 6. AltaRica code for the guarded transition system pictured Figure 5 

 

Just as in systems of stochastic Boolean equations, guarded transition systems 

use two types of variables to represent the current state of the system under study: 

state variables that represent actually the state of the system and flow variables that 

represent flows of matters, energy of information circulating in the network of com-

ponents. 

The guarded transition system pictured in Figure 5 used one state variable, 

state, and three flow variables demand, in and out. In AltaRica 3.0, variables 

take their values into sets of constants called domains. The domain of the variable 

state is the set of three symbolic constants {STANDBY, WORKING, 

FAILED}. The three flow variables are Boolean. 

The value of flow variables is calculated from the value of state variables, which 

means that the former is recomputed each time the former is modified.  

The value of state variables changes under the occurrence of events. In AltaRica, 

these changes are described by means of guarded transitions. A guarded transition 
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is a triple (event, guard, action). The guard of a transition is a Boolean condition 

telling when the transition is enabled. The action of a transition is the way this tran-

sition modifies the value of state variables, when fired. 

In our example, there are five transitions labeled respectively by the events 

start, stop, failureOnDemand, failure and repair and represented by 

arrows. 

Events are associated with probability distributions. 

In our example, transitions labeled with events start, stop, and failure-

OnDemand are deterministic and instantaneous (associated with Dirac distribu-

tions), while transitions labeled with events failure and repair are timed and 

stochastic. 

The combination of GTS and S2ML results in a powerful, versatile language 

which exploits optimally assessment algorithms. 

An integrated modeling environment for AltaRica 3.0 (AltaRica Wizard) has 

been developed as join effort of the Open-AltaRica team at IRT-SystemX (Paris, 

France) and the author at NTNU. Industrial partners (Airbus, Safran and Thalès) 

support this project. A versatile set of assessment tools is under development, which 

includes: 

− A step by step simulator making possible to play “what-if” scenarios and to val-

idate models. This simulator implements abstract interpretation techniques so to 

simulate faithfully stochastic and timed executions [36]. 

− A compiler of AltaRica models into fault trees. This compiler relies on advanced 

algorithmic techniques [37]. Fault trees are then assessed with XFTA [30], 

which is one of the most efficient available calculation engines. 

− A compiler of AltaRica models into Markov chains. This compiler produces 

Markov chains that approximate the original model while staying of reasonable 

sizes [38]. Markov chains are then assessed with Mark-XPR, as very efficient 

calculation engine [39]. 

− A generator of critical sequences. 

− A stochastic simulator. Stochastic simulation is itself a versatile tool to assess 

complex models [40]. 

These tools make the AltaRica 3.0 technology extremely efficient. They make it 

possible cross-verification. They prefigure what will be the next generation of mod-

eling environments for the assessment of operational performance of complex tech-

nical systems. 

Textual versus graphical representations 

As all modeling languages of the S2ML+X family, S2ML+SPBE and AltaRica 

3.0 are a primarily textual, just as computer programs. Graphical representations 

can be used, but the ultimate reference is the text. Not only we do not consider that 

as a drawback, but we claim it is a necessity. At first, this thesis may seem at best 
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extremely provocative, as most of the models designed for both system architecture 

and risk analyses (as well as in other engineering disciplines) are authored via 

graphical modeling environments and many practitioners just refuse to write a sin-

gle line of code. However, graphical modeling is mainly useful to describe structural 

parts of models and systems, see e.g. reference [41] for an interesting discussion on 

the pragmatics of graphical modeling. It is hard to conceive how to author a differ-

ential equation or the probability distribution of the basic event of a fault tree graph-

ically. Behavioral descriptions, such as Markov chains or Petri nets, can be repre-

sented graphically. However, as soon as models become large, which is the case for 

nearly any industrial-scale system, their graphical representations become more 

problematic than useful: as they cannot fit into any reasonable space (computer 

screen or printed out paper), the analyst can only visualize them by parts. This 

means that she or he must anyway develop a global cognitive model to understand 

local graphical representations. Moreover, many subtle differences in behaviors are 

just impossible to represent graphically. In a word, models exist independently of 

their graphical representations. These graphical representations, even taken to-

gether, cannot fully describe the model, except in simple cases. It is often very con-

venient to have several partial graphical representations for the same information 

and to extract dynamically graphical representations according to one’s needs.  

The parallel with software engineering is here fruitful. It is useful to represent 

the architecture of software by diagrams such those of UML [42]. However, the 

software exists independently of these representations and the code is the ultimate 

reference. Moreover, below a certain level of abstraction, the code gives a more 

compact, more precise, in a word more useful, information than any drawing. At 

the end of the day, the humanity invented writing to overcome the lack of precision 

of drawing. 

It remains that making textual models adopted is one of the challenges that we 

must meet. We shall now discuss these challenges. 

Challenges 

Transforming big data into smart data 

Sensors produce already lots of data (big data) and will produce even more in the 

future. However, most of these data cannot be exploited for probabilistic risk as-

sessment. Therefore, a key question is how to collect data that can be translated into 

(probabilistic) degradation models, in complement or not to physical models. If we 

can do so, it will remain to introduce degradation models for components into risk 

assessment models for systems, i.e. to accommodate them into stochastic discrete 
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events systems. This latter point does not seem a major technical or scientific issue. 

We can be reasonably optimistic on this question. 

Handling the increasing complexity of systems 

The behavior of software intensive systems, often called mechatronic systems, 

or cyber-physical systems if they are connected to the net, is highly dynamic. Con-

trol mechanisms change the configuration of these systems depending on the state 

of their components, of the environment or on the needs in terms of production. 

Condition-based maintenance policies, which are increasingly adopted for the sake 

of reducing costs of maintenance interventions and reducing production down-times 

due to these interventions, enter in this category. The introduction these control 

mechanisms creates dependencies among components as well as dynamically 

scheduled phases in the life cycle of systems. Maintenance interventions are not 

scheduled once for all, on a calendar basis, but decided dynamically based on the 

monitoring of the condition of the system, which in turn depends on maintenance 

interventions. 

Static models, such as fault trees, event trees or reliability block diagrams, cannot 

represent faithfully these dependencies and dynamically scheduled phases of life 

cycles. To be able to do so, one needs at least the expressive power of (stochastic) 

discrete event systems, like AltaRica. 

Moving from static models to discrete event systems has however a triple cost: 

first, analysts should be trained to these new modeling technologies; second, the 

computational cost of calculations of risk indicators increases significantly; third, 

as modeling formalisms are more powerful and problems at stake are more complex, 

models are more difficult to design and to validate. We shall discuss the two first 

point latter in this section. The third one, model design and validation of complex 

technical systems, is one of the major technical challenges we are facing. It is strik-

ing how, as of today, the reliability engineering literature is still silent of this issue. 

It is like modeling was a subsidiary task, requiring no other competences and skills 

than a good mathematical background and a solid practical knowledge of the sys-

tems under study. Nothing is more illusory. Models must be recognized as first-

class citizens of scientific research in our domain. We need to develop the science 

and the engineering of models (of engineering). With that respect, much can be 

learned from the historical development of computer science and software engineer-

ing. 

As explained in the previous section, AltaRica 3.0 embeds already the most ad-

vanced concepts for structuring models. These concepts are stemmed from object-

oriented programming and prototype-oriented programming [27][28]. Relying on a 

power mathematical framework and versatile structuring mechanisms is mandatory 

to handle the problems at stake. It is however not sufficient. To make the modeling 

process efficient both in terms of model design and model validation, it is of primary 
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importance to reuse as much as possible modeling components within models and 

between models. In modeling languages such as Modelica [33], this goal is achieved 

via the design of libraries of on-the-shelf ready-to-use modeling components. Re-

using components is also possible in probabilistic risk analyses, but to a much lesser 

extent. The reason is that these analyses represent systems at a high level of abstrac-

tion. Modeling components, except for very basic ones, tend thus to be specific to 

each system. Reuse is mostly achieved by the design of modeling patterns, i.e. ex-

amples of models representing remarkable features of the system under study. Once 

identified, patterns can be duplicated and adjusted for specific needs [24]. The no-

tion of patterns is pervasive in systems engineering. For instance, it has been devel-

oped in the field of technical system architecture, see e.g. [43], as well as in software 

engineering [44]. Patterns are also excellent communication mean: in order to doc-

ument models (or programs), it is often sufficient to refer to the patterns that have 

been used to design them. The author strongly believes that one of the tasks of the 

reliability engineering community should be to perform a systematic exploration of 

the modeling patterns for probabilistic risk assessment of nowadays technical sys-

tems. It is probably the only way to tame the complexity of these systems. 

Computational complexity of probabilistic risk assessment 

The risk analyst must face the combinatorial explosion of the number of scenar-

ios to analyse. Whatever modeling technology is used, the calculation of probabil-

istic risk indicators is provably computationally hard, namely #P-hard, as demon-

strated by Valiant [45] and further completed by Toda [46]. This was already true 

for mechanical systems; this is indeed even more sensitive for mechatronic systems. 

During the last decades fantastic progresses have been made in the development 

of efficient algorithms and heuristics for probabilistic risk assessment. The power 

of computers has also dramatically increased. No doubt that more progresses will 

be made in both directions in the future. Nevertheless, the above mathematical lim-

its will continue to apply. The risk analyst will always have limited calculation ca-

pacities at hand. In practice, this means that probabilistic risk assessment models 

result necessarily of a trade-off between the accuracy of the description of the sys-

tem under study and the ability to perform calculations on this description. In other 

words, the risk analyst faces the fundamental epistemic and aleatory uncertainties 

of risk assessment with a bounded calculation capacity. This bounded capacity over-

determines both the design of models and the decisions that can be made from mod-

els, see reference [11] for an in-depth discussion on this topic. With that respect, he 

or she is like Simon's economical agent who must make decisions with a bounded 

rationality [47]. 

The scientific and technological question at stake here is therefore to work on 

algorithms, heuristics and modeling methodologies that help to use as efficiently as 

possible the calculation resources at hand. 
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At this point, we must say few words about probabilistic risk analyses of systems 

of systems, which are increasingly present in industry and more generally in our 

lives [48]. These systems are very different from mechanical, mechatronic and even 

cyber-physical systems. We can characterize them as being: 

− Opaque: their states can be observed only by indirect means; 

− Reflective: they embody models of their own behavior and environment; 

− Deformable: their architecture changes throughout their mission. 

Clearly, even modeling technologies like AltaRica 3.0 are not suited to represent 

systems having these properties as they assume a fixed architecture of the system 

under study is fixed [48]. To represent the behaviors of these systems of systems, 

another class of modeling frameworks is probably required that we can called sto-

chastic process algebras in reference [11]. This class includes formalisms as diverse 

as (stochastic variants of) colored Petri nets (with an unbound number of colors) 

[50], process algebras such as Milner's pi-calculus [51] and agent-oriented modeling 

languages [52]. These formalisms are extremely powerful. They have however a 

major drawback: most of the questions we may ask are undecidable [53]. Conse-

quently, we must forge new concepts to analyze these systems. 

Integrating seamlessly models and data sets into the digital twin 

To face the complexity of technical systems, the engineering disciplines contrib-

uting to the design and operations of these systems are designing models and col-

lecting engineering data: as already said, any technical system comes now with hun-

dred, if not thousands, of models and data sets. These models are designed by 

different teams in different modeling formalisms, at different levels of abstraction, 

for different purposes. Models mature also at different rates. The question is thus 

how to ensure that they describe the same system, i.e. how to synchronize them. 

There are at least four distinct aspects in this question: a first one concerns the 

management of models and data sets in the context of the extended enterprise. This 

is the realm of collaborative data bases, product life cycle and product data man-

agement environments [54].  The concept of “digital twin” is gaining popularity to 

designate systems in charge of models (and engineering data) management [55]. It 

impacts all engineering disciplines, including of course probabilistic risk assess-

ment, as collaborative data bases will provide the infrastructure for the system anal-

ysis and modeling processes. 

A second aspect is related to the seamless cooperation of models of different 

abstraction levels within a discipline. This is an important and difficult topic [56]. 

This aspect concerns also probabilistic risk analyses. The question here is how mod-

els designed by a client and its suppliers can cooperate. A mere integration cannot 

be the answer for both intellectual property and computational complexity issues. 

Mathematical concepts and algorithmic tools must be developed this purpose. 
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A third aspect regards the co-simulation of heterogeneous but compatible mod-

els, such as experiments performed in the framework of the Ptolemy project [57]. 

For probabilistic risk analyses, it would mean for instance to couple risk assessment 

models with 3D physical simulation codes. This would be of interest, especially in 

terms of communication with the stakeholders. Regarding calculation of risk indi-

cators, it is probably quickly limited by computational complexity issues. 

The fourth aspect regards the alignment of heterogeneous models representing 

the system at about the same level of abstraction. The alignment of system architec-

ture models and probabilistic risk assessment models is a paradigmatic example of 

that. This alignment is an industrial necessity and is required by Safety Standard 

such as IEC 61508 [58] and IEC 61511 [59]. The heterogeneity of these models 

makes it impossible to compare them directly. To compare them, we first must ab-

stract them into a common language, and then perform a comparison of their ab-

stractions. Once the comparison has been made, it is possible to go back to original 

models via a concretization mechanism. This principle is close to Cousot’s abstract 

interpretation of programs [60]. Significant results have been obtained in this direc-

tion that show the interest of this approach [61][62][63]. 

Managing the change 

The technological transformations we discussed in this article cannot be 

achieved without a conscious, organized and systematic management of change. 

To start with, it requires to solve numerous intellectual property issues: who is 

the owner of the data, who can access to them, under which conditions and so on. 

This problematic goes indeed well beyond probabilistic risk analyses. It concerns 

actually the whole digital twin in the context of the extended enterprise. 

Training risk analysts to new modeling technologies is also a major issue. In now 

more than twenty years of experience in both academia and industry, the author 

knows perfectly how hard it is to pull well trained, experienced experts out of their 

comfort zone. Risk analysts are conservative so to say in essence: you must have 

very good reasons to change a solution that worked so far. But reasons for a radical 

change are here. Here again, we learn lessons from the historical development of 

computer science and software engineering: new programming paradigms have 

been progressively introduced in industry by new generations of engineers who 

learned them at university. Nowadays students are not afraid to write computer 

code. On the contrary: to attract the best students, we should propose them state-of-

the-art activities and competences. One of the author’s deepest convictions is that 

much more discrete mathematics – see e.g. reference [64] for an introduction – 

should be introduced in engineering curricula. 
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Conclusion 

In this article, we discussed the impact of current technological transformations 

on probabilistic risk analyses. We advocated that two major changes in the proba-

bilistic risk assessment process are foreseeable. First, in-book reliability data col-

lected and organized by statisticians will be replaced by databases of degradation 

indicators obtained machine learning techniques ran by data scientists. Second, clas-

sical modeling formalisms such as fault trees, event trees or reliability blocks dia-

grams will be replaced by modeling formalisms supporting the model-based ap-

proach, as exemplified by XFTA (S2ML+SBE) or AltaRica 3.0. 

The industrial deployment of such radical changes will take time and is by no 

means certain. However, there are solid scientific and technological arguments to 

support them. The author hopes that the present article will at least serve to open 

the discussion on the future of probabilistic risk analyses and will contribute to cre-

ate fruitful exchanges between academia and industry. 
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