
A practical comparison of methods

to assess sum-of-products

A. Rauzy, E. Châtelet, Y. Dutuit and C. Bérenguer,

Abstract

Many methods have been proposed in the literature to assess the probability of a
sum of products. This problem has been shown computationaly hard (namely #P-
hard). Therefore, algorithms to solve it can be compare only from a practical point
of view.

In this article, we propose first an efficient implementation of the pivotal decom-
position method. This kind of algorithms is widely used in the Artificial Intelligence
framework. It is unfortunately almost never considered in the reliability engineering
framework, but as a pedagogical tool. We report experimental results that shown
that this method is in general much more efficient than classical methods that work
by rewriting the sum of products under study into a sum of disjoint products.

Then, we derive from our method a factorization algorithm to be used as a pro-
processing method for Binary Decision Diagrams. We show by means of experimental
results that this latter technology outperforms the formers.

keywords: Sum-of-(Disjoints)-Products, Pivotal Decomposition, Binary Decision
Diagrams.

1 Introduction

Many methods have been proposed in the literature to assess the probability of a sum
of products or the probability that there exists a working st-path in a reliability network
(see for instance [Shi91, Mis93, RVT95] for surveys on these methods). Several authors
consider both problems at once by encoding the set of st-paths of a network as a sum of
products. Both problems are computationaly hard (namely #P-hard). As a consequence,
it is hopeless to find efficient algorithms to solve them (by efficient, we mean, as usual, of
polynomial worst case complexity). Therefore, algorithms and heuristics cannot be com-
pared from a general and theoretical viewpoint. They should be compared experimentally
with respect to the following criteria:

• The form and the size of the results.

• The size of intermediate data structures.

1

• The computation time.

Most of the algorithms proposed up to now in the reliability engineering literature work
by rewriting the sum of products into an equivalent sum of disjoint products, from which it
is easy to compute the probability of the original formula (see [Mis93, RVT95] for a survey
on these methods). Our experiments concern three of these methods, that are considered
as among the most efficient ones: KDH [Hei89], DA [Bou93] and SODA [CDRB99].

In this article, we propose first an efficient implementation of the so-called pivotal
decomposition method. This method works according to the following recursive principle.
Given a formula F , either F is reduced to a constant or it is possible to select a pivot
variable v and to study recursively the two formulae Fv and Fv, i.e. the formula F in
which the constants respectively 0 and 1 have been substituted for the variable v. In other
words, the algorithm builds, at least implicitly, a binary tree. Leaves of this tree encode
constants. Internal nodes encode formulae of the form F = v.Fv + v .Fv . Branches of the
tree that lead to a 1-leaf are labelled with the wanted disjoint products.

Pivotal decomposition procedures have been extensively studied in the automated rea-
sonning and artificial intelligence literature (see e.g. [KL99]). Unfortunately, they are
almost never considered in the reliability engineering framework, but as a pedagogical
tool. Few articles however have considered methods derived from the factoring theorem in
the case of reliability networks, e.g. [PP88, PP89]. This theorem is basically equivalent
to the above decomposition. Despite of their apparent simplicity, pivotal decomposition
procedures are interesting w.r.t. the three above criteria:

• They work in constant space (for they just need a backtracking stack): the probability
of the original formula can be assessed on the fly, thanks to Shannon decomposition
p(F) = p(v).p(Fv) + [1 − p(v)].p(Fv).

• Branching heuristics help to keep as small as possible the sizes of the binary trees
(and therefore the number of products of the result).

• Their running times compare often favourably with those of other methods.

The pivotal decomposition is also the basis of Bryant’s Binary Decision Diagrams
[Bry86, BRB90]. Binary Decision Diagrams have proved to be the most efficient tool to
assess fault trees. A key issue for the efficiency of this technology is to find a good variable
ordering. In this article, we propose a factorization algorithm (together with a variable
ordering heuristic) to be used as a preprocessing of sums of products. This algorithm is
derived from the heuristic developped for our pivotal decomposition procedure.

In order to compare all of these methods, we considered mainly three kinds of formulae.

• Sums of minimal cutsets of real life fault trees.

• Sums of st-paths of reliability networks of the literature.

• Randomly generated sum-of-products.

2

This benchmark covers, at least to a certain extent, the formulae one may encounter in
practice.

The remainder of this article is organized as follows. Section 2 presents the problem and
examines its complexity. Section 3 gives a brief overview of the classical methods proposed
in the literature. Section 4 presents pivotal decomposition procedures and discusses two key
issues to make them efficient: data structures and branching heuristics. Section 5 recalls
basic about Binary Decision Diagrams and proposes a preprocessing method dedicated to
the assessment of sums of products. Finally, section 6 provides some experimental results.

2 Sums of Products

2.1 Presentation

Let S =
∑

i=1,...,n πi be a Boolean expression in disjunctive normal form (DNF), or a sum
of products, i.e. where each product πi is a conjunct of literals and each literal is either
a variable vj or its negation vj (1 ≤ j ≤ n). Throughout the paper we keep the same
meaning for m and n, i.e. the number of products and the number of variables of the
formula under study. vj and vj are said opposite and we denote by p the opposite of a
literal p (p = p).

In order to assess the probability p(S) of such a formula S from the probabilities of the
vj’s a first solution consists in applying the Sylvester-Poincare development:

p(S) =
∑

1≤i≤n

p(πi) −
∑

1≤i<j≤n

p(πiπj) +
∑

1≤i<j<k≤n

p(πiπjπk) − . . . + (−1)m+1p(π1 . . . πm)

where p(π) is product of the probabilities of its literals if π contains no two opposite
literals and 0 otherwise. The full computation of the Sylvester-Poincare suffers from the
exponential blow-up of the number of product probabilities it requires. This is the reason
why most of the fault tree assessment tools restrict themselves to the very first terms of
this development, applying the so-called Boole-Bonferroni bounds.

Let Wk(S) =
∑

1≤i1<i2<...<ik≤n p(πi1πi2 . . . πik), then the following inequalities hold.

W1(S) − W2(S) ≤ p(S) ≤ W1(S)

W1(S) − W2(S) + W3(S) − W4(S) ≤ p(S) ≤ W1(S) − W2(S) + W3(S)
...

This technique gives often acurate results, especially when the formula under study is
monotone (without negation) and the probabilities of its variables are low. Note that it is
not true in general that the difference between two consecutive bounds decreases.

The other solution to assess the probability of S consists in rewriting S in order to
make its products disjoint, i.e. that for any two products πi and πj there is at least a
variable that appears positively in πi and negatively in πj, or vice-versa. If the products

3

are pairwisely disjoint, the probability of S is the sum of the probability of its products.
It is therefore assessed linearly w.r.t. the size of S.

2.2 Complexity Issues

In 1979, Valiant introduced a new complexity class, the class #P, to describe problems that
consist in counting the number of solutions of a decision problem [Val79b, Val79a]. The
class #P contains all the counting problems whose decision counterpart is NP-complete.
Preliminary results by Valiant himself, completed with a theorem by Toda [Tod89] showed
that counting is surprisingly hard. Moreover, there are cases in which the decision problem
is trivial while the corresponding problem is #P-hard. As an illustration, deciding whether
a monotone Boolean formula (e.g. a sum of products without negation) is satisfiable is
trivial (it suffices to set all the variables to 1), but it is hard to count its number of solutions.

Determining the probability of a formula is indeed at least as hard as counting its
solutions for the latter problem is reduced to the former just by setting the probabilities
of all variables to 2−n.

These theoretical considerations have several practical consequences for the problem we
are dealing with here. First, it is hopeless to find a polynomial time algorithm to compute
the probability of a sum of products. Second, any attempt to rewrite a sum of products
into a sum of disjoint products is subject to combinatorial explosion. Third, algorithms
can therefore be compared only from a practical viewpoint.

3 Methods to Make Disjoint Products

3.1 Principle

A lot of algorithms has been developed to rewrite the sum of products in order to make dis-
joint products [Mis93, RVT95]. There are based on comparisons between products. These
comparisons lead to multiply the compared products by well chosen products of variables in
order to disjoint them to others. KDH [Hei89] is a well known algorithm to assess disjoint
products, improved recently by the DA algorithm [Bou93, CDRB99]. The ordering of the
comparison of the products has a significant effect on the final sum of disjoint products
–number of products and their length [SR93, CDRB99]. In [CDRB99], a preprocessing
module (PPM) was proposed to improve the ordering before the use of a disjonction al-
gorithm –the whole method PPM and DA is called Semi-Optimal Disjonction Approach,
SODA. This module may improve KDH and DA performances for many examples with
a competitive processing time. Nevertheless PPM is not efficient in the general case –we
show below some examples for which PPM decreases KDH and DA performances.

4

3.2 K.D. Heidtmann algorithm: KDH

The KDH88 algorithm is an improvement of the Abraham algorithm [Abr79] which is
based on single variables complementation in order to disjoint products. The main idea is
to compare at each stage i = 1, ..., n a fixed product πi to others πj, j < i, considering the
set Ti,j of πj uncompleted variables which don’t exist in πi.

In the Abraham algorithm, πi is replaced by x̄1.πi + x1.x̄2.πi + ... + x1.x2...x̄kπi at each
comparison from j = i + 1 to n, with Ti,j = {x1, ..., xk}.

In the KDH algorithm, a multi-variable complementation rule is proposed: πi is replaced
by x1.x2...xkπi. But, for each complemented set of variables Y in πi, for which a sub-set Z
contains variables of πj, the complementation has to be rewritten before the replacement

rule of πi as follows:
∏

yk∈Y

yk =
∏

zk∈Z

zk +
∏

zk∈Z

zk

∏

yk∈Y \Z

yk

This last formula is needed to ensure the complementation using the multi-variable
complementation rule proposed in the KDH algorithm. It increases the number of products
only in particular cases –when Z 6= ∅– which lead to better performances than Abraham
algorithm and some others as [LW92, LYL93].

3.3 Disjonction Approach: DA

The Disjonction Approach (DA) is based on the same principle as KDH algorithm. The
improvements are based on the ordering of products. First, the products are ordered
according to their length. The algorithm starts the comparison from one of the longest
products to one of the shortest’s for i = n, ..1. At each step, among products with a
given length, the KDH comparison rule is applied choosing πj such as its set of selected
uncompleted variables (which don’t exist in πi) is smallest as possible. In practice, this
new rule leads to order the πj to be compared to a given πi for each i.

This disjonction algorithm is more efficient than KDH one and others developed in
1990’s [CDRB99]. But, the initial ordering of products has also a significative effect to the
disjoint products obtained with DA. For this reason, a preprocessing module (PPM) has
been proposed to improve DA results.

3.4 Semi-Optimal Disjonction Approach: SODA

DA efficiency has been improved in classical examples using PPM –to see [CDRB99] for
details. The principle is to calculate ri coefficients to characterize the ability of each product
which has to be compared, to be disjoint from other products –or to reduce the number of
additional products induced. The main idea is to compare each others the differences of
the variable sets to be evaluated in the disjonction procedure. Because of the high number
of the whole possible differences, the ri coefficients calculated by PPM are only based on
the two set differences.

Let N = card[
⋃

j 6=k Ti,j ∩ Ti,k] and D = card[
⋃

j Ti,j]. It can be verified that the
disjunction approach produces relatively few terms when N/D is close to 0 or to 1, and

5

consequently the products with ri’s close to 1/2 are placed at the end of the comparison
sequence. Then, ri coefficient was chosen equal to |1/2 − N/D|, the sequence being in
decreasing order of ri.

4 An Efficient Pivotal Decomposition Procedure

In this section, we propose an efficient implementation of the so-called pivotal decomposi-
tion method. This kind of algorithms have been widely studied by the Artificial Intelligence
community in a slightly different context: the resolution of the well-known SAT problem
(which is the cornerstone on complexity theory and has been the first problem to be shown
NP-complete [Coo71]). The recent monography [KL99] gives a large overview of this topics.

4.1 Presentation of the Method

The pivotal decomposition method builds implicitly a binary tree. It may either produce
an equivalent sum of disjoint products or compute the probability of the sum of products
under study. For the sake of simplicity, we present below both variations at once. At each
step, the algorithm has two parameters: a sum-of-products S and a product π. It starts
with the sum-of-products under study and the empty product. It works as follows.

Satisfaction rule: If S contains an empty product, then π is a cutset of S. π is added to
the sum of disjoint products under construction. If one computes a probability, the
value 1 is returned.

Falsification rule: Else if S is empty, then π falsifies S. If one computes a probability,
the value 0 is returned.

Unit product rule: Else if S contains a unit product, i.e. a product with only one literal
x, then the algorithm is called on Sx̄ and π.x̄. The obtained products together with
the product π.x are added to the sum of disjoint products under construction. If one
computes a probability, then p(S) = p(x)+p(x̄).p(Sx̄). This rule is actually borrowed
from the Davis-Putnam procedure [DLL62].

Branching rule: Else, a literal x is selected, the algorithm is called first on Sx and π.x
and second on Sx̄ and π.x̄. The products obtained by both recursive calls are added
to the sum of disjoint products under construction. If one computes a probability,
then p(S) = p(x).p(Sx) + p(x̄).p(Sx̄).

As an illustration, let us consider the sum of products S = ab + bcd + dei + acei,
taken from reference [CDRB99]. The binary tree traversed by the algorithm for S and the
branching heuristic described in the next section is pictured Fig. 1. On this figure, internal
nodes are labelled with the current sum of products as well as the rule applied to this
formula. Leaves are labelled either with 1 or 0, depending on whether the satisfaction rule

6

_
a

_
d

_
c

_
e

_
i

_
b

_
a

_
c

_
d

_
e

_
i

a+cd+dei+acei : UPR

b

cd+dei : BR

d

0c+ei:UPR

ei : BR

0

0

e

dei+acei : BR

i : UPR

a

1

c

1

i

1

0di+aci : BR

d+ac : UPR 0

ac :BR1

0c : UPR

1 0

a

c

d

ab+bcd+dei+acei : BR

e

i

Figure 1: An example of binary tree built by the pivotal decomposition method.

or the falsification rule is applied. Branches are labelled with literals. The sum of disjoint
products built by the algorithm is (from left to right): ba + bādc + bādc̄ei + b̄eid + b̄eiac.

By construction, all of the produced products are pairwisely disjoint and their sum is
equivalent to the formula under study. Alternatively, the algorithm computes the exact
probability of the formula. Note that the binary tree can be a more concise representation
for the sum of disjoint products than the sum of disjoint products itself (thanks to the
sharing of prefixes of products).

The efficiency of the above algorithm relies on two points. First, the data structure
used to encode sum-of-products, to compute Sx from S and x, and to detect unit products.
Second, the branching heuristic. This latter point will be discussed in the next section.

The best data structure to encode sum-of-products consists in a sparse matrix. Each
row of the matrix encodes a product. Each column encodes the occurrences of a variable.
Such a data structure makes it possible to compute Sx and to detect unit product in linear
amortized time (see, for instance, [Rau95] for a discussion). The main idea is that Sx

is computed just by traversing the list of occurrences of x in S and by updating some
counters (e.g. the numbers of satisfied and falsified literals in each product). When the
algorithm backtracks, the same traversal is used to restore the counters. Therefore, the
whole algorithm works in constant space (it needs only the recursivity stack).

The above scheme can be adapted to compute lower and upper approximations of the
probability of the formula under study. The idea is to add a threshold on the probability of
the product π (or alternatively on the number of positive/negative literals). If, at a given
step of the algorithm, this probability goes below the threshold then the subtree rooted by
the current node is not explored. The returned probability is either 0 or 1 depending on
whether one wants a lower or an upper approximation.

7

4.2 Heuristics

Branching heuristics for pivotal decomposition methods have been widely discussed in the
litterature, e.g. [HV95]. Conversely to BDDs for which heuristics are used to determine a
variable order once for all, here the heuristic is invocated each time the branching rule is
applied. The role of such heuristic is to reduce the size of the search tree. Two rules of
thumb are applied to do so:

• One tries to produce as many unit products as possible. Each application of the unit
product rule eliminates a variable for free.

• One tries to balance the sizes of the two subtrees. Assume for instance that we
have two heuristics A and B such that A eliminates two variables on each branch
(after its application and an additional application of the unit product rule), and B
eliminates one variable on the first branch and three variables on the second one.
Simple combinatorial arguments show that the tree built by A is much smaller than
the tree built by B.

The design of a branching heuristic must result from a tradeoff between the accuracy
of the result and the computational cost.

For the purpose of this study, we used the following heuristic. The selected variable
is the most frequent variable in the shortest products. In order to break the ties, one
considers the frequence in second shortest products (and then just takes the first variable
in the instance order).

This heuristic is easy to apply and gives rather good results. Its design results from
an extensive study over a benchmark made of dozens of formulae (some of which are
presented section 6). We considered in turn several heuristics. From this study, we drew
several conclusions.

• Static heuristics (i.e. those that select a variable order once for all) give very poor
results.

• In order to be efficient, a heuristic must select the next variable in the shortest
products. The idea is basically that once the algorithm has chosen to explore a part
of the formula, it must stay on this part until it is fully explored.

• More elaborated selection mechanisms can be designed. However, the one we pre-
sented above is a good tradeoff. It is worth noticing that it is often the case that
brute force exploration performs better than clever exploration schemes.

5 Binary Decision Diagrams

5.1 A Brief Presentation

Bryant’s Binary Decision Diagrams (BDDs) [BRB90] are the state-of-the-art data structure
to encode and to manipulate Boolean functions. The BDD associated with a formulae is a

8

b

a

c

01

BDD
a

bb

cc

1 1 0 0 1 0 1 0

c c

Shannon Tree

Reduction Rules

Figure 2: From the Shannon tree to the BDD encoding ab + āc.

compact encoding of the truth table of this formula. This representation is also based on
the pivotal decomposition: Let F be a Boolean formula that depends on the variable v,
then F = v.Fv + v̄.Fv̄. By choosing a total order over the variables and applying recursively
the pivotal decomposition, the truth table of any formula can be graphically represented
as a binary tree. The nodes are labeled with variables and have two outedges (a then-
outedge, pointing to the node that encodes Fv, and a else-outedge, pointing to the node
that encodes Fv̄). The leaves are labeled with either 0 or 1. The value of the formula for
a given variable assignment is obtained by descending along the corresponding branch of
the tree. The Shannon tree for the formula ab + āc and the lexicographic order is pictured
Fig. 2 (dashed lines represent else-outedges).

Indeed such a representation is very space consuming. It is however possible to shrink
it by means of the following two reduction rules.

• Isomorphic subtrees merging. Since two isomorphic subtrees encode the same for-
mula, at least one is useless.

• Useless nodes deletion. A node with two equal sons is useless since it is equivalent
to its son (v.F + v̄.F = F).

By applying these two rules as far as possible, one get the BDD associated with the formula.
A BDD is therefore a directed acyclic graph. It is unique, up to an isomorphism. This
process is illustrated on Fig. 2.

Logical operations (and, or, xor, ...) can be directly performed on BDDs. This results
from the orthogonality of usual connectives and the Shannon decomposition:

(v.F1 + v̄.F0) � (v.G1 + v̄.G0) = v.(F1 � G1) + v̄.(F0 � G0)

where � is any binary connective.
Among other consequences, this means that the complete binary tree is never built and

then shrunk: the BDD encoding a formula is obtained by composing the BDDs encoding
its subformulae. Moreover, a caching principle is used to store intermediate results of com-
putations. This makes the usual logical operations (conjunction, disjunction) polynomial

9

in the sizes of their operands. A complete implementation of a BDD package is described
in [BRB90]. The reader interested in more details should thus refer to this article.

5.2 Specific Heuristics to Handle Sums of Products

It is widely known, since the very first uses of BDDs, that the chosen variable ordering has a
great impact on the size of BDDs, and therefore on the efficiency of the whole methodology.
Finding the best ordering (or even a reasonnably good one) is a very hard problem (see
[Weg00] for a recent survey on this topics). Two kinds of heuristics are used to determine
which variable ordering to apply. Static heuristics are based on topological considerations
and select the variable ordering once for all (see for instance [FFK88]). Dynamic heuristics
change the variable ordering at some points of the computation. The latters are thus more
versatile than the formers, but the price to pay is a serious increase of running times.
Sifting is the most widely used dynamic heuristics [Rud93].

In order to handle sum-of-products, we designed a two steps preprocessing algorithm.
First, the variables are ordered according to a heuristic presented below. Second, the sum
of products is factorized as follows.

Let S be the sum of products under study and let v be the first variable in the order.
Let Sv, S v̄ and S 6v be respectively the subsets of S of the products that respectively contain
v, contain v̄ and contain neither v nor v̄. Then S is rewritten as v.Sv

v + v̄.S v̄
v̄ + S 6v and the

factorization is applied recursively on Sv
v , S v̄

v̄ and S 6v. This factorization is cheap, since at
each step the current sum of products is splitted into three disjoint subsets. It simplifies
the BDD computation because none of the formulae Sv

v , S v̄
v̄ , S 6v contains v.

The total order among the variables is determined as follows. The first variable v1 is
the most frequent one in the shortest products. In case of ties, one considers the frequence
in the second shortest products. And so on. Once v1 is selected, one considers the formula
S 6v1

obtained from S by removing the occurrences of v1 (and v̄1) and the empty products,
if any. The second variable is selected by applying the same method on S 6v1

, and so on.
The factorization does not influence the size of the final BDD. It has however a dramatic

influence on the sizes of intermediate computations. This has been already pointed out
by one the authors in [NR98]. The design of the variable ordering heuristic follows from
the conclusions drawn for the design of branching heuristics for the pivotal decomposition
method (see section 4). The only difference is that here the heuristic determines the
variable order once for all. Therefore, it is interesting to pay a bit more to be more clever.

6 Experimental Results

In order to compare the algorithms presented in the previous sections, we considered mainly
three kinds of formulae: sums of minimal cutsets of real fault trees, sums of products that
encode s,t-paths of networks and sums of products generated at pseudo-random according
to the fixed length model. Finding a good benchmark is always a difficult task. The first
two categories of formulae cover, at least to a certain extent, the kind of formulae one may

10

Poincaré Algorithms
Fault Trees #var. #MCS 1st 2nd KDH DA SODA ESOP Fact. BDDs

baobab1 61 46188 0.14 3770 21.96 0.63
baobab2 32 4805 0.01 25.42 8192 2092 3303 6.59 0.81 0.00
baobab3 80 24386 0.07 978 10.88 0.27
chinese 25 392 0.00 0.09 12.45 2.98 4.16 0.02 0.05 0.00
das9201 122 14217 0.02 143 1537 4.88 0.02
das9202 49 27778 0.10 1398 1055 12.05 0.01
das9205 51 17280 0.04 330 188740 31275 221255 3.00 4.18 0.00
das9208 103 8060 0.02 53 15.89 2.33 0.14
edf9205 165 21308 0.04 411 2135 11.08 0.02
edfpa15r 88 26549 0.08 1079 9979 13.41 0.38
ftr10 152 305 0.00 0.02 0.49 0.10 0.00
isp9603 91 3434 0.01 8.57 661 0.87 0.04
isp9605 32 5630 0.02 38.10 26832 3634 7376 12.50 1.24 0.01
isp9606 89 1776 0.01 1.47 14464 3635 7969 105 0.35 0.00
jbd9601 532 14007 0.02 139 22.27 4.00

Table 1: Running times to assess minimal cutsets of fault trees

expect to encounter in practive. Randomly generated formulae have also some interesting
properties that will be discussed below.

6.1 Minimal Cutsets of Real-Life Fault Trees

The first set of formulae we considered consists of the disjuncts of the minimal cutsets of
15 real-life fault trees. The number of basic events and minimal cutsets for each of these
trees is given table 1.

The fourth and fifth columns give the running times in seconds to compute the first two
terms of the Sylvester-Poincaré development (on a PC pentium III biprocessor 733MHz
running Linux). The remaining columns give the running times of respectively, the algo-
rithms KDH, DA, SODA, ESOP (the pivotal decomposition method described section 4),
the factorization algorithm and the computation of the BDD from the factorized formula
(a symbol “ ” in a cell indicates that the algorithm is unable to handle the formula within
a reasonable running time).

The table 2 gives the sizes of the BDDs as well as the running times (still in seconds)
to compute the probability of the formula from its BDD. It is worth to mention that the
computed probability is the exact one, for — thanks to the Shannon decomposition — no
approximation is required.

The following facts can be observed from results presented tables 1 and 2.

Fact 1. Running times for BDDs are by orders of magnitude smaller than those of other
methods. Moreover there are examples (e.g. jbd9601) for which BDDs are the only

11

ba
ob

ab
1

ba
ob

ab
2

ba
ob

ab
3

ch
in
es
e

da
s9
20

1

da
s9
20

2

da
s9
20

5

da
s9
20

8

ESOP tree size 66486 2341 8271107 350890 17973 311538

BDD size 18786 204 10169 67 696 353 272 11490
CPU Pr 0.07 0.00 0.02 0.00 0.01 0.00 0.01 0.03

ed
f9
20

5

ed
fp
a1

5r

ftr
10

isp
96

03

isp
96

05

isp
96

06

jb
d9

60
1

ESOP tree size 3417097 8232340 238995 32388182 104586 8083369

BDD size 935 11310 302 4331 401 346 342190
CPU Pr 0.01 0.03 0.00 0.00 0.00 0.00 0.58

Table 2: More statistics about minimal cutsets of fault trees

successful method.

Fact 2. Not only running times of BDDs are better, but also BDDs are much smaller than
the sums of disjoint products produced by KDH, DA or SODA and the binary trees
produced by ESOP. As a consequence, the computation of the probability of the
formula is much more efficient using BDDs than any of the other methods.

Fact 3. In the Table 1, the DA computing time is smaller than SODA and KDH ones.
One can notice that the obtained number of disjoint products –and total number of
operations to calculate the final probability– in increasing order is smaller with DA,
KDH and SODA, except for “isp9605” example –the increasing order is then SODA,
DA and KDH.

Fact 4. The ESOP computing time is largely smaller than SODA, DA and KDH ones. The
total number of operations to calculate the final probability is also largely smaller
with ESOP than with SODA, DA or KDH, even if it is not the case for the number
of disjoint products.

Fact 5. For these “not too small” formulae the computation of Boole-Bonferonni bounds
is very expensive (the third term is not computable for most of these formulae within
reasonable time limits). Moreover, it is always faster to compute the BDD and
then the probability than to compute the second term of the Sylvester-Poincaré
development.

6.2 Reliability Networks

Sums of products arise naturally in the study of reliability networks. In order to determine
the probability that there is an operating s,t-path, it is often convenient to determine

12

(17)

s t

ts

(22)(19)

s

t

(18)

s

t

Figure 3: Four networks taken from reference [KLY99]

minimal s,t-paths, to encode them as a sum of products and to assess the probability this
formula. More direct compilation schemes exist [MCFB94, KLY99, Rau01]. However, the
above methodology is still of interest for it is simple and robust (and does not require the
use of quantifiers, conversely to the cited methods).

In references [PP88, SR93, KLY99], a collection of more or less realistic networks is
given as a benchmark for reliability network assessment methods. Unfortunately, most of
these networks are too small to make any valuable comparison. We report here only results
for four large ones that are pictured Fig. 3.

A good benchmark should contain some scalable test cases. Fig. 4 presents three
networks that differ only from the location of their source and target nodes. Source and
target nodes of (n, m) grid, rescom and taxi networks are respectively located on nodes
(1, 1) and (n, m), (1, bm/2c) and (n, dm/2e), and (bn/2c, bm/2c) and and (dn/2e, dm/2e).
These three families of networks have hovewer a drawback: they are in some sense too
regular and give a great advantage to methods that capture these regularities, such as
BDDs.

The tables 3 gives the running times of the different algorithms considered so far for
the four networks issued from [KLY99] and some networks of the Grid, Rescom and Taxi
families.

It is clear from tables 3 and 4 that the facts we observed for minimal cutsets of fault
trees remain valid for s,t-paths of reliability networks.

13

s

t

(a) Grid (4,3)

s t

(b) Rescom (4,3)

s
t

(c) Taxi (4,3)

Figure 4: Grid networks.

Poincaré Algorithms
Networks #var. #paths 1st 2nd KDH DA SODA ESOP Fact. BDDs

KLY17 25 145 0.00 0.02 0.96 0.58 0.25 0.09 0.02 0.01
KLY18 22 269 0.00 0.07 5.46 2.25 1.10 0.06 0.03 0.01
KLY19 30 780 0.00 1.18 629 282.7 33.7 14 0.18 0.02
KLY22 26 192 0.01 0.03 6.01 3.74 0.89 0.29 0.03 0.00
Grid (2,11) 31 1024 0.01 2.57 14.57 6 11.43 2.08 0.70 0.11
Grid (2,12) 34 2048 0.01 12 117 36.86 83 10.92 1.67 0.28
Grid (2,13) 37 4096 0.02 53 875 226 564 60 4.01 0.73
Rescom (4,5) 31 395 0.00 0.21 5.71 3.43 1.71 1.20 0.13 0.01
Rescom (5,4) 31 613 0.00 0.62 13.43 8 5.14 3.06 0.29 0.09
Rescom (5,5) 40 3915 0.02 47 4806 2366 918 675 2.21 0.10
Taxi (3,8) 37 801 0.00 1.61 48.57 25.14 10 1.55 0.41 0.00
Taxi (3,9) 42 1217 0.00 0.09 211 85.71 27.43 11.67 0.66 0.01
Taxi (3,10) 47 4803 0.00 0.09 11790 3527 963 155 3.62 0.01
Taxi (3,11) 52 6999 0.00 0.09 3106 2042 5.35 0.01
Taxi (4,5) 31 339 0.00 0.15 4.29 2.86 1.14 0.52 0.14 0.01
Taxi (4,6) 38 1756 0.01 8.18 715 275 82.57 44.62 0.87 0.01
Taxi (4,7) 45 6677 0.04 156 3219 2283 4.29 0.02

Table 3: Running times to assess disjuncts of s,t-paths of networks

14

K
LY

17

K
LY

18

K
LY

19

K
LY

22

G
rid

(2
,1
1)

G
rid

(2
,1
2)

G
rid

(2
,1
3)

R
es
co
m

(4
,5
)

R
es
co
m

(5
,4
)

ESOP tree size 13395 5780 348874 31149 37861 98840 258019 70892 120608

BDD size 1070 333 1546 242 7704 15810 31845 934 7992
CPU Pr 0.00 0.00 0.00 0.00 0.03 0.05 0.10 0.00 0.01

R
es
co
m

(5
,5
)

Ta
xi

(3
,8
)

Ta
xi

(3
,9
)

Ta
xi

(3
,1
0)

Ta
xi

(3
,1
1)

Ta
xi

(4
,5
)

Ta
xi

(4
,6
)

Ta
xi

(4
,7
)

ESOP tree size 3585841 39130 203465 559062 2896349 34423 532884 5417036

BDD size 7082 1296 300 1936 410 4239 1698 2061
CPU Pr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

Table 4: More statistics about s,t-paths of reliability networks

6.3 Randomly Generated Formulae

Formulae generated at pseudo-random have two interesting properties. First, they provide
an inexhaustible source of scalable formulae. Second, the generated formulae have almost
no structure and therefore no regularities. The more there are regularities the easier the
treatments are (or at least could be), and vice versa. In other words, pseudo-random gen-
eration is a source of concise and hard formulae. This latter point has been demonstrated
for the SAT problem both theoretically [CS88], and experimentally [MSL92]. It should
be noticed however that formulae encountered in practice do have regularities for they
derive from human-made artefacts. Results of experiments on pseudo-randomly generated
formulae must therefore be considered with care.

For the purpose of the present study, we generated monotone sums of products ac-
cording to the fixed-length model. The principle is as follows. One chooses a number of
variables n, a number of products m and a size of products k. Then, each product is
generated independently by drawing k variables out of the n’s (each variable has the same
probability to be drawn). It is easy to verify that if k and m are small w.r.t. respectively n
and

(

k

n

)

then the probability to draw the same product twice is neglictible. Each instance
is characterized by four numbers: n, m, k that are defined as above and s the seed of the
random number generator.

Tables 5 and 6, which report performances of the algorithms considered so far, shows
a totally different picture that what was observed for minimal cutsets and s,t-paths.

Fact 6. BDDs still outperform KDH, DA and SODA. However, ESOP is now clearly the
best algorithm. Moreover, the larger the formula, the greater the advantage of ESOP
over BDDs.

Fact 7. Since m and k are small, the computation of the first two terms of the Sylvester-

15

Poincaré Algorithms
Networks #var. #prd. 1st 2nd KDH DA SODA ESOP Fact. BDDs

FL20-50-5-1111 20 1000 0.00 0.60 49.14 15.71 27.43 0.69 0.10 0.13
FL20-50-5-1234 20 1000 0.00 0.59 48.86 16.29 27.71 0.70 0.10 0.13
FL25-40-4-1111 25 1000 0.00 0.47 543.4 93.43 105.1 0.99 0.08 0.36
FL25-40-4-1234 25 1000 0.00 0.46 88.86 32.57 105.4 1.00 0.09 0.35
FL25-40-5-1111 25 1000 0.00 0.61 287.4 114.9 268 5.61 0.12 2.75
FL25-40-5-1234 25 1000 0.00 0.65 1045 241.7 256.9 5.61 0.12 2.62
FL30-40-3-1111 30 1200 0.00 0.47 76.86 20 140.6 0.23 0.08 0.09
FL30-40-4-1111 30 1200 0.00 0.72 579.7 208.6 6.55 0.12 7.40
FL30-40-4-1234 30 1200 0.00 0.67 611.7 216.9 6.41 0.13 8.08
FL30-40-5-1111 30 1200 0.00 0.98 55.60 0.17 182
FL30-40-5-1234 30 1200 0.00 0.94 54.70 0.17 167
FL35-40-3-1111 35 1400 0.00 0.68 458.6 106.9 0.78 0.10 0.47
FL35-40-4-1111 35 1400 0.00 1.03 42.36 0.16 280
FL35-40-4-1234 35 1400 0.00 0.98 41.94 0.17 243
FL40-30-3-1111 40 1200 0.00 0.50 2140 595.1 3.49 0.11 6.13
FL45-20-3-1111 45 900 0.00 0.27 20.88 0.09 285

Table 5: Running times to assess pseudo-randomly generated formulae

FL
20

-5
0-
5-
11

11
45

FL
20

-5
0-
5-
12

34

FL
25

-4
0-
4-
11

11

FL
25

-4
0-
4-
12

34

FL
25

-4
0-
5-
11

11

FL
25

-4
0-
5-
12

34

FL
30

-4
0-
3-
11

11

FL
30

-4
0-
4-
11

11

ESOP tree size 26834 27712 56509 55892 253187 252105 15804 344540

BDD size 12151 11890 32147 30578 123717 124482 11442 209245
CPU Pr 0.02 0.02 0.05 0.05 0.21 0.22 0.02 0.36

FL
30

-4
0-
4-
12

34

FL
30

-4
0-
5-
11

11

FL
30

-4
0-
5-
12

34

FL
35

-4
0-
3-
11

11

FL
35

-4
0-
4-
11

11

FL
35

-4
0-
4-
12

34

FL
40

-3
0-
3-
11

11

FL
45

-2
0-
3-
11

11

ESOP tree size 336282 2346268 2303536 51531 2076400 2053771 271878 2101086

BDD size 213167 1241981 1185211 42286 1417501 1449130 257671 2179400
CPU Pr 0.36 2.38 2.26 0.06 2.55 2.64 0.40 3.67

Table 6: More statistics about pseudo-randomly generated formulae

16

Poincaré development is much faster than any of the considered algorithms (subse-
quent terms are however still hard to compute).

Fact 8. DA performs better than KDH which in turn performs better than SODA.

Fact 9. Due to the lack of regularities, the sizes of ESOP trees are only about twice the
sizes of the corresponding BDDs for most of the considered instances. For the two
last instances (that are the largest ones) the sizes of ESOP trees and BDDs are even
approximately the same.

7 Conclusion

In this article, we reported experimental results we obtained with different algorithms on
a large benchmark of sums-of-products. We considered five algorithms:

• KDH, DA and SODA that rewrite the sum of products under study into an equivalent
sum of disjoint products. These algorithms can be considered as among the most
efficient in their category.

• ESOP which is an efficient implementation of the pivotal decomposition method.

• Binary Decision Diagrams, for which we propose a specialized preprocessing tech-
nique.

From this large experimental study, we drew the following conclusions.

• KDH, DA and SODA are never competitive with ESOP and BDDs.

• BDDs outperform ESOP when the formula under study has regularities. Most of the
“real-life” formulae (minimal cutsets of fault trees, s,t-paths of reliability networks)
do have such regularities.

• ESOP performs better than BDDs when the formula under study has no structure
(this is the case for formulae generated at random).

• ESOP computes the probability of the formula in constant space. Moreover, it can
be modified to give only lower and upper approximations of this probability. This
makes ESOP of interest to deal with formulae for which the computation of the BDD
is not tractable.

References

[Abr79] J. A. Abraham. An improved Algorithm for Network Reliability. IEEE Trans-
actions on Reliability, R-28(1):58–61, April 1979.

17

[Bou93] T. Bouhoufani. Contribution à la construction et au traitement des arbres de
défaillance. Thèse de doctorat, Université Bordeaux I, 1993.

[BRB90] K. Brace, R. Rudell, and R. Bryant. Efficient Implementation of a BDD Pack-
age. In Proceedings of the 27th ACM/IEEE Design Automation Conference,
pages 40–45. IEEE 0738, 1990.

[Bry86] R. Bryant. Graph Based Algorithms for Boolean Fonction Manipulation. IEEE
Transactions on Computers, 35(8):677–691, August 1986.

[CDRB99] E. Châtelet, Y. Dutuit, A. Rauzy, and T. Bouhoufani. An optimized proce-
dure to generate sums of disjoint products. Reliability Engineering and System
Safety, 65:289–294, 1999.

[Coo71] S.A. Cook. The Complexity of Theorem Proving Procedures. In Proceedings
of the 3rd Ann. Symp. on Theory of Computing, ACM, pages 151–158, 1971.

[CS88] V. Chvátal and E. Szemerédi. Many Hard Examples for Resolution. JACM,
35(4):759–768, october 1988.

[DLL62] M. Davis, G. Logemann, and D. Loveland. A Machine Program for Theorem
Proving. CACM, 5:394–397, 1962.

[FFK88] M. Fujita, H. Fujisawa, and N. Kawato. Evaluation and Improvements of
Boolean Comparison Method Based on Binary Decision Diagrams. In Proceed-
ings of IEEE International Conference on Computer Aided Design, ICCAD’88,
pages 2–5, 1988.

[Hei89] K.D. Heidtmann. Smaller Sums of Disjoint Products by Subproduct Inversion.
IEEE Transactions on Reliability, 38:305–311, 1989.

[HV95] J.N. Hooker and V. Vinay. Branching Rules for Satisfiability. Journal of Au-
tomated Reasoning, 15:359–383, 1995.

[KL99] H. KleineBuning and L. Lettman. Proposition Logic: Deduction and Algo-
rithms. Cambridge University Press, 1999. ISBN 0521630177.

[KLY99] Sy-Yen Kuo, Shyue-Kung Lu, and Fu-Min Yeh. Determining Terminal-Pair
Reliability Based on Eedge Expansion Diagrams Using OBDD. IEEE Trans-
actions on Reliability, 48(3):234–246, September 1999.

[LW92] M. O. Locks and J. M. Wilson. Note on Disjoint Products Algorithms. IEEE
Transactions on Reliability, 41(1):81–84, March 1992.

[LYL93] H. H. Liu, W. T. Yang, and C. C. Liu. An improved minimizing algorithm for
the summation of disjoint products by Shannon’s expansion. Microelectronic
Reliability, 33(4):599–613, 1993.

18

[MCFB94] J.-C. Madre, O. Coudert, H. Fräıssé, and M. Bouissou. Application of a
New Logically Complete ATMS to Digraph and Network-Connectivity Analy-
sis. In Proceedings of the Annual Reliability and Maintainability Symposium,
ARMS’94, pages 118–123, 1994. Annaheim, California.

[Mis93] K.R. Misra. New Trends in System Reliability Evaluation. Fundamental Studies
in Engineering, 16. Elsevier, 1993. ISBN 0-444-816607.

[MSL92] D. Mitchell, B. Selman, and H. Levesque. Hard and Easy Distributions of SAT
Problems. In Proceedings Tenth National Conference on Artificial Intelligence
(AAAI’92), 1992.

[NR98] M. Nikolskaia and A. Rauzy. Heuristics for bdd handling of sum-of-products
formulae. In Lydersen, Hansen, and Sandtorv, editors, Proceedings of European
Safety and Reliability Association Conference, ESREL’98, pages 1459–1465.
Balkerna, Rotterdam, 1998. ISBN 90 54 10 966 1.

[PP88] L.B. Page and J.E. Perry. A Practical Implementation of the Factoring The-
orem for Newtork Reliability. IEEE Transactions on Reliability, 37:259–267,
1988.

[PP89] L.B. Page and J.E. Perry. Reliability of directed newtork using the factoring
theorem. IEEE Transactions on Reliability, 38:556–562, 1989.

[Rau95] A. Rauzy. Polynomial restrictions of SAT: What can be done with an efficient
implementation of the Davis and Putnam’s procedure. In U. Montanari and
F. Rossi, editors, Proceedings of the International Conference on Principle of
Constraint Programming, CP’95, volume 976 of LNCS, pages 515–532. Springer
Verlag, 1995.

[Rau01] A. Rauzy. A new methodology to handle boolean models with loops. IEEE
Transactions on Reliability, 2001. To appear.

[Rud93] R. Rudell. Dynamic Variable Ordering for Ordered Binary Decision Diagrams.
In Proceedings of IEEE International Conference on Computer Aided Design,
ICCAD’93, pages 42–47, November 1993.

[RVT95] S. Rai, M. Veeraraghavan, and K.S. Trivedi. A Survey of Efficient Reliability
Computation Using Disjoint Products Approach. Networks, 25:147–163, 1995.

[Shi91] D.R. Shier. Network Reliability and Algebraic Structures. Oxford Science Pub-
lications, 1991.

[SR93] S. Soh and S. Rai. Experimental results on preprocessing of path/cut terms in
sum of disjoint products technique. IEEE Transactions on Reliability, 42(1):24–
33, 1993.

19

[Tod89] S. Toda. On the computational power of PP and ⊕P. In Proceedings of Annual
IEEE Symposium on Foundations of Computer Science, pages 514–519, 1989.

[Val79a] L.G. Valiant. The complexity of enumeration and reliability problems. SIAM
Journal of Computing, 8:410–421, 1979.

[Val79b] L.G. Valiant. On the complexity of computing the permanent. Theoretical
Computer Science, 8:189–201, 1979.

[Weg00] I. Wegener. Branching Programs and Binary Decision Diagrams - Theory and
Applications. SIAM Monographs on Discrete Mathematics and Applications,
2000. ISBN 0-89871-458-3.

20

